大数据结构课程设计_排序算法比较【完整版】
数据结构课程设计—内部排序算法比较
数据结构课程设计—内部排序算法比较在计算机科学领域中,数据的排序是一项非常基础且重要的操作。
内部排序算法作为其中的关键部分,对于提高程序的运行效率和数据处理能力起着至关重要的作用。
本次课程设计将对几种常见的内部排序算法进行比较和分析,包括冒泡排序、插入排序、选择排序、快速排序和归并排序。
冒泡排序是一种简单直观的排序算法。
它通过重复地走访要排序的数列,一次比较两个数据元素,如果顺序不对则进行交换,并一直重复这样的走访操作,直到没有要交换的数据元素为止。
这种算法的优点是易于理解和实现,但其效率较低,在处理大规模数据时性能不佳。
因为它在最坏情况下的时间复杂度为 O(n²),平均时间复杂度也为O(n²)。
插入排序的工作原理是通过构建有序序列,对于未排序数据,在已排序序列中从后向前扫描,找到相应位置并插入,直到整个序列有序。
插入排序在数据量较小时表现较好,其平均时间复杂度和最坏情况时间复杂度也都是 O(n²),但在某些情况下,它的性能可能会优于冒泡排序。
选择排序则是每一次从待排序的数据元素中选出最小(或最大)的一个元素,存放在序列的起始位置,然后,再从剩余未排序元素中继续寻找最小(或最大)元素,然后放到已排序序列的末尾。
以此类推,直到全部待排序的数据元素排完。
选择排序的时间复杂度同样为O(n²),但它在某些情况下的交换操作次数可能会少于冒泡排序和插入排序。
快速排序是一种分治的排序算法。
它首先选择一个基准元素,将数列分成两部分,一部分的元素都比基准小,另一部分的元素都比基准大,然后对这两部分分别进行快速排序。
快速排序在平均情况下的时间复杂度为 O(nlogn),最坏情况下的时间复杂度为 O(n²)。
然而,在实际应用中,快速排序通常表现出色,是一种非常高效的排序算法。
归并排序也是一种分治算法,它将待排序序列分成若干个子序列,每个子序列有序,然后将子序列合并成一个有序序列。
排序算法问题课程设计
排序算法问题课程设计一、课程目标知识目标:1. 理解排序算法的基本概念,掌握冒泡排序、选择排序、插入排序等常见排序算法的原理和步骤。
2. 能够分析不同排序算法的时间复杂度和空间复杂度,理解其适用场景。
3. 了解排序算法在实际问题中的应用,如查找最大(小)元素、数据去重、有序数组合并等。
技能目标:1. 能够运用所学排序算法解决实际问题,编写相应的程序代码,并进行调试与优化。
2. 培养良好的编程习惯,提高代码的可读性和可维护性。
3. 学会通过分析问题特点,选择合适的排序算法,提高解决问题的效率。
情感态度价值观目标:1. 培养学生对算法学习的兴趣,激发他们主动探索排序算法的优缺点和改进方向的热情。
2. 培养学生的团队协作精神,学会在合作中交流、分享、共同解决问题。
3. 培养学生面对问题时的耐心和毅力,养成良好的学习习惯,形成积极向上的学习态度。
本课程设计针对初中或高中年级学生,结合计算机科学课程中的排序算法部分,注重理论与实践相结合。
课程性质为理论课与实践课相结合,通过讲解、示例、实践等教学手段,使学生掌握排序算法的基本知识,提高编程能力和问题解决能力。
根据学生特点和教学要求,课程目标具体、可衡量,有利于教师进行教学设计和评估。
将目标分解为具体学习成果,有助于学生明确学习目标,提高学习效果。
二、教学内容1. 排序算法基本概念:介绍排序算法的定义、作用和分类,结合教材相关章节,让学生了解排序在计算机科学中的重要性。
2. 常见排序算法原理与步骤:- 冒泡排序:讲解冒泡排序的原理、步骤,分析其时间复杂度和空间复杂度。
- 选择排序:介绍选择排序的原理、步骤,分析其时间复杂度和空间复杂度。
- 插入排序:讲解插入排序的原理、步骤,分析其时间复杂度和空间复杂度。
3. 排序算法的应用场景:结合实际案例,分析不同排序算法在实际问题中的应用,如排序数组查找、有序数组合并等。
4. 排序算法的时间复杂度和空间复杂度分析:讲解如何分析排序算法的复杂度,并通过实例加深理解。
《数据结构排序》课件
根据实际需求选择时间复杂度和空间 复杂度最优的排序算法,例如快速排 序在平均情况下具有较好的性能,但 最坏情况下其时间复杂度为O(n^2)。
排序算法的适用场景问题
适用场景考虑因素
选择排序算法时需要考虑实际应 用场景的特点,如数据量大小、 数据类型、是否需要稳定排序等 因素。
不同场景适用不同
算法
例如,对于小规模数据,插入排 序可能更合适;对于大规模数据 ,快速排序或归并排序可能更优 。
排序的算法复杂度
时间复杂度
衡量排序算法执行时间随数据量增长而增长的速率。时间复杂度越低,算法效 率越高。常见的时间复杂度有O(n^2)、O(nlogn)、O(n)等。
空间复杂度
衡量排序算法所需额外空间的大小。空间复杂度越低,算法所需额外空间越少 。常见的空间复杂度有O(1)、O(logn)、O(n)等。
在数据库查询中,经常需要对结果进行排序,以便用户能够快速找到所需信息。排序算 法的效率直接影响到查询的响应时间。
索引与排序
数据库索引能够提高查询效率,但同时也需要考虑到排序的需求。合理地设计索引结构 ,可以加速排序操作。
搜索引擎中的排序
相关性排序
搜索引擎的核心功能是根据用户输入的 关键词,返回最相关的网页。排序算法 需要综合考虑网页内容、关键词密度、 链接关系等因素。
VS
广告与排序
搜索引擎中的广告通常会根据关键词的竞 价和相关性进行排序,以达到最佳的广告 效果。
程序中的排序应用
数组排序
