台湾软玉的显微结构研究

合集下载

中国两个主要产地软玉的矿物学特征对比

中国两个主要产地软玉的矿物学特征对比

2A),而和Ⅲ软玉纤维表现的长而纤细(宽约
0 25
u口)且多呈翻卷扭曲状(罔28)。 根据对比研究.梅岭软玉化学成分更富K、
Na和s-,我们推测可能与其成矿徘岩富含s-和
参考女赫:
%&№目#i∞m{。#Ⅱ目A i%H*^{2007 2(87)23-28
《**☆*☆#自:¥i№&^旬M&izmⅢ4”№Ⅲ,1996
增刊
矿物学报
35Biblioteka 中国两个主要产地软玉的矿物学特征对比
周征宇,廖宗廷,廖冠琳
(同济大学海洋与地球科学学院同济大学宝石及工艺材料实验室,上海200092)
几千年来,软玉都被认为来自新疆和田,但 随着国内一些软玉新矿点的陆续发现(王时麒, 2004;董必谦,1996),尤其是上世纪90年代初在 江苏溧阳发现的小梅岭软玉矿(钟华邦,1990), 因毗邻吴地古文化而备受关注(何明跃等,2002; 何国俊,2005),使得中国古玉舍远取近“就地取 材”的观点得到了新的支持(杨伯达,2001;蒋素 华,2005)。然而如何区分不同产地的软玉就成 为现代玉石学对传统岩石矿物学提出的新的 挑战。 梅岭软玉为燕山期花岗岩与下二叠纪栖霞
JCPDS Klult
H 17R
M岬“PⅢ女r D蛳m聃.m24M
19∞ N“york:John W]ley&‰m

Al~der


X-raT
D咖…pro,dares^r脚叩自“w ant月“_^叫m"Y☆+2“d
】974:532
中国两个主要产地软玉的矿物学特征对比
作者: 作者单位: 周征宇, 廖宗廷, 廖冠琳 同济大学海洋与地球科学学院同济大学宝石及工艺材料实验室,上海 200092
岭软玉。放大至8000×,可明显发现梅岭软玉纤 维粗(宽约1 碱金属元素有芰。而根据矿区实际踏勘发现,梅 岭软玉矿成矿构造简单,成矿时所受压扭作用力 较弱,结晶环境相对较为稳定,这可能是造成梅 岭玉结晶度远较和田玉高,且透闪石纤维结晶颗 粒粗大平直的根木原冈。

中国三个产地的软玉(透闪石玉)研究

中国三个产地的软玉(透闪石玉)研究
似, 成固均为接触 麦代 型。 关 键 词 :款玉: 闪石 ; 连 矿物学特 征 : 田;最阳; 和 蚰岩
中 图分类号 : 692 P 1.8
文献标 识 码 : A
文章 编 号 : 0824 一20)202 —5 ]0—1X (020 050
中 国 是 世 界 上 开 采 和 应 用 软 玉 最 早 的 国 家
维普资讯
第 4卷
20 0 2年
第 2斯
6 月
宝 石和 宝石 学 杂志
J u n lo msa dGe o r a fGe n mmoo lgy
Vol4 No 2 d 妣 20 2 0
中国三个产地 的软 玉( 闪石 玉) 透 研究
接 触 带 中 ;蚰 岩 软 玉 矿 体 赋 存 于 下 元 古 界 辽 河 群
大 石 桥 组 自 云 大 理 岩 地 层 中 的 北 新 石 器 时 代 早 期 ] 因 其 主 要 产 。 于 新 疆 的 和 田 县 ,故 又 名 “ 田 玉 ” 和 。近 年 来 .在 辽 宁 岫 岩 和 江 苏 溧 阳 等 地 又 先 后 发 现 了 可 供 开 采 的 软 玉 矿 床 。我 们 课 题 组 长 期 从 事 软 玉 的 研 究 ,对 新 疆 和 田 、江 苏 溧 阳 和 辽 宁 岫 岩 等 地 的 软 玉 矿 床 做 了 野 外 调 查 ,采 集 了 大 量 供 研 究 的 样 品 ,用 电 子 探 针 、 射 线 粉 末 衍 射 、红 外 光 谱 、扫 描 电 镜 等 X 现 代 测 试 方 法 ,对 三 个 地 区 的 软 玉 进 行 了 测 试 和
5, 6)
青 白 玉 、青 玉 和 碧 玉 的 闲 石 质 量 分 数 基 本 相 同 , 在 9 以 上 ,尚 有 一 些 其 它 矿 物 如 辉 石 、磷 灰 石 8

2.软玉介绍

2.软玉介绍

2.软玉知识介绍古往今来,软玉(和田玉、闪石玉)以其色泽光洁柔美、质地坚韧细腻、温润含蓄、符令国人的审美观念而深得人们的喜爱,人们将“仁”、“智”、“礼”、“义”、“信”的道德理念及社会财富、权利等一系列社会元素赋予和田玉之中。

从7000年前的新石器时代开始,和田玉制品作为日常用品、饰品、祭器、礼器甚至葬器,已经成为人们生活中不可缺少的部分。

历代琳琅满目的软玉制品,是中华民族灿烂文化的重要组成部分,也是人类艺术史上的辉煌成就,被誉为东方艺术。

一、软玉的基本性质(一)矿物组成软玉主要是由角闪石族中透闪石一阳起石类质同象系列的矿物所组成,其化学通式为:Ca2(Mg,Fe)5Si8O22(OH)2其中Mg、Fe间可呈完全类质同象代替。

根据国际矿物协会新矿物及矿物命名委员会批准角闪石族分会推荐的尼克(B.E.Leake)的“角闪石族命名方案”,透闪石—与阳起石的划分按照单位分子中—:价镁和铁的占位比率不同予以命名,即:Mg/(Mg+Fe2+)=0.90—1.00透闪石Mg/(Mg+Fe2+)=0.50—0.90阳起石Mg/(Mg+Fe2+)=0.00—0.50铁阳起石软玉的主要矿物为透闪石,次要矿物有阳起石及透辉石、滑石、蛇纹石、绿泥石、绿帘石、斜黝帘石、镁橄榄石、粗晶状透闪石、白云石、石英、磁铁矿、黄铁矿、镁铁尖晶石、磷灰石、石榴石、金云母、铬尖晶石等。

(二)化学组成透闪石——铁阳起石类质同象系列的化学成分为Ca2Mg5(Si4O11)2(OH)2—Ca2Fe5(Si4O11)2(OH)2,在多数情况下软玉是这两种端元组分的中间产物。

(三)晶系及结晶习性软玉的主要组成矿物为透闪石和阳起石,都属单斜晶系。

这两种矿物的常见晶形为长柱状、纤维状、叶片状,软玉是这些纤维状矿物的集合体。

(四)结构软玉的矿物颗粒细小,结构致密均匀,所以软玉质地细腻、润泽且具有高的韧性。

依据软玉矿物颗粒的大小、形态及颗粒结合方式,将软玉的结构分为下述6种。

中华奇石丨台湾——丰田玉:解析

中华奇石丨台湾——丰田玉:解析

中华奇⽯⼁台湾——丰⽥⽟:解析花莲翠⽟,也叫台湾⽟,学名「闪⽟」,也有⼈称「软⽟」,为世界名⽟之⼀,主要产于花莲县寿丰乡丰⽥及秀林乡西林⼆地,崛起于公元1965年,因此⼜称为「丰⽥⽟」、花莲翠⽟。

当时花莲丰⽥盛产的「台湾⽟」享誉全球,⼴受⽇本、欧美⼈⼠喜爱,花莲市区到处是台湾⽟的艺品店,开启宝⽯加⼯业的先河,为台湾奠定世界宝⽯产销中⼼的基础,赚进⼤笔外汇,并缔造产量第⼀的世界纪录,⾄今仍稳拥宝座。

可惜,这段短短不到⼗年的辉煌历史,早已逐渐被台湾⼈淡忘,甚⾄有许多⼈不知道台湾有⼟⽣⼟长的宝⽟。

这段短暂、辉煌的历史,其实只是台湾⽟历史的⼀⼩⽚段,因为她的故事得以溯及亿万年前!1980年,南回铁路的台东新站⼯程意外发现⼤批史前⽂物,终使埋藏上千年的卑南⽂化重现,成为台湾发现最早、同时是规模最⼤的史前遗址。

