排列组合
排列组合的各种方法
排列组合是组合数学中的一个重要概念,用于描述从一组元素中选择若干个元素进行组合的方法。
在实际生活和数学问题中,排列组合的应用广泛,例如在统计学、概率论、计算机算法等领域都有着重要的作用。
本文将介绍排列组合的几种常见方法。
首先,我们来介绍排列的概念。
排列是指从一组元素中按照一定顺序选择若干个元素进行组合的方法。
在排列中,每个元素只能使用一次,并且顺序不同被视为不同的排列。
例如,从元素集合{A,B,C}中选择2个元素进行排列,可能有6种不同的排列方式:AB,AC,BA,BC,CA,CB。
排列的计算公式为P(n, k) = n! / (n-k)!,其中n为元素总数,k为需要选择的元素数。
接下来,我们介绍组合的概念。
组合是指从一组元素中选择若干个元素进行组合的方法,与排列不同的是,组合中元素的顺序不重要。
例如,从元素集合{A,B,C}中选择2个元素进行组合,可能有3种不同的组合方式:AB,AC,BC。
组合的计算公式为C(n, k) = n! / (k! * (n-k)!),其中n为元素总数,k为需要选择的元素数。
在实际问题中,排列组合可以应用于很多方面。
以组合为例,我们可以使用组合的思想来解决选课问题。
例如,一个学校有10门选修课,每个学生需要选择3门选修课,那么可以计算出有多少种不同的选课组合方式,即C(10, 3) = 120种。
在统计学中,排列组合也有着重要的应用。
例如,在一场抽奖活动中,有100个人参与抽奖,每人仅能中奖一次。
假设有10个奖品需要分配给这100个人,可以计算出有多少种不同的中奖组合方式,即P(100, 10) = 3,628,800种。
在计算机算法中,排列组合也经常被用到。
例如,在编写程序时需要对一组数据进行全排列操作,可以使用递归算法实现。
另外,在搜索算法中,也可以使用排列组合的思想进行状态空间的搜索。
综上所述,排列组合是组合数学中的一个重要概念,应用广泛且在实际问题中有着重要的作用。
排列组合公式排列组合公式
推论
• 方程x1+x2+…+xn=r 的非负整数解的个数。 • n≤r时,此方程的正整数解的个数 • n元集合的r-可重组合数,要求每个元素至少
出现一次。 • 正整数r的n-长有序分拆的个数 • 求x1+x2+x3+x4=20的整数解的数目,其中x1 ≥
3, x2 ≥ 1,x3 ≥ 0,x4 ≥ 5。
排列组合公式排列组合公式
有约束条件的排列:引例
• 用两面红旗、三面黄旗依次悬挂在一根旗杆 上,问可以组成多少种不同的标志?
排列组合公式排列组合公式
5、有约束条件的排列
• 设有k个元素a1,a2,…,ak,由它们组成一 个n-长的排列,其中对1≤i≤k,ai出现的次数 为ni,n1+n2 +… +nk=n,求排列的总数。
。
(2x13x25x3)6
x13x2 x32
(x1x2 xr)n
项,其中
n n1 1, nn 22, ,n r为 nrn非负 n1整 n2n 数 nrx1n1x2n2 xrnr
排列组合公式排列组合公式
例题
• 数1400有多少个正因数? • 1400=23 × 52 × 7 • (3+1)(2+1)(1+1)=24
排列组合公式排列组合公式
多边形
排列组合公式排列组合公式
例题
• 对角线的条数为C(10,2)-10=45-10=35 • 任选两条对角线,可能相交在多边形内部,可能
交点为多边形的顶点,可能无交点(交点在多边 形外) • 任选四个顶点,对应一个交点,每个对角线分成 两段 • 每个对角线是一段 • 35+C(10,4) × 2=455
排列组合常见的九种方法
排列组合常见的九种方法
1. 直接排列法:将元素按照一定次序排列,每种排列方案都是一个不同的结果。
例如,3个元素的排列数为 3! = 3 × 2 × 1 = 6。
2. 递归法:将问题逐步分解成每一步只有相对简单的子问题,从而不断求解。
通过递归,经过一系列不同的子过程,得到最终的结果。
3. 循环法:使用循环来枚举所有的可能的排列组合情况。
通常用于数组、字符串等元素的排列组合问题。
4. 分组排列法:将待排列的元素按照一定属性分组,再对每组内的元素进行排列组合,最终将每组的结果进行组合得到最终的结果。
5. 交换法:通过元素间的交换,对所有可能的排列组合进行枚举。
该方法需要注意元素交换时的顺序。
6. 邻项对换法:将相邻的两项进行对换,直到所有项都被排列组合了一遍。
7. 插入法:将新的元素依次插入已有元素的任意位置,直到所有元素都被排列组合了一遍。
8. 非递增排列法:将待排列的元素按照一定属性进行排序,然后将元素从最大的开始进行排列组合。
9. 非递减排列法:将待排列的元素按照一定属性进行排序,然后将元素从最小的开始进行排列组合。
排列组合的计算方法
排列组合的计算方法
排列组合是一种用来计算可能性和组合情况的数学方法。
它通常应用于问题中涉及对象的顺序或选择的情况。
以下是计算排列组合的常用方法:
1. 计算排列
排列是指从给定对象集合中选取一部分元素按照特定顺序进行排列的方式。
计算排列时,可以使用以下公式:
P(n, r) = n! / (n-r)!
其中,n表示对象的总数,r表示要选择的对象数量,"!"表示阶乘运算。
2. 计算组合
组合是指从给定对象集合中选取一部分元素按照任意顺序进行组合的方式。
计算组合时,可以使用以下公式:
C(n, r) = n! / (r! * (n-r)!)