在程序中处理数组时,经常需要对其进行排 序。不同的排序算法适用于不同类型的数据 和场景,如快速排序、归并排序等。
数据可视化中的排序
在数据可视化中,需要对数据进行排序以生 成图表。例如,柱状图、饼图等都需要对数 据进行排序处理。
数据结构的常用算法
数据结构的常用算法一、排序算法排序算法是数据结构中最基本、最常用的算法之一。
常见的排序算法有冒泡排序、选择排序、插入排序、快速排序、归并排序等。
1. 冒泡排序冒泡排序是一种简单的排序算法,它重复地比较相邻的两个元素,如果它们的顺序错误就将它们交换过来。
通过多次的比较和交换,最大(或最小)的元素会逐渐“浮”到数列的顶端,从而实现排序。
2. 选择排序选择排序是一种简单直观的排序算法,它每次从待排序的数据中选择最小(或最大)的元素,放到已排序序列的末尾,直到全部元素排序完毕。
3. 插入排序插入排序是一种简单直观的排序算法,它将待排序的数据分为已排序区和未排序区,每次从未排序区中取出一个元素,插入到已排序区的合适位置,直到全部元素排序完毕。
4. 快速排序快速排序是一种常用的排序算法,它采用分治的思想,通过一趟排序将待排序的数据分割成独立的两部分,其中一部分的所有数据都比另一部分小,然后再按此方法对这两部分数据进行快速排序,递归地进行,最终实现整个序列有序。
5. 归并排序归并排序是一种稳定的排序算法,它采用分治的思想,将待排序的数据分成若干个子序列,分别进行排序,然后将排好序的子序列合并成更大的有序序列,直到最终整个序列有序。
二、查找算法查找算法是在数据结构中根据给定的某个值,在数据集合中找出目标元素的算法。
常见的查找算法有线性查找、二分查找、哈希查找等。
1. 线性查找线性查找是一种简单直观的查找算法,它从数据集合的第一个元素开始,依次比较每个元素,直到找到目标元素或遍历完整个数据集合。
2. 二分查找二分查找是一种高效的查找算法,它要求数据集合必须是有序的。
通过不断地将数据集合分成两半,将目标元素与中间元素比较,从而缩小查找范围,最终找到目标元素或确定目标元素不存在。
3. 哈希查找哈希查找是一种基于哈希表的查找算法,它通过利用哈希函数将目标元素映射到哈希表中的某个位置,从而快速地找到目标元素。
三、图算法图算法是解决图结构中相关问题的算法。
排序算法分析和比较
一、设计思想排序是数据处理中使用频率很高的一种操作,是数据查询之前需要进行的一项基础操作。
它是将任意序列的数据元素(或记录)按关键字有序(升序或降序)重新排列的过程。
排序的过程中有两种基本操作:一是比较两个关键字的值;二是根据比较结果移动记录位置。
排序的算法有很多种,这里仅对插入排序、选择排序、希尔排序、归并排序和快速排序作了比较。
直接插入排序算法基本思路:直接插入排序时将一个元素插入已排好的有序数组中,从而得到一个元素个数增加1的新的有序数组。
其具体实现过程是,将第i个元素与已经排好序的i-1个元素依次进行比较,再将所有大于第i个元素的元素后移一个位置,直到遇到小于或等于第i个元素,此时该元素的后面一个位置为空,将i元素插入此空位即可。
选择排序算法基本思路:定义两个数组sela[]和temp[],sela[]用来存放待排序数组,temp[]用来存放排好序的数组。
第一趟,将sela[]数组中n个元素进行比较,找出其中最小的元素放入temp[]的第一个位置,同时将sela[]中将该元素位置设置为无穷大。
第二趟,将sela[]数组中n个元素进行比较,找出其中最小的元素放入temp[]的第二个位置,同时将sela[]中将该元素位置设置为无穷大。
以此类推,n趟后将sela[]中所有元素都已排好序放入temp[]数组中。
希尔排序算法基本思路:希尔排序又称为变长步径排序,它也是一种基于插入排序的思想。
其基本思路是,定义一个步长数组gaps[1,5,13,43……],先选取合适的大步长gap将整个待排序的元素按步长gap分成若干子序列,第一个子序列的元素为a[0]、a[0+gap]、a[0+2gap]……a[0+k*gap];第二列为a[1]、a[1+gap]、a[1+2gap]……a[1+k*gap];……。
然后,对这些子序列分别进行插入排序,然后将gap按gaps[]数组中的步长缩小,按缩小后的步长再进行子序列划分排序,再减小步长直到步长为1为止。
课程设计排序问题
课程设计排序问题一、教学目标本课程的目标是让学生掌握排序问题的基本概念、算法和应用。
通过本课程的学习,学生应能理解排序的重要性,掌握常用的排序算法(如冒泡排序、选择排序、插入排序等),并能够运用排序算法解决实际问题。
同时,培养学生独立思考、解决问题的能力,提高学生对计算机科学和信息技术的兴趣。
具体来说,知识目标包括:1.了解排序的基本概念和重要性。
2.掌握常用的排序算法及其时间复杂度。
3.了解排序算法在实际应用中的优势和局限。
技能目标包括:1.能够运用排序算法解决实际问题。
2.能够分析排序算法的性能,选择合适的排序算法。
3.能够编写程序实现排序算法。
情感态度价值观目标包括:1.认识排序在计算机科学和信息技术中的重要性。
2.培养对排序算法的兴趣,激发对计算机科学和信息技术的热情。
3.培养独立思考、解决问题的能力,提高自信心。
二、教学内容本课程的教学内容主要包括排序问题的基本概念、常用排序算法及其实现、排序算法的应用等。
具体安排如下:1.排序问题的基本概念:介绍排序的重要性,理解排序的基本概念,如排序的定义、排序的分类等。
2.冒泡排序算法:讲解冒泡排序的基本原理,分析冒泡排序的时间复杂度,通过示例让学生理解冒泡排序的过程。