台⼤考古系(现今为⼈类系)师⽣历经 9 年,前后 13 梯次在此处进⾏挖掘,出⼟的上千件⽟器式样繁多且造型变动丰富,包括各式⽟玦⽿饰、⽟管、⽟玲项链,以及⽟镯、臂环等,令⼈⽬不暇给,其中的⼈兽形玦⽿饰更被选为代表台湾史前⽂化博物馆的标志( logo )。

事实上,台湾各地的新⽯器时代考古遗址中,都发现了不少⽟器,材质以闪⽟为主,依据分析⽐对,材料皆来⾃花莲丰⽥及西林地区的台湾⽟。

最近由澳洲学者带领的南岛语系民族研究团队,分别在菲律宾、越南等地的史前遗址所发现的珍贵⽟器,⽆论是观察其外型设计,或是经由精密仪器探测化学成分,均指证其来源为台湾⽟。

早在五千年前,台湾岛上的居民已经认识台湾⽟之美,缔造出充满谜样⾊彩,长达三千年的史前⽟器⽂化,且渐渐传播⾄东南亚地区。

台湾⽟为「超铁镁成分的超基性⽕成岩」变质⽽成,经常与台湾东部的变质岩「蛇纹岩」相伴,出现在蛇纹岩与⽯墨质绢云母⽯英⽚岩的接触带,代表台湾特殊的造⼭带及板块挤压变质的地质环境。

最早在 2 亿多年前形成的沈积岩,随着板块的挤压碰撞,在地底⾼温⾼压的环境下促使泥岩变质成为⿊⾊⽚岩,海洋板块及铁镁质岩浆变质成蛇纹岩。

宝石学1 软玉(NEPHRITE)

宝石学1 软玉(NEPHRITE)

图章石(叶腊石质玉) 图章石(叶腊石质玉)
• 寿山石一产于福建福州寿山乡 . 分布在水田中的寿山石称“田坑石”, 黄色的叫“田黄”,是一种珍贵品种,半 透明的则称为“田黄冻”,是田黄中的上 品。白色的叫“白田”,红色的叫“红 田”,黑色的叫“黑田”,分布在坑口矿 脉中的寿山石称为“水坑石”。而产于寿 山乡周围矿山的寿山石叫“山坑石”。
绿 松 石 Turquoise
• 绿松石属优质玉材,我国清代称之为天国宝石, 视为吉祥幸福的圣物,只有皇帝和太后的官帽才 能用绿松石镶顶子。 • 绿松石以天蓝色的瓷松,尤如上釉的瓷器为最优。 如有不规则的铁线,则其品质就较差了。白色的 绿松石(宝玉石行业中也称白松石)的价值较之 蓝、绿色的要低。 • 我国的绿松石闻名世界,主要产地石湖北及陕西 的白河,新疆、安徽、河南、云南也有发现。 • 国外以伊朗绿松石为最著名,美国、埃及、澳大 利亚也有出产。
澳 洲 玉(Chrysoprase) • 属玉髓的一种。是超显微石英晶质集合体, 单体呈纤维状,杂乱或微定向排列。 • 硬度7-7.5,由Ni致色 。 • 其中质量最好的是由澳大利亚出产,故称 澳州玉,外观颜色与翡翠很相像。
其他玉石
• 独山玉:河南南阳独山, 黝帘石化斜长岩,很 象翡翠。SG:2.73—3.18;RI1.56—1.70 • 水钙铝榴石质玉(青海玉、非洲玉) • 绿松石(Turquoise):含水铜铝磷酸盐 • 孔雀石Cu2(OH) 2CO3
图章石(叶腊石质玉) 图章石(叶腊石质玉)
• 叶腊石属单斜晶系,多呈鳞片伏或隐晶质 致密块状体。 • 颜色有白、黄、淡绿、灰绿、淡蓝、红、 紫红、褐色等,这主要与Fe2O3和MgO的 含量变化有关。 • 微透明一半透明,为油脂光泽一珍珠光泽, 硬度1一2,寿山石略高些,硬度2一2.5, 二轴晶(一),折光率1.534一1.601,重 折率0.050。

第9讲 软玉

第9讲 软玉

第7章软玉7.1 概述软玉(Nephrite)在世界上产地众多,但以中国新疆和田地区产的软玉质量最佳,开发历史最悠久,故前苏联地球化学家基尔斯曼称软玉为中国玉。

据历史考证,中国人对和田玉的应用可上溯到新石器时代,如浙江河姆渡文化、良诸文化、上海崧泽文化、江苏北阴阳营文化等遗址出土的玉器中,都在大量用软玉制成的品种。

中国号称“玉器之国”,在以神农氏、伏羲氏为代表的石器时代和以治水英雄大禹为代表的青铜器时代之间,还可划分出一个玉器时代,这个时代的代表人物,就是被尊为中华民族祖先的黄帝,作为“玉器之国”和“玉器时代”的代表玉石就是软玉。

由于在新疆和田一带产出的软玉最有名,因而又称和田玉。

在唐代的诗歌中,有两首脍炙人口的七绝,一首是王昌龄的从军行,另一首是王之焕的凉州词。

《从军行》写道:“青海长云暗雪山,孤城遥望玉门关。

黄沙百战穿金甲,不破楼兰终不还”。

《凉州词》写道:“黄河远上白云间,一片孤城万仞山。

羌笛何须怨杨柳,春风不度玉门关”。

这两首诗都咏的玉门关为何得名?据考证,公元138年,张骞奉汉武帝之命出使西域,开辟了“丝绸之路”。

同时,在敦煌之西的戈壁中设置了两座关隘,由于新疆产的软玉源源不断地通过一座关隘输入内地,因此这座关隘取名为“玉门关”。

另外一座关隘叫“阳关”。

这也是中国历史所用软玉主要源自新疆的一个佐证。

在中国悠久的用玉历史中,由于一些特殊原因,使得一些玉种占有突出的地位,其中四种玉被称为中国四大名玉,它们是软玉、绿松石、岫玉和独山玉。

在这四种玉中,软玉(和田玉)无论在玉质方面,还是在历史文化地位方面均居四大名玉之首。

由于软玉的玉质优越,加之新疆软玉产地昆仑山的神秘性和软玉与中国古代政治、文化、艺术的密切联系,于是产生了中国特有的玉文化。

使得软玉在中国人心中一直占据着崇高的地位,而且经久不衰。

7.2 基本性质7.2.1 化学成分软玉是一种含水的钙镁硅酸盐,化学式为Ca2(Mg,Fe)5(OH)2(Si4O11)2。

软玉【珠宝鉴定及贸易】

软玉【珠宝鉴定及贸易】
2010-9-23
U
32
强铁染蚀变 透闪石岩
分红糖质为褐、名、色命玉。按别糖玉
2010-9-23
33
2010-9-
J
墨玉: 透闪石中夹石墨、磁铁成分即成黑色。墨 玉多为灰白或灰黑色玉中夹黑色斑纹,依形命名为“乌 云片、淡墨光、金貂须、美人鬓”等。黑色斑浓重密集的称纯漆黑,价值高于其他墨玉品种 。墨玉呈蜡状光泽,因颜色不均不宜雕琢纹饰,多用于 制成镶嵌金银丝的器皿。

2010-9-23
2010-9-23

2010-9-23
2.其它物理特征
一般为油脂光泽, 有时为蜡状光泽。半透明至不 透明。折光率1.606 - 1. 632, 双折射率0.021 - 0. 023 。无荧光或磷光。硬度6-6.5,密度2. 9-3. lg/cm3。断 口参差状。韧性极强, 质地细腻, 坚韧, 抛光后表面
2010-9-23
1
1
蚀变透闪石岩
按色、质分别命名为羊脂白玉、象牙白玉、梨花白玉、
鱼肚白玉、糯米白玉、瓷白玉、鱼骨白玉、鸡骨白玉。
2010-9-23
14
白主戒指*-- i- ■ \-j 仏八
白玉印章
2010-9-23
15
玉带钩-清中期 估价15000元
2010-9-2
I
青白玉: 质地与白玉无显著区别,仅玉色白中泛淡淡的 青绿色,为和田玉中三级玉材,经济价值略次于白玉。青玉: 色淡青、青绿、灰白均称青玉,颜色匀净,质 地细腻,透闪石9345%%、阳起石6%。呈油脂状光泽。 价值比白玉低,
-东汉王逸《玉部论》: “白如截肪,绿若蒸栗, 赤如鸡冠,黑如纯漆,谓之玉符”。
鸿钊《石雅》:
“雪之白, 翠之青, 蜡之黄,