其中,n表示对象的总数,r表示要选择的对象数量,"!"表示阶乘运算。
3. 使用计算器或计算软件
当对象的数量较大时,手工计算排列组合可能会非常繁琐。
因此,可以借助计算器或计算软件来快速计算排列组合。
大多数科学计算器或计算软件都提供了排列组合计算的功能。
需要注意的是,在使用排列组合计算时,应根据具体问题的要
求选择合适的方法。
对于一些问题,可能需要使用排列、组合或二者的组合来求解。
此外,还应注意理解排列组合的概念和计算原理,并注意在公式中正确地代入相应的值。
排列组合的讲义
万华:公考传奇缔造者!万华:公考培训黄埔军校!排列组合的讲义一、排列组合定义1、什么是C公式C是指组合,从N个元素取R个,不进行排列(即不排序)。
例如:编号1~3的盒子,我们找出2个来使用,这里就是运用组合而不是排列,因为题目只是要求找出2个盒子的组合。
即C(3,2)=32、什么是P或A公式P是指排列,从N个元素取R个进行排列(即排序)。
例如:1~3,我们取出2个数字出来组成2位数,可以是先取C(3,2)后排P22,就构成了C(3,2)×P(2,2)=A(3,2)3、A和C的关系事实上通过我们上面2个对定义的分析,我们可以看出的是,A比C多了一个排序步骤,即组合是排列的一部分且是第一步骤。
4、计算方式以及技巧要求组合:C(M,N)=M!÷(N!×(M-N)!)条件:N<=M排列:A(M,N)=M!÷(M-N)!条件:N<=M为了在做排列组合的过程中能够对速度有必要的要求,我需要大家能够熟练的掌握1~7的阶乘,当然在运算的过程中,我们要学会从逆向思维角度考虑问题,例如C(M,N)当中N取值过大,那么我们可以看M-N的值是否也很大。
如果不大。
我们可以求C(M,[M-N]),因为C(M,N)=C(M,[M-N])二、排列组合常见的恒等公式1、C(n,0)+C(n,1)+C(n,2)+……+C(n,n)=2^n2、C(m,n)+C(m,n+1)=C(m+1,n+1)针对这2组公式我来举例运用(1)有10块糖,假设每天至少吃1块,问有多少种不同的吃法?解答:C(9,0)+C(9,1)+……+C(9,9)=2^9=512(2),公司将14副字画平均分给甲乙筛选出参加展览的字画,按照要求,甲比乙多选1副,且已知甲按照要求任意挑选的方法与乙任意挑选的方法之和为70,求,甲挑选了多少副参加展览?C(8,n)=70 n=4 即得到甲选出了4副。
万华:公考传奇缔造者!万华:公考培训黄埔军校!三、排列组合的基本理论精要部分(分类和分步)(1)、加法原理(实质上就是一种分类原则):一个物件,它是由若干个小块组成的,我们要知道这个物件有多重,实际上可以分来算,比如,我们知道每一个小块的重量,然后计算总和就等于这个物件的重量了,这就是我们要谈的分类原则。
排列组合20种常用方法
排列组合20种常用方法
1. 列出所有可能的组合
2. 使用递归排列组合
3. 使用循环排列组合
4. 使用动态规划排列组合
5. 使用回溯法排列组合
6. 使用数学公式计算排列组合
7. 使用位运算排列组合
8. 使用逆序排列组合
9. 使用有序集合排列组合
10. 使用栈数据结构排列组合
11. 使用队列数据结构排列组合
12. 使用重复排列组合
13. 使用有限制条件的排列组合
14. 使用自定义函数进行排列组合计算
15. 使用字符串拆分和拼接进行排列组合
16. 使用二叉树进行排列组合
17. 使用堆进行排列组合
18. 使用图进行排列组合
19. 使用集合进行排列组合计算
20. 使用贪心算法进行排列组合。
排列组合公式(全)
排列组合公式排列定义??? 从n个不同的元素中,取r个不重复的元素,按次序排列,称为从n个中取r个的无重排列。
排列的全体组成的集合用 P(n,r)表示。
排列的个数用P(n,r)表示。
当r=n时称为全排列。
一般不说可重即无重。
可重排列的相应记号为 P(n,r),P(n,r)。
组合定义从n个不同元素中取r个不重复的元素组成一个子集,而不考虑其元素的顺序,称为从n个中取r个的无重组合。
组合的全体组成的集合用C(n,r)表示,组合的个数用C(n,r)表示,对应于可重组合有记号C(n,r),C(n,r)。
一、排列组合部分是中学数学中的难点之一,原因在于(1)从千差万别的实际问题中抽象出几种特定的数学模型,需要较强的抽象思维能力;(2)限制条件有时比较隐晦,需要我们对问题中的关键性词(特别是逻辑关联词和量词)准确理解;(3)计算手段简单,与旧知识联系少,但选择正确合理的计算方案时需要的思维量较大;(4)计算方案是否正确,往往不可用直观方法来检验,要求我们搞清概念、原理,并具有较强的分析能力。
二、两个基本计数原理及应用(1)加法原理和分类计数法1.加法原理2.加法原理的集合形式3.分类的要求每一类中的每一种方法都可以独立地完成此任务;两类不同办法中的具体方法,互不相同(即分类不重);完成此任务的任何一种方法,都属于某一类(即分类不漏)(2)乘法原理和分步计数法1.乘法原理2.合理分步的要求任何一步的一种方法都不能完成此任务,必须且只须连续完成这n步才能完成此任务;各步计数相互独立;只要有一步中所采取的方法不同,则对应的完成此事的方法也不同例1:用1、2、3、4、5、6、7、8、9组成数字不重复的六位数集合A为数字不重复的九位数的集合,S(A)=9!集合B为数字不重复的六位数的集合。
把集合A分为子集的集合,规则为前6位数相同的元素构成一个子集。
显然各子集没有共同元素。
每个子集元素的个数,等于剩余的3个数的全排列,即3!这时集合B的元素与A的子集存在一一对应关系,则S(A)=S(B)*3!S(B)=9!/3!这就是我们用以前的方法求出的P(9,6)例2:从编号为1-9的队员中选6人组成一个队,问有多少种选法设不同选法构成的集合为C,集合B为数字不重复的六位数的集合。
排列组合
C ⋅ C ⋅ C ⋅ A = 1080
3 5 1 3 2 4 3 3
练习2、 练习 、3 名医生和 6 名护士被分配到 3 所学校为学生体检,每校分配 所学校为学生体检 每校分配 1 名医生和 2 名护士 不同的分配方法共有多少种 名护士,不同的分配方法共有多少种 不同的分配方法共有多少种? 解法一:先组队后分校(先分堆后分配) 解法一:先组队后分校(先分堆后分配)
练习1、某学习小组有 个男生 个女生, 个男生3个女生 练习 、某学习小组有5个男生 个女生, 从中选3名男生和 名男生和1名女生参加三项竞赛活 从中选 名男生和 名女生参加三项竞赛活 每项活动至少有1人参加 人参加, 动,每项活动至少有 人参加,则有不同 参赛方法______种. 参赛方法 种