3.选择排序算法:讲解选择排序的基本原理,分析选择排序的时间复杂度,通过示例让学生理解选择排序的过程。
4.插入排序算法:讲解插入排序的基本原理,分析插入排序的时间复杂度,通过示例让学生理解插入排序的过程。
5.其他排序算法:介绍除冒泡、选择、插入排序外的其他排序算法,如快速排序、归并排序等,让学生了解其原理和实现。
6.排序算法的应用:讲解排序算法在实际应用中的优势和局限,如在数据查找、数据存储等方面的应用。
三、教学方法为了提高学生的学习兴趣和主动性,本课程将采用多种教学方法,如讲授法、讨论法、案例分析法、实验法等。
1.讲授法:通过讲解排序问题的基本概念、排序算法原理和实现,使学生掌握相关知识。
排序算法比较系统实验报告
排序算法比较系统一.项目计划书1.项目的选题意义随着计算机科学技术的快速发展,排序成为了计算机程序设计中的一种重要操作。
它在计算机图形、计算机辅助设计、机器人、模式识别及统计学等领域具有广泛应用。
在实际应用当中比如数据统计等方面都会用到。
而且对一组数据进行排序也方便了后面对数据查找的操作。
要知道在一个有序数组中查找和在一个随机无序数组中的查找的时间复杂度和系统消耗是有天壤之别的。
它的的功能是将一个数据元素(或记录)的任意序列,重新排列成一个关键字有序的序列。
由于排序法很多,但就其全面性能而言,很难提出一种被认为是最好的方法,每一种方法都有各自的优缺点,适合在不同的的环境下使用。
一般情况下,采用不同的排序算法效率会不一样。
因此,在不同的环境下选择相对效率最高的排序算法,能够有效加快工程实施的进度。
为了方便大家了解不同排序算法的时间效率,特建立一种排序算法比较系统,实现比较不同排序算法效率的目的。
2.项目的主要内容和目标排序算法比较系统主要实现的下列十种功能:一.简单选择排序;二.折半插入排序;三.直接插入排序;四.冒泡排序;五.希尔排序;六.快速排序;七.归并排序;八.堆排序;九.清屏;十.退出系统;3.项目的技术基础、特点及实施的条件该项目可用C语言实现,适于在单机环境下运行。
小组成员均已学习过C语言程序设计、数据结构、算法等课程,具有一定的开发能力。
4.项目人员分工所有人都参与了项目的选题、设计、实现及测试工作,项目负责人归纳整理小组成员讨论成果,并确定最终方案。
在实践阶段,按照功能模块具体分工如下:项目组负责人:李齐,构建模型、设计算法、设计界面、实现功能二、四、五、六、七、十项目组成员:刘运皇,初始化数据、实现功能一、三、八、九二.设计方案1.算法思想的选择与设计此项目来源于实际问题。
通常,在排序的过程中需进行下列两种基本操作:(1)比较两个关键字的大小;(2)将记录从一个位置移动至另一个位置。
数据结构排序算法实验报告
移动次数 735219 247071 2997 7296 22836 4233
乱序 2 比较次数 496238 255211 499500 12927 14868 3788
移动次数 762636 256210 2997 7449 22 242989 499500 12951 14845 3818
希尔排序:void ShellSort(Element *list,int n) 记录移动和比较次数的变量:int countlm=0,countlc=0 希尔排序是将文件分组,然后进行插入排序,因此 countlm,countlc 的增量方式与直 接插入排序相同。
堆排序:void HeapSort(Element *list,const int n) 记录移动和比较次数的变量:int countrm=0,countrc=0 首先进行初始建堆 void Restore(Element *tree,const int root,const int n),将待排序文 件保存在完全二叉树中,从最后一个非叶节点开始,将其孩子结点与其进行比较, 每比较一次 countrc 加 1,若孩子结点比其大,二者交换 countrm 加 3,直到任意结 点的关键词大于等于它的两个孩子结点。在进行堆排序,将根节点与最后一个叶节 点交换,countrm 加 3,再进行初始建堆,直至完全排好序。
数据结构内部排序算法比较
内部排序算法比较第一章问题描述排序是数据结构中重要的一个部分,也是在实际开发中易遇到的问题,所以研究各种排算法的时间消耗对于在实际应用当中很有必要通过分析实际结合算法的特性进行选择和使用哪种算法可以使实际问题得到更好更充分的解决!该系统通过对各种内部排序算法如直接插入排序,冒泡排序,简单选择排序,快速排序,希尔排序,堆排序、二路归并排序等,以关键码的比较次数和移动次数分析其特点,并进行比较,估算每种算法的时间消耗,从而比较各种算法的优劣和使用情况!排序表的数据是多种不同的情况,如随机产生数据、极端的数据如已是正序或逆序数据。
比较的结果用一个直方图表示。
第二章系统分析界面的设计如图所示:|******************************||-------欢迎使用---------||-----(1)随机取数-------||-----(2)自行输入-------||-----(0)退出使用-------||******************************|请选择操作方式:如上图所示该系统的功能有:(1):选择 1 时系统由客户输入要进行测试的元素个数由电脑随机选取数字进行各种排序结果得到准确的比较和移动次数并打印出结果。
(2)选择 2 时系统由客户自己输入要进行测试的元素进行各种排序结果得到准确的比较和移动次数并打印出结果。
