4.3角。练习题
2020年秋人教版七年级数学上册课时训练:4.3.1《角》 含答案
2020年人教版七年级数学上册课时训练:4.3.1《角》一.选择题1.已知∠A=30°45',∠B=30.45°,则∠A()∠B.(填“>”、“<”或“=”)A.>B.<C.=D.无法确定2.用度、分、秒表示21.24°为()A.21°14'24″B.21°20'24″C.21°34'D.21°3.下列各角中,()是钝角.A.周角B.平角C.平角D.平角4.如图,射线OA表示的方向是()A.北偏东65°B.北偏西35°C.南偏东65°D.南偏西35°5.下列度分秒运算中,正确的是()A.48°39′+67°31′=115°10′B.90°﹣70°39′=20°21′C.21°17′×5=185°5′D.180°÷7=25°43′(精确到分)6.11点40分,时钟的时针与分针的夹角为()A.140°B.130°C.120°D.110°7.在下列说法中:①钟表上九点一刻时,时针和分针形成的角是平角;②钟表上六点整时,时针和分针形成的角是平角;③钟表上差一刻六点时,时针和分针形成的角是直角;③钟表上九点整时,时针和分针形成的角是直角.其中正确的个数是()A.1B.2C.3D.48.当钟表上显示1点30分时,时针与分针所成夹角的度数为()A.130°B.135°C.150°D.210°二.填空题9.35.48°=度分秒.10.计算:18°13′×5=.11.已知∠A=30°45',∠B=30.45°,则∠A∠B.(填“>”、“<”或“=”)12.4点30分时,时钟的时针与分针所夹的锐角是度.13.A、B两城市的位置如图所示,那么B城市在A城市的位置.三.解答题14.计算:(1)131°28′﹣51°32′15″(2)58°38′27″+47°42′40″(3)34°25′×3+35°42′15.如图,在一次活动中,位于A处的1班准备前往相距5km的B处与2班会合,请用方向和距离描述1班相对于2班的位置:方向:,距离.16.(1)钟表上2时15分时,时针与分针所成的锐角的度数是多少?(2)若时针由2点30分走到2点55分,问分针转过多大的角度?17.观察下图,回答下列问题:(1)在图①中有几个角?(2)在图②中有几个角?(3)在图③中有几个角?(4)以此类推,如图④所示,若一个角内有n条射线,此时共有多少个角?18.知识的迁移与应用问题一:甲、乙两车分别从相距180km的A、B两地出发,甲车速度为36km/h,乙车速度为24km/h,两车同时出发,同向而行(乙车在前甲车在后),后两车相距120km?问题二:将线段弯曲后可视作钟表的一部分,如图,在一个圆形时钟的表面上,OA表示时针,OB表示分针(O为两针的旋转中心).下午3点时,OA与OB成直角.(1)3:40时,时针与分针所成的角度;(2)分针每分钟转过的角度为,时针每分钟转过的角度为;(3)在下午3点至4点之间,从下午3点开始,经过多少分钟,时针与分针成60°角?参考答案一.选择题1.解:30.45°=30°+0.45×60′=30°27′,∵30°45′>30°27′,∴30°45'>30.45°,∴∠A>∠B,故选:A.2.解:21.24°=21°+0.24×60′=21°+14′+0.4×60″=21°14′24″,故选:A.3.解:平角=180°,钝角大于90°而小于180°,平角=×180°=120°,是钝角.故选:B.4.解:射线OA表示的方向是南偏东65°,故选:C.5.解:48°39'+67°31'=115°70'=116°10',故A选项错误;90°﹣70°39'=19°21',故B选项错误;21°17'×5=105°85'=106°25',故C选项错误;180°÷7=25°43',故D选项正确.故选:D.6.解:11点40分时针与分针相距3+=(份),30°×=110°,故选:D.7.解:①钟表上九点一刻时,时针和分针形成的角是180°﹣30°÷4,不是平角,原说法错误;②钟表上六点整时,时针指向6,分针指向12,形成的角是平角,原说法正确;③钟表上差一刻六点时,时针和分针形成的角是90+30°÷4,不是直角,原说法错误;④钟表上九点整时,时针指向9,分针指向12,形成的角是直角,原说法正确.