12-2软玉

12-2软玉

3
一、软玉的宝石学特征
1.成分 钙镁的硅酸盐,镁可被铁广泛替代 主要组成为透闪石、阳起石系列矿物 的集合体,少量的透辉石、蛇纹石、 绿泥石、磁铁矿等。 透闪石—阳起石: Ca2(Mg,Fe)5(Si4O11)2(OH)2
4
一、软玉的宝石学特征
2.晶系 单斜晶系,常为长柱状 单斜晶系 或纤维状
5
一、软玉的宝石学特征
3.结晶习性 原生矿为致密 块状体,次生矿为 砾石状,具纤维交 织结构,韧性大。
软玉原石
6
一、软玉的宝石学特征
4.断口:不平坦或锯齿状 5.硬度(H): 6.5
7
一、软玉的宝石学特征
6.相对密度(SG) 2.8~3.1,一般为2.85
8
一、软玉的宝石学特征
7.折射率(RI) 1.62点测,较模糊
18
三、质量评价
主要依据 1.质地:要求致密细腻,光洁柔润,无绺无裂 2.颜色:纯正均匀,白色羊脂玉为最好 3.光泽:油脂光泽 4.块度:有一定的块度
19
9
一、软玉的宝石学特征
8.光性 非均质集合体,偏光镜下全亮
软玉的显微结构
10
一、软玉的宝石学特征
9.透明度 半透明—不透明
1一、软玉的宝石学特征
11.吸收光谱 不典型,含铁的绿色品种 不典型, 在蓝区和蓝绿区有吸收带。 12.发光性:惰性 发光性
12
一、软玉的宝石学特征
第十二章第二节
软 玉
主讲教师 陈美华
1
软 玉
前言
软玉是我国最著名的玉 石品种,通常所说的和田玉 实则上就是软玉这是因为我 国所产软玉主要在新疆,而 且以新疆和田地区所产软玉 质量最好,因此古时就称软 玉为和田玉。

软玉的化学成分对质量的影响初探

软玉的化学成分对质量的影响初探

O2 O

Q T Biblioteka O . 0 8 OO 5
0 . o 0
n2 8
O . 0 3
S j 0 2
5 6 . 6 6
S 6 - 1 S
5 9 . 3 5
5 6 . o 8
5 7 . 8 0
5 4 . 3 3
5 6 。 6 0
A I z Os
l _ o 0
l O 2
n2 O
0 . 7 9
0 . 1 3
2 1 . 2 3
O0 7

K 2 0
F eO ~ V
0 . 1 6
0. 72
0 . 1 O
O 7 8
O . 0 2
0。 1 9
O . 1 0
O. 7 8
O . 0 1
O. 4 3
n1 l
37 6

n0 4
4. 43
0 . o 3

0 . 1 8
M g / ( Mg + F e 2 + )
t 8 l
O . 9 7 O
1 0 1 . 9 3
0 . 9 6 9
9 9 . 6 4
0 . 9 9 3
9 7 . 8 6
0 I 9 7 0
9 9 . 6 8
0 - 9 8 4
0 . 8 0
O . 8 1
O . o 5
Cr 2 03
0 . o 0
O. 2 9
0. 1 1
P 2 0s
H ∞’
0 . O 7
2 . 舾

三种典型软玉的比较研究——以贵州罗甸玉、青海玉和韩国软玉为例

三种典型软玉的比较研究——以贵州罗甸玉、青海玉和韩国软玉为例

摘要我国软玉主要产地有新疆、青海、罗甸等地,此外俄罗斯、韩国、加拿大等也有产出。

软玉的产地不同,其品质有较大的差异,相比较而言,产自我国新疆的软玉品质较好,其次是产自青海的软玉。

而产自罗甸和韩国的软玉品质相对较差,市场上常有这两种产地软玉冒充青海玉出售,以次充好,混乱市场的现象。

所以对罗甸玉、青海玉和韩国软玉进行比较研究,对于促进软玉产地精准鉴定,规范我国软玉市场具有重要的意义,本文主要运用宝石常规鉴定仪器、偏光显微镜、扫描电镜(SEM)、傅里叶变换红外光谱仪(IR)、X射线粉晶衍射(XRD)、电子探针仪(EPMA)、电感耦合等离子光谱仪(LA-ICP-MS)等测试仪器对三种软玉的宝石学特征、矿物岩石学特征、化学成分进行了系统实验分析,结果显示:裸眼对三种软玉的外观观察后认为,罗甸玉与同等级两种软玉相比,光泽、透明度较其它两种的低。

基于常规宝石学仪器测得三种软玉的相对密度、折射率、摩氏硬度、紫外荧光参数与透闪石的宝石学理论参数相近,但罗甸玉与其它两种软玉相比有密度较低、硬度较高和在紫光外灯下有荧光的现象。

由偏光显微镜和扫描电镜观察结果可知,三种软玉的主要矿物为透闪石,其含量均大于95%,其矿物的岩相结构与标准透闪石大致相同,但略有差异。

罗甸玉是以毛毡状交织变晶结构为主要结构,这种结构使罗甸玉较其它两种软玉的硬度和韧性高;青海玉是以纤维变晶结构为主要结构,这种结构使青海玉较其它两种软玉透明度高;韩国软玉是以显微片状变晶结构为主要结构,这种结构使韩国软玉形成了区别其它两种软玉的“米粥”外观特征。

红外光谱和X射线粉晶衍射的分析结果显示:三种软玉的特征谱线与标准透闪石的峰位一致。

电子探针(EPMA)测试结果表明,三种软玉的Mg2+/(Mg2++Fe2+)值为0.903~1.000,与标准透闪石该值一致。

另外,Si02、MgO、CaO和FeO+Fe2O3值也无较大差异。

此外,还采用电感耦合等离子光谱仪进行了三种软玉的常量元素、微量元素、稀土元素测定,发现罗甸玉有别于其它两种软玉的特点是高钙低镁。

台湾蓝玉髓的结构特征和成分分析

台湾蓝玉髓的结构特征和成分分析

中国宝玉石168期页2021年11月Nov. 2021CHINA GEMS & JADES台湾蓝玉髓的结构特征和成分分析吴欣茹,何雪梅*中国地质大学(北京)珠宝学院,北京 100083摘要:台湾蓝玉髓是目前我国产出的最优质的蓝玉髓,本文采用偏光显微镜、扫描电子显微(SEM )对其进行结构分析,通过红外光谱测试、拉曼光谱测试、X 射线粉晶衍射实验(XRD )、差热分析(DTA )、紫外—可见光光谱测试(UV-Vis )以及电子探针(EMPA )实验对其进行成分分析。

结果表明台湾蓝玉髓为隐晶质结构,玉髓中矿物颗粒结合紧密,结晶度为7.51;围岩中矿物堆叠疏松,结晶度为5.66,且裂隙和孔隙发育。

台湾蓝玉髓的主要化学成分是SiO 2,致色元素是Cu 2+,主要矿物是α-石英,次要矿物有斜硅石、褐铁矿、硅孔雀石以及孔雀石,含有0.120%的吸附水以及1.937%的结晶水。

关键词:台湾蓝玉髓;结构特征;成分分析图书分类号: P575 文献标识码: A 文章编号: 1002-1442(2021)S0-0022-10Structural Characteristics and Composition Analysis ofTaiwan Blue ChalcedonyWU Xinru, HE Xuemei *School of Gemmology, China University of Geosciences (Beijing), Beijing 100083ABSTRACT: Taiwan blue chalcedony is of highest quality in China. Polarization microscope, SEM are used to analyze its structure, and infrared spectra, Raman spectrum, XRD, DTA, UV-Vis spectrum and EMPA experiments are used to analyze its composition. The results show that Taiwan blue chalcedony is cryptocrystalline. The mineral particles in the chalcedony are tightly combined and the crystallinity is 7.51, while the minerals of the surrounding rock are unconsolidated with pore development and the crystallinity is 5.66. The main chemical composition of Taiwan blue chalcedony is SiO 2, the color-causing element is Cu 2+. The main mineral is α-quartz, and the minor minerals are moganite, limonite, chrysocolla and malachite. It contains 0.120% adsorption water and 1.937 % crystal water.KEY WORDS: Taiwan blue chalcedony; structural characteristics; composition analysis收稿日期:2021-09-24,接受日期:2021-10-22作者简介:吴欣茹(1999-),女,硕士研究生,宝石学,Email:********************。