解:采用先组后排方法: 采用先组后排方法
例.有翻译人员11名,其中5名 有翻译人员11名 其中5 11 精通翻译英语、 精通翻译英语、4名精通翻译法 还有2名英、法语皆可翻译。 语,还有2名英、法语皆可翻译。 现欲从中选出8 其中4 现欲从中选出8名,其中4名译 英语,另外4名译法语, 英语,另外4名译法语,一共可 列多少张不同的名 3 3 6 4
解法二:依次确定到第一、第二、第三 解法二:依次确定到第一、第二、 所学校去的医生和护士. 所学校去的医生和护士
(C C ) ⋅ (C C ) ⋅1 = 540
1 3 2 6 1 2 2 4
概念讲解 排列定义: 一般地, 个不同元素中取出m 排列定义: 一般地,从n个不同元素中取出 (m≤n) 个元素,按照一定的顺序排成一列, 个元素,按照一定的顺序排成一列, 叫做从 n 个不同元素中取出 m 个元素的一个 排列. 排列. 组合定义: 一般地,从n个不同元素中取出 个不同元素中取出m 组合定义: 一般地, 个不同元素中取出 并成一组, (m≤n)个元素并成一组,叫做从 个不同元 )个元素并成一组 叫做从n个不同元 素中取出m个元素的一个组合. 个元素的一个组合 素中取出 个元素的一个组合. 共同点: 都要“ 个不同元素中任取m个元素 共同点: 都要“从n个不同元素中任取 个元素” 个不同元素中任取 个元素” 不同点: 排列与元素的顺序有关 与元素的顺序有关, 不同点: 排列与元素的顺序有关, 而组合则与元素的顺序无关 则与元素的顺序无关. 而组合则与元素的顺序无关.
排列组合资料(有分析)
第一部分:概念公式1、排列:从n 个不同元素中,任取m 个元素,按照一定的顺序排成一列,叫做从n 个不同元素中取出m 个元素的一个排列。
2、组合:从n 个不同元素中,任取m 个元素,并成一组,叫做从n 个不同元素中取出m 个元素的一个组合。
排列与组合的区别与联系:与顺序有关的为排列问题,与顺序无关的为组合问题.注意排列组合的区别与联系:所有的排列都可以看作是先取组合,再做全排列;同样,组合如补充一个阶段(排序)可转化为排列问题。
3、加法原理:如果完成一项工作有两类相互独立的方式A 和B ,在方式A 中有m 种完成任务的途径,在方式B 中有n 种完成任务的途径,则完成这项工作的总的途径有m+n 种。
4、乘法原理:如果完成一项工作有两个连续的步骤A 和B ,在步骤A 中有m 种不同的方式,在步骤B 中有n 种不同的方式,则完成这项工作的总的方法有m*n 种。
注意:0!=1第二部分:排列组合解决方法一:特殊元素和特殊位置优先策略是解决排列组合问题最常用也是最基本的方法. 例1. 由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.先排末位共有( C (3,1) ) 然后排首位共有( C (4,1) ) 最后排其它位置共有( A(4,3) ) 由分步计数原理得( C(3,1)C(4,1)A(4,3)=288 ) 练习1:六人站成一排,求(1)甲不在排头,乙不在排尾的排列数(2)甲不在排头,乙不在排尾,且甲乙不相邻的排法数 分析:(1)先考虑排头,排尾,但这两个要求相互有影响,因而考虑分类。
第一类:乙在排头,则直接符合要求,共有A(5,5)=120种站法.第二类:乙不在排头,当然他也不能在排尾,则有A (4,1)可选,此时甲不能在排头则有A (4,1)可选,其余A (4,4)。
则有A (4,1)A(4,1)A(4,4)=384种站法,共共有504种种站法。
方法2:间接法一共有A (6,6)种方法 若A 排头有A(5,5),B 排尾有A(5,5),其中重复了A 排头B 排尾的情况有A (4,4)所以共有A(6,6)-2A(5,5)+A(4,4)=504 方法3:插空法先让除A 其余五个人任意排列 然后让A 插入(不能插第一个位置)共有五个位置可插入 则共有5A(5,5)其中排除B 在尾的状况4A(4,4) 则有5A (5,5)-4A (4,4)=504(2)第一类:甲在排尾,乙在排头,则保证不相邻。
排列组合基础知识
关于排列组合的一些基础知识1. 排列:从n个元素中取出m个(m≦n),并按照一定的顺序排成一列,称为从n个元素中取出m个元素的排列。
2. 组合:从n个元素中取出m个(m≦n),并按照一定的方式进行组合,称为从n个元素中取出m个元素的组合。
3. 排列的公式:A(n,m)=n×(n-1)×(n-2)×...×(n-m+1)。
4. 组合的公式:C(n,m)=n×(n-1)×(n-2)×...×(n-m+1)÷m×(m-1)×(m-2)×...×2×1。
5. 重复排列:在排列时允许相同的元素重复出现,每个元素出现的次数与排列的顺序有关,这种排列称为重复排列。
6. 重复组合:在组合时允许相同的元素重复出现,每个元素出现的次数与组合的方式无关,这种组合称为重复组合。
7. 排列数的性质:若A(n,m)=0,则m<0或m>n;若0≦m≦n,则A(n,m)=A(n,n-m);若n=m则A(n,m)=1。
8. 组合数的性质:若C(n,m)=0,则m<0或m>n;若0≦m≦n,则C(n,m)=C(n,n-m);若n=m则C(n,m)=1。
9. 插空法:在解决有关问题时,将元素分成两部分,一部分暂时不取,然后对剩下的元素进行排列或组合,这种方法称为插空法。
10. 捆绑法:在排列或组合时,先将几个元素捆绑在一起,作为一个元素处理,然后再对其他元素进行排列或组合的方法称为捆绑法。
11. 插板法:在解决有关问题时,将元素分成两部分,一部分暂时不取,然后对剩下的元素进行排列或组合,这种方法称为插板法。
12. 隔板法:在解决有关问题时,将元素分成两部分,中间插入隔板,使得每部分元素的个数等于规定的个数,这种方法称为隔板法。
排列组合概念
排列组合是数学中一种研究对象按照一定条件排列组成新的组合的方法或计算公式。
它是组合数学的一个重要分支,广泛应用于概率论、计算机科学、统计学等领域。
排列(Permutation):指从某一数量的元素中取出一定数量的元素,并按照顺序构成
新的组合的方法。
排列会考虑元素之间的顺序,顺序不一样的组合被视为不同的排列。
组合(Combination):指从某一数量的元素中取出一定数量的元素,而不考虑它们的
排列顺序,构成新的组合的方法。
组合不考虑顺序,顺序不一样的情况被视为相同的
组合。
排列和组合的计算公式如下:
1. 排列公式:从n个不同元素中取出r个元素进行排列,可构成的个数记为P(n, r),
计算公式为:
P(n, r) = n! / (n-r)!
