沪科版第二十四章圆单元 练习巻

合集下载

沪科版2019-2020学年九年级数学下册第24章圆单元测试卷(含答案)

沪科版2019-2020学年九年级数学下册第24章圆单元测试卷(含答案)

沪科版九下第24章圆单元检测卷时间:90分钟,分值100分一、选择题(本大题共10小题,每小题3分,共30分)1. 下列交通标志中既是中心对称图形,又是轴对称图形的是【 】2.如图所示,如果AB 为⊙O 的直径,弦CD ⊥AB ,垂足为E ,那么下列结论中,错误的是【 】A.CE=DEB.弧BC=弧BDC.∠BAC=∠BADD.AC>AD3.在一个圆中,给出下列命题,其中正确的是【 】A.若圆心到两条直线的距离都等于圆的半径,则这两条直线不可能垂直 B.若圆心到两条直线的距离都小于圆的半径,则这两条直线与圆一定有4个公共点C.若两条弦所在直线不平行,则这两条弦可能在圆内有公共点D.若两条弦平行,则这两条弦之间的距离一定小于圆的半径 4.如图,点都在圆上,若∠C=34°,则∠AOB 的度数为【 】 A.34° B.56° C.60° D.68°5. 如图所示,体育课上,小丽的铅球成绩为6.4 m ,她投出的铅球落在【 】 A.区域① B.区域② C.区域③ D.区域④A B C D6.半径为R 的圆内接正三角形的面积是【】A.23R B.2πR C.233R D.233R 7.把地球看成一个表面光滑的球体,假设沿地球赤道绕紧一圈钢丝,然后把钢丝加长,使钢丝圈沿赤道处处高出球面16 cm ,那么钢丝大约需要加长【 】 A.102 cm B.104 cm C.106 cm D.108 cm8.如图所示,已知⊙O 的半径OA=6,∠AOB=90°,则∠AOB 所对的弧AB 的长为【 】A. B. C. D.9.钟表的轴心到分针针端的长为5cm ,那么经过40分钟,分针针端转过 的弧长是【 】 A.B.C.D.10.如图所示,⊙的半径为2,点到直线的距离为3,点是直线上的一个动点,PB 切⊙O 于点,则PB 的最小值是【 】A.13B.5C.3D.2二、填空题(每小题3分,共24分)11.如图所示,在⊙O 中,直径CD 垂直弦AB 于点,连接OB,CB ,已知⊙的半O B第8题图径为2,AB=23 ,则∠BCD=________度.12.如图,在边长为3的正方形ABCD 中,⊙O 1与⊙O 2外切,且⊙O 1分别与DA 、DC 边相切,⊙O 2分别与BA 、BC 边相切,则圆心距O 1 O 2为.13.如图所示,已知⊙的半径为5,点O 到弦AB 的距离为3,则⊙O 上到弦所在直线的距离为2的点有______个.14.如图所示,⊙O 的半径为4 cm ,直线l 与⊙O 相交于A ,B 两点,AB =43 cm ,P 为直线l 上一动点,以1 cm 为半径的⊙P 与⊙O 没有公共点.设PO =d cm ,则d 的取值范围是_____________.15.如图所示,A 是⊙O 的直径,点C,D 是圆上两点,∠AOC=100°,则∠D=_______. 16.如图所示,图①中圆与正方形各边都相切,设这个圆的周长为;图②中的四个圆的半径相等,并依次外切,且与正方形的边相切,设这四个圆的周长为;图③中的九个圆的半径相等,并依次外切,且与正方形的边相切,设这九个圆第15题图的周长为;….依此规律,当正方形边长为2时,C 1+C 2+C 3+...+C 100= _______.17.如图所示,以O 为圆心的两个同心圆中,大圆的弦与小圆相切于点,若大圆半径为10cm ,小圆半径为6cm ,则弦AB 的长为_______.18.如图所示,PA ,PB 切⊙O 于A ,B 两点,若∠APB=60°,⊙O 的半径为3,则阴影部分的面积为_______.三、解答题(共46分) 19.(6分)如图所示,⊙O 的直径AB 和弦CD 相交于点,AE=2,EB=6 ,∠DEB=30°,求弦CD 长.20.(6分)如图, AB 为☉O 的直径,C 为☉O 外一点,过C 作☉O 的切线,切点为B,连接AC 交☉O 于D,∠C=38°.点E 在AB 右侧的半圆周上运动(不与A,B 重合),求∠AED 的大小。

九年级下册数学单元测试卷-第24章 圆-沪科版(含答案)

九年级下册数学单元测试卷-第24章 圆-沪科版(含答案)

九年级下册数学单元测试卷-第24章圆-沪科版(含答案)一、单选题(共15题,共计45分)1、如图,△ABC为等腰直角三角形,∠ACB=90°,将△ABC绕点A逆时针旋转75°,得到△AB′C′,过点B′作B′D⊥CA,交CA的延长线于点D,若AC=4,则AD的长为()A.2B.3C.3D.22、下列手机软件图标中,既是轴对称图形又是中心对称图形的是()A. B. C. D.3、如图,⊙O的半径为5,圆心O到弦AB的距离为3,则AB的长为()A.4B.5C.6D.84、如图,已知:⊙O中,AB、CB为弦,OC交AB于D,则∠AOC=()A.∠BOCB.∠ABCC.2∠BOCD.2∠ABC5、如图,点F是△ABC的内心,∠A=50°,则∠BFC=()A.100°B.115°C.130°D.135°6、如图,在△ABC中,AC=BC=4,∠ACB=90°,若点D是AB的中点,分别以点A,B为圆心,AB长为半径画弧,交AC于点E,交BC于点F,则图中阴影部分的面积是()A.16﹣2πB.16﹣πC.8﹣2πD.8﹣π7、如图,等边△AOB中,点B在x轴正半轴上,点A坐标为(1,),将△AOB绕点O 逆时针旋转30°,此时点A对应点A′的坐标是()A.(0,)B.(2,0)C.(0,2)D.(,1)8、内心和外心重合的三角形是( )A.直角三角形B.钝角三角形C.等腰三角形D.等边三角形9、已知抛物线y=x2-2mx-4(m>0)的顶点M关于坐标原点O的对称点为M′,若点M′在这条抛物线上,则点M的坐标为()A.(1,-5)B.(3,-13)C.(2,-8)D.(4,-20)10、如图,在正方形ABCD中,AB=2 ,连接AC,以点C为圆心、AC长为半径画弧,点E在BC的延长线上,则阴影部分的面积为()A.6π﹣4B.8π﹣8C.10π﹣4D.12π﹣811、同一平面内,一个点到圆的最小距离为,最大距离为,则该圆的半径为A. B. C. 或 D. 或12、四张质地、大小相同的卡片上,分别画上如图所示的四种汽车标志,在看不到图形的情况下从中任意抽出一张,则抽出的卡片既是中心对称图形,又是轴对称图形的概率是()A. B. C. D.113、如图,是的弦,交于点,点是上一点,,则的度数为().A.30°B.40°C.50°D.60°14、下列命题中,其中正确的命题个数有()(1 )已知⊙O的半径为1,AB是⊙O的一条弦,且AB= ,则弦AB所对圆周角的度数为60度;(2 )已知⊙O的半径为5,圆心O到弦AB的距离为3,则⊙O上到弦AB所在直线的距离为2的点有3个;(3 )平分弦的直径垂直于弦;(4 )已知点P是线段AB的黄金分割点,若AB=1,AP= .A.1个B.2个C.3个D.4个15、如图,O是正内一点,,,,将线段BO以点B为旋转中心逆时针旋转得到线段,下列五个结论中,其中正确的结论是()可以由绕点B逆时针旋转得到;点O与的距离为4;;;.A. B. C. D.二、填空题(共10题,共计30分)16、如图,AB、AC是⊙O的两条弦,过点C的切线交OB的延长线于点D,若∠A=24°,则∠D的度数为________.17、我们规定:平面内点A到图形G上各个点的距离的最小值称为该点到这个图形的最小距离d,点A到图形G上各个点的距离的最大值称为该点到这个图形的最大距离D,定义点A 到图形G的距离跨度为R=D-d.在平面直角坐标系xOy中,图形G为以原点O为圆心,2为半径的圆,则点A(1,-1)到图形G的距离跨度是________.18、已知扇形的半径为6cm,面积为10πcm2,则该扇形的弧长等于________.19、如图,点B在x轴上,∠ABO=90°,∠A=30°,OA=4,将△OAB绕点O旋转150°得到△OA′B′,则点A′的坐标为________.20、已知扇形的弧长为4π,半径为5cm,则此扇形的圆心角为________21、如图所示,将一个含30°角的直角三角板ABC绕点A顺时针旋转,使得点B,A,C′在同一条直线上,若BC=1,则点B旋转到B′所经过的路线长为________.22、如图,△ABC的3个顶点都在⊙O上,直径AD=2,∠ABC=30°,则AC的长度是________.23、如图,把Rt△ABC绕点A顺时针旋转35°得到△AB′C′,B′C′与AC相交于点D,∠B=60°,则∠ADB′的度数是________.24、若圆锥的母线长为5,底面半径为3,则圆锥的侧面积等于________.25、如图,在半⊙中, 是直径,点是⊙上一点,点是的中点,于点,过点的切线交的延长线于点,连接,分别交于点,连接 ,关于下列结论:①;②;③点是的外心;④,其中结论正确的是________.三、解答题(共5题,共计25分)26、如图,A、B、C、D均为⊙O上的点,其中A、B两点的连线经过圆心O,线段AB、CD 的延长线交于点E,已知AB=2DE,∠E=18°,求∠AOC的度数.27、如图1,正方形ABCD是一个6 ×6网格的示意图,其中每个小正方形的边长为1,位于AD中点处的点P按图2的程序动.(1)请在图中画出点P经过的路径;(2)求点P经过的路径总长.28、如图,点A,B在⊙O上,直线AC是⊙O的切线,OC⊥OB,连接AB交OC于点D.求证:AC=CD.29、我们学习过利用用尺规作图平分一个任意角,而“利用尺规作图三等分一个任意角”曾是数学史上一大难题,之后被数学家证明是不可能完成的人们根据实际需爱,发明了一种简易操作工具--------三分角器.图1是它的示意图,其中与半圆O的直径在同一直线上,且的长度与半圆的半径相等;与重直F点足够长.使用方法如图2所示,若要把三等分,只需适当放置三分角器,使经过的顶点,点落在边上,半圆O与另一边恰好相切,切点为F,则就把三等分了.为了说明这一方法的正确性,需要对其进行证明.如下给出了不完整的“已知”和“求证”,请补充完整,并写出“证明”过程.已知:如图2,点在同一直线上,垂足为点B,▲求证:▲30、如图,⊙O的半径OC=5cm,直线l⊥OC,垂足为H,且l交⊙O于A、B两点,AB=8cm,求l沿OC所在直线向下平移多少cm时与⊙O相切.参考答案一、单选题(共15题,共计45分)1、A2、B3、D5、B6、C7、C8、D9、C10、A11、D12、B13、D14、A15、C二、填空题(共10题,共计30分)16、17、18、19、20、22、23、24、25、三、解答题(共5题,共计25分)26、28、。

九年级数学下册第二十四章《圆》单元测试题-沪科版(含答案)

九年级数学下册第二十四章《圆》单元测试题-沪科版(含答案)

九年级数学下册第二十四章《圆》单元测试题-沪科版(含答案)一、单选题1.北京教育资源丰富,高校林立,下面四个高校校徽主题图案中,既不是中心对称图形,也不是轴对称图形的是( ) A .B .C .D .2.如图,在正方形网格中,点 A , B , C , D , O 都在格点上.下列说法正确的是( )A .点 O 是 ABC 的内心B .点 O 是 ABC 的外心C .点 O 是ABD 的内心 D .点 O 是ABD 的外心3.如图,BC 为直径,35ABC ∠=︒ ,则D ∠的度数为( )A .35︒B .45︒C .55︒D .65︒4.如图,若O 的半径为5,圆心O 到一条直线的距离为2,则这条直线可能是( )A .1lB .2lC .3lD .4l5.底面半径为3,高为4的圆锥侧面积为( )A .15πB .20πC .25πD .30π6.如图,圆的两条弦AB ,CD 相交于点E ,且AD CB =,∠A =40°,则∠DEB 的度数为( )A.50°B.100°C.70°D.80°7.下列条件中,不能确定一个圆的是()A.圆心与半径B.直径C.平面上的三个已知点D.三角形的三个顶点8.若一个正n边形的每个内角为144°,则这个正n边形的边数为()A.8B.9C.10D.119.如图,正六边形ABCDEF的边长为6,以顶点A为圆心,AB的长为半径画圆,用图中阴影部分围成一个圆锥的侧面(接缝忽略不计),则该圆锥的高为()A.4B.32C.42D.21010.如图,已知AB是∠O的直径,弦CD∠AB,垂足为E,且∠BCD=30°,CD=3.则图中阴影部分的面积S阴影=()A.2πB.83πC.43πD.38π二、填空题11.正十边形的中心角等于度.12.若O的半径为5cm,点A到圆心O的距离为4cm,那么点A与O的位置关系是.13.若一个正多边形的一个外角等于36°,则这个正多边形的边数是.14.如图,在边长为4的等边∠ABC中,以B为圆心、BA为半径画弧,再以AB为直径画半圆,则阴影部分的面积为.三、计算题15.如图,AB是∠O的直径,点D在∠O上,∠DAB=45°,BC∠AD,CD∠AB.若∠O的半径为1,求图中阴影部分的面积(结果保留π).16.计算高为4cm,底面半径为3cm的圆锥的体积.(圆锥的体积= 13×底面积×高,π取3)四、解答题17.如图扇形纸扇完全打开后,外侧两竹条AB、AC的夹角为120°,AB长为30cm,贴纸部分BD 长为20cm,求贴纸部分的面积.18.在一个3m×4m的矩形地块上,欲开辟出一部分作花坛,要使花坛的面积为矩形面积的一半,且使整个图案绕它的中心旋转180°后能与自身重合,请给出你的设计方案.19.如图,已知O ,A 是BC 的中点,过点A 作AD BC .求证:AD 与O 相切.20.如图,AB 是 O 的直径,弦 CD AB ⊥ 于点E ,若 8AB = , 6CD = ,求 OE 的长.21.已知AB ,AC 为弦,OM∠AB 于M ,ON∠AC 于N ,求证:MN∠BC 且MN =12BC .22.如图,∠O 的半径为17cm ,弦AB∠CD ,AB=30cm ,CD=16cm ,圆心O 位于AB ,CD 的上方,求AB 和CD 的距离.五、综合题23.如图,已知AB是∠O的直径,弦CD与直径AB相交于点F.点E在∠O外,作直线AE,且∠EAC=∠D.(1)求证:直线AE是∠O的切线.(2)若∠BAC=30°,BC=4,cos∠BAD=34,CF=103,求BF的长.参考答案1.【答案】D【解析】【解答】解:A、不是中心对称图形,是轴对称图形,故该选项不符合题意;B、是中心对称图形,不是轴对称图形,故该选项不符合题意;C、不是中心对称图形,是轴对称图形,故该选项不符合题意;D、既不是中心对称图形,也不是轴对称图形,故该选项符合题意.故答案为:D.【分析】轴对称图形:平面内,一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形;中心对称图形:在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,据此一一判断得出答案.2.【答案】D【解析】【解答】解:根据点A,B,C,D,O 都在正方形网格的格点上.可知:点O到点A ,B ,D 的三点的距离相等,所以点O是∠ABD的外心.故答案为:D.【分析】根据图形可得点O到点A、B、D的距离相等,然后结合外心的概念进行判断.3.【答案】C【解析】【解答】解:∵CB是直径,∴∠BAC=90°,∵∠ABC=35°,∴∠ACB=90°-35°=55°,∴∠D=∠C=55°,故答案为:C.【分析】先利用圆周角的性质和三角形的内角和求出∠ACB=90°-35°=55°,再利用圆周角的性质可得∠D=∠C=55°。

沪科版九年级下册《第24章圆》检测卷(含答案)

沪科版九年级下册《第24章圆》检测卷(含答案)

第24章检测卷(120分钟150分)一、选择题(1.将小鱼图案绕着头部某点顺时针旋转90°后可以得到的图案是2.如图,已知圆心角∠AOB=110°,则圆周角∠ACB=A.55°B.110°C.120°D.125°3.下列说法正确的是A.三角形的内心到三角形三个顶点的距离相等B.三点确定一个圆C.平分弦的直径垂直于弦D.同圆或等圆中,相等的弧所对的圆心角相等4.如图,圆上有A,B,C,D四点,圆内有E,F两点且点E,F在BC上.若四边形AEFD为正方形,则下列弧长关系中,正确的是A. B. C. D.第4题图第5题图5.如图,一段公路的转弯处是一段圆弧(),则的长度为A.3πB.6πC.9πD.12π6.在△ABC中,AC=3,CB=4,以C为圆心r为半径作圆,如果点A、点B只有一个点在圆内,那么半径r的取值范围是A.r>3B.r≥4C.3<r≤4D.3≤r≤47.如图,往竖直放置的在A处由短软管连接的粗细均匀细管组成的“U”形装置中注入一定量的水,水面高度为6 cm,现将右边细管绕A处顺时针方向旋转60°到AB位置,则AB 中水柱的长度约为A.4 cmB.6 cmC.8 cmD.12 cm第7题图第8题图8.如图,在正六边形ABCDEF中,若△ACD的面积为12,则该正六边形的面积为A.30B.36C.48D.609.如图,蒙古包可近似地看作由圆锥和圆柱组成,若用毛毡搭建一个底面圆面积为25πm2,圆柱高为3 m,圆锥高为2 m的蒙古包,则需要毛毡的面积是A.(30+5)π m2B.40π m2C.(30+5π m2D.55π m2第9题图第10题图10.如图,Rt△ABC中,AB⊥BC,AB=6,BC=4.P是△ABC内部的一个动点,且满足∠PAB=∠PB C.则线段CP长的最小值为A. B.2 C. D.提示:∵AB⊥BC,∴∠ABP+∠CBP=90°,∵∠CBP=∠BAP,∴∠ABP+∠BAP=90°,∴∠APB=90°,∴点P在以AB为直径的☉E上,当点C,P,E在一条直线上时,CP取最小值,此时由勾股定理得CE==5,CP=CE-PE=5-3=2 .二、填空题(本大题共4小题,每小题5分,满分20分)11.下列图形:①菱形;②等边三角形;③矩形;④平行四边形.其中既是中心对称图形又是轴对称图形的是①③.(填写序号)12.如图,四边形ABCD内接于☉O,AB是直径,过C点的切线与AB的延长线交于P点,若∠P=40°,则∠D的度数为115°.第12题图第13题图13.如图,有一个圆形展厅,在其圆形边缘上的点A处安装了一台监视器,它的监控角度是65°,为了监控整个展厅,最少需在圆形边缘上安装这样的监视器3台.14.已知☉O的直径CD=10 cm,AB是☉O的弦,AB⊥CD,垂足为M,且AB=8 cm,则AC的长为2 cm或4 cm.三、(本大题共2小题,每小题8分,满分16分)15.如图所示,AB为☉O的直径,CD是☉O的弦,AB,CD的延长线交于点E,已知AB=2DE,∠AEC=20°.求∠AOC的度数.解:连接OD.∵AB=2DE,AB=2OD,∴OD=DE,∴∠DOE=∠E=20°,∴∠CDO=∠DOE+∠E=40°,∵OC=OD,∴∠C=∠ODC=40°,∴∠AOC=∠C+∠E=60°.16.已知△ABC,求作☉O,使☉O经过△ABC的三个顶点.(不写作法,保留作图痕迹)解:如图所示.四、(本大题共2小题,每小题8分,满分16分)17.如果从半径为5 cm的圆形纸片上剪去圆周的一个扇形,将留下的扇形围成一个圆锥(接缝处不重叠),求这个圆锥的高.解:∵从半径为5 cm的圆形纸片上剪去圆周的一个扇形,∴留下的扇形的弧长为π=8π cm,根据圆锥底面圆的周长等于扇形弧长,∴圆锥的底面半径r=π=4 cm,∴圆锥的高为-=3 cm.18.如图,E是△ABC的内心,线段AE的延长线交△ABC的外接圆于点D.(1)求证:ED=BD;(2)若∠BAC=90°,△ABC的外接圆☉O的直径是6,求BD的长.解:(1)∵E是△ABC的内心,∴∠BAD=∠CAD,∠ABE=∠CBE,∵∠CBD=∠CAD,∴∠BAD=∠CBD,∵∠BED=∠ABE+∠BAD,∴∠BED=∠CBE+∠CBD,∵∠EBD=∠CBE+∠CBD,∴∠BED=∠EBD,∴ED=BD.(2)连接CD.∵∠BAC=90°,∴BC是☉O的直径,∴∠BDC=90°,∵☉O的直径为6,∴BC=6,∵E为△ABC的内切圆的圆心,∴∠BAD=∠CAD,∴BD=DC,∴BD=DC=BC=3.五、(本大题共2小题,每小题10分,满分20分)19.把球放在长方体纸盒内,球的一部分露出盒外,其截面如图所示,已知EF=CD=4 cm,求球的半径长.解:如图,取EF的中点M,作MN⊥AD交BC于点N,则MN经过球心O,连接OF.∵四边形ABCD是矩形,∴∠C=∠D=90°,∴四边形CDMN是矩形,∴MN=CD=4,设OF=x,则ON=OF,∴OM=MN-ON=4-x,MF=2,在Rt△OMF中,OM2+MF2=OF2,即(4-x)2+22=x2,解得x=2.5.答:球的半径长为2.5 cm.20.如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,点A,B的坐标分别是A(4,3),B(4,1),把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,直接写出点A1,B1的坐标;(2)求在旋转过程中,△ABC所扫过的面积.解:(1)△A1B1C如图所示.由A(4,3),B(4,1)可建立如图所示的平面直角坐标系,则点A1的坐标为(-1,4),点B1的坐标为(1,4).(2)∵AC=,∠ACA1=90°,∴在旋转过程中,△ABC所扫过的面积为+S△ABC=π ×3×2=π+3.扇形六、(本题满分12分)21.如图,已知△ABC为直角三角形,∠C=90°,边BC是☉O的切线,切点为D,AB经过圆心O并与圆相交于点E,连接A D.(1)求证:AD平分∠BAC;(2)若AC=8,tan∠DAC=,求☉O的半径.解:(1)连接OD.∵BC是☉O的切线,∴OD⊥BC,∴∠ODB=90°,又∵∠C=90°,∴AC∥OD,∴∠CAD=∠ADO,又∵OA=OD,∴∠OAD=∠ADO,∴∠CAD=∠OAD,∴AD平分∠BAC.(2)连接DE.在Rt△ACD中,∵tan ∠DAC=,AC=8,∴CD=6,∴AD==10.∵AE为☉O的直径,∴∠ADE=90°,∴∠ADE=∠C,∵∠CAD=∠OAD,∴△ACD∽△ADE,∴,即,∴AE=,∴☉O的半径是.七、(本题满分12分)22.如图,☉O是正五边形ABCDE的外接圆,F是的中点,连接CF,EF.(1)请直接写出∠CFE=72°;(2)求证:EF=CF;(3)若☉O的半径为5,求的长.解:(2)∵五边形ABCDE是正五边形,∴AE=BC,∴,又∵F是的中点,∴,∴,∴,∴EF=CF.(3)∵☉O是正五边形ABCDE的外接圆,∴,∵R=5,∴×2πR=2π,又∵=π,∴=3π.八、(本题满分14分)23.如图,在直角三角形ABC中,∠ACB=90°,H是△ABC的内心,AH的延长线和△ABC的外接圆O相交于点D,连接DB.(1)求证:DH=DB;(2)过点D作BC的平行线交AC,AB的延长线分别于点E,F,已知CE=1,圆O的直径为5.①求证:EF为圆O的切线;②求DF的长.解:(1)连接HB.∵H是△ABC的内心,∴∠DAC=∠DAB,∠ABH=∠CBH,∵∠DBC=∠DAC,∴∠DHB=∠DAB+∠ABH=∠DAC+∠CBH,∵∠DBH=∠DBC+∠CBH,∴∠DHB=∠DBH,∴DH=DB.(2)①连接OD.∵∠DOB=2∠DAB=∠BAC,∴OD∥AC,∵AC⊥BC,BC∥EF,∴AC⊥EF,∴OD⊥EF,∵点D在☉O上,∴EF是☉O的切线.②连接CD,过点D作DG⊥AB于点G.∵∠EAD=∠DAB,∴DE=DG,∵DC=DB,∠CED=∠DGB=90°,∴△CDE≌△BDG,∴GB=CE=1,在Rt△ADB中,DG⊥AB,∴∠DAB=∠BDG,∵∠DBG=∠ABD,∴△DBG∽△ABD,∴,∴DB2=AB BG=5×1=5,∴DB=,DG=2,∴ED=2,∵H是内心,∴AE=AG=4,∵DO∥AE,∴△OFD∽△AFE,∴,∴, ∴DF=.。

沪科版九年级数学下册《第24章圆》单元评估检测试卷(有答案)【最新】

沪科版九年级数学下册《第24章圆》单元评估检测试卷(有答案)【最新】

沪科版九年级数学下册第24章圆单元评估检测试卷一、单选题(共10题;共30分)1.钝角三角形的外心在()A. 三角形的内部B. 三角形的外部C. 三角形的钝角所对的边上D. 以上都有可能2.如图,⊙O的直径AB垂直于弦CD,∠CAB=36°,则∠BCD的大小是()A. 18°B. 36°C. 54°D. 72°3.如图,AB是⊙O的切线,B为切点,AO与⊙O交于点C,若∠BAO=40°,则∠OCB的度数为()A. 40°B. 50°C. 65°D. 75°4.如图,点A,B分别在x轴、y轴上(OA>OB),以AB为直径的圆经过原点O,C是AOB的中点,连结AC,BC.下列结论:①AC=BC;②若OA=4,OB=2,则△ABC的面积等于5;③若OA﹣OB=4,则点C 的坐标是(2,﹣2).其中正确的结论有()A. 3个B. 2个C. 1个D. 0个5.正六边形内接于圆,它的边所对的圆周角是()A. 60°B. 120°C. 60°或120°D. 30°或150°6.如图,△OAB绕点O逆时针旋转80°到△OCD的位置,已知∠AOB=45°,则∠AOD等于( )A. 55°B. 45°C. 40°D. 35°7.有下列几种说法:①角平分线上的点到角两边的距离相等;②顺次连结矩形四边中点得到的四边形是菱形;③等腰梯形的底角相等;④平行四边形是中心对称图形。

其中正确的有()A. 4个B. 3个C. 2个D. 1个8.蜂巢的构造非常复杂,科学,如图是由7个全等的正六边形组成的网络,正六边形的顶点称为格点,△ABC的顶点都在格点上,设定AB边如图所示,则△ABC是直角三角形的个数有()A. 10个B. 8个C. 6个D. 4个9.如图,若AB是⊙0的直径,CD是⊙O的弦,∠ABD=58°,则∠BCD=()A. 116°B. 32°C. 58°D. 64°10.如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧 AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为点D,E;在点C的运动过程中,下列说法正确的是()A. 扇形AOB的面积为π2B. 弧BC的长为π2C. ∠DOE=45°D. 线段DE的长是2√2二、填空题(共10题;共30分)11.半径为6cm的圆中,垂直平分半径OA的弦长为________cm.12.如图,在△ABC中,∠ACB=120°,将它绕着点C旋转30°后得到△DEC,则∠ACE=________.13.已知,如图,半径为1的⊙M经过直角坐标系的原点O,且与x轴、y轴分别交于点A、B,点A的坐标为( √3, 0 ),⊙M的切线OC与直线AB交于点C.则∠ACO=________.14.如图AB是⊙O的直径,C,D是⊙O上的两点,若∠BCD=28°,则∠ABD=________.15.如图,在⊙O中,直径AB∥弦CD,若∠COD=110°,则的度数为________16.如图,⊙O的半径为2,点A、C在⊙O上,线段BD经过圆心O,∠ABD=∠CDB=90°,AB=1,CD= √3,则图中阴影部分的面积为________.17.已知⊙O的半径为10cm,AB,CD是⊙O的两条弦,AB∥CD,AB=16cm,CD=12cm,则弦AB 和CD之间的距离是________ cm.18.如图,AB为⊙O的切线,AC、BD分别与⊙O切于C、D点,若AB=5,AC=3,则BD的长是________19.如图,正方形ABCD的边长为8,M是AB的中点,P是BC边上的动点,连结PM,以点P为圆心,PM长为半径作⊙P.当⊙P与正方形ABCD的边相切时,BP的长为________。

沪科版九年级下册数学第二十四章-圆练习题(附解析)

沪科版九年级下册数学第二十四章-圆练习题(附解析)

沪科版九年级下册数学第二十四章 圆练习题(附解析)考试范围:xxx ;考试时间:100分钟;命题人:xxx注意事项:1. 答题前填写好自己的姓名、班级、考号等信息2. 请将答案正确填写在答题卡上分卷I分卷I 注释 一、单选题(注释)1、已知⊙ O 1的半径是3cm ,⊙ O 2的半径是2cm ,O 1O 2=cm ,则两圆的位置关系是A .相离B .外切C .相交D .内切2、如图所示,在⊙ O 中,,⊙ A=30°,则⊙ B=A .150°B .75°C .60°D .15°3、用半径为6的半圆围成一个圆锥的侧面,则圆锥的底面半径等于 A .3 B .C .2D .4、在Rt⊙ ABC 中,⊙ C=90°,AB=10.若以点C 为圆心,CB 为半径的圆恰好经过AB 的中点D ,则AC=A .5B .C .D .65、如图,AB是⊙ O的直径,点C在⊙ O上,弦BD平分⊙ ABC,则下列结论错误的是A.AD=DC B.C.⊙ ADB=⊙ ACB D.⊙ DAB=⊙ CBA6、如图所示是某公园为迎接“中国﹣﹣南亚博览会”设置的一休闲区.⊙AOB=90°,弧AB的半径OA长是6米,C是OA的中点,点D在弧AB上,CD⊙OB,则图中休闲区(阴影部分)的面积是A.米2B.米2C.米2D.米27、如图,已知AB、CD是⊙ O的两条直径,⊙ ABC=28°,那么⊙ BAD=A.28°B.42°C.56°D.84°8、已知⊙ O1与⊙ O2相交,它们的半径分别是4,7,则圆心距O1O2可能是A.2B.3C.6D.129、如图,在半径为1的⊙ O中,⊙ AOB=45°,则sinC的值为A.B.C.D.10、若圆锥的侧面展开图为半圆,则该圆锥的母线l与底面半径r的关系是A.l=2r B.l=3r C.l=r D.11、如图所示,在直角坐标系中放置一个边长为1的正方形ABCD,将正方形ABCD沿x轴的正方向无滑动的在x轴上滚动,当点A离开原点后第一次落在x轴上时,点A 运动的路径线与x轴围成的面积为A.B.C.D.12、下列说法错误的是A.若两圆相交,则它们公共弦的垂直平分线必过两圆的圆心B.与互为倒数C.若a>|b|,则a>bD.梯形的面积等于梯形的中位线与高的乘积的一半13、如图,在⊙ O中,已知⊙ OAB=22.5°,则⊙ C的度数为A.135°B.122.5°C.115.5°D.112.5°14、将半径为3cm的圆形纸片沿AB折叠后,圆弧恰好能经过圆心O,用图中阴影部分的扇形围成一个圆锥的侧面,则这个圆锥的高为A.B.C.D.15、如图,扇形AOB的半径为1,⊙ AOB=90°,以AB为直径画半圆,则图中阴影部分的面积为A.B.C.D.16、如图,以等腰直角⊙ ABC两锐角顶点A、B为圆心作等圆,⊙ A与⊙ B恰好外切,若AC=2,那么图中两个扇形(即阴影部分)的面积之和为A.B.C.D.17、如图,A、B、C是⊙ O上的三点,且⊙ ABC=70°,则⊙ AOC的度数是A.35°B.140°C.70°D.70°或140°18、已知圆柱的底面半径为3cm,母线长为5cm,则圆柱的侧面积是A.30cm2B.30πcm2C.15cm2D.15πcm219、如图,Rt⊙ ABC内接于⊙ O,BC为直径,AB=4,AC=3,D是的中点,CD与AB的交点为E,则等于A.4B.3.5C.3D.2.520、用如图所示的扇形纸片制作一个圆锥的侧面,要求圆锥的高是4 cm,底面周长是6π cm,则扇形的半径为A.3cm B.5cm C.6cm D.8cm分卷II分卷II 注释二、填空题(注释)21、如图,在⊙ ABC中,AB=4,AC=6,⊙BAC=60º,⊙ BAC的角平分线交⊙ ABC的外接圆⊙ O于点E,则AE的长为.22、如图,一个宽为2厘米的刻度尺(刻度单位:厘米),放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是3和9,那么玻璃杯的杯口外沿半径为厘米.23、如图,AB是半圆O的直径,点P在AB的延长线上,PC切半圆O于点C,连接AC.若⊙ CPA=20°,则⊙ A=°.24、已知正方体的棱长为3,以它的下底面的外接圆为底、上底面对角线的交点为顶点构造一个圆锥体,那么这个圆锥体的体积是(π=3.14).25、已知扇形的半径是30cm,圆心角是60°,则该扇形的弧长为cm(结果保留π).26、如图,AB是⊙ O的直径,弦BC=4cm,F是弦BC的中点,⊙ ABC=60°.若动点E 以1cm/s的速度从A点出发在AB上沿着A→B→A运动,设运动时间为t(s)(0≤t<16),连接EF,当⊙ BEF是直角三角形时,t(s)的值为.(填出一个正确的即可)27、高为4,底面半径为3的圆锥,它的侧面展开图的面积是.28、如图,正三角形ABC的边长是2,分别以点B,C为圆心,以r为半径作两条弧,设两弧与边BC围成的阴影部分面积为S,当≤r<2时,S的取值范围是.29、如图所示,一半径为1的圆内切于一个圆心角为60°的扇形,则扇形的周长为.30、如图是李大妈跳舞用的扇子,这个扇形AOB的圆心角⊙O=120°,半径OA=3,则弧AB的长度为(结果保留π).31、如图,已知⊙ O的直径AB=6,E、F为AB的三等分点,M、N为上两点,且⊙MEB=⊙NFB=60°,则EM+FN=.32、如图,在扇形OAB中,⊙ AOB=110°,半径OA=18,将扇形OAB沿过点B的直线折叠,点O恰好落在上的点D处,折痕交OA于点C,则的长为.33、如图,将半径为2cm的圆形纸片折叠后,圆弧恰好经过圆心O,则折痕AB的长为cm.34、如图,将⊙ O沿弦AB折叠,使经过圆心O,则⊙ OAB=°.35、如图,AB是半圆O的直径,且AB=8,点C为半圆上的一点.将此半圆沿BC所在的直线折叠,若圆弧BC恰好过圆心O,则图中阴影部分的面积是.(结果保留π)36、已知圆锥的底面周长是10π,其侧面展开后所得扇形的圆心角为90°,则该圆锥的母线长是.37、已知⊙ O1与⊙ O2相切,两圆半径分别为3和5,则圆心距O1O2的值是.38、点O在直线AB上,点A1,A2,A3,……在射线OA上,点B1,B2,B3,……在射线OB上,图中的每一个实线段和虚线段的长均为1个单位长度.一个动点M从O点出发,按如图所示的箭头方向沿着实线段和以点O为圆心的半圆匀速运动,速度为每秒1个单位长度.按此规律,则动点M到达A101点处所需时间为秒.39、如图,⊙ ABC内接于⊙ O,⊙ ACB=35°,则⊙ OAB=°.40、如图,已知⊙ O是⊙ ABC的外接圆,若⊙BOC=100°,则⊙ BAC=.三、计算题(注释)41、如图,在⊙ ABC中,AB=BC,以AB为直径的⊙ O与AC交于点D,过D作DF⊙ BC,交AB的延长线于E,垂足为F.(1)求证:直线DE是⊙ O的切线;(2)当AB=5,AC=8时,求cosE的值.42、如图,OA=OB,AB交⊙ O于点C、D,AC与BD是否相等?为什么?43、如图,AB是⊙ O的直径,C是⊙ O上一点,AC平分⊙ BAD;AD⊙ CD,垂足为D.(1)求证:CD是⊙ O的切线(2)若⊙ O的直径为5,CD=2.求AC的长.44、(本题满分12分)如图,I是⊙ ABC的内心,⊙ BAC的平分线与⊙ ABC的外接圆相交于点D。