中国台湾软玉之种属

中国台湾软玉之种属

中国台湾软玉之种属
王福泉
【期刊名称】《中国宝玉石》
【年(卷),期】1997(000)001
【总页数】2页(P32-33)
【作者】王福泉
【作者单位】无
【正文语种】中文
【中图分类】P575.4
【相关文献】
1.台湾软玉(闪玉)的种属及特征 [J], 林嵩山
2.软玉的特性和种属命名 [J], 王福泉;曹亚文
3.国产爵床科山牵牛属6种、叉柱花属和老鼠簕属各1种植物的花粉形态 [J], 崔鸿宾;胡嘉琪
4.中国台湾佛蝗属一新种(直翅目,剑角蝗科,佛蝗亚科) [J], 叶保华;印象初
5.中国台湾和大陆蹄盖蕨属植物的生物地理学比较 [J], 王中仁
因版权原因,仅展示原文概要,查看原文内容请购买。

东南亚、台湾史前软玉

东南亚、台湾史前软玉

A Noninvasive Mineralogical Study of Nephrite Artifacts from the Philippines and Surroundings: The Distribution of Taiwan Nephrite and Implications for Island Southeast Asian ArchaeologyYoshiyuki Iizuka, Hung Hsiao-Chun, and Peter BellwoodABSTRACT Jade artifacts composed of nephrite are found in China, Taiwan, and some regions of Southeast Asia, commencing in Neolithic times. Nephrite deposits are rare in nature, and it is widely accepted that chemical analy-sis is required if nephrite artifacts are to be sourced to specifi c quarries. Most analytical methods, however, require object sampling to obtain the chemical compositions of materials. A low-vacuum scanning electron microscope with an energy-dispersive x-ray spectrometer is a powerful and completely noninvasive method of analysis. It requires no conventional sampling, apart from surface cleaning of the artifact. This system has been used for noninvasive mineral studies of nephrite ornaments (Sa Huynh type lingling-o earrings) from Iron Age sites in the Tabon Caves on Palawan Island in the Philippines and in Niah Cave in Sarawak, western Borneo, Malaysia. These ornaments were found to be composed of nephrite (tremolite-actinolite amphiboles) with zinc-bearing chromite inclusions. The mineralogical characteristics of these nephrite ornaments are comparable to those of native rock from the Fengtian nephrite deposit in eastern Taiwan. The results suggest that the original materials for these artifacts were collected in eastern Taiwan and offer important information about long-distance cultural interaction among ancient Austronesian societies, com-mencing around 2000 B.C.E. and continuing until after 500 C.E.IntroductionStarting 8,000 years ago in China, nephrite was a sym-bolic material used for ornaments and ritual objects as well as tools such as axes, adzes, chisels, and spearheads (Huang 1975; Zhang 1995; Tang 1998). Commencing in the Neolithic period, nephrite artifacts, including ornaments and tools, became more abundant, especially in Taiwan (Chen 1998; Lien 1998, 2002; Liu 2003; Hung 2000, 2004) as well as in Southeast Asia around the South China Sea, including the Philippines, East Malaysia, and Vietnam (Kano 1946a; Beyer 1948; Fox 1970; Chin 1980; Sung 1989; Dizon 1998; Ha 1998; Nguyen 1998; Tang and Nguyen 2004; Hung et al. 2004; Hung and Iizuka 2004).In prehistoric Taiwan, green nephrite was commonly used to make ornaments. Nephrite objects have been found in Taiwan, where they have been exchanged since the Middle Neolithic, both on the main island and on nearby satellite islands such as Penghu, Ludao (Green Island), and Lanyu (Orchid Island, formerly known as Botel Tobago). In Taiwan, at least 108 sites so far have been found asso-ciated with nephrite artifacts. Most of these jade artifacts occur in contexts dated between 2500 B.C.E. and 1 C.E. (Hung 2005).1Geological sources of nephrite in Taiwan were not iden-tifi ed until the last three decades, when archaeologists and geologists began to conduct investigations. Some green nephrite ornaments from Beinan2 on the southeast coast of Taiwan have been analyzed by petrographic microscopy and chemical methods (Wang Lee et al. 1996; Tan et al. 1997; Lien 2002). The results indicate that the Fengtian nephrite source near Hualien in eastern Taiwan was the most prob-able source for the nephrite used for ornaments found at Beinan. Analyses of more than thirty nephrite artifacts from prehistoric sites throughout Taiwan have been carried out by x-ray diffraction (Hung 2000), oxygen isotope analysis (Yui et al. 2001), Raman spectroscopy (Huang and Chou 2001), and electron probe microanalysis (EPMA) (Iizuka and Hung 2005; Hung et al. 2006). The artifacts and the Fengtian nephrite source material exhibit the same chemical composition and mineral inclusions. It is now the general consensus that the Fengtian area was a major source for the ancient nephrite artifacts found in Taiwan.In the Philippines, green nephrite ornaments have recentlyLuzon and on Itbayat Island (Batanes) (Hung et al. 2004;A N O N I N VA S I V E M I N E R A L O G I C A L S T U D Y O F N E P H R I T I C A RT I FA C T S F R O M T H E P H I L I P P I N E SHung and Iizuka 2004; Bellwood and Dizon 2005; Hung2005). On Palawan, during the 1960s and 1970s a number of green nephrite ornaments such as earrings, bracelets, and beads were found in Leta-Leta Cave near El Nido and in some of the Tabon Caves (Fox 1970, 1977a, 1977b; Peralta 1977). On Luzon, a fragment of a green nephrite bracelet was excavated from the early Neolithic red-slipped pottery layer at Nagsabaran, near Lal-lo in Cagayan province, north-province, southwestern Luzon (Hung et al. 2004).A type of jade penannular earring with three-pointed circumferential projections is the most celebrated form of green nephrite ornament in the Island Southeast Asian Iron Age (fi g. 1). This type of ear ornament was initially reported from the Sa Huynh (ca. 500B .C .E .–500 C .E .) jar burial site in south-central Vietnam by Henri Parmentier (1924). In the Philippines, several earrings of this type were are referred to as the Sa Huynh type lingling-o earrings (Fox 1970). The term lingling-o means “earring” in the Ifugao language of northern Luzon. These Sa Huynh type lingling-o earrings are also reported from elsewhere in the South China Sea region, the West Mouth of the Niah Cave in Sarawak, West Malaysia, and now many sites in central and southern Vietnam (Chin 1980; Fontaine 1983; Aoyagi 1987; Yokokura 1987) (fi g. 2). As shown in fi gure 1, all are similar in style, manufacturing technology, and size, being about 3 cm in ring diameter. Recently, drilled cores, pos-sibly remains from the central holes of Sa Huynh type lin-gling-o earrings, have been excavated from contexts datedFigure 1. Studied Sa Huynh type lingling-o earrings. a. NC-J6 from the Niah Cave, western Borneo Island, Malaysia, excavated 30 March 1977, w. 31 mm, thickness 16 mm, tapered hole 7.0 mm in diam. at the center, 9.0 mm at the surface, weight 9.0 g. Sarawak Museum, Kuching, Malaysia. b. PBP-203 (-PBP-382) from Duyong Cave, Tabon Caves Complex, Palawan Island, Philippines, excavated 1962, w. 26.5 mm, thickness 9.3 mm, tapered hole 6.4 mm in diam. at the center, 8.7 mm at the surface; weight 4.4 g (broken pieces). National Museum of the Philippines, Manila. c. P-122 from Duyong Cave, as for (b.), w. 30.5 mm, thickness 16.5 mm, tapered hole 7.0 mm in diam. at the center, 8.5 mm at the surface, weight 6.4 g (broken piece). d. 62-Z-61 from Uyaw Cave, as for (b.), w. 31 mm, thickness 12 mm, tapered hole 5.4 mm diam. at the center, 7.3 mm at the surface, weight 9.8 g. e. 62-Z-31 from Uyaw Cave, as for (b.), w. 33 mm, thickness 12 mm, tapered hole 5.4 mm diam. at the center, 7.3 mm at the surface, weight 7.9 g (broken piece). f. Pro fi le view of II-2004-I 1013 from the Anaro site on Itbayat Island, showing barrel-shaped drilled core from Sa Huynh type lingling-o earring, l. 10.5mm, weight 1.5 g. (after Bellwood and Dizon 2005). g. View of the bottom end of core of Btn-3, 9.8 mm in diam. at the center, 6.0 mm at the base, other end (top side) 6.7 mm in diam. This core was identi fi ed as Fengtian (Taiwan) nephrite (Iizuka et al. 2005). Scale bar: 10 μm.Figure 2. Map of the South China Sea region. The star represents the location of the Fengtian nephrite deposit in eastern Taiwan; circles represent prehistoric sites outside of Taiwan where Fengtian (Taiwan) nephrite ornaments have been unearthed.to about 500 C .E . in the site of Anaro on Itbayat, Batanes Islands, halfway between Taiwan and Luzon (see fi gs. 1 f and g) (Bellwood and Dizon 2005).S C I E N T I F I C R E S E A R C H O N T H E S C U L P T U R A L A RT S O F A S I A No local nephrite sources have been found to date forjade