(3)选择0 打印“谢谢使用!!”退出系统的使用!!第三章系统设计(I)友好的人机界面设计:(如图3.1所示)|******************************||-------欢迎使用---------||-----(1)随机取数-------||-----(2)自行输入-------||-----(0)退出使用-------||******************************|(3.1)(II)方便快捷的操作:用户只需要根据不同的需要在界面上输入系统提醒的操作形式直接进行相应的操作方式即可!如图(3.2所示)|******************************||-------欢迎使用---------||-----(1)随机取数-------||-----(2)自行输入-------||-----(0)退出使用-------||******************************|请选择操作方式:(用户在此输入操作方式)(3.2)(III)系统采用定义结构体数组来存储数据。
数据结构与算法(12):排序
int[] data = new int[] {10,30,20,60,40,50};
mergesort(data);
for(int i:data) {
System.out.println(i);
}
}
public static void mergesort(int[] arr){
sort(arr, 0, arr.length-1);
例例如,假设有这样一一组数[ 13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10 ],如果我们以步⻓长 为5开始进行行行排序,我们可以通过将这列列表放在有5列列的表中来更更好地描述算法,这样他们就应该 看起来是这样:
13 14 94 33 82 25 59 94 65 23 45 27 73 25 39 10
坏的情况下,移动次数为n(n − 1)/2
冒泡排序的时间复杂度为O(n2)。冒泡排序不不需要辅助存储单元,其空间复杂度为O(1)。如果关
键字相等,则冒泡排序不不交换数据元素,他是一一种稳定的排序方方法。
时间复杂度:最好O(n);最坏O(n2);平均O(n2) 空间复杂度:O(1)
稳定性:稳定
二二、选择排序(Selection Sort)
排好序时,元素的移动次数为0。当每一一趟都需要移动数据元素时,总的移动次数为n − 1
选择排序的时间复杂度为O(n2)。选择排序不不需要辅助的存储单元,其空间复杂度为O(1)。选择
排序在排序过程中需要在不不相邻的数据元素之间进行行行交换,它是一一种不不稳定的排序方方法。
时间复杂度:O(n2) 空间复杂度:O(1)
地方方增量量和差值都是delta temp = arr[j-delta]; arr[j-delta] = arr[j]; arr[j] = temp;
数据结构课程设计题目
数据结构课程设计题目以下7个题目任选其一。
1.排序算法比较利用随机函数产生30000个随机整数,利用插入排序、起泡排序、选择排序、快速排序、堆排序、归并排序等排序方法进行排序,并且(1)统计每一种排序上机所花费的时间。
(2)统计在完全正序,完全逆序情况下记录的比较次数和移动次数。
(3)比较的指标为关键字的比较次数和记录的移动次数(一次记录交换计为3次移动)。
(4)对结果作简单分析,包括对各组数据得出结果波动大小的解释。
2.图的深度遍历对任意给定的图(顶点数和边数自定),建立它的邻接表并输出,然后利用堆栈的五种基本运算(清空堆栈、压栈、弹出、取栈顶元素、判栈空)实现图的深度优先搜索遍历。
画出搜索顺序示意图。
3.图的广度遍历对任意给定的图(顶点数和边数自定),建立它的邻接表并输出,然后利用队列的五种基本运算(置空队列、进队、出队、取队头元素、判队空)实现图的广度优先搜索遍历。
画出搜索顺序示意图。
4.二叉树的遍历对任意给定的二叉树(顶点数自定)建立它的二叉链表存贮结构,并利用栈的五种基本运算(置空栈、进栈、出栈、取栈顶元素、判栈空)实现二叉树的先序、中序、后序三种遍历,输出三种遍历的结果。
画出搜索顺序示意图。
5.链表操作利用链表的插入运算建立线性链表,然后利用链表的查找、删除、计数、输出等运算反复实现链表的这些操作(插入、删除、查找、计数、输出单独写成函数的形式),并能在屏幕上输出操作前后的结果。
画出搜索顺序示意图。
6.一元稀疏多项式简单计数器(1)输入并建立多项式(2)输出多项式,输出形式为整数序列:n,c1,e1,c2,e2……cn,en,其中n是多项式的项数,ci,ei分别为第i项的系数和指数。
序列按指数降序排列。
(3)多项式a和b相加,建立多项式a+b,输出相加的多项式。
(4)多项式a和b相减,建立多项式a-b,输出相减的多项式。
用带头结点的单链表存储多项式。
测试数据:(1)(2x+5x8-3.1x11)+(7-5x8+11x9)(2)(6x-3-x+4.4x2-1.2x9)-(-6x-3+5.4x2+7.8x15)(3)(x+x2+x3)+0(4)(x+x3)-(-x-x-3)7.实现两个链表的合并基本功能要求:(1)建立两个链表A和B,链表元素个数分别为m和n个。
数据结构课程设计题目
数据结构课程设计题⽬《数据结构》课程设计题⽬1. 排序算法的性能分析问题描述设计⼀个测试程序,⽐较⼏种内部排序算法的关键字⽐较次数和移动次数以取得直观感受。
基本要求(1)对冒泡排序、直接排序、选择排序、箱⼦排序、堆排序、快速排序及归并排序算法进⾏⽐较。