沪科版九年级数学下册《第24章圆》单元检测试卷(有答案)

沪科版九年级数学下册《第24章圆》单元检测试卷(有答案)

沪科版九年级数学下册第24章圆单元检测试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 8 小题,每题 3 分,共计24分,)1. 圆柱形油桶的底面半径为0.8m,高为1m,那么这个油桶的侧面积为()A.1.6πm2B.1.2πm2C.0.64πm2D.0.8πm22. 如图,⊙O的弦CD交弦AB于P,AP=4,PB=3,CP=2,那么PD的长为()A.8B.6C.4D.33. 如图,△ODC是由△OAB绕点O顺时针旋转30∘后得到的图形,若点D恰好落在AB上,且∠AOC的度数为100∘,则∠DOB的度数是()A.15∘B.30∘C.38∘D.40∘4. 如图,已知四边形ABCD内接于⊙O,AB是⊙O的直径,EC与⊙O相切于点C,∠ECB=35∘,则∠D的度数是()A.145∘B.125∘C.90∘D.80∘5. 已知半径为4的圆O与直线l没有公共点,那么圆心O到直线l的距离d满足()A.d=4B.d>4C.d<4D.d≤46. 平面内,下列命题为真命题是()A.经过半径外端点的直线是圆的切线B.经过半径的直线是圆的切线C.垂直于半径的直线是圆的切线D.经过半径的外端并且垂直于这条半径的直线是圆的切线7. 将△AOB绕点O旋转180∘得到△DOE,则下列作图正确的是()A. B.C. D.8. Rt△ABC中,∠C=90∘,以BC为直径的⊙O交AB于E,OD⊥BC交⊙O于D,DE交BC 于F,点P为CB延长线上的一点,PE延长交AC于G,PE=PF.小华得出3个结论:①GE=GC;②AG=GE;③OG // BE.其中正确的是()A.①②B.①③C.②③D.①②③二、填空题(本题共计 10 小题,每题 3 分,共计30分,)9. 下列说法:①弦是直径;②直径是弦;③过圆心的线段是直径;④一个圆的直径只有一条.其中正确的是________(填序号).10. 如图,已知AB是圆O的弦,AC是圆O的切线,∠BAC的平分线交圆O于D,连BD并延长交AC于点C,若∠DAC=40∘,则∠B=________度,∠ADC=________度.11. 如图,从点P引⊙O的切线PA,PB,切点分别为A,B,DE切⊙O于C,交PA,PB于D,E.若△PDE的周长为20cm,则PA=________cm.12. 两边为3和4的直角三角形的内切圆半径为________.13. 已知⊙O1与⊙O2内切,⊙O1的半径长是3厘米,圆心距O1O2=2厘米,那么⊙O2的半径长等于________厘米.14. 如图,AB,CD是⊙O的弦,AB⊥CD,BE是⊙O的直径.若AC=3,则DE=________.15. 如图,在△ABC中,∠C=90度.以BC为直径作⊙O与斜边AB交于点D,且AD=3.2cm,BD=1.8cm,则AC=________cm.16. 如图,△ABC内接于⊙O,AB为⊙O的直径,∠CAB=60∘,弦AD平分∠CAB,若AD=6,则AC=________.17. 如图,AB是⊙O的一条弦,C是⊙O上一动点且∠ACB=45∘,E、F分别是AC、BC的中点,直线EF与⊙O交于点G、H.若⊙O的半径为2,则GE+FH的最大值为________.18. 如图,⊙O的半径为3,P是CB延长线上一点,PO=5,PA切⊙O于A点,则PA=________.三、解答题(本题共计 8 小题,共计66分,)19. (6分)如图,已知点A在⊙O上,点B在⊙O外,求作一个圆,使它经过点B,并且与⊙O相切于点A.(要求写出作法,不要求证明)20. (7分)如图,在等腰△ABC中,AD是底边BC上的高,AB=AC=5,BC=6,P是线段AD上一个动点,记AP长为x,当A在以P为圆心,PB为半径的圆的外部时,求x的取值范围.21. (8分)已知⊙O1与⊙O2交于A、B,AC、AD是两圆的直径.求证:C、B、D在同一条直线上.22.(9分) 如图,⊙O是△ABC的外接圆,AB是直径,∠CAB=30∘,BC=1,∠ACB的平分线交⊙O于点D,交AB于点E.(1)求AC,AD的长.(2)廷长AB至点P,连接PC,当BP等于多少时,PC与⊙O相切?为什么?23.(9分) 如图,⊙O的直径AB的长为2,点C在圆周上,∠CAB=30∘,点D是圆上一动点,DE // AB交CA的延长线于点E,连接CD,交AB于点F.(1)如图1,当∠ACD=45∘时,求证:DE是⊙O的切线;(2)如图2,当点F是CD的中点时,求△CDE的面积.24.(9分) 如图,AB是⊙O的直径,⊙O过AC的中点D,DE⊥BC,垂足为E.(1)由这些条件,你能推出哪些正确结论?(要求:不再标注其它字母,找结论的过程中所连辅助线不能出现在结论中,不写推理过程,写出4个结论即可);(2)若∠ABC为直角,其它条件不变,除上述结论外,你还能推出哪些新的正确结论?并画出图形.〔要求:写出6个结论即可,其它要求同(1)〕25.(9分) 如图,CD是⊙O的切线,点C在直径AB的延长线上.(1)求证:∠CAD=∠BDC;AD,AC=3,求CD的长.(2)若BD=2326.(9分) 如图1、图2、图3,在矩形ABCD中,E是BC边上的一点,以AE为边作平行四边形AEFG,使点D在AE的对边FG上,(1)如图1,试说明:平行四边形AEFG的面积与矩形ABCD的面积相等;(2)如图2,若平行四边形AEFG是矩形,EF与CD交于点P,试说明:A、E、P、D四点在同一个圆上;(3)如图3,若AB<BC,平行四边形AEFG是正方形,且D是FG的中点,EF交CD于点P,连接PA,判断以FG为直径的圆与直线PA的位置关系,并说明理由.答案1. A2. B3. D4. B5. B6. D7. D8. D9. ②10. 408011. 1012. 1或√7−1213. 5或114. 315. 416. 2√317. 4−√218. 419. 解:如图,①连接OA、AB,②作线段AB的垂直平分线交OA的延长线于一点,交点即为O′,③以O′为圆心,O′A或O′B的长度为半径作圆,④⊙O′即为所求.20. 解:如图,在等腰△ABC中,∵AD是底边BC上的高,AB=AC=5,BC=6,∴BD=DC=3,在Rt△ABD中,由勾股定理可得:AD=√AB2−BD2=4,∵AP长为x,∴PD=4−x,当AP=BP时,在Rt△BPD中,由勾股定理得:32+(4−x)2=x2,解得:x=25,8∵当A在以P为圆心,PB为半径的圆的外部时,AP>BP,∴x>25,8∵x≤4,<x≤4.∴25821. 证明:连接AB、BC、BD,如下图所示:.∵AC、AD是两圆的直径,B为两圆的交点,∴∠ABC,∠ABD均为直角,∴AB⊥BC,AB⊥BD,∴BC // BD;∵BC与BD交于B点,∴BC与BD共线,∴C、B、D在同一条直线上.22. 解:(1)如图1,连接BD,∵AB是直径,∴∠ACB=∠ADB=90∘,在Rt△ABC中,∵∠CAB=30∘,BC=1,∴AB=2,∴AC=√AB2−BC2=√22−12=√3,∵CD平分∠ACB,∴△ABD为等腰直角三角形,∴AD=BD=√2AB=√2;(2)如图2,连接OC,2∵∠CAB=30∘,∴∠COB=60∘,∴△OBC为等边三角形,当PC为⊙O的切线时,则∠OCP=90∘,∴∠BCP=∠BPC=30∘,∴PB=BC=1,即当PB=1时,PC与⊙O相切.23. (1)证明:如图1中,连接OD.∵∠C=45∘,∴∠AOD=2∠C=90∘,∵ED // AB,∴∠AOD+∠EDO=180∘,∴∠EDO=90∘,∴ED⊥OD,∴ED是⊙O切线.(2)解:如图2中,连接BC,∵CF=DF,∴AF⊥CD,∴AC=AD,∴∠ACD=∠ADC,∵AB // ED,∴ED⊥DC,∴∠EDC=90∘,在RT△ACB中,∵∠ACB=90∘,∠CAB=30∘,AB=2,∴BC=1,AC=√3,∴CF=12AC=√32,CD=2CF=√3,在RT△ECD中,∵∠EDC=90∘,CD=√3,∠E=∠CAB=30∘,∴EC=2CD=2√3,ED=√EC2−CD2=3,∴S△ECD=12⋅ED⋅CD=3√32.24. 解:(1)①DE是⊙O的切线,②AB=BC,③∠A=∠C,④DE2=BE⋅CE,⑤CD2=CE⋅CB,⑥∠C+∠CDE=90∘,⑦CE2+DE2=CD2;以上结论可任意选择.证明:连接OD、BD;∵D、O分别是AC、AB的中点,∴OD是△ABC的中位线,则OD // BC;∵DE⊥BC,∴OD⊥DE,即DE是⊙O的切线;①∵AB是⊙O的直径,∴∠ADB=90∘;∵D是AC的中点,∴BD垂直平分AC;∴AB=BC②,∠A=∠C③;在Rt△CDB中,DE⊥BC,由射影定理得:CD2=CE⋅CB⑤,DE2=BE⋅CE④;在Rt△CDE中,DE⊥CE,则∠C+∠CDE=90∘,由勾股定理得CD2=CE2+DE2⑦;(2)①CE=BE,②DE=BE,③DE=CE,④DE // AB,⑤CB是⊙O的切线,⑥DE=12AB,⑦∠A=∠CDE=45∘,⑧∠C=∠CDE=45∘,⑨CB2=CD⋅CA,⑩CDCA =CECB=DEAB,(11)AB2+BC2=AC2(12)CDDA =CEEB;证明:∵∠ABC=90∘,且AB是⊙O的直径,∴BC是⊙O的切线;⑤∵DE⊥BC,AB⊥BC,∴DE // AB;④∴CD CA =CECB=DEAB⑩,CDDA=CEEB;(12)∵D是AC的中点,∴DE是△ABC的中位线,得BE=CE①,DE=12AB⑥;在Rt△DBC中,E是斜边BC的中点,则DE=BE②,DE=CE③;由(1)易知△ABC是等腰直角三角形,则∠A=∠CDE=45∘⑦,∠C=∠CDE=45∘⑧;在Rt△CBA中,∠ABC=90∘,由勾股定理得AB2+BC2=AC2(11);由于BD⊥AC,由射影定理得CB2=CD⋅CA⑨.25. 证明:连接OD,如图所示.∵OB=OD,∴∠OBD=∠ODB.∵CD是⊙O的切线,OD是⊙O的半径,∴∠ODB+∠BDC=90∘.∵AB是⊙O的直径,∴∠ADB=90∘,∴∠OBD+∠CAD=90∘,∴∠CAD=∠BDC.∵∠C=∠C,∠CAD=∠CDB,∴△CDB∽△CAD,∴BD AD =CDAC.∵BD=23AD,∴BD AD =23,∴CD AC =23,又∵AC=3,∴CD=2.26. 解:(1)过D点作DP垂直AE于点P;S ABCD=AB×AD,S AEFG=AE×DP=ABcos∠BAE×(AD×cos∠ADP),∠BAE=∠ADP,所以S AEFG=AB×AD,所以,S AEFG=S ABCD.(2)因为平行四边形AEFG是矩形,四边形ABCD也是矩形;所以∠ADC=∠FEA=90∘,则∠ADC+∠FEA=180∘,所以A、E、P、D四点在同一个圆上.(3)相切.过D作DH⊥AP于H;∵∠2+∠3=90∘,∠1+∠2=90∘,∴∠3=∠1,∠2=∠4,∴△ADG∽△AEB,∵D是FG的中点,∴AG DF =GDPF=ADDP=2,在△ADG与△APD中,AGDF =GDPF=ADDP=2;∵DF=GD,∴AG GD =ADDP=2,∵∠ADP=∠AGD=90∘,∴△ADG∽△AEB∽△APD,∴∠1=∠DAP,即AD是∠GAH的平分线,∴DG=DH=DF,∵DP=DP,∠DHP=∠DFP=90∘,∴以FG为直径的圆与直线PA相切.精品 Word 可修改欢迎下载。

精品试卷沪科版九年级数学下册第24章圆单元测试试题(含答案解析)

精品试卷沪科版九年级数学下册第24章圆单元测试试题(含答案解析)

沪科版九年级数学下册第24章圆单元测试考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC 中,90ACB ∠=︒,30A ∠=︒,将ABC 绕点C 逆时针旋转90°得到DEC ,则AED ∠的度数为( )A .105°B .120°C .135°D .150°2、下列图案中既是轴对称图形,又是中心对称图形的是( )A .B .C .D .3、如图,O 是△ABC 的外接圆,已知25ABO ∠=︒,则ACB ∠的大小为( )A .55°B .60°C .65°D .75°4、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是( )A .直径所对圆周角为90︒B .如果点A 在圆上,那么点A 到圆心的距离等于半径C .直径是最长的弦D .垂直于弦的直径平分这条弦5、如图,AB 为O 的直径,4AB =,CD =BC 的长是劣弧BD 长的2倍,则AC 的长为( )A .B .C .3D .6、下列四个图案中,是中心对称图形但不是轴对称图形的是( )A.B.C.D.7、下列图形中,是中心对称图形的是()A.B.C.D.BC=,将ABC绕点A顺时针旋转60°得到ADE,此时点B的对8、如图,在ABC中,2AB=,4应点D恰好落在BC边上,则CD的长为()A.1 B.2 C.3 D.4'',使点C的9、如图,ABC中,∠ACB=90°,∠ABC=40°.将ABC绕点B逆时针旋转得到A BC对应点C'恰好落在边AB上,则BA A∠'的度数是()A.50°B.70°C.110°D.120°10、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD 与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且3AB ,则光盘的直径是()A.6 B.C.3 D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知正多边形的半径与边长相等,那么正多边形的边数是______.2、如图,在⊙O中,弦AB⊥OC于E点,C在圆上,AB=8,CE=2,则⊙O的半径AO=___________.3、如图,在平面直角坐标系xOy 中,半径为1的半圆O 上有一动点B ,点()3,0A ,ABC 为等腰直角三角形,A 为直角顶点,且C 在第一象限,则线段OC 长度的最大值为______.4、如图,正三角形ABC 的边长为a ,D 、E 、F 分别为BC ,CA ,AB 的中点,以A ,B ,C 三点为圆心,2a 长为半径作圆,图中阴影部分面积为______.5、如图,正方形ABCD 是边长为2,点E 、F 是AD 边上的两个动点,且AE=DF ,连接BE 、CF ,BE 与对角线AC 交于点G ,连接DG 交CF 于点H ,连接BH ,则BH 的最小值为_______.三、解答题(5小题,每小题10分,共计50分)1、如图,在△ABC 是⊙O 的内接三角形,∠B =45°,连接OC ,过点A 作AD ∥OC ,交BC 的延长线于D .(1)求证:AD 是⊙O 的切线;(2)若⊙O 的半径为2,∠OCB =75°,求△ABC 边AB 的长.2、如图,四边形ABCD 内接于⊙O ,AC 是直径,点C 是劣弧BD 的中点.(1)求证:AB AD =.(2)若60ACD ∠=︒,AD =,求BD .3、在平面直角坐标系xOy 中,⊙O 的半径为1.对于线段AB ,给出如下定义:若线段AB 沿着某条直线l 对称可以得到⊙O 的弦A ′B ′,则称线段AB 是⊙O 的以直线l 为对称轴的“反射线段”,直线l 称为“反射轴”.(1)如图,线段CD ,EF ,GH 中是⊙O 的以直线l 为对称轴的“反射线段”有 ;(2)已知A 点坐标为(0,2),B 点坐标为(1,1),①若线段AB 是⊙O 的以直线l 为对称轴的“反射线段”,求反射轴l 与y 轴的交点M 的坐标. ②若将“反射线段”AB 沿直线y =x 的方向向上平移一段距离S ,其反射轴l 与y 轴的交点的纵坐标y M 的取值范围为12≤y M 136≤,求S . (3)已知点M ,N 是在以原点为圆心,半径为2的圆上的两个动点,且满足MN =1,若MN 是⊙O 的以直线l 为对称轴的“反射线段”,当M 点在圆上运动一周时,求反射轴l 未经过的区域的面积.(4)已知点M ,N 是在以(2,0MN =MN 是⊙O 的以直线l 为对称轴的“反射线段”,当M 点在圆上运动一周时,请直接写出反射轴l 与y 轴交点的纵坐标的取值范围.4、如图,已知在ABC 中,AB AC =,D 、E 是BC 边上的点,将ABD △绕点A 旋转,得到ACD '△,连接D E '.(1)当120BAC ∠=︒时,60DAE ∠=︒时,求证:DE D E '=;(2)当DE D E '=时,DAE ∠与BAC ∠有怎样的数量关系?请写出,并说明理由.(3)在(2)的结论下,当90BAC ∠=︒,BD 与DE 满足怎样的数量关系时,D EC '△是等腰直角三角形?(直接写出结论,不必证明)5、在平面直角坐标系xOy 中,对于点P ,O ,Q 给出如下定义:若OQ <PO <PQ 且PO ≤2,我们称点P 是线段OQ 的“潜力点”已知点O (0,0),Q (1,0)(1)在P 1(0,-1),P 2(12,32),P 3(-1,1)中是线段OQ 的“潜力点”是_____________; (2)若点P 在直线y =x 上,且为线段OQ 的“潜力点”,求点P 横坐标的取值范围;(3)直线y =2x +b 与x 轴交于点M ,与y 轴交于点N ,当线段MN 上存在线段OQ 的“潜力点”时,直接写出b 的取值范围-参考答案-一、单选题1、B【分析】由题意易得30,90A D ACB DCE ∠=∠=︒∠=∠=︒,然后根据三角形外角的性质可求解.【详解】解:由旋转的性质可得:30,90A D ACB DCE ∠=∠=︒∠=∠=︒,∴120AED D DCE ∠=∠+∠=︒;故选B .【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.2、B【分析】根据中心对称图形与轴对称图形的概念逐项分析【详解】解:A. 是轴对称图形,不是中心对称图形,故该选项不正确,不符合题意;B. 既是轴对称图形,又是中心对称图形,故该选项正确,符合题意;C. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;D. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;故选B【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中心对称图形与轴对称图形的概念是解题的关键.3、C【分析】由OA=OB ,25ABO ∠=︒,求出∠AOB =130°,根据圆周角定理求出ACB ∠的度数.【详解】解:∵OA=OB ,25ABO ∠=︒,∴∠BAO =25ABO ∠=︒.∴∠AOB =130°.∴ACB ∠=12∠AOB =65°.故选:C .【点睛】此题考查了同圆中半径相等的性质,圆周角定理:同弧所对的圆周角等于圆心角的一半.4、A【分析】定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.【详解】A 选项,直径所在的圆心角是180°,直接可以由圆周角定理推导出:直径所对的圆周角为90︒,A 选项符合要求;B 、C 选项,根据圆的定义可以得到;D 选项,是垂径定理;故选:A【点睛】本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.5、D【分析】连接,,OC OD BC ,根据AB 求得半径,OC OD ,进而根据CD 的长,勾股定理的逆定理证明90COD ∠=︒,根据弧长关系可得60COB ∠=︒,即可证明COB △是等边三角形,求得2BC =,进而由勾股定理即可求得AC【详解】如图,连接,,OC OD BC ,4AB =2OC OD ∴==228OC OD +=,28CD =∴222OC OD CD +=OCD ∴是直角三角形,且90COD ∠=︒2CB DB ∴=23BC CD ∴= 2603BOC COD ∴∠=⨯∠=︒∴是等边三角形OBC∴==2BC OCAB是直径,4AB=90∴∠=︒ACB∴=AC故选D【点睛】本题考查了弧与圆心角的关系,直径所对的圆周角是90度,勾股定理,等边三角形的判定,求得BC 的长是解题的关键.6、D【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、不是轴对称图形,不是中心对称图形,故此选项不符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是轴对称图形,是中心对称图形,故此选项不符合题意;D、不是轴对称图形,是中心对称图形,故此选项符合题意;故选:D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.7、C根据中心对称图形的概念:一个平面图形绕某一点旋转180,如果旋转后的图形能够和原图形重合,那么这个图形叫做中心对称图形,这个点就是对称中心. 根据中心对称图形的概念对各选项进行一一分析判定即可求解.【详解】A、不是中心对称图形,不符合题意;B、不是中心对称图形,不符合题意;C、是中心对称图形,符合题意;D、不是中心对称图形,不符合题意.故选:C.【点睛】本题考查了中心对称图形,掌握好中心对称图形,中心对称图形是要寻找对称中心,旋转180度后能够与原来的图形重合.8、B【分析】△为等边三角形,则BD=2,故CD=BC-BD=2.由题意以及旋转的性质可得ABD【详解】由题意以及旋转的性质知AD=AB,∠BAD=60°∴∠ADB=∠ABD∵∠ADB+∠ABD+∠BAD=180°∴∠ADB=∠ABD=60°△为等边三角形,即AB= AD =BD=2故ABD则CD=BC-BD=4-2=2【点睛】本题考查了等边三角形的判定及性质,等边三角形的三边都相等,三个内角都相等,并且每一个内角都等于60︒,等边三角形判定的方法有:三边相等的三角形是等边三角形(定义);三个内角都相等的三角形是等边三角形;有一个内角是60度的等腰三角形是等边三角形;两个内角为60度的三角形是等边三角形.9、B【分析】根据旋转可得40A BA ABC ∠'=∠=︒,A B AB '=,得70BAA ∠'=︒.【详解】解:90ACB ∠=︒,40ABC ∠=︒,90904050CAB ABC ∴∠=︒-∠=︒-︒=︒,将ABC ∆绕点B 逆时针旋转得到△A BC '',使点C 的对应点C '恰好落在边AB 上,40A BA ABC ∴∠'=∠=︒,A B AB '=,1(18040)702BAA BA A ∴∠'=∠'=⨯︒-︒=︒. 故选:B .【点睛】本题考查了旋转的性质,等腰三角形的性质,三角形内角和定理,解决本题的关键是掌握旋转的性质.10、D【分析】如图所示,设圆的圆心为O ,连接OC ,OB ,由切线的性质可知∠OCA =∠OBA =90°,OC =OB ,即可证明Rt △OCA ≌Rt △OBA 得到∠OAC =∠OAB ,则()1==180=602OAC OAB DAC ︒-︒∠∠∠,∠AOB =30°,推出OA=2AB =6,利用勾股定理求出OB =O 的直径为【详解】解:如图所示,设圆的圆心为O ,连接OC ,OB ,∵AC ,AB 都是圆O 的切线,∴∠OCA =∠OBA =90°,OC =OB ,又∵OA =OA ,∴Rt △OCA ≌Rt △OBA (HL ),∴∠OAC =∠OAB ,∵∠DAC =60°, ∴()1==180=602OAC OAB DAC ︒-︒∠∠∠, ∴∠AOB =30°,∴OA =2AB =6,∴OB =∴圆O 的直径为故选D .【点睛】本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.二、填空题1、六【分析】设这个正多边形的边数为n,根据题意可知OA=OB=AB,则△OAB是等边三角形,得到∠AOB=60°,则︒⋅=︒,由此即可得到答案.60360n【详解】解:设这个正多边形的边数为n,∵正多边形的半径与边长相等,∴OA=OB=AB,∴△OAB是等边三角形,∴∠AOB=60°,∴60360︒⋅=︒,nn=,∴6∴正多边形的边数是六,故答案为:六.【点睛】本题主要考查了正多边形和圆,等边三角形的性质与判定,熟知相关知识是解题的关键.2、5【分析】设⊙O的半径为r,则OA=r,OD=r-2,先由垂径定理得到AD=BD=12AB=4,再由勾股定理得到42+(r-2)2=r2,然后解方程即可.【详解】解:设⊙O的半径为r,则OC=OA=r,OE=OC-CE=r-2,∵OC⊥AB,AB=8,∴AE=BE=12AB=4,在Rt△OAE中,由勾股定理得:42+(r-2)2=r2,解得:r=5,即⊙O的半径长为5,故答案为:5.【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.3、1+【分析】过点C作CD⊥x轴于D,过B作BE⊥x轴于E,连结OB,设OD=x,根据点A(3,0)可求AD=x-3,根据ABC为等腰直角三角形,得出AB=AC,∠BAC=90°,再证△BAE≌△ACD(AAS),得出BE=AD=x-3,EA=DC,在Rt△EBO中,根据勾股定理OE==得出CD=AE3,根据勾股定理CO OD=CD时OC最大,OC=此时3x=解方程即可.【详解】解:过点C 作CD ⊥x 轴于D ,过B 作BE ⊥x 轴于E ,连结OB ,设OD =x ,∵点A (3,0)∴AD =x -3,∵ABC 为等腰直角三角形,∴AB =AC ,∠BAC =90°,∴∠BAE +∠CAD =180°-∠BAC =180°-90°=90°,∵CD ⊥x 轴, BE ⊥x 轴,∴∠BEA =∠ADC =90°,∴∠ACD +∠CAD =90°,∴∠ACD =∠BAE ,在△BAE 和△ACD 中,BEA ADC BAE ACD BA AC ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△BAE ≌△ACD (AAS ),∴BE =AD =x -3,EA =DC ,在Rt△EBO 中,OB =1,BE = x -3,根据勾股定理OE == ∴EA =OE +OA3, ∴CD =AE 3,∴CO当OD =CD 时OC 最大,OC ,此时3x =, ∴()()22313x x -=--,∴()2132x -=,∴3x -=∴132x =+,232x =-(舍去),∴线段OC 312⎛=+=+ ⎝⎭故答案为:1+【点睛】本题考查等腰直角三角形性质,三角形全等判定与性质,勾股定理,掌握等腰直角三角形性质,三角形全等判定与性质,勾股定理是解题关键.4、2π8a ⎫-⎪⎪⎝⎭【分析】 阴影部分的面积等于等边三角形的面积减去三个扇形面积,而这三个扇形拼起来正好是一个半径为2a 半圆的面积,即阴影部分面积=等边三角形面积−半径为2a 半圆的面积,因此求出半圆面积,连接AD ,则可求得AD 的长,从而可求得等边三角形的面积,即可求得阴影部分的面积.【详解】连接AD ,如图所示则AD ⊥BC∵D 点是BC 的中点 ∴1122BD BC a == 由勾股定理得22221322AD AB BD a a a ∴211332224ABC S BC AD a a a ∵S 半圆=22111228a a ∴S 阴影=S △ABC −S 半圆222334848a a a故答案为:2348a【点睛】本题是求组合图形的面积,扇形面积及三角形面积的计算.关键是把不规则图形面积通过割补转化为规则图形的面积计算.51##【分析】延长AG 交CD 于M ,如图1,可证△ADG ≌△DGC 可得∠GCD =∠DAM ,再证△ADM ≌△DFC 可得DF =DM =AE ,可证△ABE ≌△ADM ,可得H 是以AB 为直径的圆上一点,取AB 中点O ,连接OD ,OH ,根据三角形的三边关系可得不等式,可解得DH 长度的最小值.【详解】解:延长AG 交CD 于M ,如图1,∵ABCD 是正方形,∴AD =CD =AB ,∠BAD =∠ADC =90°,∠ADB =∠BDC ,∵AD =CD ,∠ADB =∠BDC ,DG =DG ,∴△ADG ≌△DGC ,∴∠DAM =∠DCF 且AD =CD ,∠ADC =∠ADC ,∴△ADM ≌△CDF ,∴FD=DM且AE=DF,∴AE=DM且AB=AD,∠ADM=∠BAD=90°,∴△ABE≌△DAM,∴∠DAM=∠ABE,∵∠DAM+∠BAM=90°,∴∠BAM+∠ABE=90°,即∠AHB=90°,∴点H是以AB为直径的圆上一点.如图2,取AB中点O,连接OD,OH,∵AB=AD=2,O是AB中点,∴AO=1=OH,在Rt△AOD中,OD∵DH≥OD-OH,∴DH,∴DH,.【点睛】本题考查正方形的性质,全等三角形的判定和性质,勾股定理,关键是证点H是以AB为直径的圆上一点.三、解答题1、(1)见解析;(2)【分析】(1)如图所示,连接OA,由圆周角定理可得∠COA=90°,再由平行线的性质得到∠OAD+∠COA=180°,则∠OAD=90°,由此即可证明;(2)连接OB,过点O作OE⊥AB,垂足为E,先由等腰三角形的性质与三角形内角和定理求出∠COB =30°,则∠AOB=120°,可以得到∠OAB=∠OBA=30°,由勾股定理可得,求出AE=AB=【详解】解:(1)如图所示,连接OA,∵∠CBA=45°,∴∠COA=90°,∵AD∥OC,∴∠OAD+∠COA=180°,∴∠OAD=90°,又∵点A在圆O上,∴AD是⊙O的切线;(2)连接OB,过点O作OE⊥AB,垂足为E,∵∠OCB=75°,OB=OC,∴∠OCB=∠OBC=75°,∴∠COB=180°-∠OCB-∠OBC=30°,由(1)证可得∠AOC=90°,∴∠AOB=120°,∵OA=OB,∴∠OAB=∠OBA=30°,又∵OE⊥AB,∴AE=BE,在Rt△AOE中,AO=2,∠OAE=30°,AO=1,∴OE=12由勾股定理可得,AE==∴AB=【点睛】本题主要考查了圆周角定理,切线的判定,等腰三角形的性质与判定,含30度角的直角三角形的性质,三角形内角和定理,勾股定理,熟知相关知识是解题的关键.2、(1)见详解;(2)BD =【分析】(1)由题意及垂径定理可知AC 垂直平分BD ,进而问题可求解;(2)由题意易得60ABD ACD ∠=∠=︒,然后由(1)可知△ABD 是等边三角形,进而问题可求解.【详解】(1)证明:∵AC 是直径,点C 是劣弧BD 的中点,∴AC 垂直平分BD ,∴AB AD =;(2)解:∵AD AD =,60ACD ∠=︒,∴60ABD ACD ∠=∠=︒,∵AB AD =,∴△ABD 是等边三角形,∵AD =∴BD AD =【点睛】本题主要考查垂径定理、等边三角形的性质与判定及圆周角定理,熟练掌握垂径定理、等边三角形的性质与判定及圆周角定理是解题的关键.3、(1)EF 、CD ;(2)①1(0,)2M ;②02S ≤≤;(3)1916π⎛ ⎝⎭;(4)1y >或1y <- 【分析】(1)O 的半径为1,则O 的最长的弦长为2,根据两点的距离可得2,EF CD EF ===而即可求得答案;(2)①根据定义作出图形,根据轴对称的方法求得对称轴,反射线段经过对应圆心的中点,即可求得M 的坐标;②由①可得当0S =时,y M 1=2,设当S 取得最大值时,过点1O 作1O P y ⊥轴,根据题意,122,,O A B 分别为沿直线y =x 的方向向上平移一段距离S 后,,O A B '的对应点,则1O P PO '=S =,根据余弦求得11cos cos QO PO MOQ O OP OM OO ∠=∠==进而代入数值列出方程,解方程即可求得S 的最大值,进而求得S 的范围;(3)根据圆的旋转对称性,找到MN 所在的2O 的圆心,如图,以MN 为边在O 内作等边三角形2O MN ,连接2OO ,取2OO 的中点R ,过R 作2OO 的垂线l ,则l 即为反射轴,反射轴l 未经过的区域是以O 为圆心OR 为半径的圆,反射轴l 是该圆的切线,求得半径为1算即可; (4)根据(2)的方法找到MN 所在的圆心3O ,当M 点在圆上运动一周时,如图,取3OO 的中点1A ,OT 的中点S ,即3OO 的中点1A 在以S l 与y 轴交点的纵坐标y 的取值范围【详解】(1)O 的半径为1,则O 的最长的弦长为2根据两点的距离可得2,EF CD EF ===2,2,2EF CD EF ∴<<>故符合题意的“反射线段”有EF 、CD ;故答案为:EF 、CD(2)①如图,过点B 作BO y '⊥轴于点O ',连接11A BA 点坐标为(0,2),B 点坐标为(1,1),∴AB ==45BAO '∠=︒,(0,1)O 'O 的半径为1,1190AOB ∠=︒11A B ∴1145B A O =︒线段AB 是⊙O 的以直线l 为对称轴的“反射线段”,()00O ,,(0,1)O ' 1(0,)2M ∴ ②由①可得当0S =时,y M 1=2如图,设当S 取得最大值时,过点1O 作1O P y ⊥轴,根据题意,122,,O A B 分别为沿直线y =x 的方向向上平移一段距离S 后,,O A B '的对应点,则1O P PO '=S =,(0,1)O '1(,1)O S S ∴+()222211221OO S S S S ∴=++=++ 过1OO 中点Q ,作直线l 1OO ⊥交y 轴于点M ,则l 即为反射轴1(,)22S S Q +∴12≤y M 136≤, 136OM ∴= 11cos cos QO PO MOQ O OP OM OO ∠=∠== 即11112136OO S OO += 即()21113126OO S =+⨯ ∴()2113126S S S ++=+ 解得1252,6S S ==-(舍)02S ∴≤≤(3)1MN =∴1M N ''= O 的半径为1,则M N O ''是等边三角形,根据圆的旋转对称性,找到MN 所在的2O 的圆心,如图,以MN 为边在O 内作等边三角形2O MN ,连接2OO ,取2OO 的中点R ,过R 作2OO 的垂线l ,则l 即为反射轴, ∴反射轴l 未经过的区域是以O 为圆心OR 为半径的圆,反射轴l 是该圆的切线222OO ∴==2112OR OO ∴==∴当M 点在圆上运动一周时,求反射轴l 未经过的区域的面积为2191=16ππ⎛⎛ ⎝⎭⎝⎭. (4)如图,根据(2)的方法找到MN 所在的圆心3O ,设(2,0)T则TM =2MN =3O MN 是等腰直角三角形3O L ML ∴,TL ∴==3TO ∴=当M 点在圆上运动一周时,如图,取3OO 的中点1A ,OT 的中点S , 1SA ∴是3OO T 的中位线1312SA O T ∴==,13SA TO ∥即3OO 的中点1A 在以S∴若MN 是⊙O 的以直线l 为对称轴的“反射线段”,则l 为S 的切线设S 与y 轴交于点,C D 112OS OT ==,1SC SA =1OC ∴=同理可得1OD =∴反射轴l 与y 轴交点的纵坐标y 的取值范围为1y >或1y <-【点睛】本题考查了中心对称与轴对称,圆的相关知识,切线的性质,三角形中位线定理,余弦的定义,掌握轴对称与中心对称并根据题意作出图形是解题的关键.4、(1)见解析;(2)∠DAE =12∠BAC ,见解析;(3)DE ,见解析【分析】(1)根据旋转的性质可得AD =AD ′,∠CAD ′=∠BAD ,然后求出∠D ′AE =60°,从而得到∠DAE =∠D ′AE ,再利用“边角边”证明△ADE 和△AD ′E 全等,根据全等三角形对应边相等证明即可;(2)根据旋转的性质可得AD =AD ′,再利用“边边边”证明△ADE 和△AD ′E 全等,然后根据全等三角形对应角相等求出∠DAE =∠D ′AE ,然后求出∠BAD +∠CAE =∠DAE ,从而得解;(3)求出∠D ′CE倍可得D ′E′,再根据旋转的性质解答即可.【详解】(1)证明:∵△ABD 绕点A 旋转得到△ACD ′,∴AD =AD ′,∠CAD ′=∠BAD ,∵∠BAC =120°,∠DAE =60°,∴∠D ′AE =∠CAD ′+∠CAE=∠BAD +∠CAE=∠BAC −∠DAE=120°−60°=60°,∴∠DAE =∠D ′AE ,在△ADE 和△AD ′E 中,AD AD DAE D AE AE AE '⎧⎪∠∠'⎨⎪⎩=== , ∴△ADE ≌△AD ′E (SAS ),∴DE =D ′E ;(2)解:∠DAE =12 ∠BAC .理由如下:在△ADE 和△AD ′E 中,AD AD AE AE DE D E '⎧⎪⎨⎪'⎩=== , ∴△ADE ≌△AD ′E (SSS ),∴∠DAE =∠D ′AE ,∴∠BAD +∠CAE =∠CAD ′+∠CAE =∠D ′AE =∠DAE ,∴∠DAE =12∠BAC ;(3)解:∵∠BAC =90°,AB =AC ,∴∠B =∠ACB =∠ACD ′=45°,∴∠D ′CE =45°+45°=90°,∵△D ′EC 是等腰直角三角形,∴D ′E′,由(2)DE =D ′E ,∵△ABD 绕点A 旋转得到△ACD ′,∴BD =C ′D ,∴DEBD .【点睛】本题考查了几何变换的综合题,旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小找出三角形全等的条件是解题的关键.5、(1)3P ;(2)p x ≤<(3)1b <≤或1 1.b -<<- 【分析】(1)分别计算出OQ 、PO 和PQ 的长度,比较即可得出答案;(2)先判断点P 在以O 为圆心,1为半径的圆外且点P 在线段OQ 垂直平分线的左侧,结合PO ≤2,点P 在以O 为圆心,2为半径的圆上或圆内,可得点P 在如图所示的线段AB 上(不包含点B ),过B 作BC y ⊥轴,过A 作AD y ⊥轴,垂足分别为,,C D 再根据图形的性质求解,,BC AD 从而可得答案;(3)由(2)得:点P 在以O 为圆心,1为半径的圆外且点P 在以O 为圆心,2为半径的圆上或圆内,而PO <PQ ,点P 在线段OQ 垂直平分线的左侧,再分两种情况讨论:当0b >时,当0b ≤时,分别画出两种情况下的临界直线2,y x b =+ 再根据临界直线经过的特殊点求解b 的值,再确定范围即可.【详解】解:(1) O (0,0),Q (1,0),1,OQP 1(0,-1),P 2(12,32),P 3(-1,1) 22111,112,OP PQ 不满足OQ <PO <PQ 且PO ≤2, 所以1P 不是线段OQ 的“潜力点”, 同理:22222213101310,10,222222OP P Q 所以不满足OQ <PO <PQ 且PO ≤2,所以2P 不是线段OQ 的“潜力点”, 同理:222233112,11105,OP PQ125,22,所以满足:OQ <PO <PQ 且PO ≤2,所以3P 是线段OQ 的“潜力点”,故答案为:P 3(2)∵点P 为线段OQ 的“潜力点”,∴OQ <PO <PQ 且PO ≤2,∵OQ <PO ,∴点P 在以O 为圆心,1为半径的圆外∵PO <PQ ,∴点P 在线段OQ 垂直平分线的左侧,而OQ 的垂直平分线为:1,2x = ∵PO ≤2,∴点P 在以O 为圆心,2为半径的圆上或圆内又∵点P 在直线y =x 上,∴点P 在如图所示的线段AB 上(不包含点B )过B 作BC y ⊥轴,过A 作AD y ⊥轴,垂足分别为,,C D由题意可知△BOC 和 △AOD 是等腰三角形,1,2,OB OA ∴2sin 45,sin 452,2BC OB AD OA∴x p <(3)由(2)得:点P 在以O 为圆心,1为半径的圆外且点P 在以O 为圆心,2为半径的圆上或圆内,而PO <PQ ,点P 在线段OQ 垂直平分线的左侧当0b >时,2y x b =+过10,1N 时,1,b ∴= 即函数解析式为:21,y x =+ 此时11,0,2M 则111tan ,2M N O当2y x b =+与半径为2的圆相切于S 时,则90,NSO由11,MN M N ∥111tan tan ,2SO SNO M N O SN 而2,SO 224,2425,SN ON125,b当0b ≤时,如图,同理可得:点P 在以O 为圆心,1为半径的圆外且点P 在以O 为圆心,2为半径的圆上或圆内,而PO <PQ ,点P 在线段OQ 垂直平分线的左侧,同理:当2y x b =+过10,1,N 则1,b =- 直线为21,y x11,0,2M 1M 在直线12x =上, 此时221115,2M K OK OM 当2y x b =+过115,22K 时, 则151+,2b 151,2b所以此时:1 1.b -<<-综上:b 的范围为:1<b ≤1-<b <-1 【点睛】本题考查的是新定义情境下的知识运用,圆的基本性质,圆的切线的性质,一次函数的综合应用,锐角三角函数的应用,勾股定理的应用,数形结合是解本题的关键.。