artifacts unearthed in the Philippines (Beyer 1948; Fox 1970), so more distant sources of nephrite may have been used. Tracing the sources of these nephrite artifacts and identifying the quarries and workshops in which they weremade will allow us to reconstruct trade networks as well as cultural relations and interactions among various societies. Chemical analysis can often determine specifi c geological sources or quarries, as nephrite deposits are not numerous(Wen and Jing 1992, 1996; Douglas 1996, 2003; Yui et al. 2001).In any sourcing study of nephrite artifacts, it is importantto compare their chemical signatures with those of raw mate-rial samples, but without causing damage to the artifacts.For precious nephrite artifacts, some nondestructive analyti-cal methods have been applied, such as Raman spectros-copy (Xu et al. 1996; Lien et al. 1996), x-ray fl uorescence spectroscopy (XRF) (Douglas 1996, 2003), and a combina-tion of proton induced x-ray emission (PIXE) and micro-Raman spectroscopy (Chen et al. 2004). Unfortunately,many of these methods are not useful in the unambiguousidentifi cation of specifi c quarries because of overlaps in the mineralogy and whole rock chemistry of different nephrite sources.EPMA has the advantage of being noninvasive, and itis possible to analyze micrometer-sized areas to obtain the chemical composition of both the nephrite matrix and the associated accessory minerals. Elemental analyses obtainedby EPMA sourcing have been compiled in a mineralogical database for several nephrite deposits, including Fengtian (Taiwan) nephrite (Iizuka and Hung 2005).The newly developed low-vacuum type scanning elec-tron microscope (LVSEM) equipped with an energy-disper-sive x-ray spectrometer (EDX) is a completely noninvasive technique. Quantitative analysis of elements that occur atmore than 1% by weight can easily be undertaken using this method (Iizuka et al. 2005), and it is an effective methodfor analyzing jade artifacts without causing damage. Usingthis new method, the mineralogical characteristics of fi ve selected nephrite lingling-o earrings from Tabon and Niahwere studied.The Term Nephrite and Its Geological MeaningThe term “jade” is typically applied to two different fi ne-grained, massive rock materials composed called nephriteand jadeitite3 (sometimes soft jade and hard jade, respec-tively). Nephrite owes its compactness to its tough, inter-woven fi brous texture. It is composed of more than 90% byvolume of tremolite-actinolite, Ca2(Mg,Fe)5[Si8O22](OH),with some mineral inclusions (Beck 1970; Wen and Jing 1996). Tremolite is the magnesium end-member of calcium amphibole and is usually white to gray in color. Ferrous iron (Fe2+), which is substituted in the magnesium site, is often present in small amounts. With the addition of Fe2+, tremo-lite gradually becomes green in color. With higher amounts of iron, it becomes actinolite, the iron-rich end-member of the calcium amphiboles. In most cases, ferric iron (Fe3+) is rare in nephrite (Tan et al. 1978). Tremolite and actinolite can be differentiated by the atomic ratio of Mg/[Mg+Fe] or Mg#, where tremolite is greater than 0.9 in Mg#, and actino-lite is smaller than 0.9 in Mg# (Leake et al. 1997).Formation of nephrite (tremolite and actinolite) usually occurs when the host rocks, prior to metamorphism, were either magnesium-rich carbonate rocks such as limestone, marble, or serpentinite (Wen and Jing 1992; Tsien et al. 1996; Harlow and Sorensen 2005). Tremolite is typically derived from magnesium-containing carbonates such as dolomite, CaMg(CO3)2, with no or little iron. Actinolite is typically associated with serpentinite, a rock composed pri-marily of serpentine (Mg,Fe)3[Si2O5](OH)4, that occurs as an alteration product of mantle peridotite (usually Mg# is 0.9).A number of accessory minerals have been reported within nephrites (Tan et al. 1978; Wen and Jing 1996). Chemical composition of the accessory minerals is important for understanding the origin of nephrite deposits and should be studied separately from the nephrite matrix (Iizuka and Hung 2005).In the study of prehistory, the term “jade” usually refers to nephrite, and most “jade” artifacts in Southeast Asia dur-ing this period were made of nephrite. Jadeitite, which is a rock composed primarily of the mineral jadeite, a sodium clinopyroxene, NaAl(Si2O6), occurs rarely in nature and has not been reported to have been used in prehistoric times of Southeast Asia.Mineralogy of Fengtian Nephrite (Taiwan Jade)A major nephrite deposit is located west of the town of Fengtian, in Hualien county in eastern Taiwan (Tan et al. 1978). Fengtian nephrite, characteristically green in color, occurs mainly in association with serpentinite layers inter-calated in black schist or muscovite-quartz schist of the greenschist facies. After this nephrite deposit was redis-covered in the nineteenth century, research has shown that Fengtian was the most likely source for prehistoric nephrite artifacts in Taiwan (Tan et al. 1997; Lien et al. 1996; Wang Lee et al. 1996; Huang and Chou 2001; Yui et al. 2001; Lien 2002).Iizuka and Hung (2005) report a comparative study of green-colored nephrite deposits, including Fengtian and others from East Asia and the circum-Pacifi c region. These include Xiuyan in Liaoning province, Jiuquen and Nanshan in Gansu province, and Qiemo in Xinjiang province in China; Gifu prefecture in Japan; Onot River; Chara Jelgra River in Yakut in Siberia; Cowell in South Australia; Ouen Island in New Caledonia, Australia; southern New Zealand; and British Columbia in Canada. With the aid of chemical analysis of seventeen specimens of nephrite and its asso-ciated accessory minerals (eight samples are from in situ deposits and nine are riverbed pebbles from the minefi elds: total 675 analyses, and 267 analyses of nephrite matrix and chromite, respectively), they conclude that Fengtian (Taiwan) nephrite can be discriminated from the others on the following criteria.A N O N I N VA S I V E M I N E R A L O G I C A L S T U D Y O F N E P H R I T I C A RT I FA C T S F R O M T H E P H I L I P P I N E S1. The Fengtian nephrites are mostly green in color (butoccasionally vary from white to gray), with a fi brous texture. 2. The Fengtian nephrites are tremolite-actinolite.Although the Mg# (Mg/[Mg+Fe] ratio) is fairly wide, Mg# is under 0.93 in any color (the median is 0.9). Most tremolitic or white-colored nephrites (most of Chinese nephrites) have a Mg# >0.96 and therefore do not meet this criterion.3. Black chromite (FeCr 2O 4) is the most common acces-sory mineral in the Fengtian nephrite. The light green garnet, uvarovitic-grossular Ca 3(Cr,Al)2Si 3O 12, chlo-rite (Mg,Al,Fe)12[(Si,Al)8O 20](OH)16, and serpentine (Mg 0.9,Fe 0.1)3[Si 2O 5](OH)4 are observed occasionally. Nephrites that do not originate from serpentinite usu-ally do not meet this criterion. So far, nephrites from the Fengtian (Taiwan), New Zealand, Gansu in China, and British Columbia do meet this criterion.4. The chromite bears signi fi cant amounts of zinc (upto 7 wt.%) and manganese (up to 9 wt.%). Nephrites that contain less (< 1 wt.