∴正确的个数是2个.故选:B.8.解:∵1点30分,时针指向1和2的中间,分针指向6,中间相差4大格半,钟表12个数字,每相邻两个数字之间的夹角为30°,∴1点30分分针与时针的夹角是30°×4.5=135°,故选:B.二.填空题9.解:0.48°=(0.48×60)′=28.8′,0.8′=(0.8×60)″=48″,所以35.48°=35°28′48″.故答案为:35,28,48.10.解:原式=90°+65′=91°5′.故答案是:91°5′.11.解:∵∠A=30°45'=30.75°,∠B=30.45°,30.75°>30.45°,∴∠A>∠B.故答案为:>.12.解:因为4点30分时针与分针相距1+=,所以4点30分时针与分针所夹的锐角是30°×=45°,故答案为:45.13.解:A、B两城市的位置如图所示,那么B城市在A城市的南偏东30°位置,故答案为南偏东30°.三.解答题14.解:(1)131°28′﹣51°32′15″=79°55′45″;(2)58°38′27″+47°42′40″=106°21′7″;(3)34°25′×3+35°42′=103°15′+35°42′=138°57′.15.解:1班相对于2班的位置:方向:北偏东60°,距离:5千米;故答案为:北偏东60°,5千米.16.解:(1)2点15分时分针指向数字3,而时针从数字2开始转动的角度为15×0.5°=7.5°,所以钟表上2时15分时,时针与分针所成的锐角的度数为30°﹣7.5°=22.5°;(2)分针转过的角度为25×6°=150°.17.解:由分析知:(1)①图中有2条射线,则角的个数为:=1(个);(2)②图中有3条射线,则角的个数为:=3(个);(3)③图中有4条射线,则角的个数为:=6(个);(4)由前三问类推,角内有n条射线时,图中共有(n+2)条射线,则角的个数为个.18.解:问题一:设xh后两车相距120km,若相遇前,则36x﹣24x=180﹣120,解得x=5,若相遇后,则36x﹣24x=180+120,解得x=25.故两车同时出发,同向而行(乙车在前甲车在后),5或25后两车相距120km;(1)30°×(5﹣)=130°.故3:40时,时针与分针所成的角度130°;(2)分针每分钟转过的角度为6°,时针每分钟转过的角度为0.5°;(3)设在下午3点至4点之间,从下午3点开始,经过x分钟,时针与分针成60°角.①当分针在时针上方时,由题意得:(3+)×30﹣6x=60,解得:x=;②当分针在时针下方时,由题意得:6x﹣(3+)×30=60,解得:x=.答:在下午3点至4点之间,从下午3点开始,经过或分钟,时针与分针成60°角.故答案是:5或25;130°;6°;0.5°.。
《4.3角》练习题
《4.3 角》2一、单项选择题1.如果∠A和∠B互为余角,∠A和∠C互为补角,∠B与∠C的和等于120°,那么这三个角分别是().A.50°,30°,130°; B.75°,15°,105°; C.60°,30°,120°;D.70°,20°,110°2.下列关于角的说法正确的是()A.两条射线组成的图形叫角B.角的大小与这个角的两边长短无关C.延长一个角的两边D.角的两边是射线,所以角不可以度量3.如图所示,∠α+∠β=90°,∠β+∠γ=90°,则().A.∠α=βB.∠β=∠γC.∠α=∠β=∠γD.∠α=∠γ4.两个锐角的和().A.必定是锐角;B.必定是钝角;C.必定是直角;D.可能是锐角,可能是直角,也可能是钝角5.经过2小时钟表的时针旋转的角度为()A. 60° B. 90° C. 180° D. 360°6.如图,小明在操场上从A点出发,先沿南偏东30°方向走到B点,再沿南偏东60°方向走到C点.这时,∠ABC的度数是()A. 120°B. 135°C. 150°D. 160°7.下列语句中,正确的是().A.比直角大的角钝角B.