精品试卷沪科版九年级数学下册第24章圆章节练习试卷(精选含答案)

精品试卷沪科版九年级数学下册第24章圆章节练习试卷(精选含答案)

沪科版九年级数学下册第24章圆章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)AB=cm,则水的最大1、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽8深度为()A.1cm B.2cm C.3cm D.4cm⊥于点E,2、如图,AB是O的直径,O的弦DC的延长线与AB的延长线相交于点P,OD ACOA=,则阴影部分的面积为()∠=︒,2CAB15A .53πB .56πC .512πD .524π 3、如图,PA 是O 的切线,切点为A ,PO 的延长线交O 于点B ,若40P ∠=︒,则B 的度数为( ).A .20°B .25°C .30°D .40°4、计算半径为1,圆心角为60︒的扇形面积为( )A .3πB .6πC .2πD .π5、如图,A ,B ,C ,D 都是O 上的点,OA BC ⊥,垂足为E ,若26OBC ∠=︒,则ADC ∠的度数为( )A .26︒B .32︒C .52︒D .64︒6、如图,点A 、B 、C 在O 上,50∠=°ACB ,则OAB ∠的度数是( )A .100°B .50°C .40°D .25°7、下列判断正确的个数有()①直径是圆中最大的弦;②长度相等的两条弧一定是等弧;③半径相等的两个圆是等圆;④弧分优弧和劣弧;⑤同一条弦所对的两条弧一定是等弧.A.1个B.2个C.3个D.4个8、如图所示四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.9、下列图案中既是轴对称图形,又是中心对称图形的是()A.B.C.D.10、如图,边长为5的等边三角形ABC中,M是高CH所在直线上的一个动点,连接MB,将线段BM 绕点B逆时针旋转60 得到BN,连接HN.则在点M运动过程中,线段HN长度的最小值是()A .54 B .1 C .2 D .52第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在⊙O 中,A ,B ,C 是⊙O 上三点,如果∠AOB =70º,那么∠C 的度数为_______.2、平面直角坐标系中,()0,4C ,()2,0K ,A 为x 轴上一动点,连接AC ,将AC 绕A 点顺时针旋转90°得到AB ,当BK 取最小值时,点B 的坐标为_________.3、如图,以面积为20cm 2的Rt △ABC 的斜边AB 为直径作⊙O ,∠ACB 的平分线交⊙O 于点D ,若CD AB =AC +BC =_____.4、如图,在ABC 中,∠C =90°,AB =10,在同一平面内,点O 到点A ,B ,C 的距离均等于a (a 为常数).那么常数a 的值等于________.5、如图,P 是正方形ABCD 内一点,将ABP △绕点B 顺时针方向旋转,能与1CBP 重合,若5PB =,则1PP =______.三、解答题(5小题,每小题10分,共计50分)1、如图,在等边三角形ABC 中,点P 为△ABC 内一点,连接AP ,BP ,CP ,将线段AP 绕点A 顺时针旋转60°得到'AP ,连接PP BP '', .(1)用等式表示BP ' 与CP 的数量关系,并证明;(2)当∠BPC =120°时,①直接写出P BP '∠ 的度数为 ;②若M 为BC 的中点,连接PM ,请用等式表示PM 与AP 的数量关系,并证明.2、如图,正方形ABCD的顶点A、B在x轴的负半轴上,顶点CD在第二象限.将正方形ABCD绕点A 按顺时针方向旋转,B、C、D的对应点分别为B1、C1、D1,且D1、C1、O三点在一条直线上.记点D1的坐标是(m,n),C1的坐标是(p,q).(1)设∠DAD1=30°,n=2,求证:OD1的长度;(2)若∠DAD1<90°,m,n满足m+n=﹣4,p2+q2=25,求p+q的值.3、如图 1,O为直线DE上一点,过点O在直线DE上方作射线OC,∠EOC=130°.将直角三角板AOB(∠OAB=30°)的直角顶点放在点O处,一条边OA在射线OD上,另一边OB在直线DE上方,将直角三角板绕点O按每秒5°的速度逆时针旋转一周,设旋转时间为t秒.(1)如图2,当t=4 时,∠AOC= ,∠BOE= ,∠BOE﹣∠AOC= ;(2)当三角板旋转至边AB与射线OE相交时(如图 3),试猜想∠AOC与∠BOE的数量关系,并说明理由;(3)在旋转过程中,是否存在某个时刻,使得射线OA、OC、OD中的某一条射线是另两条射线所成夹角的角平分线?若存在,请直接写出t的取值,若不存在,请说明理由.4、如图,已知AB为O的直径,PD切O于点C,交AB的延长线于点D,且2∠=∠.D CAD(1)求D∠的大小;(2)若2CD=,求AC的长.5、如图,在Rt△ABC中,∠C=90°,将△ABC绕着点B逆时针旋转得到△FBE,点C,A的对应点分别为E,F.点E落在BA上,连接AF.(1)若∠BAC=40°,求∠BAF的度数;(2)若AC=8,BC=6,求AF的长.-参考答案-一、单选题1、B【分析】连接OB ,过点O 作OC ⊥AB 于点D ,交⊙O 于点C ,先由垂径定理求出BD 的长,再根据勾股定理求出OD 的长,进而得出CD 的长即可.【详解】解:连接OB ,过点O 作OC ⊥AB 于点D ,交⊙O 于点C ,如图所示:∵AB =8cm ,∴BD =12AB =4(cm ),由题意得:OB =OC =1102⨯=5cm ,在Rt △OBD 中,OD 3=(cm ),∴CD =OC -OD =5-3=2(cm ),即水的最大深度为2cm ,故选:B .【点睛】本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键.2、B【分析】由垂径定理可知,AE =CE ,则阴影部分的面积等于扇形AOD 的面积,求出75AOD ∠=︒,然后利用扇形面积公式,即可求出答案.【详解】解:根据题意,如图:∵AB 是O 的直径,OD 是半径,OD AC ⊥,∴AE =CE ,∴阴影CED 的面积等于AED 的面积,∴ΔCED AOE AOD S S S +=扇,∵90AEO ∠=︒,15CAB ∠=︒,∴901575AOE ∠=︒-︒=︒, ∴275253606AOD S ππ︒⨯⨯==︒扇; 故选:B【点睛】本题考查了求扇形的面积,垂径定理,解题的关键是掌握所学的知识,正确利用扇形的面积公式进行计算.3、B【分析】连接OA ,如图,根据切线的性质得∠PAO =90°,再利用互余计算出∠AOP =50°,然后根据等腰三角形的性质和三角形外角性质计算∠B 的度数.【详解】解:连接OA ,如图,∵PA 是⊙O 的切线,∴OA ⊥AP ,∴∠PAO =90°,∵∠P =40°,∴∠AOP =50°,∵OA =OB ,∴∠B =∠OAB ,∵∠AOP =∠B +∠OAB ,∴∠B =12∠AOP=12×50°=25°.故选:B .【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.4、B【分析】直接根据扇形的面积公式计算即可.【详解】2260113603606n r S πππ︒⨯⨯===︒︒扇形故选:B .【点睛】 本题考查了扇形的面积的计算,熟记扇形的面积公式2360n r S π=︒扇形是解题的关键. 5、B【分析】连接OC .根据OA BC ⊥确定AC AB =,90OEB ∠=︒,进而计算出AOB ∠,根据圆心角的性质求出AOC ∠,最后根据圆周角的性质即可求出ADC ∠. 【详解】解:如下图所示,连接OC .∵OA BC ⊥,∴AC AB =,90OEB ∠=︒.∴AOC AOB ∠=∠.∵26OBC ∠=︒.∴64AOB ∠=︒.∴64AOC ∠=︒∵ADC ∠和AOC ∠分别是AC 所对的圆周角和圆心角,∴3122A ADC OC ∠=︒∠=.故选:B .【点睛】本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键.6、C【分析】先根据圆周角定理求出∠AOB 的度数,再由等腰三角形的性质即可得出结论.【详解】∵∠ACB =50°,∴∠AOB =100°,∵OA =OB ,∴∠OAB =∠OBA = 40°,故选:C .【点睛】本题考查的是圆周角定理,即在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.7、B【详解】①直径是圆中最大的弦;故①正确,②同圆或等圆中长度相等的两条弧一定是等弧;故②不正确③半径相等的两个圆是等圆;故③正确④弧分优弧、劣弧和半圆,故④不正确⑤同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则⑤不正确.综上所述,正确的有①③故选B【点睛】本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键.8、D【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;C.不是轴对称图形,是中心对称图形,故本选项不符合题意;D.既是轴对称图形,又是中心对称图形,故本选项符合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.9、B【分析】根据中心对称图形与轴对称图形的概念逐项分析【详解】解:A. 是轴对称图形,不是中心对称图形,故该选项不正确,不符合题意;B. 既是轴对称图形,又是中心对称图形,故该选项正确,符合题意;C. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;D. 不是轴对称图形,是中心对称图形,故该选项不正确,不符合题意;故选B【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后两部分重合,掌握中心对称图形与轴对称图形的概念是解题的关键.10、A【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出∠HBN=∠MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明△MBG≌△NBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MG⊥CH时最短,再根据∠BCH=30°求解即可.【详解】解:如图,取BC的中点G,连接MG,∵旋转角为60°,∴∠MBH+∠HBN=60°,又∵∠MBH+∠MBC=∠ABC=60°,∴∠HBN=∠GBM,∵CH 是等边△ABC 的对称轴,∴HB =12AB ,∴HB =BG ,又∵MB 旋转到BN ,∴BM =BN ,在△MBG 和△NBH 中,BG BH MBG NBH MB NB =⎧⎪∠=∠⎨⎪=⎩, ∴△MBG ≌△NBH (SAS ),∴MG =NH ,根据垂线段最短,MG ⊥CH 时,MG 最短,即HN 最短,此时∵∠BCH =12×60°=30°,CG =12AB =12×5=2.5,∴MG =12CG =54,∴HN =54,故选A .【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点.二、填空题1、35°【分析】利用圆周角定理求出所求角度数即可.【详解】解:AOB ∠与ACB ∠都对AB ,且70AOB ∠=︒,1352C AOB ∴∠=∠=︒, 故答案为:35︒.【点睛】本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理.2、()3,1B -【分析】如图,作BH ⊥x 轴于H .由△ACO ≌△BAH (AAS ),推出BH =OA =m ,AH =OC =4,可得B (m +4,m ),令x =m +4,y =m ,推出y =x ﹣4,推出点B 在直线y =x ﹣4上运动,设直线y =x ﹣4交x 轴于E ,交y 轴于F ,作KM ⊥EF 于M ,根据垂线段最短可知,当点B 与点M 重合时,BK 的值最小,利用等腰直角三角形的性质可得M 的坐标,从而可得答案.【详解】解:如图,作BH ⊥x 轴于H .∵C(0,4),K(2,0),∴OC=4,OK=2,∵AC=AB,∵∠AOC=∠CAB=∠AHB=90°,∴∠CAO+∠OCA=90°,∠BAH+∠CAO=90°,∴∠ACO=∠BAH,∴△ACO≌△BAH(AAS),∴BH=OA=m,AH=OC=4,∴B(m+4,m),令x=m+4,y=m,∴y=x﹣4,∴点B在直线y=x﹣4上运动,设直线y=x﹣4交x轴于E,交y轴于F,E F则4,0,0,4OEF KE45,2,EKM KMJ EMJ作KM⊥EF于M,过M作MJ KE于,J则45,()∴====-KJ EJ MJ OJ M1,3,3,1,根据垂线段最短可知,当点B与点M重合时,BK的值最小,此时B(3,﹣1),故答案为:(3,﹣1)【点睛】本题考查坐标与图形的变化﹣旋转,全等三角形的判定和性质,一次函数的应用,垂线段最短等知识,解题的关键是正确寻找点B的运动轨迹,学会利用垂线段最短解决最短问题.3、##【分析】连接CO ,延长交O 于点E ,连接DE ,先根据圆周角定理和圆的性质可得,90AB CE CDE =∠=︒,再根据特殊角的三角函数值可得30DCE ∠=︒,从而可得15BAC ACO ∠=∠=︒,作15ABF BAC ∠=∠=︒,交AC 于点F ,从而可得,30AF BF BFC =∠=︒,然后在Rt BCF 中,利用直角三角形的性质和勾股定理可得2,BF BC CF ==,设cm(0)BC x x =>,从而可得(2cm AC x =,利用直角三角形的面积公式可求出x 的值,由此即可得.【详解】解:如图,连接CO ,延长交O 于点E ,连接DE ,,AB CE 都是O 的直径,,90AB CE CDE ∴=∠=︒, 32CD AB =CD CE ∴=在Rt CDE △中,cos DCE CD CE ∠== 30DCE ∴∠=︒,CD 平分ACB ∠,且90ACB ∠=︒,45ACD ∴∠=︒,15ACO ACD DCE ∴∠=∠-∠=︒,OA OC =,15BAC ACO ∴∠=∠=︒,如图,作15ABF BAC ∠=∠=︒,交AC 于点F ,,30AF BF BFC ABF BAC ∴=∠=∠+∠=︒,∴在Rt BCF 中,2,BF BC CF ==,(2AC AF CF BF CF BC ∴=+=+=+,设cm(0)BC x x =>,则(2cm AC x =,1202Rt ABC S AC BC =⋅=, 1(2202x x ∴⋅=,解得x =0x =-(不符题意,舍去),则(2(3AC BC x x +=++==,故答案为:.【点睛】本题考查了特殊角的三角函数值、圆周角定理、含30角的直角三角形的性质等知识点,通过作辅助线,构造直角三角形和等腰三角形是解题关键.4、5【分析】直接利用直角三角形斜边上的中线等于斜边的一半即可求解.【详解】解:根据直角三角形斜边上的中线等于斜边的一半,即可知道点O 到点A ,B ,C 的距离相等,如下图:152OA OB OC AB ∴====, 5a ∴=,故答案是:5.【点睛】本题考查了直角三角形的外接圆的外心,解题的关键是掌握直角三角形斜边上的中线等于斜边的一半即可求解.5、【分析】根据旋转角相等可得1PBP ∠90ABC =∠=︒,进而勾股定理求解即可【详解】 解:四边形ABCD 是正方形90ABC ∴∠=︒将ABP △绕点B 顺时针方向旋转,能与1CBP 重合,∴1PBP ∠90ABC =∠=︒,15PB PB==1PP ∴==故答案为:【点睛】本题考查了旋转的性质,勾股定理,求得旋转角相等且等于90°是解题的关键.三、解答题1、(1)BP CP '=,理由见解析;(2)①60°;②PM =12AP ,见解析【分析】(1)根据等边三角形的性质,可得AB =AC ,∠BAC =60°,再由由旋转可知:60AP AP PAP ''=∠=︒,,从而得到BAP CAP '∠=∠,可证得ABP ACP '≌,即可求解 ; (2)①由∠BPC =120°,可得∠PBC +∠PCB =60°.根据等边三角形的性质,可得∠BAC =60°,从而得到∠ABC +∠ACB =120°,进而得到∠ABP +∠ACP =60°.再由ABP ACP '≌,可得ABP ACP '∠=∠ ,即可求解;②延长PM 到N ,使得NM =PM ,连接BN .可先证得△PCM ≌△NBM .从而得到CP =BN ,∠PCM =∠NBM .进而得到BN BP '= .根据①可得60P BP '∠︒=,可证得PNB PP B '≌,从而得到PN PP '= .再由PAP ' 为等边三角形,可得P P AP '= .从而得到PN AP = ,即可求解.【详解】解:(1)BP CP '= .理由如下:在等边三角形ABC 中,AB =AC ,∠BAC =60°,由旋转可知:60AP AP PAP ''=∠=︒,,∴PAP BAP BAC BAP '∠-∠=∠-∠即BAP CAP '∠=∠在ABP '△和△ACP 中AB AC BAP CAP AP AP =⎧⎪∠=''=∠⎨⎪⎩∴ABP ACP SAS '≌() .∴BP CP '= .(2)①∵∠BPC =120°,∴∠PBC +∠PCB =60°.∵在等边三角形ABC 中,∠BAC =60°,∴∠ABC +∠ACB =120°,∴∠ABP +∠ACP =60°.∵ABP ACP '≌ .∴ABP ACP '∠=∠ ,∴∠ABP +∠ABP '=60°.即60P BP '∠︒= ;②PM =12AP .理由如下:如图,延长PM 到N ,使得NM =PM ,连接BN .∵M 为BC 的中点,∴BM =CM .在△PCM 和△NBM 中PM NM PMC NMB CM BM =⎧⎪∠=∠⎨⎪=⎩∴△PCM ≌△NBM (SAS ).∴CP =BN ,∠PCM =∠NBM .∴BN BP '= .∵∠BPC =120°,∴∠PBC +∠PCB =60°.∴∠PBC +∠NBM =60°.即∠NBP =60°.∵∠ABC +∠ACB =120°,∴∠ABP +∠ACP =60°.∴∠ABP +∠ABP '=60°.即60P BP '∠︒= .∴P BP NBP '∠∠= .在△PNB 和P B P ' 中BN BP NBP P BP BP BP ''=⎧⎪∠=∠⎨⎪=⎩∴PNB PP B '≌ (SAS ).∴PN PP '= .∵60AP AP PAP ''=∠=︒,,∴PAP ' 为等边三角形,∴P P AP '= .∴PN AP = ,∴PM =12AP .【点睛】本题主要考查了等边三角形判定和性质,全等三角形的判定和性质,图形的旋转,熟练掌握等边三角形判定和性质定理,全等三角形的判定和性质定理,图形的旋转的性质是解题的关键.2、(1)4;(2)-1或-7【分析】(1)如图,130DAD ∠=︒且11D C O 、、三点在一条直线上的情况,连接1D O ,过点D 向x 作垂线交点为E ,在直角三角形1D EO 中,1130AD E AOD ∠=︒=∠,11sin30D E OD =︒,可求1D O 的长; (2)如图,过点1D 向x 作垂线交点为N ,过点1C 作x 轴垂线交于点G ,作11D M C G ⊥交点为M ;由111111111AND C MD AD N C D M AD C D ∠=∠⎧⎪∠=∠⎨⎪=⎩,知111AND C MD ≌,11D N D M =,点G 坐标为()4,0G -,得4p =-,由2225p q +=知q 的值,从而得到p q +的值.【详解】解:(1)∵∠DAD 1=30°且D 1、C 1、O 三点在一条直线上∴如图所示,连接1OD ,过点1D 向x 作垂线交点为E∴1130AD E AOD ∠=︒=∠∵12n D E ==111sin302D E OD ∴=︒= 14OD ∴=.(2)如图过点1D 向x 作垂线交点为N ,过点1C 作x 轴垂线交于点G ,作11D M C G ⊥交点为M11190AND D MC ∠=∠=︒,111111190AD N ND C ND C C D M ∠+∠=∠+∠=︒111AD N C D M ∴∠=∠在1AND 和11C MD 中111111111AND C MD AD N C D M AD C D ∠=∠⎧⎪∠=∠⎨⎪=⎩()111AND C MD AAS ∴≌11D N D M ∴=G 点横坐标可表示为14m NG m D M m n +=+=+=-()4,0G ∴-4p ∴=-2225p q +=3q ∴=±∴p +q =-7或-1.【点睛】本题考查了锐角三角函数值,三角形全等,图形旋转的性质等知识.解题的关键与难点是找出线段之间的关系.3、(1)30°,70°,40°;(2)∠AOC -∠BOE =40°,理由见解析;(3)t 的取值为5或20或62【分析】(1)先根据已知求出∠DOC 、∠BOC ,再求出当t =4时的旋转角的度数,再利用角的和与差求解即可;(2)设旋转角为x ,用x 表示∠AOC 和∠BOE ,即可得出结论;(3)分①OA 为∠DOC 的平分线;②OC 为∠DOA 的平分线;③OD 为∠COA 的平分线三种情况,利用角平分线定义和旋转性质求出旋转角即可.(1)解:∵∠EOC =130°,∠AOB =∠BOE =90°,∴∠DOC =180°-130°=50°,∠BOC =130°-90°=40°,当t=4时,旋转角4×5°=20°,∴∠AOC =∠DOC -∠DOA =50°-20°=30°,∠BOE =90°-20°=70°,∠BOE-∠AOC=70°-30°=40°,故答案为:30°,70°,40°;(2)解:∠AOC-∠BOE=40°,理由为:设旋转角为x,当三角板旋转至边AB与射线OE相交时,∠AOC=x-50°,∠BOE=x-90°,∴∠AOC-∠BOE=(x-50°)-(x-90°)=40°;(3)解:存在,①当OA为∠DOC的平分线时,旋转角5t =12∠DOC=25,∴t=5;②当OC为∠DOA的平分线时,旋转角5t =2∠DOC=100,∴t=20;③当OD为∠COA的平分线时,360-5t=∠DOC=50,∴t=62,综上,满足条件的t的取值为5或20或62.【点睛】本题考查角平分线的定义、旋转的性质、角的运算,熟练掌握旋转性质,利用分类讨论思想求解是解答的关键.4、(1)45°(2)3π2【分析】(1)连接OC ,根据切线的性质得到OC ⊥CD ,根据圆周角定理得到∠DOC =2∠CAD ,进而证明∠D =∠DOC ,根据等腰直角三角形的性质求出∠D 的度数;(2)根据等腰三角形的性质求出OC ,根据弧长公式计算即可.(1)连接OC .∵ BC BC =, ∴ 12CAD COB ∠=∠,即 2COB CAD ∠=∠.∵ 2D CAD ∠=∠,∴ COB D ∠=∠.∵ PD 是⊙O 的切线,∴ OC PD ⊥,即 90OCD ∠=︒.∴ 90COB D ∠+∠=︒.∴ 290D ∠=︒.∴ 45D COB ∠=∠=︒.(2)∵ COB D ∠=∠,2CD =,∴ 2CO CD ==.∵ 45COB ∠=︒,∴ 135AOC ∠=︒.∴ AC 的长π1352π3π1801802n R l ⨯⨯===. 【点睛】本题考查的是切线的性质、圆周角定理、弧长的计算,掌握圆的切线垂直于经过切点的半径是解题的关键.5、(1)65°(2)【分析】(1)根据三角形的内角和定理得到∠ABC =50°,根据旋转的性质得到∠EBF =∠ABC =50°,AB =BF ,根据三角形的内角和定理即可得到结论;(2)根据勾股定理得到AB =10,根据旋转的性质得到BE =BC =6,EF =AC =8,根据勾股定理即可得到结论.【小题1】解:在Rt △ABC 中,∠C =90°,∠BAC =40°,∴∠ABC =50°,∵将△ABC 绕着点B 逆时针旋转得到△FBE ,∴∠EBF =∠ABC =50°,AB =BF ,∴∠BAF =∠BFA =12(180°-50°)=65°;【小题2】∵∠C =90°,AC =8,BC =6,∴AB=10,∵将△ABC绕着点B逆时针旋转得到△FBE,∴BE=BC=6,EF=AC=8,∴AE=AB-BE=10-6=4,∴AF=【点睛】本题考查了旋转的性质,勾股定理,熟练掌握旋转的性质是解题的关键.。

难点详解沪科版九年级数学下册第24章圆章节练习试题(含答案及详细解析)

难点详解沪科版九年级数学下册第24章圆章节练习试题(含答案及详细解析)