%) in chromite inclusions do not meet this criterion and include those from New Zealand, Gansu in China, and British Columbia.Noninvasive Analysis of the Sa Huynh Type Lingling-o Earrings by LVSEM-EDXAnalytical ProcedureFive Sa Huynh type lingling-o earrings were studied (see fi gs. 1 a–e). Before SEM observation, the earrings were cleaned with distilled water for several hours in an ultrasonic bath to remove dust and soil from their surfaces. Each object was then rinsed in ethanol and dried in an oven overnight at 75ºC.A JEOL JSM-6360LV SEM equipped with an EDX (Oxford Instruments, INCA-300) was used with an accel-eration voltage of 15 kV and beam current of 0.18 nA under low-vacuum conditions (25 Pascal). The analyzed points were selected on relatively fl at and well-polished surfaces of each earring. Minerals were identi fi ed based on compari-sons of the x-ray spectra with those of chemically known minerals (Iizuka et al. 2005). Chemical composition of ele-ments present in amounts greater than 1% by weight in both the nephrite matrix and mineral inclusions were analyzed with a 1 μm electron beam spot for 100 seconds. The quan-titative data were corrected as oxide compositions, using the x-ray intensities of synthetic minerals as standards, as follows: wollastonite for silicon and calcium, corundum for aluminum, fayalite for iron, pyrope for magnesium, chro-mium oxide for chromium, and zinc oxide for zinc. The number of cations was calculated into the atoms per for-mula unit (apfu) on the basis of 23 oxygen, and minerals were classi fi ed according to the nomenclature of amphib-oles (Leake et al. 1997). The corrected data in the cation ratios are based on the ideal chemical formula of calcium amphibole, Ca 2(Mg,Fe)5(Si 8O 22)(OH)2. All iron is calculated as ferrous iron (Fe 2+) because ferric iron (Fe 3+) is rare in nephrite (Tan et al. 1978).Analytical ResultsMost surfaces on the earrings were worked by ancient craftsmen and are therefore well polished and suitable for analysis. The fi brous textures observed on the surface of all earrings indicate that they have a typical fi ne-grained nephrite matrix (fi g. 3). The quantitative compositional data of the nephrite matrix for each earring are shown in table 1, and the results are shown in a discrimination diagram of cal-cium amphiboles (fi g. 4). Based on chemical composition, the matrix of all earrings can be termed tremolite and actin-olite. Their chemical variations are comparable to that of the sample of Fengtian nephrite (Mg/[Mg+Fe]=0.93-0.85), which is shown as an enclosed area in fi gure 4. Based on their chemistry and the surface texture, they can be termed nephrite.Opaque minerals exposed on the surface of all earrings can be identi fi ed as chromite (fi g. 5). The sizes of these inclusions vary from less than a few μm to 3 mm. A repre-Figure 3. Electron backscattered micrograph of the surface of the lingling-o earring (PBP-203). Fibrous textures can be observed. Scale bar 20 μm.Figure 4. Chemical compositions of the nephrite matrix of studied lingling-o earrings. X- and Y-axes represent Si (apfu) and Mg/(Mg+Fe) ratio, respectively. The chemical boundary between tremolite and actinolite is 0.90 in Mg/(Mg+Fe) ratio (Leake et al. 1997). NC = Niah Cave; TC = Tabon Caves. Sample numbers are as shown in fi gure 1. Analytical error is shown as the size of the symbol. The ranges for Fengtian nephrite are shown as an enclosed area (after Iizuka and Hung 2005).S C I E N T I F I C R E S E A R C H O N T H E S C U L P T U R A L A RT S O F A S I Aamaximum value of ZnO from zinc chromite.Figure 6. A representative EDX spectrum from zinc-chromite on the surface of the lingling-o earring (PBP-203). K α lines of chromium (Cr), oxygen (O), iron (Fe), manganese (Mn), and zinc (Zn) are identi fi ed. The peaks of magnesium (Mg), aluminum (Al), silicon (Si), and calcium (Ca) are interferences from the nephrite matrix. Both lines of Zn K α and L α are clearly marked in the zinc-chromite in the Fengtian nephrite.Figure 5. Electron backscattered micrograph of zinc-chromite, which is observed as a white (high-contrast) area, on the surface of the lingling-o earring (PBP-203). A fi brous texture is also observed on the surface of nephrite. Scale bar: 50 μm.sentative EDX spectrum of a chromite inclusion is shown in fi gure 6. It shows strong intensities of iron and chromium, and minor peaks of manganese and zinc. The highest zinc values in weight percent (wt.%) from each fragment are shown in table 1. Based on these results, the accessory min-erals can be termed zinc-chromite.The data on nephrite matrix and opaque inclusions dis-cussed above show that the mineralogical characteristics of the fi ve lingling-o earrings are comparable to Fengtian nephrite. It can be concluded, therefore, that the raw mate-rial of the analyzed nephrite artifacts was most probably derived from Fengtian in eastern Taiwan.DiscussionIn terms of style and context, the archaeological nephrite ornaments in the Philippines belong to two phases: Neolithic and Early Iron Age. Most of the ornaments from Neolithic contexts are similar in style with contemporaneous orna-ments in the Taiwan Middle and Late Neolithic. An example is the Neolithic nephrite bracelets without surface decora-tion that occur at Nagsabaran in the Cagayan valley and in Duyong Cave in the Tabon Caves Complex on Palawan (Iizuka and Hung 2005, fi gs. 8 a and j). Both bracelets have dimensions (diameter, thickness, and width) similar to thoseA N O N I N VA S I V E M I N E R A L O G I C A L S T U D Y O F N E P H R I T I C A RT I FA C T S F R O M T H E P H I L I P P I N E Sof a large number of bracelets from contemporaneous sites in Taiwan, indicating a close relationship in style and manu-facturing technology (Hung 2005). Moreover, the nephrite bell-shaped beads (Hung et al. 2004) and tube beads from both the Philippines and Taiwan are almost identical in dimension and material (Hung 2005). During the Early Iron Age in the Philippines, green nephrite lingling-o earrings and bracelets with surface decoration also show many simi-larities with similar objects from Ludao and Lanyu Island, southeast of the island of Taiwan (Hung 2005).The results of this study suggest that four Sa Huynh type lingling-o earrings from Tabon and the one from Niah were made of nephrite that is similar in mineralogy with the Fengtian nephrite. All have zinc-chromite inclusions, which occur only in the Fengtian nephrite source and in no other source (at least among known nephrite deposits in East Asia and Southeast Asia) (Iizuka and Hung 2005). Although anornament similar in shape to the lingling-o earrings, but without typical three pointed projections, has been reported from Lanyu Island (Kano 1946c), no lingling-o earring has ever been found in Taiwan proper. However, the discovery of two drilled-out cores from the central perforations in lingling-o earrings from the Anaro site on Itbayat Island is very signi fi cant. These drilled-out cores suggest that lin-gling-o earrings, also consistent with the Taiwan nephrite source, were likely made at this site from Fengtian nephrite during the fi rst millennium C .E . (Bellwood and Dizon 2005; Iizuka et al. 2005).Several nephrite ornaments and other worked fragments have also been unearthed since the 1940s from both Ludao and Lanyu, southeast of the island of Taiwan (Kano 1946a, 1946c) and north of Batanes (K ōmoto 1983; Bellwood and Dizon 2005). Fourteen waste pieces of nephrite, includ-ing nine drilled-out cores from annular objects, were col-lected from the site of Lanyu High School between 1978 and 1982 (Shu 2003). Several of these have also been iden-ti fi ed as Fengtian nephrite by LVSEM-EDX (Hung et al. 2006). From the associated pottery, these nephrite materials belong to the Early Iron Age, like those from the Anaro site on Itbayat (Shu 2003).Fragments of worked nephrite are very common on the surface of the Pinglin site in eastern Taiwan (Kano 1946b) as well as at the Qubing site in central Taiwan (Chen 1998) and the Beinan site in southeast Taiwan (Lien 1998). All of these sites are thought be prehistoric nephrite workshops. Several knives and points also found at Anaro are composed of slate, which is thought to originate in Taiwan because slate is common in the Central Mountain Range in Taiwan and absent in the volcanic islands such as Batanes, Babuyan, and Luzon in the northern Philippines. These knives and points were probably used to work nephrite, as sometimes appears to have been the case in the Taiwan workshops (Bellwood and Dizon 2005). As shown in fi gure 7, the work-ing techniques applied to Fengtian nephrite on Itbayat and Lanyu were identical.According to similarities on Lanyu and Itbayat, includ-ing pottery decoration, nephrite ornaments, and jar burial practices (de Beauclair 1972; Dizon 1996; Bellwood and Dizon 2005; Hung 2005), the Early Iron Age inhabitants of these islands probably possessed closely related cultures and created similar new styles of ornamentation, such as the lingling-o earrings, that spread into the Philippines, Borneo, and perhaps to the Austronesian-speaking regions of central