(2)待排序表的表长不⼩于100,表中数据随机产⽣,⾄少⽤5组不同数据作⽐较,⽐较指标:关键字参加⽐较次数和关键字的移动次数(关键字交换记为3次移动)。
(3)输出⽐较结果。
选做内容(1)对不同表长进⾏⽐较。
(2)验证各算法的稳定性。
(3)输出界⾯的优化。
2. 排序算法思想的可视化演⽰—1基本要求排序数据随机产⽣,针对随机案例,对冒泡排序、箱⼦排序、堆排序、归并算法,提供排序执⾏过程的动态图形演⽰。
3. 排序算法思想的可视化演⽰—2基本要求排序数据随机产⽣,针对随机案例,,对插⼊排序、选择排序、基数排序、快速排序算法,提供排序执⾏过程的动态图形演⽰。
4. 线性表的实现与分析基本要求①设计并实现线性表。
②线性表分别采取数组(公式化描述)、单链表、双向链表、间接寻址存储⽅式③针对随机产⽣的线性表实例,实现线性表的插⼊、删除、搜索操作动态演⽰(图形演⽰)。
5. 等价类实现及其应⽤问题描述:某⼯⼚有⼀台机器能够执⾏n个任务,任务i的释放时间为r i(是⼀个整数),最后期限为d i(也是整数)。
在该机上完成每个任务都需要⼀个单元的时间。
⼀种可⾏的调度⽅案是为每个任务分配相应的时间段,使得任务i的时间段正好位于释放时间和最后期限之间。
⼀个时间段不允许分配给多个任务。
基本要求:使⽤等价类实现以上机器调度问题。
等价类分别采取两种数据结构实现。
6. ⼀元稀疏多项式计算器问题描述设计⼀个⼀元稀疏多项式简单计算器。
基本要求⼀元稀疏多项式简单计算器的基本功能是:(1)输⼊并建⽴多项式;(2)输出多项式,输出形式为整数序列:n,c1,e1,c2,e2,…,c n,e n,其中n是多项式的项数,c i,e i,分别是第i项的系数和指数,序列按指数降序排序;(3)多项式a和b相加,建⽴多项式a+b;(4)多项式a和b相减,建⽴多项式a-b;(5)计算多项式在x处的值;(6)计算器的仿真界⾯(选做)7. 长整数的代数计算问题描述应⽤线性数据结构解决长整数的计算问题。
数据结构简单排序
数据结构简单排序一、简介数据结构是计算机科学中重要的概念之一,它用于组织和存储数据,以便于访问和修改。
而排序算法则是数据结构中的重要内容,它可以将无序的数据按照特定规则进行排列,提高数据的查找和处理效率。
本文将介绍数据结构中的简单排序算法。
二、冒泡排序冒泡排序是最基础的排序算法之一,它通过不断比较相邻元素并交换位置,将较大或较小的元素逐步“冒泡”到数组的末尾或开头。
具体步骤如下:1. 从数组第一个元素开始比较相邻元素。
2. 如果前一个元素大于后一个元素,则交换它们的位置。
3. 继续向后比较相邻元素,并交换位置直到最后一个元素。
4. 重复以上步骤直到整个数组有序。
三、选择排序选择排序也是一种简单且常用的排序算法。
它通过不断寻找最小值或最大值,并将其放在已排好序部分的末尾或开头。
具体步骤如下:1. 找到当前未排序部分中最小值(或最大值)。
2. 将该值与未排序部分第一个元素交换位置。
3. 将已排序部分的末尾(或开头)指针向后(或前)移动一位。
4. 重复以上步骤直到整个数组有序。
四、插入排序插入排序是一种简单但高效的排序算法,它通过将未排序部分中的每个元素插入已排好序部分中的合适位置,逐步构建一个有序数组。
具体步骤如下:1. 将第一个元素视为已排好序部分,将第二个元素作为未排序部分中的第一个元素。
2. 将未排序部分中的第一个元素插入已排好序部分中合适的位置。
3. 将已排好序部分扩展至包含前两个元素,并将未排序部分中的下一个元素插入到合适位置。
4. 重复以上步骤直到整个数组有序。
五、希尔排序希尔排序是一种高效且简单的改进版插入排序算法。
它通过对数据进行多次局部交换和移动,使得数据更快地接近有序状态。
具体步骤如下:1. 定义一个增量值h,将数组按照间隔h划分成若干子数组。
2. 对每个子数组进行插入排序操作。
3. 缩小增量h,重复以上操作直到h=1。
4. 对整个数组进行插入排序操作。
六、归并排序归并排序是一种高效且稳定的排序算法。
数据结构与算法-排序
假定待排序文件由 n 条记录组成,记录依次存储在 r[1]~r[n]中。使用简单冒泡排
序算法对待排序文件中的记录进行排序,具体处理流程如下。
(1)遍历待排序文件 r[1]~r[n],每访问一条记录 r[j]时,比较所访问记录排序关
键字与所访问记录后一记录排序关键字的大小,核对所访问记录 r[j]与所访问记录后一
则,此排序算法是不稳定的。例如, 给定待排序文件 A={1,2,3,1,4}和B={1,3,1,2,4},假定某
一排序算法对文件 A 和B 的排序结果分别为{1,1,2,3,4}和{1,1,2,3,4},由于文件 B 中存在多
项同为 1 的记录,且排序后同为 1 的记录相对位置发生了改变,因此,此算法是不稳定
排序
目
CONTENTS
录
01
排序的概述
02
插入排序算法
03
交换排序算法
04
选择排序算法
05
归并排序算法
06
分配排序算法
07
各种排序技术比较
08
本章小结
01
PART
排序的概述
排序是以某一数据项(称为排序关键字)为依据,将一组无序记录调整成一组有序
记录,形成有序表的过程。排序问题可以定义为以下形式。
件排序时,记录分组以及每趟排序结果如右
图所示。
插入排序算法
2.3希尔排序算法
第一趟排序时,增量 h=4,因此,以
h=4 为记录间隔,将待排序文件中的记录分
为 4 组:{r[1],r[5],r[9]}、{r[2],r[6]}、{r[3],r[7]}
和{r[4],r[8]},并分别对 4 组记录进行直接插入