沪科版九年级数学下册第24章圆章节练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)BC=,将ABC绕点A顺时针旋转60°得到ADE,此时点B的对1、如图,在ABC中,2AB=,4应点D恰好落在BC边上,则CD的长为()A.1 B.2 C.3 D.42、如图图案中,不是中心对称图形的是()A.∽B.C.>D.=3、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是()A.60 B.90 C.120 D.1804、点P(3,﹣2)关于原点O的对称点P'的坐标是()A.(3,﹣2) B.(﹣3,2) C.(﹣3,﹣2) D.(2,3)5、如图所示四个图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .6、如图,AB 为⊙O 的直径,弦 CD ⊥AB ,垂足为点 E ,若 ⊙O 的半径为5,CD =8,则AE 的长为( )A .3B .2C .1D 7、如图,C 与AOB ∠的两边分别相切,其中OA 边与C 相切于点P .若90AOB ∠=︒,4OP =,则OC 的长为( )A .8B .C .D .8、如图,直线334y x =--交x 轴于点A ,交y 轴于点B ,点P 是x 轴上一动点,以点P 为圆心,以1个单位长度为半径作⊙P ,当⊙P 与直线AB 相切时,点P 的坐标是( )A.7(,0)3-B.17(,0)3-C.7(,0)3-或17(,0)3-D.(﹣2,0)或(﹣5,0)9、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则∠BAD的大小是()A.80°B.70°C.60°D.50°10、下列叙述正确的有( )个.(1)y y=随着x的增大而增大;(2)如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是75和15;(3)斜边为BC的直角三角形顶点A的轨迹是以BC中点为圆心,BC长为直径的圆;(4)三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;(5)以2211(1)22m mm m-+>、、为三边长度的三角形,不是直角三角形.A.0 B.1 C.2 D.3第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,已知,在ABC 中,AB AC =,30BAC ∠=︒.将ABC 绕点A 逆时针旋转一个α角()0180α︒<<︒至ADE 位置,连接BD ,CE 交于点F .(I )求证:ABD ACE △△≌;(2)若四边形ABFE 为菱形,求α的值;(3)在(2)的条件下,若2AB =,直接写出CF 的值.2、如图,在平面直角坐标系中,一次函数y =-2x +4的图像与x 轴、y 轴分别交于点A 、B ,将直线AB 绕点B 顺时针旋转45°,交x 轴于点C ,则直线BC 的函数表达式为_______.3、数学兴趣活动课上,小方将等腰ABC 的底边BC 与直线l 重合,问:(1)如图(1)已知20AB AC ==,120BAC ∠=︒,点P 在BC 边所在的直线l 上移动,小方发现AP 的最小值是______;(2)如图(2)在直角ABC 中,90C ∠=︒,30B ∠=︒,10AC =,点D 是CB 边上的动点,连接AD ,将线段AD 顺时针旋转60°,得到线段AP ,连接CP ,线段CP 的最小值是______.4、两直角边分别为6、8,那么Rt ABC 的内接圆的半径为____________.5、如图,一次函数1y x =+的图象与x 轴交于点A ,与y 轴交于点B ,作ABO 的外接圆C ,则图中阴影部分的面积为______.(结果保留π)三、解答题(5小题,每小题10分,共计50分)1、正方形绿化场地拟种植两种不同颜色(用阴影部分和非阴影部分表示)的花卉,要求种植的花卉能组成轴对称或中心对称图案,下面是三种不同设计方案中的一部分.(1)请把图①、图②补成既是轴对称图形,又是中心对称图形,并画出一条对称轴;(2)把图③补成只是中心对称图形,并把中心标上字母P .2、如图,⊙O 的半径为10cm ,弦AB 垂直平分半径OC ,垂足为点D .(1)弦AB的长为.(2)求劣弧AB的长.3、如图,点A是O外一点,过点A作出O的一条切线.(使用尺规作图,作出一条即可,不要求写出作法,不要求证明,但要保留作图痕迹)4、如图 1,O为直线DE上一点,过点O在直线DE上方作射线OC,∠EOC=130°.将直角三角板AOB(∠OAB=30°)的直角顶点放在点O处,一条边OA在射线OD上,另一边OB在直线DE上方,将直角三角板绕点O按每秒5°的速度逆时针旋转一周,设旋转时间为t秒.(1)如图2,当t=4 时,∠AOC= ,∠BOE= ,∠BOE﹣∠AOC= ;(2)当三角板旋转至边AB与射线OE相交时(如图 3),试猜想∠AOC与∠BOE的数量关系,并说明理由;(3)在旋转过程中,是否存在某个时刻,使得射线 OA 、OC 、OD 中的某一条射线是另两条射线所成夹角的角平分线?若存在,请直接写出 t 的取值,若不存在,请说明理由.5、如图,在平面直角坐标系中,有抛物线23y ax bx =++,已知OA =OC =3OB ,动点P 在过A ,B ,C 三点的抛物线上.(1)求抛物线的解析式;(2)求过A ,B ,C 三点的圆的半径;(3)是否存在点P ,使得△ACP 是以AC 为直角边的直角三角形?若存在,求出所有符合条件的点P 的坐标,若不存在,说明理由;-参考答案-一、单选题1、B【分析】由题意以及旋转的性质可得ABD △为等边三角形,则BD =2,故CD =BC -BD =2.【详解】由题意以及旋转的性质知AD =AB ,∠BAD =60°∴∠ADB=∠ABD∵∠ADB+∠ABD+∠BAD=180°∴∠ADB=∠ABD=60°△为等边三角形,即AB= AD =BD=2故ABD则CD=BC-BD=4-2=2故选:B.【点睛】本题考查了等边三角形的判定及性质,等边三角形的三边都相等,三个内角都相等,并且每一个内角都等于60 ,等边三角形判定的方法有:三边相等的三角形是等边三角形(定义);三个内角都相等的三角形是等边三角形;有一个内角是60度的等腰三角形是等边三角形;两个内角为60度的三角形是等边三角形.2、C【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解.【详解】解:A、是中心对称图形,故A选项不合题意;B、是中心对称图形,故B选项不合题意;C、不是中心对称图形,故C选项符合题意;D、是中心对称图形,故D选项不合题意;故选:C.【点睛】本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后重合.3、C【分析】根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角),找到旋转角,求出其度数.【详解】解:等边三角形绕其中心旋转n时与原图案完全重合,因而绕其中心旋转的最小度数是3603=120°.故选C.【点睛】本题考查了根据旋转对称性,掌握旋转的性质是解题的关键.4、B【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】解:点P(3,﹣2)关于原点O的对称点P'的坐标是(﹣3,2).故选:B.【点睛】本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键.5、D【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A .不是轴对称图形,是中心对称图形,故本选项不符合题意;B .既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;C .不是轴对称图形,是中心对称图形,故本选项不符合题意;D .既是轴对称图形,又是中心对称图形,故本选项符合题意.故选:D .【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.6、B【分析】连接OC ,由垂径定理,得到CE =4,再由勾股定理求出OE 的长度,即可求出AE 的长度.【详解】解:连接OC ,如图∵AB 为⊙O 的直径,CD ⊥AB ,垂足为点 E ,CD =8, ∴118422CE CD ==⨯=,∵5AO CO ==,∴3OE ,AE=-=;∴532故选:B.【点睛】OE=.本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出37、C【分析】如图所示,连接CP,由切线的性质和切线长定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根据勾股定理求解即可.【详解】解:如图所示,连接CP,∵OA,OB都是圆C的切线,∠AOB=90°,P为切点,∴∠CPO=90°,∠COP=45°,∴∠PCO=∠COP=45°,∴CP=OP=4,∴OC=,故选C.【点睛】本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键.8、C【分析】由题意根据函数解析式求得A(-4,0),B(0.-3),得到OA=4,OB=3,根据勾股定理得到AB=5,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,根据相似三角形的性质即可得到结论.【详解】解:∵直线334y x=--交x轴于点A,交y轴于点B,∴令x=0,得y=-3,令y=0,得x=-4,∴A(-4,0),B(0,-3),∴OA=4,OB=3,∴AB=5,设⊙P与直线AB相切于D,连接PD,则PD⊥AB,PD=1,∵∠ADP=∠AOB=90°,∠PAD=∠BAO,∴△APD∽△ABO,∴PD AP OB AB=,∴135AP =,∴AP = 53,∴OP = 73或OP = 173, ∴P 7(,0)3-或P 17(,0)3-, 故选:C .【点睛】本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.9、A【分析】根据三角形旋转得出DC AC =,130EDC BAC ∠=∠=︒,根据点A ,D ,E 在同一条直线上利用邻补角关系求出18050ADC EDC ∠=︒-∠=︒,根据等腰三角形的性质即可得到∠DAC =50°,由此即可求解.【详解】证明:∵ABC 绕点C 逆时针旋转得到DEC ,∴DC AC =,130EDC BAC ∠=∠=︒,∴∠ADC =∠DAC ,∵点A ,D ,E 在同一条直线上,∴18050ADC EDC ∠=︒-∠=︒,∴∠DAC =50°,∴∠BAD =∠BAC -∠DAC =80°故选A .【点睛】本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.10、D【分析】根据反比例函数的性质,得当0x <或者0x >时,y 随着x 的增大而增大;根据直径所对圆周角为直角的性质,得斜边为BC 的直角三角形顶点A 的轨迹是以BC 中点为圆心,BC 长为直径的圆;根据垂直平分线的性质,得三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;根据勾股定理逆定理、完全平方公式的性质计算,可判断直角三角形,即可完成求解.【详解】y =当0x <或者0x >时,y 随着x 的增大而增大,故(1)不正确; 如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是75和15;,故(2)正确;∵圆的直径所对的圆周角为直角∴斜边为BC 的直角三角形顶点A 的轨迹是以BC 中点为圆心,BC 长为直径的圆,故(3)正确; 三角形三边的垂直平分线的交点到三角形三个顶点的距离相等,故(4)正确; ∵224212124m m m ⎛⎫--+= ⎪⎝⎭∴242422221211442m m m m m m ⎛⎫-+++++== ⎪⎝⎭∴以2211(1)22m m m m -+>、、为三边长度的三角形,是直角三角形,故(5)错误; 故选:D .【点睛】本题考查了三角形、垂直平分线、反比例函数、圆、勾股定理逆定理的知识;解题的关键是熟练掌握反比例函数、垂直平分线、圆周角、勾股定理逆定理的性质,从而完成求解.二、填空题1、(1)见解析;(2)120°;(3)2【分析】(1)根据旋转的性质和全等三角形的判定解答即可;(2)根据等腰三角形的性质求得∠ABD =90°-12α,∠BAE =α+30°,根据菱形的邻角互补求解即可;(3)连接AF ,根据菱形的性质和全等三角形的性质可求得∠FAC =45°,∠FCA =30°,过F 作FG ⊥AC 于G ,设FG=x ,根据等腰直角三角形的性质和含30°角的直角三角形的性质求解即可.【详解】解:(1)由旋转得:AB=AD ,AC=AE ,∠BAD =∠CAE =α,∵AB=AC ,∴AB=AC =AD=AE ,在△ABD 和△ACE 中,AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABD ≌△ACE (SAS );(2)∵AB=AD ,∠BAD =α,∠BAC =30°,∴∠ABD =(180°-∠BAD )÷2=(180°-α)÷2=90°-12α,∠BAE =α+30°,∵四边形ABFE 是菱形,∴∠BAE +∠ABD=180°,即α+30°+90°-12α=180°,解得:α=120°;(3)连接AF ,∵四边形ABFE是菱形,∠BAE=α+30°=150°,∠BAE=75°,又∠BAC=30°,∴∠BAF=12∴∠FAC=75°-30°=45°,∵△ABD≌△ACE,α=30°,∴∠FCA=∠ABD=90°-12过F作FG⊥AC于G,设FG=x,在Rt△AGF中,∠FAG=45°,∠AGF=90°,∴∠AFG=∠FAG=45°,∴△AGF是等腰直角三角形,∴AG=FG=x,在在Rt△AGF中,∠FCG=30°,∠FGC=90°,∴CF=2FG=2x,CG==,∵AC=AB=2,又AG+CG=AC,∴2x=,解得:1x=,∴CF=2x= 2.【点睛】本题考查全等三角形的判定与性质、旋转的性质、菱形的性质、等腰三角形的判定与性质、含30°角的直角三角形的性质、三角形的内角和定理、解一元一次方程等知识,熟练掌握相关知识的联系与运用是解答的关键.2、34y x =+##【分析】先求出点A 、B 的坐标,过点A 作AF ⊥AB ,交直线BC 于点F ,过点F 作EF ⊥x 轴,垂足为E ,然后由全等三角形的判定和性质,等腰直角三角形的性质,求出点F 的坐标,再利用待定系数法,即可求出答案.【详解】解:∵一次函数y =-2x +4的图像与x 轴、y 轴分别交于点A 、B 两点,∴令0x =,则4y =;令0y =,则2x =,∴点A 为(2,0),点B 为(0,4),∴2OA =,4OB =;过点A 作AF ⊥AB ,交直线BC 于点F ,过点F 作EF ⊥x 轴,垂足为E ,如图,∴90AEF AOB ∠=∠=︒,∴90FAE BAE ABO BAE ∠+∠=︒=∠+∠,∴FAE ABO ∠=∠,∵45ABE ∠=︒,∴△ABF 是等腰直角三角形,∴AF =AB ,∴△ABO ≌△FAE (AAS ),∴AO =FE ,BO =AE ,∴2FE =,4AE =,∴422OE =-=,∴点F 的坐标为(2-,2-);设直线BC 为y ax b =+,则224a b b -+=-⎧⎨=⎩,解得:34a b =⎧⎨=⎩, ∴直线BC 的函数表达式为34y x =+;故答案为:34y x =+;【点睛】本题考查了一次函数的性质,全等三角形的判定和性质,等腰三角形的判定和性质,以及旋转的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题.3、10 5【分析】(1)如图,作AH ⊥BC 于H .根据垂线段最短,求出AH 即可解决问题.(2)如图,在AB 上取一点K ,使得AK =AC ,连接CK ,DK .由△PAC ≌△DAK (SAS ),推出PC =DK ,易知KD ⊥BC 时,KD 的值最小,求出KD 的最小值即可解决问题.【详解】解:如图作AH ⊥BC 于H ,∵AB =AC =20,120BAC ∠=︒, ∴180120302C ︒-︒∠==︒ , ∵90AHC ∠=︒ , ∴1102AH AC == , 根据垂线段最短可知,当AP 与AH 重合时,PA 的值最小,最小值为10.∴AP 的最小值是10;(2)如图,在AB 上取一点K ,使得AK =AC ,连接CK ,DK .∵∠ACB =90°,∠B =30°,∴∠CAK =60°,∴∠PAD =∠CAK ,∴∠PAC =∠DAK ,∵PA =DA ,CA =KA ,∴△PAC ≌△DAK (SAS ),∴PC =DK ,∵KD ⊥BC 时,KD 的值最小,∵10,,90AK AC KD BC ACB ==⊥∠=︒ ,60,CAKACK 是等边三角形,,AK CK 30,KCB B ,KC KB ∴152KD AC == , ∴PC 的最小值为5.【点睛】本题属于几何变换综合题,考查了等腰三角形的性质,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题.4、5【分析】直角三角形外接圆的直径是斜边的长.【详解】解:由勾股定理得:AB ,∵∠ACB =90°,∴AB 是⊙O 的直径,∴这个三角形的外接圆直径是10,∴这个三角形的外接圆半径长为5,故答案为:5.【点睛】本题考查了三角形的外接圆与外心,知道直角三角形外接圆的直径是斜边的长是关键;外心是三边垂直平分线的交点,外心到三个顶点的距离相等.5、3π【分析】先求出A 、B 、C 坐标,再证明三角形BOC 是等边三角形,最后根据扇形面积公式计算即可.【详解】过C 作CD ⊥OA 于D∵一次函数1y =+的图象与x 轴交于点A ,与y 轴交于点B , ∴当0x =时,1y =,B 点坐标为(0,1)当0y =时,y =A 点坐标为∴2,1AB OB OA ===,∵作ABO 的外接圆C ,∴线段AB 中点C 的坐标为1)2,112OC BC AB OB ==== ∴三角形BOC 是等边三角形∴120ACO ∠=︒∵C 的坐标为1)2∴12CD =∴2120111360223AOC ACO S S S ππ︒=-=⨯⨯-=︒扇形故答案为:3π【点睛】 本题主要考查了一次函数的综合运用,求扇形面积.用已知点的坐标表示相应的线段是解题的关键.三、解答题1、(1)见解析(2)见解析【分析】(1)根据轴对称图形,中心对称图形的性质画出图形即可.(2)根据中心对称图形的定义画出图形即可.(1)解:图形如图①②所示.(2)解:图形如图③所示,点P 即为所求作.【点睛】本题考查利用旋转变换设计图案,正方形的性质,轴对称图形,中心对称图形等知识,解题的关键是理解题意,灵活运用所学知识解决问题.2、(1)(2)203π. 【分析】(1)根据弦AB 垂直平分半径OC ,OC =OB =10cm ,得出OD =CD =152OC =,∠ODB =90°,根据勾股定理BD =AB =2BD =2×(2)根据锐角三角函数定义求出cos∠DOB =51102OD OB ==,得出∠DOB =60°,利用弧长公式求出12010201803l ππ⨯==即可. 【详解】解:(1)∵弦AB 垂直平分半径OC ,OC =OB =10cm ,∴OD =CD =152OC =,∠ODB =90°,∴BD ===∴AB =2BD =2×=故答案为(2)cos∠DOB =51102OD OB ==, ∴∠DOB =60°,∴AB 的度数为2×60°=120°, ∴12010201803l ππ⨯==.本题考查垂直平分线性质,勾股定理,锐角三角函数,弧长,掌握垂直平分线性质,勾股定理,锐角三角函数,弧长是解题关键.3、见解析【分析】先作线段OA的垂直平分线.确定OA的中点,再以中点为圆心,OA一半为半径作圆交O于B点,然后作直线AB,则根据圆周角定理可得AB为所求.【详解】如图,直线AB就是所求作的,(作法不唯一,作出一条即可,需要有作图痕迹)【点睛】本题考查了作图 复杂作图,解题的关键是掌握复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.4、(1)30°,70°,40°;(2)∠AOC-∠BOE=40°,理由见解析;(3)t的取值为5或20或62(1)先根据已知求出∠DOC、∠BOC,再求出当t=4时的旋转角的度数,再利用角的和与差求解即可;(2)设旋转角为x,用x表示∠AOC和∠BOE,即可得出结论;(3)分①OA为∠DOC的平分线;②OC为∠DOA的平分线;③OD为∠COA的平分线三种情况,利用角平分线定义和旋转性质求出旋转角即可.(1)解:∵∠EOC=130°,∠AOB=∠BOE=90°,∴∠DOC=180°-130°=50°,∠BOC=130°-90°=40°,当t=4时,旋转角4×5°=20°,∴∠AOC=∠DOC-∠DOA=50°-20°=30°,∠BOE=90°-20°=70°,∠BOE-∠AOC=70°-30°=40°,故答案为:30°,70°,40°;(2)解:∠AOC-∠BOE=40°,理由为:设旋转角为x,当三角板旋转至边AB与射线OE相交时,∠AOC=x-50°,∠BOE=x-90°,∴∠AOC-∠BOE=(x-50°)-(x-90°)=40°;(3)解:存在,①当OA为∠DOC的平分线时,旋转角5t =1∠DOC=25,2∴t=5;②当OC为∠DOA的平分线时,旋转角5t =2∠DOC=100,③当OD为∠COA的平分线时,360-5t=∠DOC=50,∴t=62,综上,满足条件的t的取值为5或20或62.【点睛】本题考查角平分线的定义、旋转的性质、角的运算,熟练掌握旋转性质,利用分类讨论思想求解是解答的关键.5、(1)y=-x2+2x+3;(2(3)点P(1,4)或(-2,-5).【分析】(1)3=OC=OA=3OB,故点A、B、C的坐标分别为:(0,3)、(-1,0)、(3,0),即可求解;(2)圆的圆心在BC的中垂线上,故设圆心R(1,m),则RA=RC,即:1+(m-3)2=4+m2,解得:m=1,故点R(1,1),即可求解;(3)分两种情况讨论,利用等腰直角三角形的性质,即可求解.【详解】解:(1)令x=0,则y=3,则点A的坐标为(3,0),根据题意得:OC=3=OA=3OB,故点B、C的坐标分别为:(-1,0)、(3,0),则抛物线的表达式为:y=a(x+1)(x-3)=a(x2-2x-3),把(3,0)代入得-3a=3,解得:a=-1,故抛物线的表达式为:y=-x2+2x+3;(2)圆的圆心在BC的中垂线上,故设圆心R(1,m),则RA =RC ,即:1+(m -3)2=4+m 2,解得:m =1,故点R (1,1),=(3)过点A 、C 分别作直线AC 的垂线,交抛物线分别为P 、P 1,设点P (x ,-x 2+2x +3),过点P 作PQ ⊥y 轴于点Q ,∵OA =OC ,∠PAC =90°,∴∠ACO =∠OAC =45°,∵∠PAC =90°,∴∠PAQ =45°,∴△PAQ 是等腰直角三角形,∴PQ =AQ =x ,∴AQ +AO =x +3=-x 2+2x +3,解得:1210x x ==,(舍去),∴点P (1,4);设点P 1(m ,-m 2+2m +3),过点P 1作P 1D ⊥x 轴于点D ,同理得△P 1CD 是等腰直角三角形,且点P 1在第三象限,即m <0,∴P 1D =CD =m 2-2m -3,DO =-m ,∴DO +OC = P 1D ,即-m +3= m 2-2m -3,解得:1223m m =-=,(舍去),∴点P (-2,-5);综上,点P (1,4)或(-2,-5).【点睛】本题考查的是二次函数综合运用,涉及到一次函数的性质,等腰直角三角形的判定和性质,圆的基本知识等,其中(3),要注意分类求解,避免遗漏.。

2022年最新沪科版九年级数学下册第24章圆专题训练试卷(含答案详解)

2022年最新沪科版九年级数学下册第24章圆专题训练试卷(含答案详解)

沪科版九年级数学下册第24章圆专题训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I 卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各点中,关于原点对称的两个点是( )A .(﹣5,0)与(0,5)B .(0,2)与(2,0)C .(﹣2,﹣1)与(﹣2,1)D .(2,﹣1)与(﹣2,1)2、如图,在ABC 中,90ACB ∠=︒,30A ∠=︒,将ABC 绕点C 逆时针旋转90°得到DEC ,则AED ∠的度数为( )A .105°B .120°C .135°D .150°3、某村东西向的废弃小路/两侧分别有一块与l 距离都为20 m 的宋代碑刻A ,B ,在小路l 上有一座亭子P . A ,P 分别位于B 的西北方向和东北方向,如图所示.该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A ,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小.人工湖建成后,亭子P到湖岸的最短距离是()A.20 m B.mC.( - 20)m D.(m4、如图,在△ABC中,∠BAC=130°,将△ABC绕点C逆时针旋转得到△DEC,点A,B的对应点分别为D,E,连接AD.当点A,D,E在同一条直线上时,则∠BAD的大小是()A.80°B.70°C.60°D.50°5、如图所示四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C .D .6、如图,在ABC 中,90ABC ︒∠=,30BAC ︒∠=,8AC =.将ABC 绕点A 按逆时针方向旋转90︒后得到AB C ''△,则图中阴影部分面积为( )A .4πB .8π-C .4π-D .7、将等边三角形绕其中心旋转n 时与原图案完全重合,那么n 的最小值是( )A .60B .90C .120D .1808、在下列图形中,既是中心对称图形又是轴对称图形的是( )A .B .C .D .9、如图,在Rt ABC 中,390,4,tan 4ACB AC A ∠===.以点C 为圆心,CB 长为半径的圆交AB 于点D ,则AD 的长是( )A .1B .75 C .32 D .210、如图,AB 为O 的直径,C 为D 外一点,过C 作O 的切线,切点为B ,连接AC 交O 于D ,38C ∠=︒,点E 在AB 右侧的半圆周上运动(不与A ,B 重合),则AED ∠的大小是( )A .19°B .38°C .52°D .76°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在等腰直角ABC ∆中,已知90ABC ︒∠=,将ABC ∆绕点C 逆时针旋转60°,得到∆MNC ,连接BM ,若2AB =,则BM =________.2、在平面直角坐标系中,将点(2,7)P -绕坐标原点顺时针旋转180︒后得到点Q ,则点Q 的坐标是___________.3、AB 是O 的直径,点C 在O 上,25BAC ∠=︒,点P 在线段OB 上运动.设ACP x ∠=,则x 的取值范围是________.4、已知圆O 的圆心到直线l 的距离为2,且圆的半径是方程x 2﹣5x +6=0的根,则直线l 与圆O 的的位置关系是______.5、平面直角坐标系中,()0,4C ,()2,0K ,A 为x 轴上一动点,连接AC ,将AC 绕A 点顺时针旋转90°得到AB ,当BK 取最小值时,点B 的坐标为_________.三、解答题(5小题,每小题10分,共计50分)1、如图,在方格纸中,已知顶点在格点处的△ABC ,请画出将△ABC 绕点C 旋转180°得到的△A 'B 'C '.(需写出△A 'B 'C '各顶点的坐标).2、如图,已知AB 是O 的直径,CD 是O 的切线,C 为切点,AD 交O 于点E ,4=AD ,5AB =,AC 平分BAD ∠.(1)求证:90ADC ∠=︒;(2)求AC 、DE 的长.3、在平面直角坐标系xOy 中,对于点P ,O ,Q 给出如下定义:若OQ <PO <PQ 且PO ≤2,我们称点P是线段OQ 的“潜力点”已知点O (0,0),Q (1,0)(1)在P 1(0,-1),P 2(12,32),P 3(-1,1)中是线段OQ 的“潜力点”是_____________; (2)若点P 在直线y =x 上,且为线段OQ 的“潜力点”,求点P 横坐标的取值范围;(3)直线y =2x +b 与x 轴交于点M ,与y 轴交于点N ,当线段MN 上存在线段OQ 的“潜力点”时,直接写出b 的取值范围4、如图1,在ABC 中90ACB ∠=︒,AC BC =,8AB =,点D 为AB 边上一点.(1)若1AD =,则CD =______;(2)如图2,将线段CD 绕着点C 逆时针旋转90°得到线段CE ,连接AE ,求证:2222AD BC AE +=;(3)如图3,过点A 作直线CD 的垂线AF ,垂足为F ,连接BF .直接写出BF 的最小值.5、下面是小明设计的“作圆的内接等腰直角三角形”的尺规作图过程. 已知:⊙O.求作:⊙O的内接等腰直角三角形ABC.作法:如图,①作直径AB;②分别以点A, B为圆心,以大于12AB的长为半径作弧,两弧交于M点;③作直线MO交⊙O于点C,D;④连接AC,BC.所以△ABC就是所求的等腰直角三角形.根据小明设计的尺规作图过程,解决下面的问题:(1)使用直尺和圆规,补全图形;(保留作图痕迹)(2)完成下面的证明.证明:连接MA,MB.∵MA=MB,OA=OB,∴MO是AB的垂直平分线.∴AC= .∵AB是直径,∴∠ACB= ( ) (填写推理依据) .∴△ABC是等腰直角三角形.-参考答案-一、单选题1、D【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案.【详解】解:A、(﹣5,0)与(0,5)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故A错误;B、(0,2)与(2,0)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故B错误;C、(﹣2,﹣1)与(﹣2,1)关于x轴对称,故C错误;D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;故选:D.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.2、B【分析】由题意易得30,90A D ACB DCE ∠=∠=︒∠=∠=︒,然后根据三角形外角的性质可求解.【详解】解:由旋转的性质可得:30,90A D ACB DCE ∠=∠=︒∠=∠=︒,∴120AED D DCE ∠=∠+∠=︒;故选B .【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键.3、D【分析】根据人工湖面积尽量小,故圆以AB 为直径构造,设圆心为O ,当O ,P 共线时,距离最短,计算即可.【详解】∵人工湖面积尽量小,∴圆以AB 为直径构造,设圆心为O ,过点B 作BC ⊥l ,垂足为C ,∵A ,P 分别位于B 的西北方向和东北方向,∴∠ABC =∠PBC =∠BOC =∠BPC =45°,∴OC =CB =CP =20,∴OP =40,OB∴最小的距离PE =PO -OE m ),故选D .【点睛】本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键.4、A【分析】根据三角形旋转得出DC AC =,130EDC BAC ∠=∠=︒,根据点A ,D ,E 在同一条直线上利用邻补角关系求出18050ADC EDC ∠=︒-∠=︒,根据等腰三角形的性质即可得到∠DAC =50°,由此即可求解.【详解】证明:∵ABC 绕点C 逆时针旋转得到DEC ,∴DC AC =,130EDC BAC ∠=∠=︒,∴∠ADC =∠DAC ,∵点A ,D ,E 在同一条直线上,∴18050ADC EDC ∠=︒-∠=︒,∴∠DAC =50°,∴∠BAD =∠BAC -∠DAC =80°故选A .【点睛】本题考查三角形旋转性质,邻补角的性质,等腰三角形的性质与判定,解题的关键在于熟练掌握旋转的性质.5、D【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A .不是轴对称图形,是中心对称图形,故本选项不符合题意;B .既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;C .不是轴对称图形,是中心对称图形,故本选项不符合题意;D .既是轴对称图形,又是中心对称图形,故本选项符合题意.故选:D .【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.6、B【分析】阴影部分的面积=扇形'ACC -扇形'ADB -''ABC S ,根据旋转性质以及直角三角形的性质,分别求出对应扇形的面积以及''ABC ∆的面积,最后即可求出阴影部分的面积.【详解】解:由图可知:阴影部分的面积=扇形'ACC -扇形'ADB -''ABC S ,由旋转性质可知:''90CAC BAB ∠=∠=︒,''ABC ABC ∆∆≌,'AB AB ∴=,'8AC AC ==,在ABC 中,90ABC ︒∠=,30BAC ︒∠=,8AC =,142BC AC ∴==,''60DAB BAB BAC ∠=∠-∠=︒,有勾股定理可知:AB∴阴影部分的面积=扇形'ACC -扇形'ADB -''ABC S2908143602π⨯=--⨯8π=-故选:B .【点睛】本题主要是考查了旋转性质以及扇形面积公式,熟练利用旋转性质,得到对应扇形的半径和圆心角度数,利用扇形公式求解面积,这是解决本题的关键.7、C【分析】根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角),找到旋转角,求出其度数.【详解】解:等边三角形绕其中心旋转n 时与原图案完全重合,因而绕其中心旋转的最小度数是3603=120°. 故选C .【点睛】本题考查了根据旋转对称性,掌握旋转的性质是解题的关键.8、B【分析】根据中心对称图形与轴对称图形的定义解答即可.【详解】解:A.是轴对称图形,不是中心对称图形,不符合题意;B既是中心对称图形又是轴对称图形,符合题意;C. 是轴对称图形,不是中心对称图形,不符合题意;D. 既不是中心对称图形,也不是轴对称图形,不符合题意.故选B.【点睛】本题主要考查的是中心对称图形与轴对称图形的定义.一个图形沿一条直线折叠,直线两旁的部分能够完全重合的图形叫作轴对称图形;把一个图形绕着某个点旋转180°,如果旋转后的图形与另一个图形重合叫作中心对称图形.9、B【分析】利用三角函数及勾股定理求出BC、AB,连接CD,过点C作CE⊥AB于E,利用cosBC BEBAB BC==,求出BE,根据垂径定理求出BD即可得到答案.【详解】解:在Rt ABC中,390,4,tan4 ACB AC A∠===,∴BC=3,5AB=,连接CD,过点C作CE⊥AB于E,∵cosBC BEBAB BC==,∴353BE =,解得95BE =, ∵CB=CD ,CE ⊥AB , ∴1825BD BE ==, ∴187555AD AB BD =-=-=, 故选:B .【点睛】此题考查了锐角三角函数,勾股定理,垂径定理,熟记各定理并熟练应用是解题的关键.10、B【分析】连接,BD 由AB 为O 的直径,求解903852,CBD ∠=︒-︒=︒ 结合CB 为O 的切线,求解905238,ABD ABC DBC ∠=∠-∠=︒-︒=︒ 再利用圆周角定理可得答案.【详解】解:连接,BD AB 为O 的直径,90,90,ADB BDC ∴∠=︒∠=︒38,C ∠=︒903852,CBD ∴∠=︒-︒=︒ CB 为O 的切线,90,905238,ABC ABD ABC DBC ∴∠=︒∠=∠-∠=︒-︒=︒38,AED ABD ∴∠=∠=︒故选B【点睛】本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.二、填空题1【分析】如图连接BN 并延长,过点M 作MD BN ⊥交于点D ,90MDN ∠=︒,由题意可知BCN △为等边三角形,60BNC ∠=︒,30MND ∠=︒,在Rt MND △中2sin 301cos30MN DN MN ND MN ==︒==︒,,在Rt BDM 中BM【详解】解:如图连接BN 并延长,过点M 作MD BN ⊥交于点D ,90MDN ∠=︒由题意可知60BCN ∠=︒,BC CN AB MN ===,BCN △为等边三角形60BNC BN BC CN ∠=︒==,90CNM ∠=︒ 30MND ∠=︒在Rt MND △中2sin 301cos30MN DN MN ND MN ==︒==︒=,,在Rt BDM 中BM ==【点睛】本题考查了旋转的性质,等边三角形,勾股定理,含30︒的直角三角形等知识.解题的关键在于做辅助线构造直角三角形.2、()2,7-【分析】绕坐标原点顺时针旋转180︒即关于原点O 中心对称,找到P 关于原点中心对称的点的坐标即可,根据关于原点对称的两个点,横坐标、纵坐标分别互为相反数,即可求解.【详解】解:将点(2,7)P -绕坐标原点顺时针旋转180︒后得到点Q ,则点Q 的坐标是()2,7-故答案为:()2,7-【点睛】本题考查了求一个点关于原点中心对称的点的坐标,掌握关于原点中心对称的点的坐标特征是解题的关键.关于原点对称的两个点,横坐标、纵坐标分别互为相反数.3、2590x ︒≤≤︒【分析】分别求出当点P 与点O 重合时,当点P 与点B 重合时x 的值,即可得到取值范围.【详解】解:当点P 与点O 重合时,∵OA=OC ,∴ACP A ∠=∠,即25x =︒;当点P 与点B 重合时,∵AB 是O 的直径,∴90ACP x ∠==︒,∴x 的取值范围是2590x ︒≤≤︒.【点睛】此题考查了同圆中半径相等的性质,直径所对的圆周角是直角的性质,正确理解点P 的运动位置是解题的关键.4、相切或相交【详解】首先求出方程的根,再利用半径长度,由点O 到直线l 的距离为d ,若d <r ,则直线与圆相交;若d =r ,则直线于圆相切;若d >r ,则直线与圆相离,从而得出答案.【分析】解:∵x 2﹣5x +6=0,(x ﹣2)(x ﹣3)=0,解得:x 1=2,x 2=3,∵圆的半径是方程x 2﹣5x +6=0的根,即圆的半径为2或3,∴当半径为2时,直线l 与圆O 的的位置关系是相切,当半径为3时,直线l 与圆O 的的位置关系是相交,综上所述,直线l 与圆O 的的位置关系是相切或相交.故答案为:相切或相交.【点睛】本题考查的是直线与圆的位置关系,因式分解法解一元二次方程,解决此类问题可通过比较圆心到直线距离d 与圆的半径大小关系完成判定.5、()3,1B -【分析】如图,作BH ⊥x 轴于H .由△ACO ≌△BAH (AAS ),推出BH =OA =m ,AH =OC =4,可得B (m +4,m ),令x =m +4,y =m ,推出y =x ﹣4,推出点B 在直线y =x ﹣4上运动,设直线y =x ﹣4交x 轴于E ,交y 轴于F ,作KM ⊥EF 于M ,根据垂线段最短可知,当点B 与点M 重合时,BK 的值最小,利用等腰直角三角形的性质可得M 的坐标,从而可得答案.【详解】解:如图,作BH ⊥x 轴于H .∵C (0,4),K (2,0),∴OC =4,OK =2,∵AC =AB ,∵∠AOC =∠CAB =∠AHB =90°,∴∠CAO +∠OCA =90°,∠BAH +∠CAO =90°,∴∠ACO =∠BAH ,∴△ACO≌△BAH(AAS),∴BH=OA=m,AH=OC=4,∴B(m+4,m),令x=m+4,y=m,∴y=x﹣4,∴点B在直线y=x﹣4上运动,设直线y=x﹣4交x轴于E,交y轴于F,E F则4,0,0,445,2,OEF KEEKM KMJ EMJ作KM⊥EF于M,过M作MJ KE于,J则45,()∴====-1,3,3,1,KJ EJ MJ OJ M根据垂线段最短可知,当点B与点M重合时,BK的值最小,此时B(3,﹣1),故答案为:(3,﹣1)【点睛】本题考查坐标与图形的变化﹣旋转,全等三角形的判定和性质,一次函数的应用,垂线段最短等知识,解题的关键是正确寻找点B的运动轨迹,学会利用垂线段最短解决最短问题.三、解答题1、A'(-1,-3),B'(1,-1),C'(-2,0),画图见解析.【分析】先画出点A,B关于点C中心对称的点A',B',再连接A',B',C即可解题.【详解】解: A关于点C中心对称的点A'(-1,-3),B关于点C中心对称的点B'(1,-1),C关于点C中心对称的点C'(-2,0),如图,△A'B'C'即为所求作图形.【点睛】本题考查中心对称图形,是基础考点,掌握相关知识是解题关键.2、(1)90°;(2)AC =DE =1【分析】(1)如图123∠=∠=∠,349032ACD ACD ∠+∠=︒=∠+∠=∠+∠,可知90ADC ∠=︒.(2)ACB ADC ∽△△,AB AC AC AD=可求出AC 的长;5CED DCA ∠=∠=∠,ADC CDE △∽△,AD CD CD DE=可求出DE 的长. 【详解】解(1)证明如图所示,连接BC ,OC ,CEAB 是直径,CD 是O 的切线,AC 平分BAD ∠∴132∠=∠=∠,45∠=∠∴332490DCA ACD ∠+∠=∠+∠=︒=∠+∠∴90ADC ∠=︒.(2)解∵12∠=∠,90ADC ACB ∠=∠=︒∴ACB ADC ∽△△ ∴AB AC AC AD=,25420AC =⨯= ∴AC =在Rt ADC 中2CD ==∵5CED DCA ∠=∠=∠,90ADC CDE ∠=∠=︒∴ADC CDE △∽△ ∴AD CD CD DE=,2CD DE AD =⋅ 44DE =∴1DE =.【点睛】本题考查了角平分线、勾股定理、等腰三角形的性质、三角形相似的判定等知识点.解题的关键在于判定三角形相似.3、(1)3P ;(2)p x ≤<(3)1b <≤或1 1.b -<<- 【分析】(1)分别计算出OQ 、PO 和PQ 的长度,比较即可得出答案;(2)先判断点P 在以O 为圆心,1为半径的圆外且点P 在线段OQ 垂直平分线的左侧,结合PO ≤2,点P 在以O 为圆心,2为半径的圆上或圆内,可得点P 在如图所示的线段AB 上(不包含点B ),过B 作BC y ⊥轴,过A 作AD y ⊥轴,垂足分别为,,C D 再根据图形的性质求解,,BC AD 从而可得答案;(3)由(2)得:点P 在以O 为圆心,1为半径的圆外且点P 在以O 为圆心,2为半径的圆上或圆内,而PO <PQ ,点P 在线段OQ 垂直平分线的左侧,再分两种情况讨论:当0b >时,当0b ≤时,分别画出两种情况下的临界直线2,y x b =+ 再根据临界直线经过的特殊点求解b 的值,再确定范围即可.【详解】解:(1) O (0,0),Q (1,0),1,OQP 1(0,-1),P 2(12,32),P 3(-1,1) 22111,112,OP PQ 不满足OQ <PO <PQ 且PO ≤2, 所以1P 不是线段OQ 的“潜力点”, 同理:22222213101310,10,222222OP P Q 所以不满足OQ <PO <PQ 且PO ≤2,所以2P 不是线段OQ 的“潜力点”, 同理:222233112,11105,OP PQ125,22,所以满足:OQ <PO <PQ 且PO ≤2,所以3P 是线段OQ 的“潜力点”,故答案为:P 3(2)∵点P 为线段OQ 的“潜力点”,∴OQ <PO <PQ 且PO ≤2,∵OQ <PO ,∴点P 在以O 为圆心,1为半径的圆外∵PO <PQ ,∴点P 在线段OQ 垂直平分线的左侧,而OQ 的垂直平分线为:1,2x = ∵PO ≤2,∴点P 在以O 为圆心,2为半径的圆上或圆内又∵点P 在直线y =x 上,∴点P 在如图所示的线段AB 上(不包含点B )过B 作BC y ⊥轴,过A 作AD y ⊥轴,垂足分别为,,C D由题意可知△BOC 和 △AOD 是等腰三角形,1,2,OB OA ∴2sin 45,sin 452,2BC OB AD OA∴x p <(3)由(2)得:点P 在以O 为圆心,1为半径的圆外且点P 在以O 为圆心,2为半径的圆上或圆内,当0b >时,2y x b =+过10,1N 时,1,b ∴= 即函数解析式为:21,y x =+ 此时11,0,2M 则111tan ,2M N O当2y x b =+与半径为2的圆相切于S 时,则90,NSO由11,MN M N ∥111tan tan ,2SO SNO M N O SN 而2,SO 224,2425,SN ON125,b当0b ≤时,如图,同理可得:点P 在以O 为圆心,1为半径的圆外且点P 在以O 为圆心,2为半径的圆上或圆内,同理:当2y x b =+过10,1,N 则1,b =- 直线为21,y x11,0,2M 1M 在直线12x =上, 此时221115,2M K OK OM 当2y x b =+过115,22K 时, 则151+,2b 151,2b所以此时:1 1.b -<<-综上:b 的范围为:1<b ≤1-<b <-1 【点睛】本题考查的是新定义情境下的知识运用,圆的基本性质,圆的切线的性质,一次函数的综合应用,锐角三角函数的应用,勾股定理的应用,数形结合是解本题的关键.4、(1)5(2)证明见解析(3)【分析】(1)过C 作CM ⊥AB 于M ,根据等腰三角形的性质求出CM 和DM ,再根据勾股定理计算即可;(2)连BE ,先证明CAD CBE ≅,即可得到直角三角形ABE ,利用勾股定理证明即可;(3)取AC 中点N ,连接FN 、BN ,根据三角形BFN 中三边关系判断即可.(1)过C 作CM ⊥AB 于M ,∵90ACB ∠=︒,AC BC = ∴142CM AM AB === ∵1AD =∴3DM =∴在Rt CDM 中5CD ==(2)连接BE ,∵90ACB ∠=︒,AC BC =,90DCE ∠=︒,CD CE =∴AB =,90ACD BCE BCD ∠=∠=︒-∠∴()CAD CBE SAS ≅∴45CAD CBE ∠=∠=︒,AD BE =∴90ABE ∠=︒在Rt ABE △中222AE AB BE =+∴222)AE AD =+∴2222AD BC AE +=(3)取AC 中点N ,连接FN 、BN ,∵90ACB ∠=︒,AC BC =,8AB =∴AC BC ==∵AF 垂直CD∴12FN AC ==∵AC 中点N ,∴12CN AC ==∴BN =∵三角形BFN 中FN BN BF BN FN +>>-∴BF >>∴当B 、F 、N 三点共线时BF 最小,最小值为BN FN -=【点睛】本题考查等腰直角三角形的常用辅助线以及直角三角形斜边上的中线,解题的关键是根据等腰直角三角形作斜边垂线或者构造“手拉手模型”.5、(1)见解析;(2)BC ,90°,直径所对的圆周角是直角【分析】(1)过点O 任作直线交圆于AB 两点,再作AB 的垂直平分线OM ,直线MO 交⊙O 于点C ,D ;连结AC 、BC 即可;(2)根据线段垂直平分线的判定与性质得出AC =BC ,根据圆周角定理得出∠ACB =90°即可.【详解】(1)①作直径AB ;②分别以点A , B 为圆心,以大于12AB 的长为半径作弧,两弧交于M 点; ③作直线MO 交⊙O 于点C ,D ;④连接AC ,BC .所以△ABC 就是所求的等腰直角三角形.(2)证明:连接MA,MB.∵MA=MB,OA=OB,∴MO是AB的垂直平分线.∴AC=BC.∵AB是直径,∴∠ACB=90°(直径所对的圆周角是直角) .∴△ABC是等腰直角三角形.故答案为:BC,90°,直径所对的圆周角是直角.【点睛】本题考查尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质,掌握尺规作圆内接等腰直角三角形,圆周角定理,线段垂直平分线判定与性质是解题关键.。