and southern Vietnam.ConclusionsNoninvasive chemical analysis was performed on fi ve Sa Huynh type lingling-o earrings, using LVSEM with an EDX. The ornaments, all lingling-o earrings from Palawan and Borneo, were found to be composed of nephrite (tremo-lite-actinolite) with zinc-bearing chromite as an accessory mineral. The mineralogical characteristics of these nephrite earrings are comparable to the Fengtian (Taiwan) nephrite and suggest that the original raw materials were collected in the Fengtian area in eastern Taiwan.So far, nephrite sourcing studies show that Taiwan nephrite was widely distributed in the Philippines and Borneo. The distance between the Fengtian source in Taiwan and Niah on Borneo is more than 2,000 km by sea. Lanyu Island is 90 km from Taiwan, Batanes 150 km, the Cagayan valley 500 km, Batangas 1,000 km, and Palawan 1,500 km. In addition to the trade in nephrite, cultural interaction between eastern Taiwan and northern Luzon commencing in the Neolithic period is suggested by simi-larities in pottery (Hung 2005). The results of this study also suggest that cultural interactions by sea from Taiwan to the south, against the normal south-to-north fl ow of the Kuroshio Current (also called the Japan Current) across the Bashi Channel, were already occurring between Taiwan and the Philippines about 3,500 years ago. In the future, more detailed research on this topic is needed and should include analysis of additional jade ornaments from Taiwan, the Philippines, and Vietnam.Figure 7. Waste pieces of the Fengtian nephrites, identi fi ed by LVSEM-EDX. a. LY-12 from Lanyu High School site on Lanyu Island. b. Q-69. c. I-2901 from Anaro site on Itbayat Island. d. 05D-01 from Pinglin site in eastern Taiwan, near the Fengtian source area.S C I E N T I F I C R E S E A R C H O N T H E S C U L P T U R A L A RT S O F A S I AAcknowledgmentsWe would like to thank Eusebio Z. Dizon, Wilfredo Ronquillo, and Rey A. Santiago of the National Museum of the Philippines, and Ipoi Datan of the Sarawak Museum of Malaysia, for their kind help in lending precious orna-ments from their museum collections. We also thank Janet G. Douglas of the Freer Gallery of Art and Arthur M. Sackler Gallery, Smithsonian Institution, for her kind suggestions and constructive discussion for the article. This study was partially supported by the Scienti fi c Research Grant of the National Geographic Society (grant 7818–05).Notes1. Chronology in Eastern Taiwan: Early Neolithic; 3500–2500B .C .E .; Middle Neolithic, 2500–1500 B .C .E .; Late Neolithic, 1500 B .C .E .–1 C .E ., after which the Iron Age began. In northern Luzon, Neolithic started around 2000 B .C .E . and closed around 1 C .E .; after 1 C .E . the Iron Age began (Hung 2005).2. This article uses the standard Mandarin pinyin spelling insteadof the Taiwanese method. Localities such as Beinan, Fengtian, and Qubing in Taiwan have been spelled as Peinan, Fengtien,and Chiping, respectively, in the previous reports.3. known as the J ōQing dynasty (1644–1912) in China (Valdes 2004).ReferencesAoyagi, Y . 1987. Firipin shutsudo no ketsujou mimikazari [Lingling-o type earrings from Philippines]. T ōnan Ajia K ōko Gakkai Kaih ō [Bulletin of Japan Society for Southeast Asian Archaeology] 7:12–15.Beck, R. J. 1970. New Zealand jade: The story of greenstone. Wellington: Reed.Bellwood, P., and E. Z. Dizon. 2005. The Batanes Archaeological Project and the “Out of Taiwan” hypothesis for Austronesian dispersal. Journal of Austronesian Studies 1(1):1–33.Beyer, H. O. 1948. Philippine and East Asian archaeology and its relation to the origin of the Paci fi c Islands population. Quezon: National Research Council of the Philippines.Chen, C. Y . 1998. Taiwan shi qian de yu qi gong ye [Prehistoric jade industry of Taiwan]. In East Asian jade: Symbol of excellence, ed. C. Tang, 1:336–49. Hong Kong: Chinese University of Hong Kong.Chen, T.-H., T. Calligaro, S. Pagès-Camagna, and M. Menu. 2004. Investigation of Chinese archaic jade by PIXE and μRaman spectrometry. Applied Physics A: Materials Science and Processing 79(2):177–80.Chin, L. 1980. Cultural heritage of Sarawak. Kuching: Sarawak Museum.de Beauclair, I. 1972. Jar burial on Botel Tobago Island. Asian Perspectives 25:167–76.Dizon, E. Z. 1996. Batanes Archaeological Project: 1996–1997 status report. Ivatan Studies Journal 2–4:25–29.Dizon, E. Z. 1998. Earrings in Philippine prehistory. In East Asian jade: Symbol of excellence, ed. C. Tang, 2:377–82. Hong Kong: Chinese University of Hong Kong.Douglas, J. G. 1996. The study of Chinese archaic jades using non-destructive X-ray fl uorescence spectroscopy. Acta Geologica Taiwanica 32:43–54.Douglas, J. G. 2003. Exploring issues of geological source for jade worked by ancient Chinese cultures with the aid of x-ray fl uorescence spectroscopy. In Scienti fi c research in the fi eld of Asian art: Proceedings of the First Forbes Symposium at the Freer Gallery of Art, ed. P. Jett et al., 192–99. London: Archetype Publications.Fontaine, H. 1983. On the extent of the Sa-huynh culture in continental Southeast Asia. Asian Perspectives 23(1):67–69.Fox, R. B. 1970. The Tabon caves: Archaeological explorations and excavations on Palawan Island, Philippines. Monograph of the National Museum 1. Manila: National Museum of the Philippines.Fox, R. B. 1977a. The jade mystique: Some evidence of Philippine prehistoric jade. In Filipino heritage: The making of a nation . V ol. 2, The metal age in the Philippines: The foundations of the society, ed. A. R. Roces et al., 303–08. Manila: Lahing Pilipino Publishing.Fox, R. B. 1977b. Lete-Lete Cave: The science and art of cave archaeology. In Filipino heritage : The making of a nation . V ol. 1, The stone age in the Philippines: The search for early man, ed. A. R. Roces et al., 228–34. Manila: Lahing Pilipino Publishing.Ha, V . T. 1998. Nephrite split earrings with projections, in Vietnam. In East Asian jade: Symbol of excellence, ed. C. Tang, 2:397–401. Hong Kong: Chinese University of Hong Kong.and serpentinite: Metasomatic connections. International Geology Review 47:113-46.Bulletin of the Department of Anthropology 37–38:44–67.Huang, S. C., and S. J. Chou. 2001. Lao Fan She yi zhi bu fen chu tu yu qi cai zhi yu gong yi ji shu te zheng [Material and technological characters of the nephrite artifacts from Laofanshe Site]. In X. Quan , Hai xia liang an gu yu xue hui yi lun wen ji [Proceedings of the Conference on Archaic Jades across the Taiwan Strait] ed. C.-G. Liu, 405–20. Taipei, 18–21 September 2001. Taipei: National Taiwan University Press.Hung, H. C. 2000. Comparative studies of stone adzes in Taiwan, South China and the Philippines. MA thesis, Department of Anthropology, National Taiwan University.Hung, H. C. 2004. A sourcing study of Taiwan stone adzes. Bulletin of the Indo-Paci fi c Prehistory Association 24(2):57–70.Hung, H. C. 2005. Neolithic interaction between Taiwan and northern Luzon: The pottery and jade evidences from the Cagayan V alley. Journal of Austronesian Studies 1(1):109–33.Hung, H. C., and Y . Iizuka. 2004. Taiwan jade in the context of Southeast Asian archaeology. Paper presented at the Tenth International Conference of the European Association of Southeast Asian Archaeologists, 16 September, British Museum, London.Hung, H. C., Y . Iizuka, and R. A. Santiago. 2004. Hai wai yi zhu: Yi ke zai Feilubin chu tu de shi qian tai wan ling xing yu zhu [Lost treasure from beyond the sea: A prehistoric jade bell-shaped bead excavated from the Philippines]. Gu Gong Xue Shu Ji Kan [National Palace Museum Research Quarterly] 21(4):43–56.Hung, H. C., Y . Iizuka, and P. Bellwood. 2006. Taiwan Jade in the context of Southeast Asian Archaeology. In Uncovering Southeast Asia’s past: Selected papers from the Tenth International Conference of the European Association of Southeast Asian Archaeologists, ed. E. A. Bacus et al., 203–15. September 2004, British Museum, London. Singapore: National University.Iizuka, Y ., and H. C. Hung. 2005. Archaeomineralogy of Taiwan nephrite: Sourcing study of nephritic artifacts from the Philippines. Journal of Austronesian Studies 1(1):35–81.。