其中,n!表示n的阶乘,即 n \* (n-1) \* (n-2) \* ... \* 1。
1. 组合公式:从n个不同元素中取出r个元素(0 ≤ r ≤ n)进行组合,可构成的个数记
为C(n, r),计算公式为:
C(n, r) = n! / (r!(n-r)!)
其中,r!表示r的阶乘,即 r \* (r-1) \* (r-2) \* ... \* 1。
了解排列组合概念及其计算方法有助于解决实际生活中的很多问题,尤其是在统计、
概率和数据分析等领域中具有重要应用。
排列组合全部20种方法
排列组合解法解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
3.确定每一步或每一类是排列问题(有序)还是组合(无序)问题,元素总数是多少及取出多少个元素.4.解决排列组合综合性问题,往往类与步交叉,因此必须掌握一些常用的解题策略一.特殊元素和特殊位置优先策略1、由0,1,2,3,4,5可以组成多少个没有重复数字五位奇数.练习、7种不同的花种在排成一列的花盆里,若两种葵花不种在中间,也不种在两端的花盆里,问有多少不同的种法?二.相邻元素捆绑策略2、7人站成一排,其中甲乙相邻且丙丁相邻,共有多少种不同的排法.练习、某人射击8枪,命中4枪,4枪命中恰好有3枪连在一起的情形的不同种数为_________三.不相邻问题插空策略3、一个晚会的节目有4个舞蹈,2个相声,3个独唱,舞蹈节目不能连续出场,则节目的出场顺序有多少种?练习、某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目.如果将这两个新节目插入原节目单中,且两个新节目不相邻,那么不同插法的种数为______________四.定序问题倍缩空位插入策略4、7人排队,其中甲乙丙3人顺序一定共有多少不同的排法?练习、10人身高各不相等,排成前后排,每排5人,要求从左至右身高逐渐增加,共有多少排法?五.重排问题求幂策略5、把6名实习生分配到7个车间实习,共有多少种不同的分法练习1.某班新年联欢会原定的5个节目已排成节目单,开演前又增加了两个新节目如果将这两个节目插入原节目单中,那么不同插法的种数为2.某8层大楼一楼电梯上来8名乘客人,他们到各自的一层下电梯,下电梯的方法 ______六.环排问题线排策略6、8人围桌而坐,共有多少种坐法?一般地,n个不同元素作圆形排列,共有(n-1)!种排法.如果从n个不同元素中取出m个元素作圆形排列共有1A-n n练习、6颗颜色不同的钻石,可穿成几种钻石圈?七.多排问题直排策略7、8人排成前后两排,每排4人,其中甲乙在前排,丙在后排,共有多少排法?' —犷排—" —后排~练习、有两排座位,前排11个座位,后排12个座位,现安排2人就座规定前排中间的3个座位不能坐,并且这2人不左右相邻,那么不同排法的种数是 _____________八.排列组合混合问题先选后排策略8、有5个不同的小球,装入4个不同的盒内,每盒至少装一个球,共有多少不同的装法.练习、一个班有6名战士,其中正副班长各1人现从中选4人完成四种不同的任务,每人完成一种任务,且正副班长有且只有1人参加,则不同的选法有种九.小集团问题先整体后局部策略9、用1,2,3,4,5组成没有重复数字的五位数其中恰有两个偶数夹1, 5在两个奇数之间,这样的五位数有多少个?练习、1.计划展出10幅不同的画,其中1幅水彩画,4幅油画,5幅国画,排成一行陈列,要求同一品种的必须连在一起,并且水彩画不在两端,那么共有陈列方式的种数为____________2. 5男生和5女生站成一排照像,男生相邻,女生也相邻的排法有种十.元素相同问题隔板策略10、有10个运动员名额,分给7个班,每班至少一个,有多少种分配方案?练习题:1. 10个相同的球装5个盒中,每盒至少一有多少装法?2. x + y + z +攻=100求这个方程组的自然数解的组数?十一.正难则反总体淘汰策略11、从0,1,2,3,4,5,6,7,8,9这十个数字中取出三个数,使其和为不小于10的偶数,不同的取法有多少种?练习、我们班里有43位同学,从中任抽5人,正、副班长、团支部书记至少有一人在内的抽法有多少种?十二.平均分组问题除法策略12、6本不同的书平均分成3堆,每堆2本共有多少分法?练习题:1、将13个球队分成3组,一组5个队,其它两组4个队,有多少分法?2、10名学生分成3组,其中一组4人,另两组3人但正副班长不能分在同一组,有多少种不同的分组方法3、某校高二年级共有六个班级,现从外地转入4名学生,要安排到该年级的两个班级且每班安排2名,则不同的安排方案种数为十三.合理分类与分步策略例13.