沪科版九年级数学下册《第24章圆》单元测试卷(有答案)AlPqKP

沪科版九年级数学下册《第24章圆》单元测试卷(有答案)AlPqKP

沪科版九年级数学下册第24章圆单元测试卷学校:__________ 班级:__________ 姓名:__________ 考号:__________一、选择题(本题共计 9 小题,每题 3 分,共计27分,)1. 已知一个圆锥的侧面积是,母线为,则这个圆锥的底面半径是()A. B. C. D.2. 如图,点为弦上的一点,连接,过点作,交于.若,,则的长是()A. B.C. D.无法确定3. 如图,与相切于点,的延长线交于点,连接,若,,则的长为()A. B. C. D.4. 在第二届昆明国际旅游节前,为美化城市,需在绿化带上放置一定数量的圆柱形花柱,花柱底面直径米,高为米,则一个花柱的侧面积是()A.米B.米C.米D.米5. 已知半径为的圆与直线没有公共点,那么圆心到直线的距离满足()A. B. C. D.6. 等腰中,,是腰上一点(不同于、),以为半径,作圆交边于,是边上一点,连接,①若是的直径,且是的切线,则;②若是的直径,且,则是的切线;③若是的切线,且,则是的直径.上述命题中,正确的命题是()A ①②③B ①②C ①③D ②③7. 下列说法正确的是()A.三点确定一个圆B.经过圆心的直线是圆的对称轴C.和半径垂直的直线是圆的切线D.三角形的内心到三角形三个顶点距离相等8. 将绕点旋转得到,则下列作图正确的是()A. B.C. D.9. 下列说法中正确的是()A.垂直于半径的直线是圆的切线B.圆的切线垂直于半径C.经过半径的外端的直线是圆的切线D.圆的切线垂直于过切点的半径二、填空题(本题共计 11 小题,每题 3 分,共计33分,)10. 如图,已知是圆的弦,是圆的切线,的平分线交圆于,连并延长交于点,若,则________度,________度.11. 平移也可以通过连续多次轴对称变换来实现,水平或竖直方向的平移只需通过________次轴对称变换即可完成.12. 的半径为,的半径为,圆心距,这两圆的位置关系是________.13. 在同一平面内与已知点的距离等于的所有点组成的图形是________.14. 如图,四边形的边、、、和分别切于、、、,且,,则四边形周长为________.15. 如图,为的直径,,垂足为点,,垂足为,,的半径是________.16. 如图,在中,若于,为直径,试填写一个你认为正确的结论:________.17. 如图,从外一点引的两条切线、,切点分别是、,若,是上的一个动点(点与、两点不重合),过点作的切线,分别交、于点、,则的周长是________.18. 在中,,,,是中线,以为圆心,以长为半径画圆,则点与的位置关系是________.19. 如图,圆柱形水管内积水的水面宽度,为的中点,圆柱形水管的半径为,则此时水深的长度为________.20. 如图,四边形内接于,是直径,,,则________度.三、解答题(本题共计 5 小题,每题 12 分,共计60分,)21.某地出土一个明代残破圆形瓷盘,为复制该瓷盘需确定其圆心和半径,请在图中用直尺和圆规画出瓷盘的圆心(不要求写作法、证明和讨论,但要保留作图痕迹)22. 如图,在中,,点在边上,过点且分别与边、相交于点、,为的切线,交于点.求证:;若,,,求的长.23. 如图,是的直径,的平分线交于点,交于点.已知,度.求的长;求点到的距离;求的长.24. 如图,是的外接圆,的平分线与相交于点,过点作的切线,与的延长线交于点,与的延长线交于点.试判断与的位置关系,并说明理由;若,,求的半径.25. 已知:如图,在中,度.是上一点,以为圆心、为半径的圆与交于点,与切于点,,.设是线段上的动点(与、不重合),.求的长;求为何值时,以、、为顶点的三角形是等腰三角形;在点的运动过程中,与的外接圆能否相切?若能,请证明;若不能,请说明理由;请再提出一个与动点有关的数学问题,并直接写出答案.答案1. B2. A3. B4. B5. B6. B7. B8. D9. D10.11. 两12. 内切13. 以点为圆心,长为半径的圆14.15.16. ,或,或,(只要填对其中一个即给满分)17.18. 在上19.20.21. 解:在圆上取两个弦,根据垂径定理,垂直平分弦的直线一定过圆心,所以作出两弦的垂直平分线即可.22. 证明:∵ ,∴ ,∵ ,∴ ,∴ ,∴ ,∵直线是切线,∴ ,∴ ,∴ .解:连接.∵ 是直径,∴ ,∵ ,∴ ,∴ ,∴,又∵ ,∴,∴ ,∴ .23. 解:因为是的直径,所以度.又因为,,则.由可知,,由于是的平分线,所以,则有,所以是等腰三角形.连接,则就是点到的距离.在中,.故所求点到的距离为.因为,∴ ,则,由于是的平分线,,所以,那么.24. 的半径为.25. 当或时,以、、为顶点的三角形与相似.②当为何值时,的和最小;答:当时,的和最小.。

精品试卷沪科版九年级数学下册第24章圆定向练习试卷(含答案解析)

精品试卷沪科版九年级数学下册第24章圆定向练习试卷(含答案解析)

沪科版九年级数学下册第24章圆定向练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列判断正确的个数有()①直径是圆中最大的弦;②长度相等的两条弧一定是等弧;③半径相等的两个圆是等圆;④弧分优弧和劣弧;⑤同一条弦所对的两条弧一定是等弧.A.1个B.2个C.3个D.4个2、点P(3,﹣2)关于原点O的对称点P 的坐标是()A.(3,﹣2) B.(﹣3,2) C.(﹣3,﹣2) D.(2,3)3、下列图形中,可以看作是中心对称图形的是()A.B.C.D.4、下列四个图案中,是中心对称图形的是()A.B.C.D.5、如图,四边形ABCD内接于⊙O,若∠ADC=130°,则∠AOC的度数为()A.25°B.80°C.130°D.100°6、下列图形中,既是中心对称图形又是抽对称图形的是()A .B .C .D .7、如图所示四个图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .8、如图,C 与AOB ∠的两边分别相切,其中OA 边与C 相切于点P .若90AOB ∠=︒,4OP =,则OC 的长为( )A .8B .C .D .9、下列图形中,可以看作是中心对称图形的是( )A .B .C .D .10、如图,AB 是O 的直径,C 、D 是O 上的两点,若130BOC ∠=︒,则ADC ∠=( )A.15°B.20°C.25°D.30°第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正六边形ABCDEF内接于⊙O,若⊙O的周长为8π,则正六边形的边长为________.2、若一次函数y=kx+8(k≠0)的图象与x轴、y轴分别交于A、B两点,当k的取值变化时,点A 随之在x轴上运动,将线段AB绕点B逆时针旋转90°得到BQ,连接OQ,则OQ长的最小值是 ___.3、如图,PM,PN分别与⊙O相切于A,B两点,C为⊙O上异于A,B的一点,连接AC,BC.若∠P=58°,则∠ACB的大小是___________.4、如图,以面积为20cm2的Rt△ABC的斜边AB为直径作⊙O,∠ACB的平分线交⊙O于点D,若CDAC+BC=_____.AB5、如图所示是一个圆锥在某平面上的正投影,则该圆锥的侧面积是________三、解答题(5小题,每小题10分,共计50分)1、如图,△ABC内接于⊙O,D是⊙O的直径AB的延长线上一点,∠DCB=∠OAC.过圆心O作BC的平行线交DC的延长线于点E.(1)求证:CD是⊙O的切线;(2)若CD=4,CE=6,求⊙O的半径及tan∠OCB的值.2、如图,AB是⊙O的一条弦,E是AB的中点,过点E作EC OA于点C,过点B作O的切线交CE的延长线于点D.(1)求证:DB =DE ;(2)若AB =12,BD =5,求AC 长.3、如图AB 是⊙O 的直径,弦CD ⊥AB 于点E ,作∠FAC=∠BAC ,过点C 作CF ⊥AF 于点F .(1)求证:CF 是⊙O 的切线;(2)若sin ∠CAB =25,求BCD AFC S S =_______.(直接写出答案)4、请阅读下列材料,并完成相应的任务:阿基米德是有史以来最伟大的数学家之一,他与牛顿、高斯并称为三大数学王子.阿拉伯Al-Binmi (973-1050 年)的译文中保存了阿基米德折弦定理的内容,苏联在1964年根据Al-Binmi 详本出版了俄文版《阿基米德全集》.第一题就是阿基米德折弦定理.阿基米德折弦定理:如图1,AB 和BC 是O 的两条弦(即折线ABC 是圆的一条折弦),BC AB >, M 是ABC 的中点,则从M 向BC 所作垂线的垂足D 是折弦ABC 的中点,即CD AB BD =+.下面是运用“截长法”证明CD AB BD =+的部分证明过程.证明:如图2,在CB 上截取CG AB =,连接,,MA MBMC 和MG .M是ABC 的中点,MA MC ∴=…任务:(1)请按照上面的证明思路,写出该证明部分;(2)填空:如图3,已知等边ABC 内接于O ,2AB =,D 为AC 上一点,45ABD ︒∠=,AE BD ⊥于点E ,则BDC 的周长是_________.5、如图,在等边三角形ABC 中,点P 为△ABC 内一点,连接AP ,BP ,CP ,将线段AP 绕点A 顺时针旋转60°得到'AP ,连接PP BP '', .(1)用等式表示BP ' 与CP 的数量关系,并证明;(2)当∠BPC =120°时,①直接写出P BP '∠ 的度数为 ;②若M 为BC 的中点,连接PM ,请用等式表示PM 与AP 的数量关系,并证明.-参考答案-一、单选题1、B【详解】①直径是圆中最大的弦;故①正确,②同圆或等圆中长度相等的两条弧一定是等弧;故②不正确③半径相等的两个圆是等圆;故③正确④弧分优弧、劣弧和半圆,故④不正确⑤同一条弦所对的两条弧可位于弦的两侧,故不一定相等,则⑤不正确.综上所述,正确的有①③故选B【点睛】本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键.2、B【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(﹣x,﹣y),即关于原点的对称点,横纵坐标都变成相反数”解答.解:点P(3,﹣2)关于原点O的对称点P'的坐标是(﹣3,2).故选:B.【点睛】本题主要考查了关于原点对称的点的坐标的特点,正确掌握横纵坐标的关系是解题关键.3、C【分析】根据中心对称图形的定义进行逐一判断即可.【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C.【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.4、A【分析】中心对称图形是指绕一点旋转180°后得到的图形与原图形能够完全重合的图形,由此判断即可.【详解】解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,【点睛】本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键.5、D【分析】根据圆内接四边形的性质求出∠B的度数,根据圆周角定理计算即可.【详解】解:∵四边形ABCD内接于⊙O,∴∠B+∠ADC=180°,∵∠ADC=130°,∴∠B=50°,由圆周角定理得,∠AOC=2∠B=100°,故选:D.【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键.6、B【详解】解:A.是轴对称图形,不是中心对称图形,故此选项不符合题意;B.既是轴对称图形,也是中心对称图形,故此选项符合题意;C.是轴对称图形,不是中心对称图形,故此选项不符合题意;D.不是轴对称图形,是中心对称图形,故此选项不符合题意;故选:B.【点睛】本题主要考查了中心对称图形和轴对称图形的概念,解题的关键是判断轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合.7、D【分析】根据轴对称图形和中心对称图形的概念,对各选项分析判断即可得解.把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.【详解】解:A.不是轴对称图形,是中心对称图形,故本选项不符合题意;B.既不是轴对称图形,也不是中心对称图形,故本选项不符合题意;C.不是轴对称图形,是中心对称图形,故本选项不符合题意;D.既是轴对称图形,又是中心对称图形,故本选项符合题意.故选:D.【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.8、C【分析】如图所示,连接CP,由切线的性质和切线长定理得到∠CPO=90°,∠COP=45°,由此推出CP=OP=4,再根据勾股定理求解即可.【详解】解:如图所示,连接CP,∵OA,OB都是圆C的切线,∠AOB=90°,P为切点,∴∠CPO=90°,∠COP=45°,∴∠PCO=∠COP=45°,∴CP=OP=4,∴OC=,故选C.【点睛】本题主要考查了切线的性质,切线长定理,等腰直角三角形的性质与判定,勾股定理,熟知切线长定理是解题的关键.9、B【分析】把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,根据中心对称图形的概念求解.【详解】A.不是中心对称图形,故本选项不符合题意;B.是中心对称图形,故本选项符合题意;C.不是中心对称图形,故本选项不符合题意;D.不是中心对称图形,故本选项不符合题意.故选:B.【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合.10、C【分析】根据圆周角定理得到∠BDC的度数,再根据直径所对圆周角是直角,即可得到结论.【详解】解:∵∠BOC=130°,∴∠BDC=12∠BOC=65°,∵AB是⊙O的直径,∴∠ADB=90°,∴∠ADC=90°-65°=25°,故选:C.【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键.二、填空题1、4【分析】由周长公式可得⊙O半径为4,再由正多边形的中心角公式可得正六边形ABCDEF中心角为60 ,即可知正六边形ABCDEF为6个边长为4的正三角形组成的,则可求得六边形ABCDEF边长.【详解】∵⊙O的周长为8π∴⊙O半径为4∵正六边形ABCDEF内接于⊙O∴正六边形ABCDEF 中心角为360606︒=︒ ∴正六边形ABCDEF 为6个边长为4的正三角形组成的∴正六边形ABCDEF 边长为4.故答案为:4.【点睛】本题考查了正多边形的中心角公式,正n 边形的每个中心角都等于360n︒,由中心角为60︒得出正六边形ABCDEF 为6个边长为4的正三角形组成的是解题的关键.2、8【分析】 根据一次函数解析式可得:80A k ⎛⎫- ⎪⎝⎭,,()08B ,,过点B 作MN x ∥轴,过点A 作AM MN ⊥,过点Q 作QN MN ⊥,由旋转的性质可得AB BQ =,90ABQ ∠=︒,依据全等三角形的判定定理及性质可得:ΔΔΔΔ≅ΔΔΔΔ,MA NB =,NQ MB =,即可确定点Q 的坐标,然后利用勾股定理得出OQ 的长度,最后考虑在什么情况下取得最小值即可.【详解】解:函数8y kx =+得:80A k ⎛⎫- ⎪⎝⎭,,()08B ,,过点B 作MN x ∥轴,过点A 作AM MN ⊥,过点Q 作QN MN ⊥,连接OQ ,如图所示:将线段BA 绕点B 逆时针旋转90︒得到线段BQ ,∴AB BQ =,90ABQ ∠=︒,∴9090ABM MAB MBA NBQ ∠+∠=︒∠+∠=︒,,∴MAB NBQ ∠=∠,在ΔΔΔΔ与ΔΔΔΔ中,BMA QNB MAB NBQ AB BQ ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴ΔΔΔΔ≅ΔΔΔΔ,∴8MA NB ==,8NQ MB k==, 点Q 的坐标为88,8k ⎛⎫- ⎪⎝⎭,∴OQ =当1k =或1k =-时,OQ 取得最小值为8,故答案为:8.【点睛】题目主要考查一次函数与几何的综合问题,包括与坐标轴的交点,旋转,全等三角形的判定和性质,勾股定理等,理解题意,作出相应图形是解题关键.3、61︒或119︒【分析】如图,连接,,OA OB 利用切线的性质结合四边形的内角和定理求解122,AOB 再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.【详解】解:如图,连接,,OA OB 12,C C (即C )分别在优弧与劣弧上,PM ,PN 分别与⊙O 相切于A ,B 两点,90,PAO PBO ∴∠=∠=︒58,P360909058122,AOB 12161,18061119.2AC B AOB AC B 故答案为:61︒或119︒【点睛】本题考查的是切线的性质定理,圆周角定理的应用,圆的内接四边形的性质,四边形的内角和定理的应用,求解122AOB ∠=︒是解本题的关键.4、##【分析】连接CO ,延长交O 于点E ,连接DE ,先根据圆周角定理和圆的性质可得,90AB CE CDE =∠=︒,再根据特殊角的三角函数值可得30DCE ∠=︒,从而可得15BAC ACO ∠=∠=︒,作15ABF BAC ∠=∠=︒,交AC 于点F ,从而可得,30AF BF BFC =∠=︒,然后在Rt BCF 中,利用直角三角形的性质和勾股定理可得2,BF BC CF ==,设cm(0)BC x x =>,从而可得(2cm AC x =,利用直角三角形的面积公式可求出x 的值,由此即可得.【详解】解:如图,连接CO ,延长交O 于点E ,连接DE ,,AB CE 都是O 的直径,,90AB CE CDE ∴=∠=︒, 32CD AB =CD CE ∴=在Rt CDE △中,cos DCE CD CE ∠== 30DCE ∴∠=︒,CD 平分ACB ∠,且90ACB ∠=︒,45ACD ∴∠=︒,15ACO ACD DCE ∴∠=∠-∠=︒,OA OC =,15BAC ACO ∴∠=∠=︒,如图,作15ABF BAC ∠=∠=︒,交AC 于点F ,,30AF BF BFC ABF BAC ∴=∠=∠+∠=︒,∴在Rt BCF 中,2,BF BC CF ==,(2AC AF CF BF CF BC ∴=+=+=+,设cm(0)BC x x =>,则(2cm AC x =,1202Rt ABC S AC BC =⋅=, 1(2202x x ∴⋅=,解得x=0x=-(不符题意,舍去),则(2(3AC BC x x+=++==,故答案为:.【点睛】本题考查了特殊角的三角函数值、圆周角定理、含30角的直角三角形的性质等知识点,通过作辅助线,构造直角三角形和等腰三角形是解题关键.5、【分析】122S l r rl=⋅=ππ即可得出圆锥侧面积为.【详解】∵ABC是一个圆锥在某平面上的正投影∴ABC为等腰三角形∵AD⊥BC∴122CD BD BC===在Rt ADC 中有A C =即AC由圆锥侧面积公式有2S rl ==⨯=ππ.故答案为:。

精品试卷沪科版九年级数学下册第24章圆专项训练试卷(精选含答案)

精品试卷沪科版九年级数学下册第24章圆专项训练试卷(精选含答案)