软玉

软玉

软玉软玉是透闪石、阳起石矿物组成的集合体。

其名称是相对硬玉(翡翠)而言的,它的硬度为 6-6.5,只是略小于硬玉(6.5-7)。

软玉在中国的应用已有五千多年,从新石器时代,经原始社会、封建社会直至今日一直是中国玉石雕刻的主要原料,创造出了光辉灿烂、驰名世界的中国玉石文化。

§1.软玉的产地:中国是软玉的著名产出国,苏联著名地质学家费尔斯曼称软玉为“中国玉”。

中国的软玉又主要产于新疆。

另外在四川、青海、辽宁岫岩和台湾也有部分产出。

现大致介绍如下:(1)新疆软玉:以前曾用"和田玉"及"昆仑玉" 的名称。

①昆仑山地区:为新疆软玉的主要产区。

东起且末,经于田、和田等地,西至塔什库尔干,在长达1200km的昆仑山脉和有关的河流河床中,已发现软玉矿点20多处,构成中国软玉的重要矿带。

品种主要有白玉、青玉和青白玉,呈脉状、透镜状、条带状产出。

②天山地区:天山地区的软玉为碧玉,因产在玛纳斯县境内,称为“玛纳斯碧玉”,主要产在北天山的超基性岩带上。

碧玉呈深绿色,块状,质地坚韧细腻。

③阿尔金山地区:又称“金山玉”,除少量青玉外,主要是碧玉品种,性质与玛纳斯碧玉十分相似,也是产于超基性岩体中。

(2)青海软玉:发现于柴达木盆地西北缘、祁连县等地。

(3)辽宁软玉:发现于辽宁岫岩县,也称“河磨玉”。

(4)台湾软玉:分布于花莲县一带,当地人称为“台湾翠”、“闪玉”,多为碧玉品种。

除中国外,俄罗斯、加拿大、新西兰、美国等国也有软玉矿,其中俄罗斯软玉质量较好。

§2.软玉的基本特征:1.化学成份:Ca2Mg5(Si4O11)2(OH)2--Ca2Fe5(Si4O11)2(OH)2这是两种组分的类质同象系列,在多数情况下,软玉是这两种端元组分的中间产物。

2.形态:软玉组成矿物是阳起石和透闪石,这两种矿物为长柱状和纤维状,软玉则是这些纤维状的集合体,具毛毡状的交织结构,因而具有极好的韧性,不易碎裂。

不同产地软玉的拉曼光谱分析及在古玉器无损研究中的应用

不同产地软玉的拉曼光谱分析及在古玉器无损研究中的应用
Z H AO H ong xia , GA N F u xi ( 1. Center of S ci tech A rchaeology , Shanghai I nsti tute of Op t ics and F ine M echanics, Chi nese A cademy of S cience, S hanghai 201800, Chi na; 2. Fudan Univ er sit y , S hanghai 200433, Chi na) Abstract: T he Raman spectr oscopy are used t o analy ze the nephr it e jades f rom Xinjiang, Qing hai, Jiang su, L iaoning, Kor ea, Russia, Canada, New Zealand and Austr alian. First of al l, the Raman spectr oscopy can be used t o ident if y t he t rem olit e t ype nephrit e jades and act inolit e t ype nephrite jades. Seco ndly, t he evident shif t of Raman peaks in t he low fr e quency region ref lect s t he chemical subst it ut io ns t hat t ypically occur in nephr it e jades. Fi nally t he r elat ive intensit y of t he sy mmet ric st ret ching v ibrat ion of Si Ob Si in 674cm w it h t he surf ace conditio n and t he micro mo rpho logy are studied separ at ely. Based on t he Raman spect ro scopic st udy t he 9 Chinese ancient jade art ifacts, w hich w ere ex cavat ed f rom Yinx u Sit e o f A ny ang in H enan Pro vince, Luoy ang in H enan P rovince and L iang zhu Sit e
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

p o ic r o oe il frmoi n emao xue s et ie ls c e tr. rmoi e th u hfH"i eet rvn e ec mp sdmanyo e lea dt jr etr Il at xue T e lew n o g I f rn a t t h t i f —k b i t t t o df
bewe n t e p s a i e l e h r r o a b n t n r l ; h r sf I 1k , t h i h e t u l y o eTawa t e h r m t t mo i st e e a e s me c o a e mi e a s t e t d i et i e wic st eb s a i f h i n i c t r hi . q t t n p rt ’ sr c u e t ef u t a al l b r s a e , t t ht en p rt a h w o d c ’ e e fe t e h i S tu t r ; o rh i p r l e -h p d wi wic e h i C s o g o a S y se f c . e h s ef i h h e n t K e r : e h i ; r mo ie mir sr c u e g n r t n T i n ywo  ̄ n p rt te l ; c o t t r ; e e a i ; awa e t u o
2 1 年第 1 02 期
中国 非金属矿 工业导 刊
Hale Waihona Puke 总第9 期 4【 其
他】
广 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 一 ]
L …
湾软重 显微结枸研
—— … … … … . . . …
. . J
任 戍 明 ,张 良钜 ,张

510 ) 4 4 0
( 桂林理 工大学地球科 学学院 ,广 西 桂林
【 摘 要 】在前人研究 的基础上 ,根据 台湾软玉的地 质产 出及矿物组成特征 ,利用偏光显微镜对其样品的结构构造进行 研究 ,结果表明 :台湾软 玉的主要 矿物成分 为透 闪石 ,透 闪石主要呈毛毡状变晶结构 ,其形成可分为 四个 世代 。第一世代为 束状放射状 ,不定 向排列 ;第二世代为柱状 ,穿插生 长于第一世代透 闪石 中,在柱状透 闪石 间产 出有碳酸盐矿物 ;第三世代
为毛毡状集合体 ,它是质量 较好的软玉的主要结 构 ;第四世代为平行纤维状 ,具此结构的软玉能表 现出 良 的猫 眼效应 。 好 【 关键词 】软玉 ,透 闪石 ,显微结构 ;世代 ;台湾 【 中图分类号 】P 8 . 55 1 【 文献标识码 】A 【 文章编号 】1 0 — 3 62 1 )1 0 6 —0 0 7 9 8 (0 20 — 0 1 3
台湾软 玉从 1 6 年在 花莲 县丰 田石 棉矿 区河床 91 内发现到1 6 正式生产…,其 出口量 占世界 第一位 , 95 使得 台湾 曾有 “ 玉王 国”之称 。N8年代 ,一方 面 软 o 由于过度开采 ,产供失调 ,失 去了软 玉的稀 有性 ;另

上 其 他地 区的 岛屿活动 带 并不完 全相 同 ,它 除 了具
( l g f at cecs G inU ies yo T cn lg, ul 4 0 4 C ia Col e E r S i e, ul nv ri f eh oo y G in5 1 0 , hn ) e o h n i t i
Ab t a t Ba e n t ep e i u t d e , ea t o se l y dp l rz do t a c o c p t d eg o o i a a u e n s r c : s d o r v o ssu i s t u h h h r mp o e o a i e p i l c mir s o et su yt e l g c l e t r sa d o h f
Th i r s r c u eo r m o ieS ud n Ne h ieFr m a wa o i c eM c o t u t r fT e l t y o p rt o T i n Pr v n e t
P N h - n , HA i g u Z A i E S umi Z NG La - , H NG J g nj e
g n rt n :h is u h rrd a, o aall oe c t e;h e o di rs ai,nes esda n ef s e ea o , e eai s tef t sb nc yo iln t r l a hoh r t esc n pim tc itrp re mo gt rtg n r t n o r i a p et s h i i
m i e a o n r l mp sto so t en p rt a l sfo T i n p o i c i a e , h e u t d c t a es mp e o T i n c o i n f h e h i s mp e r m awa r v n ei t sp p r t er s l i i a et t a l s m awa i e nh sn h t h r f
有 其他 岛屿 所共 有 的某 些地 质特 征 以外 ,还 具有 自
己的一 些与众 不 同 的特点 。 台湾 岛 的形状是 一个 凸 向大 陆的 弧形 ,不仅在 形 态上是 向西凸 出 ,而且其
相关文档
最新文档