数据结构-排序PPT课件
O(nlogn),归并排序的平均时间复杂度为O(nlogn)。其中,n为待排序序列的长度。
06
基数排序
基数排序是一种非比较型整数排序算法,其原理是将整数按位数切割成不同的数字,然后按每个位数分别比较。
分配和收集
基数排序是一种稳定的排序算法,即相同的元素在排序后仍保持原有的顺序。
文件系统需要对文件和目录进行排序,以便用户可以更方便地浏览和管理文件。
数据挖掘和分析中需要对数据进行排序,以便发现数据中的模式和趋势。
计算机图形学中需要对图形数据进行排序,以便进行高效的渲染和操作。
数据库系统
文件系统
数据挖掘和分析
计算机图形学
02
插入排序
将待排序的元素按其排序码的大小,逐个插入到已经排好序的有序序列中,直到所有元素插入完毕。
简单选择排序
基本思想:将待排序序列构造成一个大顶堆,此时,整个序列的最大值就是堆顶的根节点。将其与末尾元素进行交换,此时末尾就为最大值。然后将剩余n-1个元素重新构造成一个堆,这样会得到n个元素的次小值。如此反复执行,便能得到一个有序序列了。 时间复杂度:堆排序的时间复杂度为O(nlogn),其中n为待排序元素的个数。 稳定性:堆排序是不稳定的排序算法。 优点:堆排序在最坏的情况下也能保证时间复杂度为O(nlogn),并且其空间复杂度为O(1),是一种效率较高的排序算法。
基数排序的实现过程
空间复杂度
基数排序的空间复杂度为O(n+k),其中n为待排序数组的长度,k为计数数组的长度。
时间复杂度
基数排序的时间复杂度为O(d(n+k)),其中d为最大位数,n为待排序数组的长度,k为计数数组的长度。
适用场景
当待排序数组的元素位数较少且范围较小时,基数排序具有较高的效率。然而,当元素位数较多或范围较大时,基数排序可能不是最优选择。
数据结构:排序
数据结构:排序数据结构排序算法(Java和Python版本):1、简单选择排序(属于选择排序): 从数列第⼀个索引开始遍历: 第⼀步:拿第⼀个索引的数和后⾯n-1个数相⽐,找出最⼩的数放在第⼀个索引上,这样就确定了最⼩的数了; 第⼆步:拿第⼆个索引的数和后⾯n-1个数相⽐,找出次⼩的数放在第⼆个索引上,这样就确定了次⼩的数了; ... 依次类推,直到遍历结束。
Python代码如下:def select_sort(li):for i in range(len(li)):for j in range(i, len(li)):if li[i] > li[j]:temp = li[i]li[i] = li[j]li[j] = tempreturn liJava代码如下:public void selectSort(int[] array){for(int i = 0; i < array.length; i++){for(int j = i; j < array.length; j++){if(array[i] > array[j]){int temp = array[i];array[i] = array[j];array[j] = temp;}}}}2、冒泡排序: 从索引0开始遍历到索引n-2: 第⼀步:从索引0遍历到索引n-2,每次⽐较后⼀个索引值与当前索引值的⼤⼩,将⼤的置于后⾯,⼩的置于前⾯,这样遍历完之后,最后⼀个索引的值即为最⼤值; 第⼆步:从索引0遍历到索引n-3,每次⽐较后⼀个索引值与当前索引值的⼤⼩,将⼤的置于后⾯,⼩的置于前⾯,这样遍历完之后,n-2索引的值即为次⼤值; ... 依次类推,直到遍历结束,数列也编程从⼩打到排列了。
Python代码如下:def bubble_sort(li):for i in range(len(li)):for j in range(len(li) - 1 - i):if li[j] > li[j + 1]:temp = li[j]li[j] = li[j + 1]li[j + 1] = li[j]return liJava代码如下:public void bubbleSort(int[] array){for(int i = 0; i < array.length; i++){for(int j = 0; j < (array.length - 1 - i); j++){if(array[j] > array[j + 1]){int temp = array[j];array[j] = array[j +1];array[j + 1] = temp;}}}}3、直接插⼊排序(属于插⼊排序): 直接插⼊排序的思想是将⼀个数(记作哨兵)插⼊到⼀个已经排好序的数列当中。
数据结构第十章 排序
10.2 插入排序 插入排序
直接插入排序 折半插入排序 2-路插入排序 表插入排序 希尔排序
10.2.1 直接插入排序
基本操作:将一个记录插入到已排好序的有序表中, 从而得到一个新的、记录数增1的有序表。
例:有一组待排序的记录的关键字初始序列如下:
(49,38,65,97,76,13,27,49`)
(4)归并排序 (5)基数排序
按内排过程中所需的工作量分类:
(1)简单的排序方法,其时间复杂度为O(n×n)
(2)先进的排序方法,其时间复杂度为O(nlogn);
(3)基数排序,其时间复杂度为O(d(n+rd))
排序算法的两种基本操作:
(1)比较两个关键字的大小; (2)将记录从一个位置移至另一个位置;
算法实现的关键设计:
将d看成是一个循环数组,并设两个指针first和final分别指示排序过 程中得到的有序序列中的第一个记录和最后一个记录在d中的位置.