沪科版九年级数学下册第24章圆专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,O的半径为6,将劣弧沿弦AB翻折,恰好经过圆心O,点C为优弧AB上的一个动点,则ABC面积的最大值是()A.B.C.D.2、如图,直线334y x=--交x轴于点A,交y轴于点B,点P是x轴上一动点,以点P为圆心,以1个单位长度为半径作⊙P,当⊙P与直线AB相切时,点P的坐标是()A .7(,0)3- B .17(,0)3- C .7(,0)3-或17(,0)3- D .(﹣2,0)或(﹣5,0)3、在圆内接四边形ABCD 中,∠A 、∠B 、∠C 的度数之比为2:4:7,则∠B 的度数为( )A .140°B .100°C .80°D .40°4、下列图形中,既是轴对称图形又是中心对称图形的是( )A .B .C .D .5、如图,AB 是O 的直径,弦CD 交AB 于点P ,3AP =,7BP =,30APC ∠=︒,则CD 的长为( )A .B .CD .86、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD 与直尺的一边重合,光盘与直尺相切于点B ,与直角三角板相切于点C ,且3AB =,则光盘的直径是( )A.6 B.C.3 D.7、如图图案中,不是中心对称图形的是()A.∽B.C.>D.=8、某村东西向的废弃小路/两侧分别有一块与l距离都为20 m的宋代碑刻A,B,在小路l上有一座亭子P.A,P分别位于B的西北方向和东北方向,如图所示.该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小.人工湖建成后,亭子P到湖岸的最短距离是()A.20 m B.mC.( - 20)m D.(m9、如图,PA,PB是⊙O的切线,A,B是切点,点C为⊙O上一点,若∠ACB=70°,则∠P的度数为()A.70°B.50°C.20°D.40°10、将等边三角形绕其中心旋转n时与原图案完全重合,那么n的最小值是()A.60 B.90 C.120 D.180第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图AB 为⊙O 的直径,点P 为AB 延长线上的点,过点P 作⊙O 的切线PE ,切点为M ,过A 、B 两点分别作PE 垂线AC 、BD ,垂足分别为C 、D ,连接AM ,则下列结论正确的是______(写所有正确论的号)①AM 平分∠CAB ;②AC AM AM AB =;③若AB =4,∠APE =30°,则BM 的长为3π;④若AC =3BD ,则有tan ∠MAP2、如图,在平行四边形ABCD 中,7AB =,3AD =,120A ︒∠=,以点B 为圆心,BC 为半径的圆弧交AB 于点E ,连接DE ,则图中黑色阴影部分的面积为________.(结果保留π)3、如图,在⊙O 中,弦AB ⊥OC 于E 点,C 在圆上,AB =8,CE =2,则⊙O 的半径AO =___________.4、如图,半圆O 中,直径AB =30,弦CD ∥AB ,CD 长为6π,则由CD 与AC ,AD 围成的阴影部分面积为_______.5、圆锥的母线长为l ,底面圆半径为r ,则全面积为______.三、解答题(5小题,每小题10分,共计50分)1、如图,已知在ABC 中,AB AC =,D 、E 是BC 边上的点,将ABD △绕点A 旋转,得到ACD '△,连接D E '.(1)当120BAC ∠=︒时,60DAE ∠=︒时,求证:DE D E '=;(2)当DE D E '=时,DAE ∠与BAC ∠有怎样的数量关系?请写出,并说明理由.(3)在(2)的结论下,当90BAC ∠=︒,BD 与DE 满足怎样的数量关系时,D EC '△是等腰直角三角形?(直接写出结论,不必证明)2、如图,在等边ABC 中,D 为BC 边上一点,连接AD ,将ACD △沿AD 翻折得到AED ,连接BE 并延长交AD 的延长线于点F ,连接CF .(1)若20CAD ∠=︒,求CBF ∠的度数;(2)若a CAD ∠=,求CBF ∠的大小;(3)猜想CF ,BF ,AF 之间的数量关系,并证明.3、如图,点A 是O 外一点,过点A 作出O 的一条切线.(使用尺规作图,作出一条即可,不要求写出作法,不要求证明,但要保留作图痕迹)4、解题与遐想.如图,Rt △ABC 的内切圆与斜边AB 相切于点D ,AD =4,BD =5.求Rt △ABC 的面积.王小明:这道题算出来面积刚好是20,太凑巧了吧.刚好是4×5=20,有种白算的感觉… 赵丽华:我把4和5换成m 、n 再算一遍,△ABC 的面积总是m •n !确实非常神奇了…数学刘老师:大家想一想,既然结果如此简单到极致,不计算能不能得到呢?比如,拼图?霍佳:刘老师,我在想另一个东西,这个图能不能尺规画出来啊感觉图都定了.我怎么想不出来呢?计算验证(1)通过计算求出Rt △ABC 的面积.拼图演绎(2)将Rt △ABC 分割放入矩形中(左图),通过拼图能直接“看”出“20”请在图中画出拼图后的4个直角三角形甲、乙、丙、丁的位置,作必要标注并简要说明.尺规作图(3)尺规作图:如图,点D 在线段AB 上,以AB 为斜边求作一个Rt △ABC ,使它的内切圆与斜边AB 相切于点D .(保留作图的痕迹,写出必要的文字说明)5、如图,AB BC =,ABC BCE α∠=∠=,点D 是BC 上一点,AD 与BE 相交于点F ,且BFD α∠=.(1)求证:BFD ABD ∽△△; (2)求证:AD BE =;(3)若点D 是BC 中点,连接FC ,求证:FC 平分DFE ∠.-参考答案-一、单选题1、C【分析】如图,过点C作CT⊥AB于点T,过点O作OH⊥AB于点H,交⊙O于点K,连接AO、AK,解直角三角形求出AB,求出CT的最大值,可得结论.【详解】解:如图,过点C作CT⊥AB于点T,过点O作OH⊥AB于点H,交⊙O于点K,连接AO、AK,由题意可得AB垂直平分线段OK,∴AO=AK,OH=HK=3,∵OA=OK,∴OA=OK=AK,∴∠OAK=∠AOK=60°,∴AH=OA×sin∵OH⊥AB,∴AH=BH,∴AB=2AH∵OC+OH⩾CT,∴CT⩽6+3=9,∴CT的最大值为9,∴△ABC 的面积的最大值为192⨯故选:C.【点睛】本题考查垂径定理、三角函数、三角形的面积、垂线段最短等知识,解题的关键是求出CT 的最大值,属于中考常考题型.2、C【分析】由题意根据函数解析式求得A (-4,0),B (0.-3),得到OA =4,OB =3,根据勾股定理得到AB =5,设⊙P 与直线AB 相切于D ,连接PD ,则PD ⊥AB ,PD =1,根据相似三角形的性质即可得到结论.【详解】 解:∵直线334y x =--交x 轴于点A ,交y 轴于点B ,∴令x =0,得y =-3,令y =0,得x =-4,∴A (-4,0),B (0,-3),∴OA =4,OB =3,∴AB =5,设⊙P 与直线AB 相切于D ,连接PD ,则PD ⊥AB ,PD =1,∵∠ADP =∠AOB =90°,∠PAD =∠BAO ,∴△APD ∽△ABO , ∴PD AP OB AB=, ∴135AP =, ∴AP = 53,∴OP = 73或OP = 173, ∴P 7(,0)3-或P 17(,0)3-, 故选:C .【点睛】本题考查切线的判定和性质,一次函数图形上点的坐标特征,相似三角形的判定和性质,正确的理解题意并运用数形结合思维分析是解题的关键.3、C【分析】180A C ∠+∠=︒,::2:4:7A B C ∠∠∠=,40A ∠=︒,进而求解B 的值.【详解】解:由题意知180A C ∠+∠=︒∵::2:4:7A B C ∠∠∠=∴():1802:7A A ∠-∠=∴40A ∠=︒∵:2:4A B ∠∠=∴80B ∠=︒故选C .【点睛】本题考查了圆内接四边形中对角互补.解题的关键在于根据角度之间的数量关系求解.4、D【详解】解:A .不是轴对称图形,也不是中心对称图形,故本选项不符合题意;B .不是轴对称图形,是中心对称图形,故本选项不符合题意;C .是轴对称图形,不是中心对称图形,故本选项不符合题意;D .既是轴对称图形,又是中心对称图形,故本选项符合题意.故选:D .【点睛】本题考查了中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.5、A【分析】过点O 作OE CD ⊥于点E ,连接OD ,根据已知条件即可求得,OD OP ,根据含30度角的直角三角形的性质即可求得OE ,根据勾股定理即可求得DE ,根据垂径定理即可求得CD 的长.【详解】解:如图,过点O 作OE CD ⊥于点E ,连接OD ,AB 是O 的直径,3AP =,7BP =,115,53222OD AB OP AB AP ∴===-=-= OE CD ⊥,30APC ∠=︒112OE OP ∴==在Rt ODE △中,DE =OE CD ⊥2CD DE ∴==故选A【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.6、D【分析】如图所示,设圆的圆心为O ,连接OC ,OB ,由切线的性质可知∠OCA =∠OBA =90°,OC =OB ,即可证明Rt △OCA ≌Rt △OBA 得到∠OAC =∠OAB ,则()1==180=602OAC OAB DAC ︒-︒∠∠∠,∠AOB =30°,推出OA=2AB =6,利用勾股定理求出OB =O 的直径为【详解】解:如图所示,设圆的圆心为O ,连接OC ,OB ,∵AC ,AB 都是圆O 的切线,∴∠OCA =∠OBA =90°,OC =OB ,又∵OA =OA ,∴Rt △OCA ≌Rt △OBA (HL ),∴∠OAC =∠OAB ,∵∠DAC =60°, ∴()1==180=602OAC OAB DAC ︒-︒∠∠∠, ∴∠AOB =30°,∴OA =2AB =6,∴OB =∴圆O 的直径为故选D .【点睛】本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.7、C【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解.【详解】解:A、是中心对称图形,故A选项不合题意;B、是中心对称图形,故B选项不合题意;C、不是中心对称图形,故C选项符合题意;D、是中心对称图形,故D选项不合题意;故选:C.【点睛】本题考查了中心对称图形的知识,解题的关键是掌握中心对称图形的概念.中心对称图形是要寻找对称中心,旋转180°后重合.8、D【分析】根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可.【详解】∵人工湖面积尽量小,∴圆以AB为直径构造,设圆心为O,过点B作BC⊥l,垂足为C,∵A,P分别位于B的西北方向和东北方向,∴∠ABC=∠PBC=∠BOC=∠BPC=45°,∴OC=CB=CP=20,∴OP=40,OB∴最小的距离PE=PO-OE m),故选D.【点睛】本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键.9、D【分析】首先连接OA,OB,由PA,PB为⊙O的切线,根据切线的性质,即可得∠OAP=∠OBP=90°,又由圆周角定理,可求得∠AOB的度数,继而可求得答案.【详解】解:连接OA,OB,∵PA,PB为⊙O的切线,∴∠OAP=∠OBP=90°,∵∠ACB=70°,∴∠AOB =2∠P =140°,∴∠P =360°-∠OAP -∠OBP -∠AOB =40°.故选:D .【点睛】此题考查了切线的性质与圆周角定理,注意掌握辅助线的作法和数形结合思想的应用.10、C【分析】根据旋转对称图形的概念(把一个图形绕着一个定点旋转一个角度后,与初始图形重合,这种图形叫做旋转对称图形,这个定点叫做旋转对称中心,旋转的角度叫做旋转角),找到旋转角,求出其度数.【详解】解:等边三角形绕其中心旋转n 时与原图案完全重合,因而绕其中心旋转的最小度数是3603=120°. 故选C .【点睛】本题考查了根据旋转对称性,掌握旋转的性质是解题的关键.二、填空题1、①②④【分析】连接OM ,由切线的性质可得OM PC ⊥,继而得∥OM AC ,再根据平行线的性质以及等边对等角即可求得CAM OAM ∠=∠,由此可判断①;通过证明ACM AMB ∽,根据相似三角形的对应边成比例可判断②;求出60MOP ∠=︒,利用弧长公式求得BM 的长可判断③;由BD PC ⊥,AC PC ⊥,OM PC ⊥,可得∥∥BD AC OM ,继而可得PB OB AO ==,PD DM CM ==,进而有2OM BD =,在Rt PBD 中,利用勾股定理求出PD 的长,可得CM DM DP ==,由此可判断④.【详解】解:连接OM ,∵PE 为O 的切线,∴OM PC ⊥,∵AC PC ⊥,∴∥OM AC ,∴CAM AMO ∠=∠,∵OA OM =,OAM AMO ∠=∠,∴CAM OAM ∠=∠,即AM 平分CAB ∠,故①正确;∵AB 为O 的直径,∴90AMB ∠=︒,∵CAM MAB ∠=∠,ACM AMB ∠=∠,∴ACM AMB ∽, ∴AC AM AM AB=, ∴2·AM AC AB =,故②正确;∵30APE ∠=︒,∴903060MOP OMP APE ∠=∠-∠=︒-︒=︒,∵4AB =,∴2OB =,∴BM 的长为60π22π1803⨯=,故③错误; ∵BD PC ⊥,AC PC ⊥,OM PC ⊥,∴∥∥BD AC OM ,∴PBD PAC ∽, ∴13PB BD PA AC ==, ∴13PB PA =,又∵AO BO =,AO BO AB +=,AB PB PA +=,∴PB OB AO ==,又∵∥∥BD AC OM ,∴PD DM CM ==,设BD a =,则3AC a =,∴22OM BD a ==,在Rt PBD 中,2PB BO OM a ===,∴PD =,∴CM DM DP ===,由①可得CAM OAM ∠=∠,tan tan CM MAP CAM AC ∠=∠==, 故④正确,故答案为:①②④.【点睛】本题考查了切线的性质,平行线分线段成比例定理,相似三角形的判定与性质,勾股定理等,正确添加辅助线,熟练掌握和灵活运用相关知识是解题的关键.232π 【分析】过点C 作CH AB ⊥于点H ,根据正弦定义解得CH 的长,再由扇形面积公式、三角形的面积公式解题即可.【详解】解:过点C 作CH AB ⊥于点H ,在平行四边形ABCD 中,120A ∠=︒18012060B ∴∠=︒-︒=︒=sin sin 603CH BC B AD ∴⋅=⨯︒=平行四边形ABCD 的面积为:7AB CH ⨯= 图中黑色阴影部分的面积为:()2216016037323602360BC AE CH ππ⋅⨯⋅⋅-=⨯-=32π,32π. 【点睛】本题考查平行四边形的性质、扇形面积等知识,是基础考点,掌握相关知识是解题关键.3、5【分析】设⊙O的半径为r,则OA=r,OD=r-2,先由垂径定理得到AD=BD=12AB=4,再由勾股定理得到42+(r-2)2=r2,然后解方程即可.【详解】解:设⊙O的半径为r,则OC=OA=r,OE=OC-CE=r-2,∵OC⊥AB,AB=8,∴AE=BE=12AB=4,在Rt△OAE中,由勾股定理得:42+(r-2)2=r2,解得:r=5,即⊙O的半径长为5,故答案为:5.【点睛】本题考查了垂径定理:垂直于弦的直径平分这条弦,并且平分弦所对的两条弧.也考查了勾股定理.4、45【分析】连接OC,OD,根据同底等高可知S△ACD=S△OCD,把阴影部分的面积转化为扇形OCD的面积,利用扇形的面积公式S=12lr来求解.【详解】解:连接OC,OD,∵直径AB =30,∴OC =OD =130152⨯=,∴CD ∥AB ,∴S △ACD =S △OCD ,∵CD 长为6π,∴阴影部分的面积为S 阴影=S 扇形OCD =1615452ππ⨯⨯=,故答案为:45π.【点睛】本题主要考查了扇形的面积公式,正确理解阴影部分的面积=扇形COD 的面积是解题的关键. 5、2r rl ππ+【分析】根据圆锥的展开图为扇形,结合弧长公式、圆周长的求解公式、面积的求解公式,圆锥侧面积的求解公式可得出答案.【详解】解:圆锥的侧面展开图是一个扇形,扇形的半径等于圆锥的母线长,扇形的弧长等于圆锥的底面圆周长,故可得,这个扇形的半径为l ,扇形的弧长为2r π, 圆锥的侧面积为122S r l rl ππ=⋅⋅=侧; 圆锥的全面积为圆锥的底面积+侧面积:2S S S r rl ππ=+=+侧全底.故答案为:2r rlππ+.【点睛】本题考查了圆锥的计算,解题的关键是掌握圆锥侧面展开图是个扇形,要熟练掌握扇形与圆锥之间的联系,难度一般.三、解答题∠BAC,见解析;(3)DE,见解析1、(1)见解析;(2)∠DAE=12【分析】(1)根据旋转的性质可得AD=AD′,∠CAD′=∠BAD,然后求出∠D′AE=60°,从而得到∠DAE=∠D′AE,再利用“边角边”证明△ADE和△AD′E全等,根据全等三角形对应边相等证明即可;(2)根据旋转的性质可得AD=AD′,再利用“边边边”证明△ADE和△AD′E全等,然后根据全等三角形对应角相等求出∠DAE=∠D′AE,然后求出∠BAD+∠CAE=∠DAE,从而得解;(3)求出∠D′CE倍可得D′E′,再根据旋转的性质解答即可.【详解】(1)证明:∵△ABD绕点A旋转得到△ACD′,∴AD=AD′,∠CAD′=∠BAD,∵∠BAC=120°,∠DAE=60°,∴∠D′AE=∠CAD′+∠CAE=∠BAD+∠CAE=∠BAC−∠DAE=120°−60°=60°,∴∠DAE=∠D′AE,在△ADE 和△AD ′E 中,AD AD DAE D AE AE AE '⎧⎪∠∠'⎨⎪⎩=== , ∴△ADE ≌△AD ′E (SAS ),∴DE =D ′E ;(2)解:∠DAE =12 ∠BAC .理由如下:在△ADE 和△AD ′E 中,AD AD AE AE DE D E '⎧⎪⎨⎪'⎩=== , ∴△ADE ≌△AD ′E (SSS ),∴∠DAE =∠D ′AE ,∴∠BAD +∠CAE =∠CAD ′+∠CAE =∠D ′AE =∠DAE ,∴∠DAE =12∠BAC ;(3)解:∵∠BAC =90°,AB =AC ,∴∠B =∠ACB =∠ACD ′=45°,∴∠D ′CE =45°+45°=90°,∵△D ′EC 是等腰直角三角形,∴D ′E′,由(2)DE =D ′E ,∵△ABD 绕点A 旋转得到△ACD ′,∴BD =C ′D ,∴DE BD .【点睛】本题考查了几何变换的综合题,旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,熟记旋转变换只改变图形的位置不改变图形的形状与大小找出三角形全等的条件是解题的关键.2、(1)20°;(2)CBF α∠=;(3)AF = CF +BF ,理由见解析【分析】(1)由△ABC 是等边三角形,得到AB =AC ,∠BAC =∠ABC =60°,由折叠的性质可知,∠EAD =∠CAD =20°,AC =AE ,则∠BAE =∠BAC -∠EAD -∠CAD =20°,AB =AE ,()1180=802ABE AEB BAE ==︒-︒∠∠∠,∠CBF =∠ABE -∠ABC =20°; (2)同(1)求解即可;(3)如图所示,将△ABF 绕点A 逆时针旋转60°得到△ACG ,先证明△AEF ≌△ACF 得到∠AFE =∠AFC ,然后证明∠AFE =∠AFC =60°,得到∠BFC =120°,即可证明F 、C 、G 三点共线,得到△AFG 是等边三角形,则AF =GF =CF +CG =CF +BF .【详解】解:(1)∵△ABC 是等边三角形,∴AB =AC ,∠BAC =∠ABC =60°,由折叠的性质可知,∠EAD =∠CAD =20°,AC =AE ,∴∠BAE =∠BAC -∠EAD -∠CAD =20°,AB =AE , ∴()1180=802ABE AEB BAE ==︒-︒∠∠∠, ∴∠CBF =∠ABE -∠ABC =20°;(2)∵△ABC 是等边三角形,∴AB =AC ,∠BAC =∠ABC =60°,由折叠的性质可知,EAD CAD α∠=∠=,AC =AE ,∴602BAE BAC EAD CAD α∠=∠-∠-∠=︒- ,AB =AE , ∴()1180=602ABE AEB BAE α==︒-︒+∠∠∠, ∴CBF ABE ABC α∠=∠-∠=;(3)AF = CF +BF ,理由如下:如图所示,将△ABF 绕点A 逆时针旋转60°得到△ACG ,∴AF =AG ,∠FAG =60°,∠ACG =∠ABF ,BF =CG在△AEF 和△ACF 中,=AE AC EAF CAF AF AF =⎧⎪∠∠⎨⎪=⎩, ∴△AEF ≌△ACF (SAS ),∴∠AFE =∠AFC ,∵∠CBF +∠BCF +∠BFD +∠CFD =180°,∠CAF +∠CFA +∠ACD +∠CFD =180°,∴∠BFD =∠ACD =60°,∴∠AFE =∠AFC =60°,∴∠BFC =120°,∴∠BAC +∠BFC =180°,∴∠ABF +∠ACF =180°,∴∠ACG +∠ACF =180°,∴F 、C 、G 三点共线,∴△AFG 是等边三角形,∴AF =GF =CF +CG =CF +BF .【点睛】本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键.3、见解析【分析】先作线段OA的垂直平分线.确定OA的中点,再以中点为圆心,OA一半为半径作圆交O于B点,然后作直线AB,则根据圆周角定理可得AB为所求.【详解】如图,直线AB就是所求作的,(作法不唯一,作出一条即可,需要有作图痕迹)【点睛】本题考查了作图 复杂作图,解题的关键是掌握复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.4、(1)S△ABC=20;(2)见解析;(3)见解析.【分析】(1)设⊙O的半径为r,由切线长定理得,AE=AD=4,BF=BD=5,CE=CF=r,由勾股定理得,(r+4)2+(r+5)2=92,进而求得结果;(2)根据切线长定理可证明甲和乙两个三角形全等,丙丁两个三角形全等,故将甲乙图形放在OE为边的上方,将丙丁以OP为边放在右侧,围成矩形的边长是4和5;(3)可先计算∠AFB=135°,根据“定弦对定角”作F点的轨迹,根据切线性质,过点F作AB的垂线,再根据直径所对的圆周角是90°,确定点C.【详解】解:(1)如图1,设⊙O的半径为r,连接OE,OF,∵⊙O内切于△ABC,∴OE⊥AC,OF⊥BC,AE=AD=4,BF=BD=5,∴∠OEC=∠OFC=∠C=90°,∴四边形ECFO是矩形,∴CF=OE=r,CE=OF=r,∴AC=4+r,BC=5+r,在Rt△ABC 中,由勾股定理得,(r +4)2+(r +5)2=92,∴r 2+9r =20,∴S △ABC =12AC BC ⋅ =1(4)(5)2r r +⋅+ =21(920)2x r ++ =1(2020)2⨯+ =20;(2)如图2,(3)设△ABC 的内切圆记作⊙F ,∴AF 和BF 平分∠BAC 和∠ABC ,FD ⊥AB ,∴∠BAF =12∠CAB ,∠ABF =12ABC ∠, ∴∠BAF +∠ABF =12(∠BAC +∠ABC )=1902⨯︒=45°,∴∠AFB =135°,可以按以下步骤作图(如图3):①以BA 为直径作圆,作AB 的垂直平分线交圆于点E ,②以E 为圆心,AE 为半径作圆,③过点D 作AB 的垂线,交圆于F ,④连接EF 并延长交圆于C ,连接AC ,BC ,则△ABC 就是求作的三角形.【点睛】本题考查三角形的内切圆性质、切线长定理、勾股定理、矩形的判定与性质、尺规作图-作垂线,熟练掌握相关知识的联系与运用是解答的关键.5、(1)证明见解析;(2)证明见解析;(3)证明见解析【分析】(1)在BDF 和ABD 中,=BFD ABD α∠=∠,BDF ADB ∠=∠,故可证明三角形相似.(2)由ABD BCE ≌得出AD BE =.(3)法一:由题意知BD CD =,由BFD ABD ∽得BD FD AD BD=,有22BD DF DA CD =⋅=,所以可得CD DF AD CD=,又因为ADC CDF ∠=∠可得CDF ADC ∽,DFC DCA ∠=∠;由于1802BAC BCA DCA DFC α︒-∠=∠==∠=∠,180180EFC 18022ααα︒-︒-∠=︒--=,进而说明DFC EFC ∠=∠,得出FC 平分DFE ∠.法二:通过BFD BCE α∠=∠=得出F 、D 、C 、E 四点共圆,由CD BD CE ==得DFC EFC ∠=∠,从而得出FC 平分DFE ∠.【详解】解:(1)证明在BDF 和ABD 中BFD ABD BDF ADB DBF DAB ∠=∠⎧⎪∠=∠⎨⎪∠=∠⎩∴ BDF ABD ∽.(2)证明:在ABD 和BCE 中 DAB EBC AB BCABD BCE ∠=∠⎧⎪=⎨⎪∠=∠⎩ABD BCE ∴≌ ()ASAAD BE ∴=.(3)证明:BFD ABD ∽ 2BD DF DA ∴=⋅ 又D 是BC 中点BD CD ∴=2CD DF DA ∴=⋅CDF ADC ∴∠=∠CDF ADC ∴∽DFC DCA ∴∠=∠AB AC =,ABC α∠=1802BAC BCA α︒-∴∠=∠=1802DFC DCA BCA α︒-∴∠=∠=∠= 180180EFC 18022ααα︒-︒-∴∠=︒--= DFC EFC ∴∠=∠FC ∴平分DFE ∠.法二:BFD BCE α∠=∠=∴F 、D 、C 、E 四点共圆 又D 是BC 点,CD BD CE ∴==DFC EFC ∴∠=∠FC ∴平分DFE ∠.【点睛】本题考察了相似三角形的判定,全等三角形,角平分线,圆内接四边形等知识点.解题的关键与难点在于角度的转化.解题技巧:多个角度相等时可考虑将几何图形放入圆中利用同弧或等弧所对圆周角相等求解.。

2022年沪科版九年级数学下册第24章圆专项测评练习题(含详解)

2022年沪科版九年级数学下册第24章圆专项测评练习题(含详解)

沪科版九年级数学下册第24章圆专项测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将一把直尺、一个含60°角的直角三角板和一个光盘按如图所示摆放,直角三角板的直角边AD 与直尺的一边重合,光盘与直尺相切于点B,与直角三角板相切于点C,且3AB ,则光盘的直径是()A.6 B.C.3 D.2、如图是一个含有3个正方形的相框,其中∠BCD=∠DEF=90°,AB=2,CD=3,EF=5,将它镶嵌在一个圆形的金属框上,使A,G,H三点刚好在金属框上,则该金属框的半径是()A B C .D 3、如图,AB 是O 的直径,弦CD 交AB 于点P ,3AP =,7BP =,30APC ∠=︒,则CD 的长为( )A .B .CD .84、已知⊙O 的直径为10cm ,圆心O 到直线l 的距离为5cm ,则直线l 与⊙O 的位置关系是( )A .相离B .相切C .相交D .相交或相切5、如图,AB 是⊙O 的直径,点C 是⊙O 上一点,若∠BAC =30°,BC =2,则AB 的长为( )A .4B .6C .8D .106、如图,A ,B ,C ,D 都是O 上的点,OA BC ⊥,垂足为E ,若26OBC ∠=︒,则ADC ∠的度数为( )A .26︒B .32︒C .52︒D .64︒7、如图,PA 是O 的切线,切点为A ,PO 的延长线交O 于点B ,若40P ∠=︒,则B 的度数为( ).A .20°B .25°C .30°D .40°8、利用定理“同弧所对圆心角是圆周角的两倍”,可以直接推导出的命题是( )A .直径所对圆周角为90︒B .如果点A 在圆上,那么点A 到圆心的距离等于半径C .直径是最长的弦D .垂直于弦的直径平分这条弦9、如图,在Rt△ABC 中,90BAC ∠=︒,30B ∠=︒,3AB =,以AB 边上一点O 为圆心作O ,恰与边AC ,BC 分别相切于点A ,D ,则阴影部分的面积为( )A 3πB 3π-C 23π-D .23π10、如图,一个宽为2厘米的刻度尺(刻度单位:厘米).放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和8,那么玻璃杯的杯口外沿半径为( )A .5厘米B .4厘米C .132厘米D .134厘米 第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、AB 是O 的内接正六边形一边,点P 是优弧AB 上的一点(点P 不与点A ,B 重合)且BP OA ∥,AP 与OB 交于点C ,则OCP ∠的度数为_______.2、如果点()3,2A -与点B 关于原点对称,那么点B 的坐标是______.3、如图,在⊙O 中,A ,B ,C 是⊙O 上三点,如果∠AOB =70º,那么∠C 的度数为_______.4、把一个正六边形绕其中心旋转,至少旋转________度,可以与自身重合.5、如图,PA ,PB 是O 的切线,切点分别为A ,B .若30OAB ∠=︒,3PA =,则AB 的长为______.三、解答题(5小题,每小题10分,共计50分)1、在平面直角坐标系xOy 中,对于点P ,O ,Q 给出如下定义:若OQ <PO <PQ 且PO ≤2,我们称点P 是线段OQ 的“潜力点”已知点O (0,0),Q (1,0)(1)在P 1(0,-1),P 2(12,32),P 3(-1,1)中是线段OQ 的“潜力点”是_____________; (2)若点P 在直线y =x 上,且为线段OQ 的“潜力点”,求点P 横坐标的取值范围;(3)直线y =2x +b 与x 轴交于点M ,与y 轴交于点N ,当线段MN 上存在线段OQ 的“潜力点”时,直接写出b 的取值范围2、如图,已知等边ABC ∆内接于⊙O ,D 为BC 的中点,连接DB ,DC ,过点C 作AB 的平行线,交BD 的延长线于点E .(1)求证:CE 是⊙O 的切线;(2)若AB 的长为6,求CE 的长.3、如图,ABC 和ADE 中,AB AC =,AD AE =,90BAC DAE ∠=∠=︒,连接CD ,点M ,N ,P 分别是,,DE BC CD 的中点.(1)请你判断PMN 的形状,并证明你的结论.(2)将ADE 绕点A 旋转,若8,3AB AD ==,请直接写出MNP △周长的最大值与最小值.4、已知:如图,正方形的边长为1,在射线AB 上取一点E ,联结DE ,将ADE 绕点D 针旋转90°,E 点落在点F 处,联结EF ,与对角线BD 所在的直线交于点M ,与射线DC 交于点N .求证:(1)当13AE =时,求tan EDB ∠的值; (2)当点E 在线段AB 上,如果AE x =,FM y =,求y 关于x 的函数解析式,并写出定义域;(3)联结AM ,直线AM 与直线BC 交于点G ,当13BG =时,求AE 的值. 5、已知:Rt △ABC 中,∠ACB =90°,∠ABC =60°,将△ABC 绕点B 按顺时针方向旋转.(1)当C 转到AB 边上点C ′位置时,A 转到A ′,(如图1所示)直线CC ′和AA ′相交于点D ,试判断线段AD 和线段A ′D 之间的数量关系,并证明你的结论.(2)将Rt △ABC 继续旋转到图2的位置时,(1)中的结论是否成立?若成立,请证明;若不成立,请说明理由;(3)将Rt △ABC 旅转至A 、C ′、A ′三点在一条直线上时,请直接写出此时旋转角α的度数.-参考答案-一、单选题1、D【分析】如图所示,设圆的圆心为O ,连接OC ,OB ,由切线的性质可知∠OCA =∠OBA =90°,OC =OB ,即可证明Rt △OCA ≌Rt △OBA 得到∠OAC =∠OAB ,则()1==180=602OAC OAB DAC ︒-︒∠∠∠,∠AOB =30°,推出OA=2AB =6,利用勾股定理求出OB =O 的直径为【详解】解:如图所示,设圆的圆心为O ,连接OC ,OB ,∵AC ,AB 都是圆O 的切线,∴∠OCA =∠OBA =90°,OC =OB ,又∵OA =OA ,∴Rt △OCA ≌Rt △OBA (HL ),∴∠OAC =∠OAB ,∵∠DAC =60°, ∴()1==180=602OAC OAB DAC ︒-︒∠∠∠, ∴∠AOB =30°,∴OA =2AB =6,∴OB =∴圆O 的直径为故选D .【点睛】本题主要考查了切线的性质,全等三角形的性质与判定,含30度角的直角三角形的性质,勾股定理,熟知切线的性质是解题的关键.2、A【分析】如图,记过A ,G , H 三点的圆为,Q 则Q 是HG ,AG 的垂直平分线的交点,,QH QG QA 记,PM EF 的交点为,N ,HG PM 的交点为,M 延长AB 交QM 于,P PM 为HG 的垂直平分线,结合正方形的性质可得:,AP PM 再设,PQ x 利用勾股定理建立方程,再解方程即可得到答案.【详解】 解:如图,记过A ,G , H 三点的圆为,Q 则Q 是HG ,AG 的垂直平分线的交点,,QH QG QA 记,PM EF 的交点为,N ,HG PM 的交点为,M 延长AB 交QM 于,P PM 为HG 的垂直平分线,结合正方形的性质可得:,AP PM四边形HGFE 为正方形,则,HG EF ∥,,QM HG QM EF设,PQ x 而AB =2,CD =3,EF =5,结合正方形的性质可得: 5,NQ x而222,HM MQ HQ 115,5,5510,222HM HG EF MN EF MQ x x 222510,4HQ x 又222,AQ PQ AP 而51523,22AP 22215,2AQ x222522510,44x x 解得:5,2x 25225250510.4442AQ 故选A【点睛】本题考查的是正方形的性质,三角形外接圆圆心的确定,圆的基本性质,勾股定理的应用,二次根式的化简,确定过A ,G , H 三点的圆的圆心是解本题的关键.3、A【分析】过点O 作OE CD ⊥于点E ,连接OD ,根据已知条件即可求得,OD OP ,根据含30度角的直角三角形的性质即可求得OE ,根据勾股定理即可求得DE ,根据垂径定理即可求得CD 的长.【详解】解:如图,过点O 作OE CD ⊥于点E ,连接OD ,AB 是O 的直径,3AP =,7BP =,115,53222OD AB OP AB AP ∴===-=-= OE CD ⊥,30APC ∠=︒112OE OP ∴==在Rt ODE △中,DE =OE CD ⊥2CD DE ∴==故选A【点睛】本题考查了勾股定理,含30度角的直角三角形的性质,垂径定理,掌握以上定理是解题的关键.4、B【分析】圆的半径为,r 圆心O 到直线l 的距离为,d 当d r =时,直线与圆相切,当d r 时,直线与圆相离,当d r <时,直线与圆相交,根据原理直接作答即可.【详解】 解: ⊙O 的直径为10cm ,圆心O 到直线l 的距离为5cm ,∴ ⊙O 的半径等于圆心O 到直线l 的距离,∴ 直线l 与⊙O 的位置关系为相切, 故选B【点睛】本题考查的是直线与圆的位置关系的判定,掌握“直线与圆的位置关系的判定方法”是解本题的关键.5、A【分析】根据直径所对的圆角为直角,可得90C ∠=︒ ,再由直角三角形中,30°角所对的直角边等于斜边的一半,即可求解.【详解】解:∵AB 是⊙O 的直径,∴90C ∠=︒ ,∵∠BAC =30°,BC =2,∴24AB BC ==.故选:A本题主要考查了直径所对的圆角,直角三角形的性质,熟练掌握直径所对的圆角为直角;直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.6、B【分析】连接OC .根据OA BC ⊥确定AC AB =,90OEB ∠=︒,进而计算出AOB ∠,根据圆心角的性质求出AOC ∠,最后根据圆周角的性质即可求出ADC ∠.【详解】解:如下图所示,连接OC .∵OA BC ⊥,∴AC AB =,90OEB ∠=︒.∴AOC AOB ∠=∠.∵26OBC ∠=︒.∴64AOB ∠=︒.∴64AOC ∠=︒∵ADC ∠和AOC ∠分别是AC 所对的圆周角和圆心角, ∴3122A ADC OC ∠=︒∠=.【点睛】本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是解题关键.7、B【分析】连接OA,如图,根据切线的性质得∠PAO=90°,再利用互余计算出∠AOP=50°,然后根据等腰三角形的性质和三角形外角性质计算∠B的度数.【详解】解:连接OA,如图,∵PA是⊙O的切线,∴OA⊥AP,∴∠PAO=90°,∵∠P=40°,∴∠AOP=50°,∵OA=OB,∴∠B=∠OAB,∵∠AOP=∠B+∠OAB,∴∠B=12∠AOP=12×50°=25°.故选:B.本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.8、A【分析】定理“同弧所对圆心角是圆周角的两倍”是圆周角定理,分析各个选项即可.【详解】A 选项,直径所在的圆心角是180°,直接可以由圆周角定理推导出:直径所对的圆周角为90︒,A 选项符合要求;B 、C 选项,根据圆的定义可以得到;D 选项,是垂径定理;故选:A【点睛】本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.9、A【分析】连结OC ,根据切线长性质DC =AC ,OC 平分∠ACD ,求出∠OCD =∠OCA =12ACD ∠=30°,利用在Rt△ABC中,AC =AB tan B =Rt△AOC 中,∠ACO =30°,AO =AC 1=,利用三角形面积公式求出12AOC S OA AC ∆=⋅=,12DOC S OD DC ∆=⋅=212011==3603OAD S ππ⨯扇形,利用割补法求即可. 【详解】解:连结OC ,∵以AB 边上一点O 为圆心作O ,恰与边AC ,BC 分别相切于点A , D ,∴DC =AC ,OC 平分∠ACD ,∵90BAC ∠=︒,30B ∠=︒,∴∠ACD =90°-∠B =60°,∴∠OCD =∠OCA =12ACD ∠=30°,在Rt△ABC 中,AC =AB tan B =在Rt△AOC 中,∠ACO =30°,AO =AC 1=,∴OD =OA =1,DC =AC∴11122AOC S OA AC ∆=⋅=⨯=11122DOC S OD DC ∆=⋅=⨯= ∵∠DOC =360°-∠OAC -∠ACD -∠ODC =360°-90°-90°-60°=120°, ∴212011==3603OAD S ππ⨯扇形,S 阴影=1133AOC DOC OAD S S S ππ∆∆+-扇形. 故选择A .【点睛】本题考查切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积,掌握切线长性质,锐角三角形函数,扇形面积,三角形面积,角的和差计算,割补法求阴影面积是解题关键.10、D【分析】根据题意先求出弦AC的长,再过点O作OB⊥AC于点B,由垂径定理可得出AB的长,设杯口的半径为r,则OB=r-2,OA=r,在Rt△AOB中根据勾股定理求出r的值即可.【详解】解:∵杯口外沿两个交点处的读数恰好是2和8,∴AC=8-2=6厘米,过点O作OB⊥AC于点B,则AB=12AC=12×6=3厘米,设杯口的半径为r,则OB=r-2,OA=r,在Rt△AOB中,OA2=OB2+AB2,即r2=(r-2)2+32,解得r=134厘米.故选:D.【点睛】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直角三角形是解答此题的关键.二、填空题1、90°【分析】先根据AB 是O 的内接正六边形一边得60AOB ∠=︒,再根据圆周角性质得30APB ∠=︒,再根据平行线的性质得30OAP ∠=︒,最后由三角形外角性质可得结论.【详解】解:∵AB 是O 的内接正六边形一边∴60AOB ∠=︒∴30APB ∠=︒∵BP OA ∥∴=30OAP APB ∠∠=︒∴603090OCP AOC OAC ∠=∠+∠=︒+︒=︒故答案为90°【点睛】本题主要考查了正多边形与圆,圆周角定理等知识,熟练掌握相关定理是解答本题的关键 2、()3,2-【分析】关于原点对称的点坐标特征为:横坐标、纵坐标都互为相反数;进而求出点B 坐标.【详解】解:由题意知点B 横坐标为033-=-;纵坐标为()022--=;故答案为:()3,2-.【点睛】本题考查了关于原点对称的点的坐标知识.解题的关键在于熟练记忆关于原点对称的点坐标中相对应的坐标互为相反数.3、35°【分析】利用圆周角定理求出所求角度数即可.【详解】解:AOB ∠与ACB ∠都对AB ,且70AOB ∠=︒,1352C AOB ∴∠=∠=︒, 故答案为:35︒.【点睛】本题考查了圆周角定理,解题的关键是熟练掌握圆周角定理.4、60【分析】正六边形连接各个顶点和中心,这些连线会将360°分成6分,每份60°因此至少旋转60°,正六边形就能与自身重合.【详解】360°÷6=60°故答案为:60【点睛】本题考查中心对称图形的性质,根据图形特征找到最少旋转度数是本题关键.5、3【分析】由切线长定理和30OAB ∠=︒,可得PAB ∆为等边三角形,则AB PA =.【详解】解:连接,OA OP ,如下图:PA ,PB 分别为O 的切线,PA PB ∴=,PAB ∴为等腰三角形,30OAB ∠=︒,60PAB ∴∠=︒,PAB ∴∆为等边三角形,AB PA ∴=,3PA =,3AB ∴=.故答案为:3.【点睛】本题考查了等边三角形的判定和切线长定理,解题的关键是作出相应辅助线.三、解答题1、(1)3P ;(2)p x ≤<(3)1b <≤或1 1.b -<<-【分析】(1)分别计算出OQ 、PO 和PQ 的长度,比较即可得出答案;(2)先判断点P 在以O 为圆心,1为半径的圆外且点P 在线段OQ 垂直平分线的左侧,结合PO ≤2,点P 在以O 为圆心,2为半径的圆上或圆内,可得点P 在如图所示的线段AB 上(不包含点B ),过B 作BC y ⊥轴,过A 作AD y ⊥轴,垂足分别为,,C D 再根据图形的性质求解,,BC AD 从而可得答案;(3)由(2)得:点P 在以O 为圆心,1为半径的圆外且点P 在以O 为圆心,2为半径的圆上或圆内,而PO <PQ ,点P 在线段OQ 垂直平分线的左侧,再分两种情况讨论:当0b >时,当0b ≤时,分别画出两种情况下的临界直线2,y x b =+ 再根据临界直线经过的特殊点求解b 的值,再确定范围即可.【详解】解:(1) O (0,0),Q (1,0),1,OQP 1(0,-1),P 2(12,32),P 3(-1,1) 22111,112,OP PQ 不满足OQ <PO <PQ 且PO ≤2, 所以1P 不是线段OQ 的“潜力点”, 同理:22222213101310,10,222222OP P Q 所以不满足OQ <PO <PQ 且PO ≤2,所以2P 不是线段OQ 的“潜力点”, 同理:222233112,11105,OP PQ125,22,所以满足:OQ <PO <PQ 且PO ≤2,所以3P 是线段OQ 的“潜力点”,故答案为:P 3(2)∵点P 为线段OQ 的“潜力点”,∴OQ <PO <PQ 且PO ≤2,∵OQ <PO ,∴点P 在以O 为圆心,1为半径的圆外∵PO <PQ ,∴点P 在线段OQ 垂直平分线的左侧,而OQ 的垂直平分线为:1,2x = ∵PO ≤2,∴点P 在以O 为圆心,2为半径的圆上或圆内又∵点P 在直线y =x 上,∴点P 在如图所示的线段AB 上(不包含点B )过B 作BC y ⊥轴,过A 作AD y ⊥轴,垂足分别为,,C D由题意可知△BOC 和 △AOD 是等腰三角形,1,2,OB OA∴2sin 45,sin 452,2BC OB AD OA∴x p <(3)由(2)得:点P 在以O 为圆心,1为半径的圆外且点P 在以O 为圆心,2为半径的圆上或圆内,而PO <PQ ,点P 在线段OQ 垂直平分线的左侧当0b >时,2y x b =+过10,1N 时,1,b ∴= 即函数解析式为:21,y x =+ 此时11,0,2M 则111tan ,2M N O当2y x b =+与半径为2的圆相切于S 时,则90,NSO由11,MN M N ∥ 111tan tan ,2SO SNO M N OSN 而2,SO224,2425,SN ON125,b当0b ≤时,如图,同理可得:点P 在以O 为圆心,1为半径的圆外且点P 在以O 为圆心,2为半径的圆上或圆内,而PO <PQ ,点P 在线段OQ 垂直平分线的左侧,同理:当2y x b =+过10,1,N 则1,b =- 直线为21,y x 11,0,2M 1M 在直线12x =上, 此时221115,2M K OK OM 当2y x b =+过115,22K 时, 则151+,2b 151,2b所以此时:1 1.b -<<-综上:b的范围为:1<b≤1-<b<-1【点睛】本题考查的是新定义情境下的知识运用,圆的基本性质,圆的切线的性质,一次函数的综合应用,锐角三角函数的应用,勾股定理的应用,数形结合是解本题的关键.2、(1)见解析;(2)3【分析】(1)由题意连接OC,OB,由等边三角形的性质可得∠ABC=∠BCE=60°,求出∠OCB=30°,则∠OCE=90°,结论得证;BC=3.(2)根据题意由条件可得∠DBC=30°,∠BEC=90°,进而即可求出CE=12【详解】解:(1)证明:如图连接OC、OB.∵ABC∆是等边三角形∴ 60∠=∠=A ABCAB CE∵//∴ 60∠=∠=BCE ABC︒=又∵OB OC∴30∠=∠=OBC OCB︒∴90∠=∠+∠=OCE OCB BCE︒⊥∴OC CE∴CE与⊙O相切;(2)∵四边形ABCD是⊙O的内接四边形,∴180∠+∠=A BCD︒∴120BDC ︒∠=∵D 为BC 的中点,∴30DBC BCD ∠=∠=︒∴90ABE ABC DBC ∠=∠+∠=︒∵//AB CE∴90E ∠=︒ ∴11322CE BC AB === 【点睛】本题主要考查等边三角形的性质、圆周角定理、圆内接四边形的性质、切线的判定以及直角三角形的性质等知识.解题的关键是正确作出辅助线,利用圆的性质进行求解.3、(1)MPN ∆是等腰直角三角形,证明见解析(2)MNP ∆ 【分析】(1)连接BD ,CE ,根据SAS 证明BAD CAE ∆≅∆得BD=CE ,根据三角形中位线性质可证明PM=PN ;90MPN ∠=︒,进而可得结论; (2)当BD 最小时即点D 在AB 上,此时MNP ∆周长最小,当点D 在BA 的延长线上时,BD 最大,此时MNP ∆周长最大,均为2)PN ,求出BD 的长即可解决问题.(1)连接BD ,CE ,如图,∵AB AC =,AD AE =,90BAC DAE ∠=∠=︒,∴90,90BAD CAD CAE CAD ∠+∠=︒∠+∠=︒∴BAD CAE ∠=∠∴BAD CAE ∆≅∆∴BD=CE,ABD ACE ∠=∠∵点M ,N ,P 分别是,,DE BC CD 的中点∴MP //EC ,12MP CE =,PN//BD ,PN=12BD∴PM=PN,,NPD DCE DPN PNC PCN ∠=∠∠=∠+∠∵PN//BD∴∠PNC=∠DBC∴∠MPN=∠MPD+∠DPN=∠ECA+∠ACD+∠PCN+∠PNC=∠ACB+∠DBC+∠ABD=∠ACB+∠ABC=90° ∴MP PN ⊥∴MPN ∆是等腰直角三角形;(2)由(1)知,MPN ∆是等腰直角三角形∴MN∴MPN ∆的周长为22)MN PN PM PN PN ++=+= ∵12PN BD =∴MPN ∆ 当BD 最小时即点D 在AB 上,此时MNP ∆周长最小,∵AB=8,AD=3∴BD 的最小值为AB-AD=8-3=5∴MNP ∆ 当点D 在BA 的延长线上时,BD 最大,此时MNP ∆周长最大,∴BD=AB+AD=8+3=11∴MNP ∆ 【点睛】此题主要考查了旋转的性质,全等三角形的判定与性质,等腰直角三角形的性质,三角形中位线定理的应用等知识,熟练掌握相关知识是解答本题的关键.4、(1)12;(2)(112y x =+(3)AE . 【分析】(1)过点E 作EH ⊥BD 与H ,根据正方形的边长为1,13AE =,求出EB =1-12133AE =-=,根据正方形性质可求∠ABD =45°,根据EH ⊥BD ,得出∠BEH =180°-∠EBH -∠EHB =180°-45°-90°=45°,求出EH =BH =BEsin45=23= DH =DB -BH= (2)解:根据AE =x ,求出BE =1-x ,根据旋转将△ADE 绕点D 针旋转90°,得到△DCF ,CF =AE =x ,根据勾股定理ED =FDEF=DEF 为等腰直角三角形,先证△BEM∽△FDM BM y =,再证△EMD ∽△BMF,得出=11x x -=+ (3)当点G 在BC 上,13BG =,先证△BGM ∽△DAM ,得出11313BG BM DA DM ===,由(2)知△BEM ∽△FDM ,得出BM BE MFDF =4y =(112y x =+y , 当点G 在CB 延长线上,13BG =,过M 作ML ⊥BC ,交直线BC 于L ,证明△BGM ∽△DAM ,得出12BM BD =,根据∠LBM =∠CBD =45°,ML ⊥BC ,证出△MLB 为等腰直角三角形,再证△MLB ∽△DCB ,12BM ML BD DC ==,CD =1,ML =12,ML∥BE ,结合△LMF ∽△BEF ,得出LM LF BE BF =即132211x x x+=-+解方程即可. (1)解:过点E 作EH ⊥BD 与H ,∵正方形的边长为1,13AE =, ∴EB =1-12133AE =-=,∵BD 为正方形对角线,∴BD 平分∠ABC ,∴∠ABD =45°,∵EH ⊥BD ,∴∠BEH =180°-∠EBH -∠EHB =180°-45°-90°=45°,∴EH =BH ,∴EH =BH =BEsin45=2323⨯=,AB =BD cos45°,∴1BD == ∴DH =DB -BH=1tan 2EH EDB HD ∠===; (2)解:如上图,∵AE =x ,∴BE =1-x ,∵将△ADE 绕点D 针旋转90°,得到△DCF , ∴CF =AE =x ,ED =FD=∴BF =BC +CF =1+x ,在Rt△EBF 中EF∵∠EDF =90°,ED =FD ,∴△DEF 为等腰直角三角形,∴∠DFE =∠DEF =45°,∴∠EBM =∠MFD =45°,∵∠EMB =∠DMF ,∴△BEM ∽△FDM , ∴BE BMDF FM =BM y =, ∵∠DEM =∠FBM =45°,∠EMD =∠BMF ,∴△EMD ∽△BMF ,∴ED EM BF BM ==BM y =,∴11x x -+,∴111x x x -+++即21x =+∴(112y x =+ (3)解:当点G 在BC 上,13BG =, ∵四边形ABCD 为正方形,∴AD∥BG ,∴∠DAM =∠BGM ,∠ADM =∠GBM ,∴△BGM ∽△DAM ,∴11313BG BM DA DM ===,∵由(2)知△BEM ∽△FDM , ∴BM BE MF DF=, ∵DB=∴13BM DM BM DM =+=,∴BM =∴4y = ∵(112y x =+∴(4112x =+2112x -=,解1x =22x =-舍去;当点G在CB延长线上,13BG=,过M作ML⊥BC,交直线BC于L,∵GB∥AD,∴∴∠DAM=∠BGM,∠ADM=∠GBM,∴△BGM∽△DAM,∴11313 BG BMDA DM===,∴13BM DM=,∴12BM BD=,∵∠LBM=∠CBD=45°,ML⊥BC,∴△MLB为等腰直角三角形,∵ML∥CD,∴∠LMB=∠CDB,∠L=∠DCB,∴△MLB∽△DCB,∴12BM MLBD DC==,CD=1,∴ML=12∵ML∥BE,∴∠L=∠FBE,∠LMF=∠BEF,∴△LMF∽△BEF,∴LM LF BE BF=,∵BE=AE-AB=x-1,LF=LB+BC+CF=13122x x++=+,BF=BC+CF=1+x,∴132211x x x+=-+,整理得:224x =,解得3x4x =∴AE【点睛】 本题考查正方形性质,图形旋转先证,等腰直角三角形判定与性质,锐角三角函数定义,三角形相似判定与性质,勾股定理,解一元二次方程,函数关系式,本题难度大,利用辅助线狗仔三角形相似是解题关键.5、(1)AD A D '=,证明见解析(2)成立,证明见解析(3)120︒【分析】(1)设(0)BC a a =>,先根据直角三角形的性质可得2AB a =,再根据旋转的性质可得,2,60BC BC a A B AB a ABA ABC '''====∠=∠=︒,然后根据等边三角形的判定与性质可得BCC ',ABA '△,AC D '都是等边三角形,从而可得12AD AC a AA ''===,由此即可得出结论; (2)在CD 上截取CE C D '=,连接AE ,先根据旋转的性质可得,,90BC BC A C AC A C B ACB '''''==∠=∠=︒,从而可得A C D ACE ''∠=∠,再根据三角形全等的判定定理证出A C D ACE ''≅,根据全等三角形的性质可得A D AE '=,DA C EAC ''∠=∠,然后根据三角形的外角性质可得AED ADE ∠=∠,最后根据等腰三角形的判定可得AD AE =,由此即可得出结论;(3)如图(见解析),先根据旋转的性质可得,90BC BC A C B ACB '''=∠=∠=︒,再根据直角三角形全等的判定定理证出Rt ABC Rt ABC '≅,然后根据全等三角形的性质可得60ABC ABC '∠=∠=︒,最后根据旋转角CBC ABC ABC α''=∠=∠+∠即可得.(1)解:AD A D '=,证明如下:设(0)BC a a =>,在Rt ABC 中,90,60ACB ABC ∠=︒∠=︒,22AB BC a ∴==,由旋转的性质得:,2,60BC BC a A B AB a ABA ABC '''====∠=∠=︒,AC a '∴=,BCC '和ABA '△都是等边三角形,60,60,2BC C BAA AA AB a '''∴∠=︒∠=︒==,60AC D BC C ''∴∠=∠=︒,AC D '∴是等边三角形,12AD AC a AA ''∴===, AD A D '∴=;(2)解:成立,证明如下:如图,在CD 上截取CE C D '=,连接AE ,由旋转的性质得:,,90BC BC A C AC A C B ACB '''''==∠=∠=︒,90A C D BC C ACE BCC BC C BCC ''''∠+∠=︒=∠+∠⎧∴⎨∠='∠'⎩, A C D ACE ''∴∠=∠,在AC D ''和ACE 中,A C AC A C D ACE C D CE =⎧⎪∠=∠'''''⎨⎪=⎩, ()A C D ACE SAS ''∴≅,,A D AE DA C EAC '''∴=∠=∠,AED ACE EAC A C D DA C ADE ''''∴∠=∠+∠=∠+∠=∠,AD AE ∴=,AD A D '∴=;(3)解:如图,当点,,A C A ''三点在一条直线上时,由旋转的性质得:,90BC BC A C B ACB '''=∠=∠=︒,90AC B ∴'∠=︒,在Rt ABC '△和Rt ABC 中,BC BC AB AB='⎧⎨=⎩, ()Rt ABC Rt ABC HL '∴≅,60ABC ABC '∴∠=∠=︒,则旋转角120CBC ABC ABC α''=∠=∠+∠=︒.【点睛】本题考查了旋转的性质、等边三角形的判定与性质、三角形全等的判定定理与性质等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键.。