在一次演唱会上共10名演员,其中8人能能唱歌,5人会跳舞,现要演出一个2人唱歌2人伴舞的节目, 有多少选派方法练习:1、从4名男生和3名女生中选出4人参加某个座谈会,若这4人中必须既有男生又有女生,则不同的选法共有 ___2、3成人2小孩乘船游玩,1号船最多乘3人,2号船最多乘2人,3号船只能乘1人,他们任选2只船或3 只船,但小孩不能单独乘一只船,这3人共有多少乘船方法.十四.构造模型策略14、马路上有编号为1,2,3,4,5,6,7,8,9的九只路灯,现要关掉其中的3盏,但不能关掉相邻的2盏或3盏, 也不能关掉两端的2盏,求满足条件的关灯方法有多少种?一些不易理解的排列组合题如果能转化为非常熟悉的模型,如占位填空模型,排队模型,装盒模型等,可使问题直观解决练习、某排共有10个座位,若4人就坐,每人左右两边都有空位,那么不同的坐法有多少种?十五.实际操作穷举策略15、设有编号1,2,3,4,5的五个球和编号1,2,3,4,5的五个盒子,现将5个球投入这五个盒子内,要求每个盒子放一个球,并且恰好有两个球的编号与盒子的编号相同,有多少投法对于条件比较复杂的排列组合问题,不易用公式进行运算,往往利用穷举法或画出树状图会收到意想不到的结果练习 1、同一寝室4人,每人写一张贺年卡集中起来,然后每人各拿一张别人的贺年卡,则四张贺年卡不同的分配方式有多少种?2、给图中区域涂色,要求相邻区域不同色,现有4种可选颜色,则不同的着色方法有种十六.分解与合成策略16、30030能被多少个不同的偶数整除练习:正方体的8个顶点可连成多少对异面直线分解与合成策略是排列组合问题的一种最基本的解题策略,把一个复杂问题分解成几个小问题逐一解决,然后依据问题分解后的结构,用分类计数原理和分步计数原理将问题合成,从而得到问题的答案,每个比较复杂的问题都要用到这种解题策略十七.化归策略17、25人排成5X5方阵,现从中选3人,要求3人不在同一行也不在同一列,不同的选法有多少种?练习、某城市的街区由12个全等的矩形区组成其中实线表示马路,从A走到B的最短路径有多少种?____ ____ _____ ____ .B十八.数字排序问题查字典策略18、由0, 1, 2, 3, 4, 5六个数字可以组成多少个没有重复的比324105大的 A 数?练习:用0,1,2,3,4,5这六个数字组成没有重复的四位偶数,将这些数字从小到大排列起来,第71个数是—十九.树图策略19、3人相互传球,由甲开始发球,并作为第一次传球,经过5次传求后,球仍回到甲的手中,则不同的传球方式有________对于条件比较复杂的排列组合问题,不易用公式进行运算,树图会收到意想不到的结果练习:分别编有1, 2, 3, 4, 5号码的人与椅,其中i号人不坐i号椅(i 1,2,3,4,5 )的不同坐法有多少种?二十.复杂分类问题表格策略20、有红、黄、兰色的球各5只,分别标有A、B、C、D、E五个字母,现从中取5只,要求各字母均有且三色齐备,则共有多少种不同的取法排列组合解法解决排列组合综合性问题的一般过程如下:1.认真审题弄清要做什么事2.怎样做才能完成所要做的事,即采取分步还是分类,或是分步与分类同时进行,确定分多少步及多少类。
排列组合
例3:核桃组的9个人继续照相,这次排队有了新的讲究: 天天、向向、糖糖三个人强烈要求必须相邻,任谁劝都不 听,这时候只见摄像师小段拿着一根绳子笑着就走过来了 说:我能很快解决你们这样一共有几种排队方式的问题。
A A 30240 (种)
3 3 7 7
必须相邻——捆绑法
例4:书架上有4本不同的漫画书,5本不同的童话书,3本 不同的故事书,全部竖起排成一排,如果要求童话书排列 在一起,漫画书排列在一起有多少种排法?
例10::10只无差别的橘子放到3个不同的盘子里,允许有的盘 子空着,请问一共有多少种不同的放法?
练习题
• 1 A、B、C、D、E五个人排成一排,其中A、B两人必须站一起, 共有( )种站法。 • 2 A、B、C、D、E五个人排成一排,其中A、B两人不站一起,共 有( )种站法。 • 3 将8个完全相同的球放到3个不同的盒子中,要求每个盒子至少 放一个球,一共有多少种方法? • 4 有9颗相同的糖,每天至少吃1颗,要4天吃完,有多少种吃法? • 5 一张节目表上原有3个节目,如果保持这3个节目的相对顺序不 变,再添进去2个新节目,有多少种安排方法?
例6:8个人围圆桌聚餐,甲乙两人必须相邻,而乙丙两人不 得相邻,有几种坐法?
环排列A n A
n n
n1 n1
甲乙两人必须相邻,可以把他们看做是1个人(他们 2 6 之间还有顺序),总排列数为 A2 A6 从中扣除甲乙相邻且乙丙也相邻(这和甲乙丙三人 相邻是不同的,如甲在乙丙之间符合后者,但不符 2 5 合前者)的情况 A2 A5 所以,符合提议的排列法有
例9: (1)有10粒糖,分三天吃完,每天至少吃一粒,共有 多少种不同的吃法? (2)有10粒糖,分三天吃完,每天至少吃两粒,共有 多少种不同的吃法? (3)有10粒糖,分三天吃完,每天至少吃三粒,共有 多少种不同的吃法?