例:有一组待排序的记录的关键字初始排列如下:
(49,38,65,97,76,13,27,49`) 16
[初始关键字] 49 38 65 97 76 13 27 49`
18
10.2.3 希尔排序 从直接插入排序
待排序序列基本有序可提高效率 回顾 待排序序列的记录数n很小时可提高效率
希尔排序的基本思想:
先将整个待排记录序列分割成为若干子序列分别进行
直接插入排序,待整个序列中的记录“基本有序”时,再对 全
体记例录:有进一行组一待次排直序接的插记入录排的序关. 键字初始排列如下: (49,38,65,97,76,13,27,49`)
} 12
直接插入排序的性能分析: 10. 3
(1)空间:只需一个记录的辅助空间r[0].
数据结构之——八大排序算法
数据结构之——⼋⼤排序算法排序算法⼩汇总 冒泡排序⼀般将前⾯作为有序区(初始⽆元素),后⾯作为⽆序区(初始元素都在⽆序区⾥),在遍历过程中把当前⽆序区最⼩的数像泡泡⼀样,让其往上飘,然后在⽆序区继续执⾏此操作,直到⽆序区不再有元素。
这块是对⽼式冒泡排序的⼀种优化,因为当某次冒泡结束后,可能数组已经变得有序,继续进⾏冒泡排序会增加很多⽆⽤的⽐较次数,提⾼时间复杂度。
所以我们增加了⼀个标识变量flag,将其初始化为1,外层循环还是和⽼式的⼀样从0到末尾,内存循环我们改为从最后⾯向前⾯i(外层循环所处的位置)处遍历找最⼩的,如果在内存没有出现交换,说明⽆序区的元素已经变得有序,所以不需要交换,即整个数组已经变得有序。
(感谢@站在远处看童年在评论区的指正)#include<iostream>using namespace std;void sort(int k[] ,int n){int flag = 1;int temp;for(int i = 0; i < n-1 && flag; i++){flag = 0;for(int j = n-1; j > i; j--){/*下⾯这⾥和i没关系,注意看这块,从下往上travel,两两⽐较,如果不合适就调换,如果上来后⼀次都没调换,说明下⾯已经按顺序拍好了,上⾯也是按顺序排好的,所以完美!*/if(k[j-1] > k[j]){temp = k[j-1];k[j-1] = k[j];k[j] = temp;flag = 1;}}}}int main(){int k[3] = {0,9,6};sort(k,3);for(int i =0; i < 3; i++)printf("%d ",k[i]);}快速排序(Quicksort),基于分治算法思想,是对冒泡排序的⼀种改进。
快速排序由C. A. R. Hoare在1960年提出。
数据结构课程设计快速排序和归并排序
XX学院信息科学与工程系课程设计说明书课程名称:数据结构课程代码:题目: 快速排序与归并排序年级/专业/班:学生姓名: 奉XX学号: 1440000000指导教师: 易开题时间: 2015 年 12 月 30 日完成时间: 2016 年 1 月 10 日目录摘要 (1)一、引言 (3)二、设计目的与任务 (3)1、课程设计目的 (3)2、课程设计的任务 (3)三、设计方案 (3)1、需求分析 (3)2、概要设计 (4)3、详细设计 (5)4、程序清单 (13)四、调试分析与体会 (19)五、运行结果 (20)六、结论 (24)七、致谢 (24)八、参考文献 (25)摘要数据结构课程设计,列举了数据结构课程设计实例,通过综合训练,能够培养学生实际分析问题、解决问题、编程和动手操作等多方面的能力,最终目的是帮助学生系统地掌握数据结构的基本内容,并运用所学的数据结构知识去解决实际问题。
其中内容包括数组、链接表、栈和队列、递归、树与森林、图、堆与优先级队列、集合与搜索结构、排序、索引与散列结构等关键字:数据结构;分析;掌握AbstractData structure course design, lists the data structure course design as an example, through the comprehensive training, to cultivate students' practical analysis and solve problems in many aspects, programming, and hands-on ability, the ultimate goal is to help students to systematically master the basic content of data structure, and using the data structure of knowledge to solve practical problems. Content including array, linked list, stack and queue, recursion, tree and forest, graph, heap and priority queue, the structure of the collection and search, sorting, indexing and hashing structure, etcKeywords:data structure;Analysis;master《数据结构》课程设计----快速排序与归并排序一、引言二、将一组数据运用快速排序与归并排序进行排序,要求使用递归与非递归方法三、本次课程设运用到了数组、链接表、栈、递归、排序等结构。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
XXXXXX大学《数据结构》课程设计报告目录排序算法比较一、需求分析二、程序的主要功能三、程序运行平台四、数据结构五、算法及时间复杂度六、测试用例七、程序源代码二感想体会与总结排序算法比较一、需求分析利用随机函数产生N个随机整数(N = 500,1000,1500,2000,2500,…,30000),利用直接插入排序、折半插入排序,起泡排序、快速排序、选择排序、堆排序,基数排序七种排序方法(可添加其它排序方法)进行排序(结果为由小到大的顺序),并统计每一种排序所耗费的时间(统计为图表坐标形式)。
二、程序的主要功能1.用户输入任意个数,产生相应的随机数2.用户可以自己选择排序方式(直接插入排序、折半插入排序、起泡排序、快速排序、选择排序、堆排序、基数排序)的一种3.程序给出原始数据、排序后从小到大的数据,并给出排序所用的时间。
三、程序运行平台Visual C++ 版本四、数据结构本程序的数据结构为线形表,线性顺序表、线性链表。
1、结构体:typedef struct{接插入排序3、系统将随机数排序后整齐的显示出来。
4、用户可以选择继续排序或者退出系统。
七、程序源代码/**********************************************************************************************第六题:排序算法比较设计要求:利用随机函数产生N个随机整数(N = 500,1000,1500,2000,2500,…,30000),利用直接插入排序、折半插入排序,起泡排序、快速排序、||选择排序、堆排序,基数排序七种排序方法(可添加其它排序方法)进行排序(结果为由小到大的顺序),并统计每一种排序所耗费的时间(统计为图表坐标形式)。