精品试卷沪科版九年级数学下册第24章圆专项训练试题(含详细解析)

精品试卷沪科版九年级数学下册第24章圆专项训练试题(含详细解析)

沪科版九年级数学下册第24章圆专项训练考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,点P是等边三角形ABC内一点,且PA=3,PB=4,PC=5,则∠APB的度数是().A.90°B.100°C.120°D.150°2、下列汽车标志中既是轴对称图形又是中心对称图形的是()A.B.C.D.3、下列图形中,是中心对称图形,但不是轴对称图形的是()A.B.C.D.4、如图,AB 为O 的直径,C 为D 外一点,过C 作O 的切线,切点为B ,连接AC 交O 于D ,38C ∠=︒,点E 在AB 右侧的半圆周上运动(不与A ,B 重合),则AED ∠的大小是( )A .19°B .38°C .52°D .76°5、如图,PA 是O 的切线,切点为A ,PO 的延长线交O 于点B ,若40P ∠=︒,则B 的度数为( ).A .20°B .25°C .30°D .40°6、下列图形中,既是中心对称图形也是轴对称图形的是( )A .B .C .D .7、如图,在ABC 中,5AB =,8BC =,60B ︒∠=,将ABC 绕点A 顺时针旋转得到ADE ,当点B 的对应点D 恰好落在BC 边上时,CD 的长为( )A .3B .4C .5D .68、如图,将△OAB 绕点O 逆时针旋转80°得到△OCD ,若∠A 的度数为110°,∠D 的度数为40°,则∠AOD 的度数是( )A .50°B .60°C .40°D .30°9、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步.在此之前,北京冬奥组委曾面向全球征集2022年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是( )A .B .C .D .10、从图形运动的角度研究抛物线, 有利于我们认识新的拋物线的特征. 如果将拋物线22y x =+绕着原点旋转180°,那么关于旋转后所得新抛物线与原抛物线之间的关系,下列法正确的是( )A .它们的开口方向相同B .它们的对称轴相同C .它们的变化情況相同D .它们的顶点坐标相同第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在Rt ABC △中,90ACB ∠=︒,D 是ABC 内的一个动点,满足222AC AD CD -=.若AB =4BC =,则BD 长的最小值为_______.2、一个五边形共有__________条对角线.3、在平面直角坐标系中,点()3,4--关于原点对称的点的坐标是______.4、如图,正方形ABCD 的边长为1,⊙O 经过点C ,CM 为⊙O 的直径,且CM =1.过点M 作⊙O 的切线分别交边AB ,AD 于点G ,H .BD 与CG ,CH 分别交于点E ,F ,⊙O 绕点C 在平面内旋转(始终保持圆心O 在正方形ABCD 内部).给出下列四个结论:①HD =2BG ;②∠GCH =45°;③H ,F ,E ,G 四点在同一个圆上;④四边形CGAH 面积的最大值为2_____(填写所有正确结论的序号).5、如图,在平面直角坐标系中,点N 是直线5y x =-+上动点,M 是C 上动点,若点C 的坐标为()2,0-,且C 与y 轴相切,则MN 长度的最小值为____________.三、解答题(5小题,每小题10分,共计50分)1、如图AB 是⊙O 的直径,弦CD ⊥AB 于点E ,作∠FAC=∠BAC ,过点C 作CF ⊥AF 于点F .(1)求证:CF 是⊙O 的切线;(2)若sin ∠CAB =25,求BCD AFC S S =_______.(直接写出答案)2、定理:一条弧所对的圆周角等于这条弧所对的圆心角的一半.如图1,∠A =12∠O .已知:如图2,AC 是⊙O 的一条弦,点D 在⊙O 上(与A 、C 不重合),联结DE 交射线AO 于点E ,联结OD ,⊙O 的半径为5,tan∠OAC =34.(1)求弦AC 的长.(2)当点E在线段OA上时,若△DOE与△AEC相似,求∠DCA的正切值.(3)当OE=1时,求点A与点D之间的距离(直接写出答案).3、如图,将一个直径AB等于12厘米的半圆绕着点A逆时针旋转60°后,点B落到了点C的位置,半圆扫过部分的图形如阴影部分所示.(1)阴影部分的周长;(2)阴影部分的面积.(结果保留π)4、如图,AB,AC是O的两条切线,切点分别为B,C,连接CO并延长交O于点D,过点D作O的切线交AB的延长线于点E,EF AC⊥于点F.(1)求证:四边形CDEF是矩形;(2)若CD=2DE=,求AC的长..5、如图,AC是⊙O的直径,BC是⊙O的弦,点P是⊙O外一点,连接PB、AB,∠PBA=∠C.(1)求证:PB 是⊙O 的切线;(2)连接OP ,若OP ∥BC ,且OP =8,⊙O 的半径为3,求BC 的长.-参考答案-一、单选题1、D【分析】将BPC ∆绕点B 逆时针旋转60︒得BEA ∆,根据旋转的性质得4BE BP ==,5AE PC ==,60PBE ∠=︒,则BPE ∆为等边三角形,得到4PE PB ==,60BPE ∠=︒,在AEP ∆中,5AE =,3AP =,4PE =,根据勾股定理的逆定理可得到APE ∆为直角三角形,且90APE ∠=︒,即可得到APB ∠的度数.【详解】解:ABC ∆为等边三角形,BA BC ∴=,可将BPC ∆绕点B 逆时针旋转60︒得BEA ∆,如图,连接EP ,4BE BP ∴==,5AE PC ==,60PBE ∠=︒,BPE ∴∆为等边三角形,4PE PB ∴==,60BPE ∠=︒,在AEP ∆中,5AE =,3AP =,4PE =,222AE PE PA ∴=+,APE ∴∆为直角三角形,且90APE ∠=︒,9060150APB ∴∠=︒+︒=︒.故选:D .【点睛】本题考查了旋转的性质、等边三角形,解题的关键是掌握旋转前后的两个图形全等,对应点与旋转中心的连线段的夹角等于旋转角,对应点到旋转中心的距离相等.2、C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A 、是轴对称图形,不是中心对称图形,故此选项不符合题意;B 、是轴对称图形,不是中心对称图形,故此选项不符合题意;C 、是轴对称图形,是中心对称图形,故此选项符合题意;D 、不是轴对称图形,是中心对称图形,故此选项不符合题意;故选:C .【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.3、B【分析】根据“把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形”及“如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形”,由此问题可求解.【详解】解:A 、既不是轴对称图形也不是中心对称图形,故不符合题意;B 、是中心对称图形但不是轴对称图形,故符合题意;C 、既不是轴对称图形也不是中心对称图形,故不符合题意;D 、是轴对称图形但不是中心对称图形,故不符合题意;故选B .【点睛】本题主要考查中心对称图形及轴对称图形的识别,熟练掌握中心对称图形及轴对称图形的定义是解题的关键.4、B【分析】连接,BD 由AB 为O 的直径,求解903852,CBD ∠=︒-︒=︒ 结合CB 为O 的切线,求解905238,ABD ABC DBC ∠=∠-∠=︒-︒=︒ 再利用圆周角定理可得答案.【详解】解:连接,BD AB 为O 的直径,90,90,ADB BDC ∴∠=︒∠=︒38,C ∠=︒903852,CBD ∴∠=︒-︒=︒ CB 为O 的切线,90,905238,ABC ABD ABC DBC ∴∠=︒∠=∠-∠=︒-︒=︒38,AED ABD ∴∠=∠=︒故选B【点睛】本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.5、B【分析】连接OA ,如图,根据切线的性质得∠PAO =90°,再利用互余计算出∠AOP =50°,然后根据等腰三角形的性质和三角形外角性质计算∠B 的度数.【详解】解:连接OA ,如图,∵PA是⊙O的切线,∴OA⊥AP,∴∠PAO=90°,∵∠P=40°,∴∠AOP=50°,∵OA=OB,∴∠B=∠OAB,∵∠AOP=∠B+∠OAB,∴∠B=12∠AOP=12×50°=25°.故选:B.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.6、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C 、是中心对称图形,不是轴对称图形,故此选项不符合题意;D 、是中心对称图形,不是轴对称图形,故此选项不符合题意.故选:A .【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.7、A【分析】先根据旋转的性质可得AB AD =,再根据等边三角形的判定与性质可得5BD AB ==,然后根据线段的和差即可得.【详解】由旋转的性质得:5AB AD ==,60B ∠=︒,ABD ∴是等边三角形,5BD AB ∴==,8BC =,853CD BC BD ∴=-=-=.故选:A .【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键.8、A【分析】根据旋转的性质求解80,BOD AOC 110,C A 再利用三角形的内角和定理求解1801104030,COD 再利用角的和差关系可得答案.【详解】 解: 将△OAB 绕点O 逆时针旋转80°得到△OCD ,80,BOD AOC∠A 的度数为110°,∠D 的度数为40°,110,1801104030,C A COD 803050,AOD 故选A【点睛】本题考查的是三角形的内角和定理的应用,旋转的性质,掌握“旋转前后的对应角相等”是解本题的关键.9、C【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A .是轴对称图形,不是中心对称图形,故此选项不合题意;B .不是轴对称图形,是中心对称图形,故此选项不符合题意;C .是轴对称图形,也是中心对称图形,故此选项合题意;D .不是轴对称图形,也不是中心对称图形,故此选项不合题意.故选:C .【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合.10、B【分析】根据旋转的性质及抛物线的性质即可确定答案.【详解】抛物线22y x =+的开口向上,对称轴为y 轴,顶点坐标为(0,2),将此抛物线绕原点旋转180°后所得新抛物线的开口向下,对称轴仍为y 轴,顶点坐标为(0,-2),所以在四个选项中,只有B 选项符合题意.故选:B【点睛】本题考查了二次函数的图象与性质,旋转的性质等知识,掌握这两方面的知识是关键.二、填空题1、2【分析】取AC 中点O ,由勾股定理的逆定理可知∠ADC =90°,则点D 在以O 为圆心,以AC 为直径的圆上,作△ADC 外接圆,连接BO ,交圆O 于1D ,则BD 长的最小值即为1BD ,由此求解即可.【详解】解:如图所示,取AC 中点O ,∵222AC AD CD -=,即222=AC AD CD +,∴∠ADC =90°,∴点D 在以O 为圆心,以AC 为直径的圆上,作△ADC 外接圆,连接BO ,交圆O 于1D ,则BD 长的最小值即为1BD ,∵AB =4BC =,∠ACB =90°,∴AC =, ∴1132OC OD AC ===,∴5OB =,∴112BD OB OD =-=,故答案为:2.【点睛】本题主要考查了一点到圆上一点的最短距离,勾股定理的逆定理,勾股定理,解题的关键在于确定点D 的运动轨迹.2、5【分析】由n 边形的对角线有:()32n n - 条,再把5n =代入计算即可得.【详解】解:n 边形共有()23n n -条对角线,∴五边形共有()55352-=条对角线.故答案为:5【点睛】本题考查的是多边形的对角线的条数,掌握n边形的对角线的条数是解题的关键.3、(3,4)【分析】关于原点对称的点,横坐标与纵坐标都互为相反数.【详解】:由题意,得点(-3,-4)关于原点对称的点的坐标是(3,4),故答案为:(3,4).【点睛】本题考查了关于原点对称的点的坐标,解决本题的关键是掌握好对称点的坐标规律:关于原点对称的点,横坐标与纵坐标都互为相反数.4、②③④【分析】根据切线的性质,正方形的性质,通过三角形全等,证明HD=HM,∠HCM=∠HCD,GM=GB,∠GCB=∠GCM,可判断前两个结论;运用对角互补的四边形内接于圆,证明∠GHF+∠GEF=180°,取GH的中点P,连接PA,则PA+PC≥AC,当PC最大时,PA最小,根据直径是圆中最大的弦,故PC=1时,PA最小,计算即可.【详解】∵GH是⊙O的切线,M为切点,且CM是⊙O的直径,∴∠CMH=90°,∵四边形ABCD是正方形,∴∠CMH=∠CDH=90°,∵CM=CD,CH=CH,∴△CMH≌△CDH,∴HD=HM,∠HCM=∠HCD,同理可证,∴GM=GB,∠GCB=∠GCM,∴GB+DH=GH,无法确定HD=2BG,故①错误;∵∠HCM+∠HCD+∠GCB+∠GCM=90°,∴2∠HCM+2∠GCM=90°,∴∠HCM+∠GCM=45°,即∠GCH=45°,故②正确;∵△CMH≌△CDH,BD是正方形的对角线,∴∠GHF=∠DHF,∠GCH=∠HDF=45°,∴∠GHF+∠GEF=∠DHF+∠GCH+∠EFC=∠DHF+∠HDF+∠HFD=180°,根据对角互补的四边形内接于圆,∴H ,F ,E ,G 四点在同一个圆上,故③正确;∵正方形ABCD 的边长为1,∴BCG GCHA ABCD S S S S =--△△CDH 四边形四边形 =11()2BG DH -+=112GH -,∠GAH =90°,AC 取GH 的中点P ,连接PA ,∴GH =2PA ,∴GCHA S 四边形=1PA -,∴当PA 取最小值时,GCHA S 四边形有最大值,连接PC ,AC ,则PA +PC ≥AC ,∴PA ≥AC - PC ,∴当PC 最大时,PA 最小,∵直径是圆中最大的弦,∴PC =1时,PA 最小,∴当A ,P ,C 三点共线时,且PC 最大时,PA 最小,∴PA ,∴GCHA S 四边形最大值为:1-),∴四边形CGAH 面积的最大值为2∴④正确;故答案为: ②③④.【点睛】本题考查了切线的性质,直径是最大的弦,三角形的全等,直角三角形斜边上的中线,四点共圆,正方形的性质,熟练掌握圆的性质,灵活运用直角三角形的性质,线段最短原理是解题的关键.5-2 【分析】由图可知,当CN ⊥AB 且C 、M 、N 三点共线时,MN 长度最小,利用勾股定理求出CN 的长,故可求解.【详解】由图可知,当CN ⊥AB 且C 、M 、N 三点共线时,MN 长度最小∵直线AB 的解析式为5y x =-+当x =0时,y =5,当y =0时,x =5∴B (0,5),A (5,0)∴AO =BO ,△AOB 是等腰直角三角形∴∠BAO =90°当CN ⊥AB 时,则△ACN 是等腰直角三角形∴CN =AN∵C ()2,0-∴AC =7∵AC 2=CN 2+AN 2=2CN 2∴CN当C、M、N三点共线时,MN长度最小即MN=CN-CM-2-2.【点睛】此题主要考查圆与几何综合,解题的关键是根据题意找到符合题意的位置,利用等腰直角三角形的性质求解.三、解答题1、(1)见解析(2)8 21【分析】(1)如图,连接OC,根据等腰三角形的性质可得∠CAB=∠ACO,即可得出∠FAC=∠ACO,可得AF//OC,根据平行线的性质可得∠AFC+∠OCF=180°,根据CF⊥AF可得∠OCF=90°,即可得出CF是⊙O的切线;(2)利用AAS可证明△AFC≌△AEC,可得S△AFC=S△AEC,根据垂径定理可得CE=DE,可得S△BCD=2S△BCE,根据AB是直径可得∠ACB=90°,根据角的和差关系可得∠BCE=∠CAB,根据正弦的定义可得25BC BE AB BC ==,可得BE =25BC ,AB =52BC ,进而可得AE =2110BC ,根据三角形面积公式即可得答案. (1)(1)如图,连接OC ,∵OA =OC ,∴∠CAB =∠ACO ,∵∠FAC=∠BAC ,∴∠FAC =∠ACO ,∴AF //OC ,∴∠AFC +∠OCF =180°,∵CF ⊥AF ,∴∠OCF =90°,即OC ⊥CF ,∴CF 是⊙O 的切线.(2)在△AFC 和△AEC 中,90CEA CFA CAB FAC AC AC ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩, ∴△AFC ≌△AEC ,∴S △AFC =S △AEC ,∵AB 是⊙O 的直径,CD ⊥AB ,∴S △BCD =2S △BCE ,∵∠BCE +∠CBA =90°,∠CAB +∠CBA =90°,∴∠BCE =∠CBA ,∵sin ∠CAB =25,∴sin ∠CAB =sin ∠BCE =25BC BE AB BC ==, ∴BE =25BC ,AB =52BC , ∴AE =2110BC , ∴BCD AFC S S =12212BE CE AE CE ⨯⋅⋅=2BE AE =2252110BC BC ⨯=821. 故答案为:821 【点睛】本题考查切线的判定、圆周角定理、垂径定理、全等三角形的判定与性质及三角函数的定义,经过半径的外端点,且垂直于这条半径的直线是圆的切线;直径所对的圆周角是90°;垂直于弦的直径平分这条弦,且平分这条弦所对的两条弧;在直角三角形中,锐角的正弦是锐角的对边与斜边的比值;熟练掌握相关性质及判定定理是解题关键.2、(1)8(2)13(3)(1)过点O作OH⊥AC于点H,由垂径定理可得AH=CH=12AC,由锐角三角函数和勾股定理可求解;(2)分两种情况讨论,由相似三角形的性质可求AG,EG,CG的长,即可求解;(3)分两种情况讨论,由相似三角形和勾股定理可求解.(1)如图2,过点O作OH⊥AC于点H,由垂径定理得:AH=CH=12AC,在Rt△OAH中,3 tan4OHOACAH∠==,∴设OH=3x,AH=4x,∵OH2+AH2=OA2,∴(3x)2+(4x)2=52,解得:x=±1,(x=﹣1舍去),∴OH=3,AH=4,∴AC=2AH=8;(2)如图2,过点O作OH⊥AC于H,过E作EG⊥AC于G,∵∠DEO=∠AEC,∴当△DOE与△AEC相似时可得:∠DOE=∠A或者∠DOE=∠ACD;AD AD=∴12ACD DOE ∠=∠,∴∠ACD≠∠DOE∴当△DOE与△AEC相似时,不存在∠DOE=∠ACD情况,∴当△DOE与△AEC相似时,∠DOE=∠A,∴OD∥AC,∴OD OE AC AE=,∵OD=OA=5,AC=8,∴558AEAE-=,∴4013 AE=,∵∠AGE=∠AHO=90°,∴GE∥OH,∴△AEG ∽△AOH , ∴AE EG AG AO OH AH==, ∴4013345EG AG ==, ∴2413EG =, ∴3213AG =,327281313CG =-=, 在Rt△CEG 中,1tan 3EG DCA CG ∠==; (3)当点E 在线段OA 上时,如图3,过点E 作EG ⊥AC 于G ,过点O 作OH ⊥AC 于H ,延长AO 交⊙O 于M ,连接AD ,DM ,由(1)可得 OH =3,AH =4,AC =8,∵OE =1,∴AE=4,ME=6,∵EG∥OH,∴△AEG∽△AOH,∴45 AE AG EGAO AH OH===,∴AG=165,EG=125,∴GC=245,∴EC∵AM是直径,∴∠ADM=90°=∠EGC,又∵∠M=∠C,∴△EGC∽△ADM,∴EC EG AM AD=,∴125510AD=,∴AD=当点E在线段AO的延长线上时,如图4,延长AO交⊙O于M,连接AD,DM,过点E作EG⊥AC于G,同理可求EG=185,AG=245,AE=6,GC=165,∴EC∵AM是直径,∴∠ADM=90°=∠EGC,又∵∠M=∠C,∴△EGC∽△ADM,∴EC EG AM AD=,∴185510AD=,∴AD综上所述:AD的长是【点睛】本题考查了垂径定理,勾股定理,解直角三角形,求角的正切值,相似三角形的性质与判定,圆周角定理,正切的作出辅助线是解题的关键.3、(1)16π(2)24π【分析】(1)由阴影部分的周长=两个半圆弧的长度+弧BC的长,利用弧长公式可求解;(2)由面积的和差关系可求解.(1)解:阴影部分的周长=2×12×2π×6+6012180π⨯=16π; (2) 解:∵阴影部分的面积=S 半圆+S 扇形BAC ﹣S 半圆=S 扇形BAC , ∴阴影部分的面积=60144360π⨯⨯=24π. 答:阴影部分的周长为16π,阴影部分的面积为24π.【点睛】本题考查了扇形的弧长公式和面积公式,如果扇形的圆心角是n °,扇形的半径为r ,则扇形的弧长l 的计算公式为:180n r l π=,扇形的面积公式:2360n r S π=扇. 4、(1)见详解;(2)7【分析】(1)根据切线的性质和矩形的判定定理即可得到结论;(2)根据切线长定理可得AB =AC ,BE =DE ,再利用勾股定理即可求解.【详解】(1)证明:∵AC ,DE 是O 的两条切线,EF AC ⊥于点F∴∠EFC =∠EDC =∠FCD =90°,∴四边形CDEF 是矩形;(2)∵四边形CDEF 是矩形,∴EF =CD =CF =2DE =,∵AB ,AC ,DE 是O 的两条切线,∴AB =AC ,BE =DE ,设AB =AC =x ,则AE =x +2,AF =x -2,在Rt AEF 中,()(()22222x x -+=+, 解得:x =5,∴AC =5+2=7.【点睛】本题主要考查切线长定理和勾股定理以及矩形的判定定理,掌握切线长定理以及勾股定理是解题的关键.5、(1)见解析(2)94【分析】(1)连接OB ,由圆周角定理得出90ABC ∠=︒,得出90C BAC ∠+∠=︒,再由OA OB =,得出BAC OBA ∠=∠,证出90PBA OBA ∠+∠=︒,即可得出结论; (2)证明ABC PBO ∆∆∽,得出对应边成比例,即可求出BC 的长.(1)证明:连接OB ,如图所示:AC 是O 的直径,90ABC ∴∠=︒,90C BAC ∴∠+∠=︒,OA OB =,BAC OBA ∴∠=∠, PBA C ∠=∠,90PBA OBA ∴∠+∠=︒, 即PB OB ⊥,PB ∴是O 的切线;(2)解:O 的半径为3, 3OB ∴=,6AC =, //OP BC ,CBO BOP ∴∠=∠, OC OB =,C CBO ∴∠=∠,C BOP ∴∠=∠,又90ABC PBO ∠=∠=︒, ABC PBO ∴∆∆∽, ∴BC AC OB OP=, 即863BC =, 94BC ∴=. 【点睛】本题考查了切线的判定、圆周角定理、平行线的性质、相似三角形的判定与性质;解题的关键是熟练掌握圆周角定理、切线的判定.。

2022年沪科版九年级数学下册第24章圆综合练习练习题(含详解)

2022年沪科版九年级数学下册第24章圆综合练习练习题(含详解)