排列组合公式_排列组合计算公式
排列组合公式/排列组合计算公式排列 P------和顺序有关组合 C -------不牵涉到顺序的问题排列分顺序,组合不分例如把5本不同的书分给3个人,有几种分法. "排列"把5本书分给3个人,有几种分法 "组合"1.排列及计算公式从n个不同元素中,任取m(m≤n>个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n>个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 p(n,m>表示. b5E2RGbCAPp(n,m>=n(n-1>(n-2>……(n-m+1>= n!/(n-m>!(规定0!=1>.2.组合及计算公式从n个不同元素中,任取m(m≤n>个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n>个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数.用符号 p1EanqFDPwc(n,m> 表示.c(n,m>=p(n,m>/m!=n!/((n-m>!*m!>;c(n,m>=c(n,n-m>。
3.其他排列与组合公式从n个元素中取出r个元素的循环排列数=p(n,r>/r=n!/r(n-r>!.n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为n!/(n1!*n2!*...*nk!>.k类元素,每类的个数无限,从中取出m个元素的组合数为c(m+k-1,m>.排列<Pnm(n为下标,m为上标>)Pnm=n×<n-1)....<n-m+1);Pnm=n!/<n-m)!<注:!是阶乘符号);Pnn<两个n分别为上标和下标) =n!;0!=1;Pn1<n为下标1为上标)=n DXDiTa9E3d组合<Cnm(n为下标,m为上标>)Cnm=Pnm/Pmm ;Cnm=n!/m!<n-m)!;Cnn<两个n分别为上标和下标) =1 ;Cn1<n为下标1为上标)=n;Cnm=Cnn-m RTCrpUDGiT 2008-07-08 13:30公式P是指排列,从N个元素取R个进行排列。
排 列 组 合 公 式 及 排 列 组 合 算 法
各种排列组合奇怪的数的公式和推导(伪)前言啊复习初赛看到排列组合那块,找个推导都难!真是的!一、排列(在乎顺序)全排列:P(n,n)=n!n个人都排队。
第一个位置可以选n个,第二位置可以选n-1个,以此类推得: P(n,n)=n*(n-1)*…*3*2*1= n!部分排列:P(n,m)=n!-(n-m)!n个人,选m个出来排队,第一个位置可以选n个,…,最后一个可以选n-m+1个,以此类推得:P(n,m)=n*(n-1)*.*(n-m+1)=n!-(n-m)!。
二、组合(不在乎顺序)n个人,选m个人出来。
因为不在乎顺序,所以按排列算的话,每个组合被选到之后还要排列,是被算了m!遍的。
即C(n,m)*m!=P(n,m)故而得:C(n,m)=n!-(m!*(n-m)!)有两条性质:1、C(n,m)=C(n,n-m)。
就是说从n个里面选m个跟从n个里面选n-m 个出来不选它是一样的。
2、C(n,m)=C(n-1,m)+C(n-1,m-1)。
递推式.从n个里面选m个出来的方案=从n-1个里面选m个的方案(即不选第n 个) + 从n-1个里面选m-1个的方案(即选第n个)三、圆排列圆排:Q(n,n)=(n-1)!n个人坐成一圈有多少种坐法。
想想坐成一圈后,分别以每个位置为头断开,可以排成一个序列,就是将n个人全排列中的一种。
这样可以得到n个序列,但是在圆排中是视为同一种坐法的。
所以:Q(n,n)*n=P(n,n),即Q(n,n)=P(n,n)-n=n!-n=(n-1)!部分圆排:Q(n,m)=P(n,m)-m=n!-(m*(n-m)!)推导类似四、重复排列(有限个):n!-(a1!*a2!*…*ak!)k种不一样的球,每种球的个数分别是a1,a2.ak,设n=a1+a2+…+ak,求这n个球的全排列数。
把每种球重复的除掉就好了。
假如第一种球有a1个,那么看成都是不一样的话就有a1!种排列方法,然而它们都是一样的,就是说重复了a1!次。
排列组合
排列组合排列组合是组合学最基本的概念。
所谓排列,就是指从给定个数的元素中取出指定个数的元素进行排序。
组合则是指从给定个数的元素中仅仅取出指定个数的元素,不考虑排序。
排列组合的中心问题是研究给定要求的排列和组合可能出现的情况总数。
排列组合与古典概率论关系密切。
定义及公式!-阶乘排列的定义及其计算公式:从n个不同元素中,任取m(m≤n,m与n均为自然数,下同)个元素按照一定的顺序排成一列,叫做从n个不同元素中取出m个元素的一个排列;从n个不同元素中取出m(m≤n)个元素的所有排列的个数,叫做从n个不同元素中取出m个元素的排列数,用符号 A(n,m)表示。
A(n,m)=n(n-1)(n-2)……(n-m+1)= n!/(n-m)! 此外规定0!=1组合的定义及其计算公式:从n个不同元素中,任取m(m≤n)个元素并成一组,叫做从n个不同元素中取出m个元素的一个组合;从n个不同元素中取出m(m≤n)个元素的所有组合的个数,叫做从n个不同元素中取出m个元素的组合数。
用符号 C(n,m) 表示。
C(n,m)==A(n,m)/m!;C(n,m)=C(n,n-m)。
(n>=m)其他排列与组合公式从n个元素中取出m个元素的循环排列数=A(n,m)/m=n!/m(n-m)!. n个元素被分成k类,每类的个数分别是n1,n2,...nk这n个元素的全排列数为 n!/(n1!×n2!×...×nk!). k类元素,每类的个数无限,从中取出m个元素的组合数为C(m+k-1,m)。
符号C-Combination 组合数A-Arrangement 排列数(在旧教材为P-Permutation)N-元素的总个数M-参与选择的元素个数常见的一道题目一些公式:排列组合常见公式组合恒等式基本计数原理⑴加法原理和分类计数法⒈加法原理:做一件事,完成它可以有n类办法,在第一类办法中有m1种不同的方法,在第二类办法中有m2种不同的方法,……,在第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+m3+…+mn种不同方法。
排列组合公式排列组合计算公式
排列组合公式/排列组合计算公式公式P是指排列,从N个元素取R个进行排列。
公式C是指组合,从N个元素取R个,不进行排列。