************************************************************************************************/#include ""#include ""#include ""high]中折半查找有序插入的位置{mid=(low+high)/2;if[0]<[mid]) high]的记录,使得枢轴记录到位,并返回其所在位置,此时在它之前(后)的记录均不大于它{int pivotkey; i]中最后一个记录互换[1]=[i];[i]=t;HeapAdjust(L,1,i-1); i-1]重新调整为大顶堆}return OK;}//**************************************************// 基数排序//**************************************************typedef struct node{int key;node *next;}RecType;Status RadixSort(Sqlist L){int t,i,j,k,d,n=1,m;RecType *p,*s,*q,*head[10],*tail[10]; //定义各链队的首尾指针for(i=1;i<=;i++) //将顺序表转化为链表{s=(RecType*)malloc(sizeof(RecType));s->key=[i];if(i==1) //当为第一个元素时{q=s;p=s;t++;}else{q->next=s; //将链表连接起来q=s;t++;}q->next=NULL;}d=1;while(n>0) //将每个元素分配至各个链队{for(j=0;j<10;j++) //初始化各链队首、尾指针{head[j] = NULL;tail[j] = NULL;}while(p!=NULL) //对于原链表中的每个结点循环{k=p->key/d;k=k%10;if(head[k]==NULL) //进行分配{head[k]=p;tail[k]=p;}else{tail[k]->next=p;tail[k]=p;}p=p->next; //取下一个待排序的元素}p=NULL; //用于收集第一个元素时的判断for(j=0;j<10;j++) //对每一个链队循环,搜集每一个元素{if(head[j]!=NULL) //进行搜集{if(p==NULL){p=head[j];q=tail[j];}else{q->next=head[j];q=tail[j];}}}q->next=NULL; //最后一个结点的next置为空d=d*10;n=0;m=1;while(m<= //判断当L中的元素都除d后是不是都为零了{if([m]/d)!=0){n++;m++;}elsem++;}}i=1;while(p!=NULL) //将链表转换为顺序表{[i]=p->key;i++;p=p->next;}return OK;}//**************************************// 主函数//**************************************void main(){Sqlist L;Sqlist L0;InitSqlist(L); //初始化LInitSqlist(L0);int m,i;char choice='z';clock_t start, finish; //定义clock_t用于计时double duration;//向L中输入元素printf("\n █████████████████████████████████████\n");printf("\n");printf(" 算法排序比较系统\n");printf("\n");printf(" █████████████████████████████████████\n");printf(" 以下是各个排序算法的代号:\n\n");printf(" 1、直接插入排序\n");printf(" 2、折半插入排序\n");printf(" 3、起泡排序\n");printf(" 4、快速排序\n");printf(" 5、选择排序\n");printf(" 6、堆排序\n");printf(" 7、基数排序\n");printf(" 8、退出该系统\n\n");ScanfSqlist(m,L0);printf("\n");printf(" 1、直接插入排序\n");printf(" 2、折半插入排序\n");printf(" 3、起泡排序\n");printf(" 4、快速排序\n");printf(" 5、选择排序\n");printf(" 6、堆排序\n");printf(" 7、基数排序\n");printf(" 8、退出该系统\n\n");printf("\n请选择排序的方式,数字1-7: ");scanf("%d",&choice); //选择排序方式赋值choice,用于后面的函数选择while(choice<1||choice>8){printf("输入方式有误。
\n请输入1-7选择排序方式,或者选择8退出系统");scanf("%d",&choice);}while(choice!=8){for(i=1;i<=;i++)[i]=[i];=;switch(choice){case 1://直接插入排序start = clock();InsertSort(L);finish = clock();break;case 2://折半插入排序start = clock();BInsertSort(L);finish = clock();break;case 3://起泡排序start = clock();BubbleSort(L);finish = clock();break;case 4://快速排序start = clock();QuickSort(L);finish = clock();break;case 5://选择排序start = clock();ChooseSort(L);finish = clock();break;case 6://堆排序start = clock();HeapSort(L);finish = clock();break;case 7://基数排序start = clock();RadixSort(L);finish = clock();break;case 8://直接退出break;}PrintfSqlist(m,L); //输出数据和L的长度duration = (double)(finish - start) / CLOCKS_PER_SEC; //输出算术时间printf("\n本次排序运算所用的时间是:%lf seconds\n",duration);printf(" 本次排序结束。
\n");printf("___________________________________________________________________\n");printf(" 继续本系统吗\n\n");printf(" 以下是各个排序算法的代号:\n");printf(" 1、直接插入排序\n");printf(" 2、折半插入排序\n");printf(" 3、起泡排序\n");printf(" 4、快速排序\n");printf(" 5、选择排序\n");printf(" 6、堆排序\n");printf(" 7、基数排序\n");printf(" 8、退出该系统\n");printf("\n请请输入1-7选择排序方式,或者选择8退出系统:");scanf("%d",&choice);while(choice<1||choice>8){printf("输入方式有误。