沪科版九年级数学下册第24章圆综合练习考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列叙述正确的有( )个.(1)y y=随着x的增大而增大;(2)如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是75和15;(3)斜边为BC的直角三角形顶点A的轨迹是以BC中点为圆心,BC长为直径的圆;(4)三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;(5)以2211(1)22m mm m-+>、、为三边长度的三角形,不是直角三角形.A.0 B.1 C.2 D.32、如图,AB为O的直径,C为D外一点,过C作O的切线,切点为B,连接AC交O于D,38C∠=︒,点E在AB右侧的半圆周上运动(不与A,B重合),则AED∠的大小是()A .19°B .38°C .52°D .76°3、如图,DC 是⊙O 的直径,弦AB ⊥CD 于M ,则下列结论不一定成立的是( )A .AM =BMB .CM =DMC .AC BC =D .AD BD =4、如图,在Rt ABC 中,90C ∠=︒,10cm AB =,若以点C 为圆心,CB 的长为半径的圆恰好经过AB 的中点D ,则AC 的长等于( )A .5cmB .6cmC .D .5、某村东西向的废弃小路/两侧分别有一块与l 距离都为20 m 的宋代碑刻A ,B ,在小路l 上有一座亭子P . A ,P 分别位于B 的西北方向和东北方向,如图所示.该村启动“建设幸福新农村”项目,计划挖一个圆形人工湖,综合考虑景观的人文性、保护文物的要求、经费条件等因素,需将碑刻A ,B原址保留在湖岸(近似看成圆周)上,且人工湖的面积尽可能小.人工湖建成后,亭子P到湖岸的最短距离是()A.20 m B.mC.( - 20)m D.(m6、下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.7、如图,AB是⊙O的直径,点C是⊙O上一点,若∠BAC=30°,BC=2,则AB的长为()A.4 B.6 C.8 D.108、下列图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.,点O为AB中点.以点C为圆心,CO长为半径作⊙C,则⊙C与AB的位置9、在△ABC中,CA CB关系是()A.相交B.相切C.相离D.不确定10、下列图形中,既是中心对称图形也是轴对称图形的是()A.B.C.D.第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知如图,AB=8,AC=4,∠BAC=60°,BC所在圆的圆心是点O,∠BOC=60°,分别在BC、线段AB和AC上选取点P、E、F,则PE+EF+FP的最小值为____________.2、如图,在平面直角坐标系中,一次函数y =-2x +4的图像与x 轴、y 轴分别交于点A 、B ,将直线AB 绕点B 顺时针旋转45°,交x 轴于点C ,则直线BC 的函数表达式为_______.3、如图,在⊙O 中,∠BOC =80°,则∠A =___________°.4、如图,在矩形ABCD 中,2AB =,4BC =,F 为BC 中点,P 是线段BC 上一点,设(04)BP m m =<≤,连结AP 并将它绕点P 顺时针旋转90°得到线段PE ,连结CE 、EF ,则在点P 从点B 向点C 的运动过程中,有下面四个结论:①当2m ≠时,135EFP ∠=︒;②点E 到边BC 的距离为m;③直线EF 一定经过点D ;④CE .其中结论正确的是______.(填序号即可)5、如图,PA ,PB 分别与⊙O 相切于A ,B 两点,C 是优弧AB 上的一个动点,若∠P = 50°,则∠ACB =_____________°三、解答题(5小题,每小题10分,共计50分)1、如图,△ABC 内接于⊙O ,D 是⊙O 的直径AB 的延长线上一点,∠DCB =∠OAC .过圆心O 作BC 的平行线交DC 的延长线于点E .(1)求证:CD 是⊙O 的切线;(2)若CD =4,CE =6,求⊙O 的半径及tan∠OCB 的值.2、如图,在ABC 中,AB AC =,90BAC ∠=︒,D 是边BC 上一点,作射线AD ,满足045DAC ︒<∠<︒,在射线AD 取一点E ,且AE BC >.将线段AE 绕点A 逆时针旋转90°,得到线段AF ,连接BE ,FE ,连接FC 并延长交BE 于点G .(1)依题意补全图形;(2)求EGF ∠的度数;(3)连接GA ,用等式表示线段GA ,GB ,GC 之间的数量关系,并证明.3、在平面直角坐标系xOy 中,旋转角α满足0180α︒≤≤︒,对图形M 与图形N 给出如下定义:将图形M 绕原点逆时针旋转α得到图形M '.P 为图形M '上任意一点,Q 为图形N 上的任意一点,称PQ 长度的最小值为图形M 与图形N 的“转后距”.已知点(A ,点()4,0B ,点()2,0C .(1)当90α=︒时,记线段OA 为图形M .①画出图形M ';②若点C 为图形N ,则“转后距”为______;③若线段AC 为图形N ,求“转后距”;(2)已知点(),0P t ,点1,2Q t ⎛- ⎝⎭,记线段AB 为图形M ,线段PQ 为图形N ,对任意旋转角α,“转后距”大于1,直接写出t 的取值范围.4、阅读下列材料,完成相应任务:如图①,ABC 是⊙O 的内接三角形,AB 是⊙O 的直径,AD 平分BAC ∠交⊙O 于点D ,连接BD ,过点D 作⊙O 的切线,交AB 的延长线于点E .则CAD BDE ∠=∠.下面是证明CAD BDE ∠=∠的部分过程:证明:如图②,连接DO , AB 是⊙O 的直径,90ADB ∴∠=︒,ODA ∴∠+①________90=︒.(1) DE 为⊙O 的切线,90ODE ∴∠=︒,90ODB BDE ∴∠+∠=︒,(2)由(1)(2)得,②________________.AD 平分,BAC CAD OAD ∠∴∠=∠.,OA OD OAD ODA =∴∠=∠,CAD ∴∠=③________,CAD BDE ∴∠=∠.任务:(1)请按照上面的证明思路,补全证明过程:①________,②________,③________;(2)若5,2OA BE ==,求DE 的长.5、在平面直角坐标系xOy 中,对于点P ,O ,Q 给出如下定义:若OQ <PO <PQ 且PO ≤2,我们称点P 是线段OQ 的“潜力点”已知点O (0,0),Q (1,0)(1)在P 1(0,-1),P 2(12,32),P 3(-1,1)中是线段OQ 的“潜力点”是_____________; (2)若点P 在直线y =x 上,且为线段OQ 的“潜力点”,求点P 横坐标的取值范围;(3)直线y =2x +b 与x 轴交于点M ,与y 轴交于点N ,当线段MN 上存在线段OQ 的“潜力点”时,直接写出b 的取值范围-参考答案-一、单选题1、D【分析】根据反比例函数的性质,得当0x <或者0x >时,y 随着x 的增大而增大;根据直径所对圆周角为直角的性质,得斜边为BC 的直角三角形顶点A 的轨迹是以BC 中点为圆心,BC 长为直径的圆;根据垂直平分线的性质,得三角形三边的垂直平分线的交点到三角形三个顶点的距离相等;根据勾股定理逆定理、完全平方公式的性质计算,可判断直角三角形,即可完成求解.【详解】y x=-当0x <或者0x >时,y 随着x 的增大而增大,故(1)不正确; 如果直角三角形斜边的长是斜边上的高的4倍,那么这个三角形两个锐角的度数分别是75和15;,故(2)正确;∵圆的直径所对的圆周角为直角∴斜边为BC 的直角三角形顶点A 的轨迹是以BC 中点为圆心,BC 长为直径的圆,故(3)正确; 三角形三边的垂直平分线的交点到三角形三个顶点的距离相等,故(4)正确; ∵224212124m m m ⎛⎫--+= ⎪⎝⎭ ∴242422221211442m m m m m m ⎛⎫-+++++== ⎪⎝⎭∴以2211(1)22m m m m -+>、、为三边长度的三角形,是直角三角形,故(5)错误; 故选:D .【点睛】本题考查了三角形、垂直平分线、反比例函数、圆、勾股定理逆定理的知识;解题的关键是熟练掌握反比例函数、垂直平分线、圆周角、勾股定理逆定理的性质,从而完成求解.2、B【分析】连接,BD 由AB 为O 的直径,求解903852,CBD ∠=︒-︒=︒ 结合CB 为O 的切线,求解905238,ABD ABC DBC ∠=∠-∠=︒-︒=︒ 再利用圆周角定理可得答案.【详解】解:连接,BD AB 为O 的直径,90,90,ADB BDC ∴∠=︒∠=︒38,C ∠=︒903852,CBD ∴∠=︒-︒=︒ CB 为O 的切线,90,905238,ABC ABD ABC DBC ∴∠=︒∠=∠-∠=︒-︒=︒38,AED ABD ∴∠=∠=︒故选B【点睛】本题考查的是三角形的内角和定理,直径所对的圆周角是直角,圆周角定理,切线的性质定理,熟练运用以上知识逐一求解相关联的角的大小是解本题的关键.3、B【分析】根据垂径定理“垂直于弦的直径平分这条弦,并且平分弦所对的两条弧”进行判断即可得.【详解】解:∵弦AB ⊥CD ,CD 过圆心O ,∴AM =BM ,AC BC =,AD BD =,即选项A 、C 、D 选项说法正确,不符合题意,当根据已知条件得CM 和DM 不一定相等,故选B .【点睛】本题考查了垂径定理,解题的关键是掌握垂径定理.4、D【分析】连接CD ,由直角三角形斜边中线定理可得CD =BD ,然后可得△CDB 是等边三角形,则有BD =BC =5cm ,进而根据勾股定理可求解.【详解】解:连接CD ,如图所示:∵点D 是AB 的中点,90C ∠=︒,10cm AB =, ∴15cm 2CD BD AB ===, ∵CD BC =,∴5cm===,CD BD BC在Rt△ACB中,由勾股定理可得AC=;故选D.【点睛】本题主要考查圆的基本性质、直角三角形斜边中线定理及勾股定理,熟练掌握圆的基本性质、直角三角形斜边中线定理及勾股定理是解题的关键.5、D【分析】根据人工湖面积尽量小,故圆以AB为直径构造,设圆心为O,当O,P共线时,距离最短,计算即可.【详解】∵人工湖面积尽量小,∴圆以AB为直径构造,设圆心为O,过点B作BC⊥l,垂足为C,∵A,P分别位于B的西北方向和东北方向,∴∠ABC=∠PBC=∠BOC=∠BPC=45°,∴OC=CB=CP=20,∴OP =40,OB∴最小的距离PE =PO -OE m ),故选D .【点睛】本题考查了圆的基本性质,方位角的意义,等腰直角三角形的判定和性质,勾股定理,熟练掌握圆中点圆的最小距离是解题的关键.6、B【详解】解:A .是轴对称图形,不是中心对称图形,故不符合题意;B .既是轴对称图形,又是中心对称图形,故符合题意;C .不是轴对称图形,是中心对称图形,故不符合题意;D .是轴对称图形,不是中心对称图形,故不符合题意.故选:B .【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.7、A【分析】根据直径所对的圆角为直角,可得90C ∠=︒ ,再由直角三角形中,30°角所对的直角边等于斜边的一半,即可求解.【详解】解:∵AB 是⊙O 的直径,∴90C ∠=︒ ,∵∠BAC =30°,BC =2,∴24AB BC ==.故选:A【点睛】本题主要考查了直径所对的圆角,直角三角形的性质,熟练掌握直径所对的圆角为直角;直角三角形中,30°角所对的直角边等于斜边的一半是解题的关键.8、D【详解】解:A .不是轴对称图形,也不是中心对称图形,故本选项不符合题意;B .不是轴对称图形,是中心对称图形,故本选项不符合题意;C .是轴对称图形,不是中心对称图形,故本选项不符合题意;D .既是轴对称图形,又是中心对称图形,故本选项符合题意.故选:D .【点睛】本题考查了中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合.9、B【分析】根据等腰三角形的性质,三线合一即可得CO AB ⊥,根据三角形切线的判定即可判断AB 是C 的切线,进而可得⊙C 与AB 的位置关系【详解】解:连接CO ,=,点O为AB中点.CA CB∴⊥CO ABCO为⊙C的半径,∴是C的切线,AB∴⊙C与AB的位置关系是相切故选B【点睛】本题考查了三线合一,切线的判定,直线与圆的位置关系,掌握切线判定定理是解题的关键.10、A【分析】根据轴对称图形与中心对称图形的概念求解.【详解】解:A、既是轴对称图形,也是中心对称图形,故此选项符合题意;B、是轴对称图形,不是中心对称图形,故此选项不符合题意;C、是中心对称图形,不是轴对称图形,故此选项不符合题意;D、是中心对称图形,不是轴对称图形,故此选项不符合题意.故选:A.【点睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.二、填空题1、1212-+【分析】如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时△PEF的周长=PE+PF+EF=EM+EF+FM=MN,想办法求出MN的最小值即可解决问题.【详解】解:如图,连接BC,AO,作点P关于AB的对称点M,作点P关于AC的对称点N,连接MN交AB于E,交AC于F,此时△PEF的周长=PE+PF+EF=EM+EF+FM=MN,∴当MN的值最小时,△PEF的值最小,∵AP=AM=AN,∠BAM=∠BAP,∠CAP=∠CAN,∠BAC=60°,∴∠MAN=120°,∴MN,∴当PA的值最小时,MN的值最小,取AB的中点J,连接CJ.∵AB=8,AC=4,∴AJ =JB =AC =4,∵∠JAC =60°,∴△JAC 是等边三角形,∴JC =JA =JB ,∴∠ACB =90°,∴BC =∵∠BOC =60°,OB =OC ,∴△OBC 是等边三角形,∴OB =OC =BC BCO =60°,∴∠ACH =30°,∵AH ⊥OH ,AH =12AC =2,CH∴OH∴OA∵当点P 在直线OA 上时,PA 的值最小,最小值为∴MN =.故答案:.【点睛】本题考查了圆周角定理,垂径定理,轴对称-最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考填空题中的压轴题.2、34y x =+##【分析】先求出点A 、B 的坐标,过点A 作AF ⊥AB ,交直线BC 于点F ,过点F 作EF ⊥x 轴,垂足为E ,然后由全等三角形的判定和性质,等腰直角三角形的性质,求出点F 的坐标,再利用待定系数法,即可求出答案.【详解】解:∵一次函数y =-2x +4的图像与x 轴、y 轴分别交于点A 、B 两点,∴令0x =,则4y =;令0y =,则2x =,∴点A 为(2,0),点B 为(0,4),∴2OA =,4OB =;过点A 作AF ⊥AB ,交直线BC 于点F ,过点F 作EF ⊥x 轴,垂足为E ,如图,∴90AEF AOB ∠=∠=︒,∴90FAE BAE ABO BAE ∠+∠=︒=∠+∠,∴FAE ABO ∠=∠,∵45ABE ∠=︒,∴△ABF 是等腰直角三角形,∴AF =AB ,∴△ABO ≌△FAE (AAS ),∴AO =FE ,BO =AE ,∴2FE =,4AE =,∴422OE =-=,∴点F 的坐标为(2-,2-);设直线BC 为y ax b =+,则224a b b -+=-⎧⎨=⎩,解得:34a b =⎧⎨=⎩, ∴直线BC 的函数表达式为34y x =+;故答案为:34y x =+;【点睛】本题考查了一次函数的性质,全等三角形的判定和性质,等腰三角形的判定和性质,以及旋转的性质,解题的关键是熟练掌握所学的知识,正确的作出辅助线,从而进行解题.3、40°度【分析】直接根据圆周角定理即可得出结论.【详解】解:BOC ∠与BAC ∠是同弧所对的圆心角与圆周角,80BOC ∠=︒,1402A BOC ∴∠=∠=︒. 故答案为:40︒.【点睛】本题考查的是圆周角定理,解题的关键是熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半.4、②③④【分析】①当P 在F 点的右边时,得出45EFP CFD ∠=∠=︒即可判断;②证明出()Rt ABP Rt PGE AAS ≌即可判断;③根据Rt CDF 为等腰直角三角形,得出Rt GEF 都是等腰直角三角形,得到45EFG ∠=︒即可判断; ④当CE DF ⊥时,CE 有最小值,计算即可.【详解】 解:12,22CD AB CF BC ====, Rt CDF ∴为等腰直角三角形,45CFD ∴∠=︒,当P 在F 点的左边时,180135EFP CFD ∴∠=︒-∠=︒,当P 在F 点的右边时,45EFP CFD ∴∠=∠=︒,故①错误;过点E 作EG BC ⊥,在Rt ABP 和Rt PGE △中,根据旋转的性质得:AP PE =,90APB BAP APB EPG ∠+∠=∠+∠=︒,BAP EPG ∴∠=∠,()Rt ABP Rt PGE AAS ∴≌,EG BP m ∴==,故②正确;由①中得知Rt CDF 为等腰直角三角形,//EG DC ,Rt GEF ∴也是等腰直角三角形,EF ∴过点D ,不管P 在BC 上怎么运动,得到Rt GEF 都是等腰直角三角形,45EFG ∴∠=︒,即直线EF 一定经过点D ,故③正确;Rt CDF 是等腰直角三角形,当CE DF ⊥时,CE 有最小值,45DCE ECF ∴∠=∠=︒,Rt CEF ∴为等腰直角三角形,CE EF ∴=,2CF =,由勾股定理:222CE EF CF +=,CE ∴= 故④正确;故答案是:②③④.【点睛】本题是四边形综合题,考查了矩形的性质,全等三角形的判定和性质,旋转的性质,勾股定理,等腰直角三角形,解题的关键是灵活运用这些性质进行推理.5、65【分析】连接,OA OB ,根据切线的性质以及四边形内角和定理求得130AOB ∠=︒,进而根据圆周角定理即可求得∠ACB【详解】解:连接,OA OB ,如图,PA ,PB 分别与⊙O 相切90OAP OBP ∴∠=∠=︒360130AOB OAP OBP P ∴∠=︒-∠-∠-∠=︒AB AB =1652ACB AOB ∴∠=∠=︒ 故答案为:65【点睛】本题考查了切线的性质,圆周角定理,四边形的内角和,掌握切线的性质是解题的关键.三、解答题1、(1)见解析(2)3,2【分析】(1)由等腰三角形的性质与已知条件得出,∠OCA =∠DCB ,由圆周角定理可得∠ACB =90°,进而得到∠OCD =90°,即可得出结论;(2)根据平行线分线段成比例定理得到23BD CD OB CE ==,设BD =2x ,则OB =OC =3x ,OD =OB +BD =5x ,在Rt △OCD 中,根据勾股定理求出x =1,即⊙O 的半径为3,由平行线的性质得到∠OCB =∠EOC ,在Rt △OCE 中,可求得tan∠EOC =2,即tan∠OCB =2.(1)证明:∵OA =OC ,∴∠OAC =∠OCA ,∵∠DCB =∠OAC ,∴∠OCA =∠DCB ,∵AB是⊙O的直径,∴∠ACB=90°,∴∠OCA+∠OCB=90°,∴∠DCB+∠OCB=90°,即∠OCD=90°,∴OC⊥DC,∵OC是⊙O的半径,∴CD是⊙O的切线;(2)∵OE∥BC,∴BD CD OB CE=,∵CD=4,CE=6,∴4263 BDOB==,设BD=2x,则OB=OC=3x,OD=OB+BD=5x,∵OC⊥DC,∴△OCD是直角三角形,在Rt△OCD中,OC2+CD2=OD2,∴(3x)2+42=(5x)2,解得,x=1,∴OC=3x=3,即⊙O的半径为3,∵BC∥OE,∴∠OCB =∠EOC ,在Rt △OCE 中,tan ∠EOC =623EC OC ==, ∴tan∠OCB =tan∠EOC =2.【点睛】本题考查了圆周角定理、勾股定理、平行线的性质、等腰三角形的性质、切线的判定、三角函数、平行线分线段成比例定理等知识;熟练掌握切线的判定与平行线分线段成比例定理是解题的关键. 2、(1)见解析;(2)90︒(3)BG CG +=【分析】(1)根据题意补全图形即可;(2)根据旋转的性质可得90,EAF EA EF ∠=︒=,90AEF AFE ∠+∠=︒,进而证明BAE CAF ≌,可得BEA CFA ∠=∠,根据角度的转换可得,GFE FEG GFE FEA AEG GFE FEA AFC ∠+∠=∠+∠+∠=∠+∠+∠进而根据三角形的外角性质即可证明90FGB AFE AEF ∠=∠+∠=︒;(3)过点A 作AH AG ⊥,证明ABG ACH ≌,进而根据勾股定理以及线段的转换即可得到BG CG +=(1)如图,(2)将线段AE 绕点A 逆时针旋转90°,得到线段AF ,90EAF ∴∠=︒,AE AF =∴90AEF AFE ∠+∠=︒,90BAC ∠=︒BAE EAC EAC CAE ∴∠+∠=∠+∠BAE CAE ∴∠=∠又BA CA =∴BAE CAF ≌∴BEA CFA ∠=∠∴FGB ∠=GFE FEG GFE FEA AEG GFE FEA CFA ∠+∠=∠+∠+∠=∠+∠+∠即90FGB AFE AEF ∠=∠+∠=︒90FGB =∴∠︒(3)BG CG +=证明如下,如图,过点A 作AH AG ⊥,90GAH ∴∠=︒ 又90BAC ∠=︒,BAG GAC GAC CAH ∴∠+∠=∠+∠BAG CAH ∴∠=∠90,90BAC BGC ∠=︒∠=︒180ABG ACG ∴∠+∠=︒180ACG ACH ∠+∠=︒ABG ACH ∴∠=∠又AB AC =ABG ACH ∴≌AG AH ∴=,BG CH =90HAG ∠=︒GH GC CH GC BG ∴=+=+即BG CG +【点睛】本题考查了旋转的性质,三角形全等的性质与判定,勾股定理,等腰三角形的性质,掌握旋转的性质是解题的关键.3、(1)①OA(2)t的取值范围为t<-5或0<t<2或t>【分析】(1)①当90α=︒时,记线段OA为图形M.图形M绕原点逆时针旋转90°得到图形M'即OA′.②∵点C为图形N,求出OC=2最短距离;③过点O作OF⊥AC于F,先证△OAC为等边三角形,OF⊥AC,根据勾股定理求出OF===(2)点(),0P t,点1,2Q t⎛-⎝⎭,可求tan∠OPQ=212t t=⎛⎫--⎪⎝⎭P在x轴负半轴时,∠OPQ=120°,当点P在x轴正半轴时,∠OPQ=60°,得出∠CAB=∠ABC=30°,分三种情况,当0α=°,当点P在点B右边,PB=t-4,BD>1,列不等式()41t-,解得t>P在点B左边B′右边时,∠EPB=∠OPQ=60°,PB=2PE>2×1即4-t>2解得t<2,当t=0时,OA′=2,A′Q=2-1=1,t>0,当点P在B′左边,PB′>1,OB′=OB=4,t<-5即可.【详解】解:(1)①当90α=︒时,记线段OA为图形M.图形M绕原点逆时针旋转90°得到图形M'即OA′;②∵点C为图形N,OC=2为图形M与图形N的“转后距”,∴“转后距”为2,故答案为2;③线段AC为图形N,过点O作OF⊥AC于F,根据勾股定理OA2=,AC2=,∴OA=AC=OC=2,∴△OAC 为等边三角形,∵OF ⊥AC ,∴AF =CF =1,∴OF(2)∵点(),0P t,点1,2Q t ⎛- ⎝⎭, ∴tan∠OPQ=212t t =⎛⎫-- ⎪⎝⎭∴当点P 在x 轴负半轴时,∠OPQ =120°,当点P 在x 轴正半轴时,∠OPQ =60°, ∵CB =4-2=2=AC ,∠ACO =60°,∴∠CAB =∠ABC =30°,分三种情况,当0α=°,当点P 在点B 右边,PB =t -4,BD >1,∴BP sin60>1,∴()41t-,解得t>当点P在点B左边B′右边时,∠EPB=∠OPQ=60°,∴∠OEB=180°-∠EPB-∠ABC=180°-60°-30°=90°,∵PB=4-t,∴PB=2PE>2×1即4-t>2,解得t<2,当t=0时,点P与原点O重合,OA′=2,A′Q=2-1=1,∴t>0,∴0<t<2;当点P在B′左边,PB′>1,OB′=OB=4,∴t<-5;综合t 的取值范围为t <-5或0<t <2或t > 【点睛】 本题考查图形新定义,仔细阅读,熟悉新定义要点,图形旋转性质,最短距离,锐角三角函数,锐角三角函数值求角度,等边三角形判定与性质,勾股定理,掌握图形新定义,仔细阅读,熟悉新定义要点,图形旋转性质,最短距离,锐角三角函数,锐角三角函数值求角度,等边三角形判定与性质,勾股定理是解题关键.4、(1)ODB ∠,ODA BDE ∠=∠,ODA ∠;(2)DE =【分析】(1)由AB 是⊙O 的直径,得到ODA ∠+∠ODB 90=︒.再由DE 为⊙O 的切线,得到90ODB BDE ∠+∠=︒,即可推出∠ODA =∠BDE ,由角平分线的定义可得CAD OAD ∠=∠,由OA OD =,得到OAD ODA ∠=∠,即可证明CAD BDE ∠=∠;(2)在直角△ODE 中利用勾股定理求解即可.【详解】解:(1)如图②,连接DO , AB 是⊙O 的直径,90ADB ∴∠=︒,ODA ∴∠+∠ODB 90=︒.(1) DE 为⊙O 的切线,90ODE ∴∠=︒,90ODB BDE ∴∠+∠=︒,(2)由(1)(2)得,∠ODA =∠BDE . AD 平分BAC ∠,∴CAD OAD ∠=∠.OA OD =,OAD ODA ∠=∠∴CAD ∴∠=∠ODA ,CAD BDE ∴∠=∠.故答案为:① ODB ∠,② ODA BDE ∠=∠,③ ODA ∠;(2)DE 为O 的切线,90ODE ∴∠=︒.5OA =,5OD OB OA ∴===,2BE =,7OE OB BE ∴=+=.在Rt ODE △中,DE =【点睛】本题主要考查了切线的性质,角平分线的定义,等腰三角形的性质,直径所对的圆周角是直角,勾股定理等等,解题的关键在于能够熟练掌握切线的性质.5、(1)3P ;(2)p x ≤<(3)1b <≤或1 1.b -<<-【分析】(1)分别计算出OQ 、PO 和PQ 的长度,比较即可得出答案;(2)先判断点P 在以O 为圆心,1为半径的圆外且点P 在线段OQ 垂直平分线的左侧,结合PO ≤2,点P 在以O 为圆心,2为半径的圆上或圆内,可得点P 在如图所示的线段AB 上(不包含点B ),过B 作BC y ⊥轴,过A 作AD y ⊥轴,垂足分别为,,C D 再根据图形的性质求解,,BC AD 从而可得答案;(3)由(2)得:点P 在以O 为圆心,1为半径的圆外且点P 在以O 为圆心,2为半径的圆上或圆内,而PO <PQ ,点P 在线段OQ 垂直平分线的左侧,再分两种情况讨论:当0b >时,当0b ≤时,分别画出两种情况下的临界直线2,y x b =+ 再根据临界直线经过的特殊点求解b 的值,再确定范围即可.【详解】解:(1) O (0,0),Q (1,0),1,OQP 1(0,-1),P 2(12,32),P 3(-1,1) 22111,112,OP PQ 不满足OQ <PO <PQ 且PO ≤2, 所以1P 不是线段OQ 的“潜力点”, 同理:22222213101310,10,222222OP P Q 所以不满足OQ <PO <PQ 且PO ≤2,所以2P 不是线段OQ 的“潜力点”, 同理:222233112,11105,OP PQ125,22,所以满足:OQ <PO <PQ 且PO ≤2,所以3P 是线段OQ 的“潜力点”,故答案为:P 3(2)∵点P 为线段OQ 的“潜力点”,∴OQ <PO <PQ 且PO ≤2,∵OQ <PO ,∴点P 在以O 为圆心,1为半径的圆外∵PO <PQ ,∴点P 在线段OQ 垂直平分线的左侧,而OQ 的垂直平分线为:1,2x = ∵PO ≤2,∴点P 在以O 为圆心,2为半径的圆上或圆内又∵点P 在直线y =x 上,∴点P 在如图所示的线段AB 上(不包含点B )过B 作BC y ⊥轴,过A 作AD y ⊥轴,垂足分别为,,C D由题意可知△BOC 和 △AOD 是等腰三角形,1,2,OB OA∴2sin 45,sin 452,2BC OB AD OA∴x p <(3)由(2)得:点P 在以O 为圆心,1为半径的圆外且点P 在以O 为圆心,2为半径的圆上或圆内,而PO <PQ ,点P 在线段OQ 垂直平分线的左侧当0b >时,2y x b =+过10,1N 时,1,b ∴= 即函数解析式为:21,y x =+ 此时11,0,2M 则111tan ,2M N O当2y x b =+与半径为2的圆相切于S 时,则90,NSO由11,MN M N ∥ 111tan tan ,2SO SNO M N OSN 而2,SO224,2425,SN ON125,b当0b ≤时,如图,同理可得:点P 在以O 为圆心,1为半径的圆外且点P 在以O 为圆心,2为半径的圆上或圆内,而PO <PQ ,点P 在线段OQ 垂直平分线的左侧,同理:当2y x b =+过10,1,N 则1,b =- 直线为21,y x 11,0,2M 1M 在直线12x =上, 此时221115,2M K OK OM 当2y x b =+过115,22K 时, 则151+,2b 151,2b所以此时:1 1.b -<<-综上:b的范围为:1<b≤1-<b<-1【点睛】本题考查的是新定义情境下的知识运用,圆的基本性质,圆的切线的性质,一次函数的综合应用,锐角三角函数的应用,勾股定理的应用,数形结合是解本题的关键.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第24章圆单元测试题姓名:
一.选择题(共10小题)
1、下列说法,正确的是()
A.弦是直径B.弧是半圆C.半圆是弧D.过圆心的线段是直径
2、如图,在半径为5cm的⊙O中,弦AB=6cm,OC⊥AB于点C,则OC=()
A.3cm B.4cm C.5cm D.6c m
(2题图)(3题图)(4题图)(5题图)(8题图)
3、一个隧道的横截面如图所示,它的形状是以点O为圆心,5为半径的圆的一部分,M是⊙O中弦CD的中点,EM经过圆心O交⊙O于点E.若CD=6,则隧道的高(ME的长)为()
A.4 B.6C.8D.9
4、如图,AB是⊙O的直径,==,∠COD=34°,则∠AEO的度数是()
A.51°B.56°C.68°D.78°
5、如图,在⊙O中,弦AC∥半径OB,∠BOC=50°,则∠OAB的度数为()
A.25°B.50°C.60°D.30°
6、⊙O的半径为5cm,点A到圆心O的距离OA=3cm,则点A与圆O的位置关系为()
A.点A在圆上B.点A在圆内C.点A在圆外D.无法确定
7、已知⊙O的直径是10,圆心O到直线l的距离是5,则直线l和⊙O的位置关系是()
A.相离B.相交C.相切D.外切
8、如图,正六边形ABCDEF内接于⊙O,半径为4,则这个正六边形的边心距OM和的长分别为()
A.2,B.2,πC.,D.2,
9、如图,四边形ABCD是⊙O的内接四边形,⊙O的半径为2,∠B=135°,则的长()
A.2πB.πC.D.
10、如图,直径AB为12的半圆,绕A点逆时针旋转60°,此时点B旋转到点B′,则图中阴影部分的面积是()
A.12πB.24πC.6πD.36π
二.填空题(共10小题)
11.如图,AB是⊙O的直径,CD为⊙O的一条弦,CD⊥AB于点E,已知CD=4,AE=1,
则⊙O的半径为.
(9题图)(10题图)(11题图)(12题图)
12.如图,在△ABC中,∠C=90°,∠A=25°,以点C为圆心,BC为半径的圆交AB于点D,交AC于点E,则的度数为.
13.如图,四边形ABCD内接于⊙O,AB为⊙O的直径,点C为的中点.若∠A=40°,则∠B=度.
(13题图)(14题图)(15题图)(17题图)
14、如图所示,在平面直角坐标系xOy中,半径为2的⊙P的圆心P的坐标为(﹣3,0),
将⊙P沿x轴正方向平移,使⊙P与y轴相切,则平移的距离为.
14.如图,点O是正五边形ABCDE的中心,则∠BAO的度数为.
15.
16.已知一条圆弧所在圆半径为9,弧长为π,则这条弧所对的圆心角是.17.如图,在边长为4的正方形ABCD中,先以点A为圆心,AD的长为半径画弧,再以
AB边的中点为圆心,AB长的一半为半径画弧,则两弧之间的阴影部分面积是
(结果保留π).
18.已知圆锥的底面圆半径为3,母线长为5,则圆锥的全面积是.
19.如果圆柱的母线长为5cm,底面半径为2cm,那么这个圆柱的侧面积是.20.半径为R的圆中,有一弦恰好等于半径,则弦所对的圆心角为.
三.解答题(共4小题)
四.
21.如图,已知圆O的直径AB垂直于弦CD于点E,连接CO并延长交AD于点F,且CF⊥AD.(1)请证明:E是OB的中点;
(2)若AB=8,求CD的长.
22.已知:如图,C,D是以AB为直径的⊙O上的两点,且OD∥BC.求证:AD=DC.
23.如图,在△ABC中,AB=AC,以AB为直径的⊙O分别与BC,AC交于点D,E,过点D作⊙O的切线DF,交AC于点F.
(1)求证:DF⊥AC;
(2)若⊙O的半径为4,∠CDF=22.5°,求阴影部分的面积.
24.如图,△OAB中,OA=OB=4,∠A=30°,AB与⊙O相切于点C,求图中阴影部分的面积.(结果保留π)
九年级数学上册第24章圆单元测试题参考答案
一.选择题(共10小题)
1.C 2.B 3.D 4.A 5.A 6.B 7.C 8.D 9.B 10.B 二.填空题(共10小题)
11.12.50°13.70 14.1或5 15.54°16.50°17.2π
18.24π19.20πcm220.60°
三.解答题(共5小题)
21.(1)证明:连接AC,如图
∵直径AB垂直于弦CD于点E,∴,∴AC=AD,
∵过圆心O的线CF⊥AD,∴AF=DF,即CF是AD的中垂线,∴AC=CD,
∴AC=AD=CD.即:△ACD是等边三角形,∴∠FCD=30°,
在Rt△COE中,,∴,∴点E为OB的中点;
(2)解:在Rt△OCE中,AB=8,∴,
又∵BE=OE,∴OE=2,∴,∴.
(21题图)(22题图)(23题图)(24题图)
22.证明:连结OC,如图,
∵OD∥BC,∴∠1=∠B,∠2=∠3,
又∵OB=OC,∴∠B=∠3,∴∠1=∠2,∴AD=DC.
23.(1)证明:连接OD,∵OB=OD,∴∠ABC=∠ODB,
∵AB=AC,∴∠ABC=∠ACB,∴∠ODB=∠ACB,∴OD∥AC,
∵DF是⊙O的切线,∴DF⊥OD,∴DF⊥AC.
(2)解:连接OE,∵DF⊥AC,∠CDF=22.5°,∴∠ABC=∠ACB=67.5°,∴∠BAC=45°,∵OA=OE,∴∠AOE=90°,∵⊙O的半径为4,∴S扇形AOE=4π,S△AOE=8 ,∴S阴影=4π﹣8.24.解:连接OC,∵AB与圆O相切,∴OC⊥AB,
∵OA=OB,∴∠AOC=∠BOC,∠A=∠B=30°,
在Rt△AOC中,∠A=30°,OA=4,∴OC=OA=2,∠AOC=60°,
∴∠AOB=120°,AC==2,即AB=2AC=4,
则S阴影=S△AOB﹣S扇形=×4×2﹣=4﹣.
故图中阴影部分的面积为4﹣.
25.解:由三视图可知该几何体是圆锥,圆锥的高为12,圆锥的底面圆的半径为5,所以圆锥的母线长==13,
所以圆锥的表面积=π•52+•2π•5•13=90π.。

相关文档
最新文档