N-元素的总个数R参与选择的元素个数!-阶乘,如 9!=9*8*7*6*5*4*3*2*1从N倒数r个,表达式应该为n*(n-1)*(n-2)..(n-r+1);因为从n到(n-r+1)个数为n-(n-r+1)=r举例:Q1:有从1到9共计9个号码球,请问,可以组成多少个三位数?A1: 123和213是两个不同的排列数。
即对排列顺序有要求的,既属于“排列P”计算范畴。
上问题中,任何一个号码只能用一次,显然不会出现988,997之类的组合,我们可以这么看,百位数有9种可能,十位数则应该有9-1种可能,个位数则应该只有9-1-1种可能,最终共有9*8*7个三位数。
计算公式=P(3,9)=9*8*7,(从9倒数3个的乘积)Q2: 有从1到9共计9个号码球,请问,如果三个一组,代表“三国联盟”,可以组合成多少个“三国联盟”?A2: 213组合和312组合,代表同一个组合,只要有三个号码球在一起即可。
即不要求顺序的,属于“组合C”计算范畴。
上问题中,将所有的包括排列数的个数去除掉属于重复的个数即为最终组合数C(3,9)=9*8*7/3*2*1排列、组合的概念和公式典型例题分析例1设有3名学生和4个课外小组.(1)每名学生都只参加一个课外小组;(2)每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加.各有多少种不同方法?解(1)由于每名学生都可以参加4个课外小组中的任何一个,而不限制每个课外小组的人数,因此共有种不同方法.(2)由于每名学生都只参加一个课外小组,而且每个小组至多有一名学生参加,因此共有种不同方法.点评由于要让3名学生逐个选择课外小组,故两问都用乘法原理进行计算.例2 排成一行,其中不排第一,不排第二,不排第三,不排第四的不同排法共有多少种?解依题意,符合要求的排法可分为第一个排、、中的某一个,共3类,每一类中不同排法可采用画“树图”的方式逐一排出:∴ 符合题意的不同排法共有9种.点评按照分“类”的思路,本题应用了加法原理.为把握不同排法的规律,“树图”是一种具有直观形象的有效做法,也是解决计数问题的一种数学模型.例3判断下列问题是排列问题还是组合问题?并计算出结果.(1)高三年级学生会有11人:①每两人互通一封信,共通了多少封信?②每两人互握了一次手,共握了多少次手?(2)高二年级数学课外小组共10人:①从中选一名正组长和一名副组长,共有多少种不同的选法?②从中选2名参加省数学竞赛,有多少种不同的选法?(3)有2,3,5,7,11,13,17,19八个质数:①从中任取两个数求它们的商可以有多少种不同的商?②从中任取两个求它的积,可以得到多少个不同的积?(4)有8盆花:①从中选出2盆分别给甲乙两人每人一盆,有多少种不同的选法?②从中选出2盆放在教室有多少种不同的选法?分析(1)①由于每人互通一封信,甲给乙的信与乙给甲的信是不同的两封信,所以与顺序有关是排列;②由于每两人互握一次手,甲与乙握手,乙与甲握手是同一次握手,与顺序无关,所以是组合问题.其他类似分析.(1)①是排列问题,共用了封信;②是组合问题,共需握手(次).(2)①是排列问题,共有(种)不同的选法;②是组合问题,共有种不同的选法.(3)①是排列问题,共有种不同的商;②是组合问题,共有种不同的积.(4)①是排列问题,共有种不同的选法;②是组合问题,共有种不同的选法.例4证明.证明左式右式.∴ 等式成立.点评这是一个排列数等式的证明问题,选用阶乘之商的形式,并利用阶乘的性质,可使变形过程得以简化.例5 化简.解法一原式解法二原式点评解法一选用了组合数公式的阶乘形式,并利用阶乘的性质;解法二选用了组合数的两个性质,都使变形过程得以简化.例6 解方程:(1);(2).解(1)原方程解得.(2)原方程可变为∵ ,,∴ 原方程可化为.即,解得第六章排列组合、二项式定理一、考纲要求1.掌握加法原理及乘法原理,并能用这两个原理分析解决一些简单的问题.2.理解排列、组合的意义,掌握排列数、组合数的计算公式和组合数的性质,并能用它们解决一些简单的问题.3.掌握二项式定理和二项式系数的性质,并能用它们计算和论证一些简单问题.二、知识结构三、知识点、能力点提示(一)加法原理乘法原理说明加法原理、乘法原理是学习排列组合的基础,掌握此两原理为处理排列、组合中有关问题提供了理论根据.例1 5位高中毕业生,准备报考3所高等院校,每人报且只报一所,不同的报名方法共有多少种?解: 5个学生中每人都可以在3所高等院校中任选一所报名,因而每个学生都有3种不同的报名方法,根据乘法原理,得到不同报名方法总共有3×3×3×3×3=35(种)(二)排列、排列数公式说明排列、排列数公式及解排列的应用题,在中学代数中较为独特,它研究的对象以及研究问题的方法都和前面掌握的知识不同,内容抽象,解题方法比较灵活,历届高考主要考查排列的应用题,都是选择题或填空题考查.例2由数字1、2、3、4、5组成没有重复数字的五位数,其中小于50 000的偶数共有( )A.60个B.48个C.36个D.24个解因为要求是偶数,个位数只能是2或4的排法有P12;小于50 000的五位数,万位只能是1、3或2、4中剩下的一个的排法有P13;在首末两位数排定后,中间3个位数的排法有P33,得P13P33P12=36(个)由此可知此题应选C.例3将数字1、2、3、4填入标号为1、2、3、4的四个方格里,每格填一个数字,则每个方格的标号与所填的数字均不同的填法有多少种?解:将数字1填入第2方格,则每个方格的标号与所填的数字均不相同的填法有3种,即214 3,3142,4123;同样将数字1填入第3方格,也对应着3种填法;将数字1填入第4方格,也对应3种填法,因此共有填法为3P13=9(种).例四例五可能有问题,等思考三)组合、组合数公式、组合数的两个性质说明 历届高考均有这方面的题目出现,主要考查排列组合的应用题,且基本上都是由选择题或填空题考查.例4 从4台甲型和5台乙型电视机中任意取出3台,其中至少有甲型与乙型电视机各1台,则不同的取法共有( )A.140种B.84种C.70种D.35种解: 抽出的3台电视机中甲型1台乙型2台的取法有C 14·C 25种;甲型2台乙型1台的取法有C 24·C 15种 根据加法原理可得总的取法有 C 24·C 25+C 24·C 15=40+30=70(种 ) 可知此题应选C.例5 甲、乙、丙、丁四个公司承包8项工程,甲公司承包3项,乙公司承包1 项,丙、丁公司各承包2项,问共有多少种承包方式? 解: 甲公司从8项工程中选出3项工程的方式 C 38种;乙公司从甲公司挑选后余下的5项工程中选出1项工程的方式有C 15种; 丙公司从甲乙两公司挑选后余下的4项工程中选出2项工程的方式有C 24种; 丁公司从甲、乙、丙三个公司挑选后余下的2项工程中选出2项工程的方式有C 22种.根据乘法原理可得承包方式的种数有C 3 8×C 15×C 24×C 22= ×1=1680(种). (四)二项式定理、二项展开式的性质说明 二项式定理揭示了二项式的正整数次幂的展开法则,在数学中它是常用的基础知识 ,从1985年至1998年历届高考均有这方面的题目出现,主要考查二项展开式中通项公式等,题型主要为选择题或填空题. 例6 在(x- )10的展开式中,x 6的系数是( ) A.-27C 610 B.27C 410 C.-9C 610 D.9C 410 解 设(x- )10的展开式中第γ+1项含x 6, 因T γ+1=C γ10x 10-γ(- )γ,10-γ=6,γ=4于是展开式中第5项含x 6,第5项系数是C 410(- )4=9C 410故此题应选D.例7 (x-1)-(x-1)2+(x-1)3-(x-1)+(x-1)5的展开式中的x2的系数等于解:此题可视为首项为x-1,公比为-(x-1)的等比数列的前5项的和,则其和为在(x-1)6中含x3的项是C36x3(-1)3=-20x3,因此展开式中x2的系数是-2 0. (五)综合例题赏析例8若(2x+)4=a0+a1x+a2x 2+a3x3+a4x4,则(a+a2+a4)2-(a1+a3)2的值为( )A.1B.-1C.0D.2解:A.例9 2名医生和4名护士被分配到2所学校为学生体检,每校分配1名医生和2 名护士,不同的分配方法共有( )A.6种B.12种C.18种D.24种解分医生的方法有P22=2种,分护士方法有C24=6种,所以共有6×2=12种不同的分配方法。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
排列组合
A卷
一、填空题(每题2分,其20分)
1.从甲地到乙地,可以乘火车、乘轮船或乘汽车。
如果某一天,甲地到乙地的火车有2班,轮船有3班,汽车有6班。
在这一天中一位旅行者要从甲地到乙地,可以有多少种不同的走法。
2.一位旅行者要从A地到C地且必经8地。
已知从A地到B地有4条路可走,从B地到C地有5条路可走,那么从A地到C地共有多少种不同的走法。
3.书架上有语文课外读物8种,数学课外读物20种,外语课外读物36种。
小明要从书架上任取一本课外读物,有多少种不同的取法。
4.用l,2,3,4,5五个数字可以组成多少个三位数。
(各位上的数字允许相同)
5。
学校的演出队有各种服装如下:上衣6种,裙子3种,帽子4顶。
从中任取一件上衣,一条裙子,一顶帽子搭成一套演出服装,共可配出多少套不同的演出服装。
6.学校组织一次象棋比赛,每一个人都要与另一个人互相比赛一场。
有10位选手参加比赛,一共要进行多少场比赛。
7.幼儿园小班有两样物品:玩具6种,看图识字图书5种。
从两样东西中任取一样共有——种不同的取法;从两样东西中各取一样各有多少种不同的取法。
8.在一次战斗中,有红、黄、蓝三种颜色的信号弹各一枚,每次发射可能是一枚、二枚或三枚,并且发射的顺序不同则表示不同的信号。
这样一共可以表示多少种不同的信号。
9·有三张卡片,上面分别写着3,4,5。
从中任取两张卡片,把卡片上的两个数相加,可以得到多少个不同的和。
10·小红、小丽、小刚三个人参加学校的体育、音乐、美术和数学四个课外兴趣小组,他们每人只能报名参加一个小组,那么报名结果会有多少种不同情形。
二、解答题(30分) ’
1·篮子里有6个苹果,5个梨,7个橘子,现在要小明从中任取一个水果,共有多少种不同的取法?
2·一列火车从北京开往哈尔滨,中途还要停靠8个车站,铁路部门要为这次火车准备多少种不同的车票?
3·有三个口袋,里面分别装有6个球,5个球和4个球,所有这些小球的颜色都不同。
(1)从三个口l袋内任取一个球,共有多少种不同的取法?
(2)从三个口袋内各取一个球,共有多少种不同的取法?
4·有A,B,C,D,E五块地(如图所示),每块上分别种上苹果、桃子、梨和山揸树。
要求:相邻的两块地不能种相同的果树。
问:一共有多少种不同的种法?
5.从l~500的自然数中,不含有数字5的数有多少个?
6.在所有的三位数中,各位数字之和是19的数共有多少个?
B卷
一、填空题(每题2分,共20分)
1.用l,2,3,4,5可以组成多少个没有重复数字的四位偶数。
2.7个人并排站成一排照相,共有多少种不同的站法;如果某人必须站在正中间,共有多少种不同的站法。
3.9个同学排成两排照相,前排4人,后排5人,共有多少种不同的站法。
4.7名同学,每两人之间互相赠送一张照片,共需多少张照片。
5.由3,5,7,9可以组成多少个没有重复数字的三位数,其中有多少个是3的倍数。
6.包括李明和王兰在内的21名学生进行数学集训,准备从这21名学生中选一个6人代表队参加国际数学奥林匹克竞赛。
若要使李明和王兰都是代表队员,共有多少种不同的选法;若李明和王兰都不是代表队员,共有多少种不同的选法。
7。
从6件不同的物品中任取1件、2件、3件、4件、5件、6件,一共有多少种不同的取法。
8.一个圆上有l0个点,过每两个点可以画一条直线,一共可以画多少条直线;每过3个点可以画一个顶点在圆上的三角形,一共可以画多少个三角形。
9.8男5女中选出4人参加书法比赛,其中至少有2名女生,共有多少种选法。
10.直线a,b上分别有5个点和4个点(如下图),以这些点为顶点,可以画出多少个三角形,多少个四边形。
二、解答题(每题5分,共20分)
1.书架上有4本不同的数学书,5本不同的物理书,3本不同的化学书,全部竖起排成一排,如果不使同类的书分开,一共有多少种排法?
2·在产品检验时,常从产品中抽出一部分进行检查,现在从100件中任意抽出3侔。
(1)一共有多少种不同的抽法?
(2)如果l00件产品中有2件次品,抽出的3件中恰好有1件是次品的抽法有多少种?
(3)如果l00件产品中有2件次品,抽出的3件产品中至少有l件是次品的抽法有多少种?
3.有红、黄、蓝色的小旗各一面,从中选用一面、两面或三面升上旗杆,升上旗杆的顺序不同表示的信号就不同,一共可以表示多少种不同的信号?
4.某校50个同学参加乒乓球单打比赛,如果是循环赛,那么决出冠军要进行多少场比赛?如果是淘汰赛,那么决出冠军要进行多少场比赛?
三、生活题(每题5分,共10分)
1.一个保管员忘记了自己小保险柜的密码数字了,只记得是由四个非0数码组成.且四个数码之和是9。
为确保打开保险柜,最多要试多少次?
2.世界杯足球赛每四年举办一届,决赛阶段共有32支国家队参赛。
这32个队先分成8个小组,每组4人队进行单循环赛,各组的前两名进入下一轮。
这l6个队进行淘汰赛决出冠亚军,还有另一场争夺第三名的比赛,每一届世界杯足球赛共要比赛多少场?。