比平角小的角是钝角C.钝角的平分线把钝角分为两个锐角D.钝角与锐角的差是锐角8.已知∠α=35°19′,则∠α的补角是()A. 144°41′B. 54°41′C. 144°81′D. 54°81′9.若∠1=25°12′,∠2=25.12°,∠3=25.2°,则下列结论正确的是()A. ∠1=∠2B. ∠2=∠3C. ∠1=∠3D. ∠1=∠2=∠310.下列说法中正确的是().①两条射线所组成的图形叫做角②角的大小与边的长短无关③角的两边可以一样长,也可以一长一短④角的两边是两条射线A.①②B.②④C.②③D.③④11.如图所示,点A位于点O的()方向上.A. 南偏东25°B. 北偏西65°C. 南偏东65°D. 南偏西65°13.40°15′的一半是().A.20°B.20°7′C.20°8′D.20°7′30″14.将两个三角板按如图所示的位置摆放,已知∠α=32°,则∠β=()A. 69°B. 32°C. 58°D. 148°15.如图,光照到平面镜AB上发生反射,已知OC⊥AB,∠DOC=∠COE,下列判断不正确的是()A. ∠AOD=∠BOEB. ∠AOE=∠BODC. ∠DOC+∠BOE=90°D. ∠DOC+∠COE=90°16.下列说法中正确的个数是().①直线AB是一个平角②两锐角的角的和不一定大于90°③两个锐角的和不一定大于180°④周角只有一条边A.0B.1C.2D.317.下列说法正确的个数有()①直线是平角,②射线是周角,③平角是一条直线,④周角是一条直线.A. 0个B. 1个C. 2个D. 3个18.两个角的和与这两个角的差互补,则这两个角().A.一个是锐角,一个是钝角;B.都是钝角;C.都是直角;D.必有一个是直角19.如图,直线AB、CD相交于点O,OE平分∠AOD,若∠BOC=80°,则∠AOE的度数是()A. 40°B. 50°C. 80°D. 100°20.下列各式中,正确的角度互化是( )A. 63.5°=63°50′B. 23°12′36″=25.48°C. 18°18′18″=3.33°D. 22.25°=22°15′21.下列说法错误的是().A.两个互余的角都是锐角;B.一个角的补角大于这个角本身;C.互为补角的两个角不可能都是锐角;D.互为补角的两个角不可能都是钝角22.如果两个角互为补角,而其中一个角比另一个角的4倍少30°,那么这两个角是().A.42°,138°或40°,130°;B.42°,138°;C.30°,150°;D.以上答案都不对二、解答题1.如图,已知OE是的角平分线,OD是的平分线.(1)若,求的度数;(2)若,求的度数.2.钟表2时15分时,你知道时针与分针的夹角是多少度吗?3.计算:(1)77°52′+32°43′-21°17′;(2)37°15′×3;(3)175°52′÷3.(4)23°45′+24°16′(5)53°25′28″×5(6)15°20′÷64.如图所示,直线AB、CD相交于O,OE为射线,试问,图中小于平角的角共有几个?请一一列出.5.如图所示,直线AB上一点O,任意画射线OC,已知OD、OE分别是∠AOC、∠BOC的角平分线,求∠DOE的度数.6.如图,从一点O出发引射线OA、OB、OC、OD、OE,请你数一数图中有多少个角.7.如图所示,已知∠AOB=165°,∠AOC=∠BOD=90°,求∠COD.三、填空题(共10题,共30分)1.∠1=∠A,∠2=∠A,则∠1和∠2的关系是_______.2.如图,小于平角的角有______个,∠EOC=_____+_______.3.如图,已知OE平分∠AOB,OD平分∠BCO,∠AOB为直角,∠EOD=70°,则∠BOC的度数为_______.4.计算90°-57°34′44″的结果为_______________.5.如图,是直角,,则度.6.用度、分、秒表示52.73°为____度____分____秒.7.在内部过顶点O引3条射线,则共有___________个角,如果引出99条射线,则共有_____________个角.8.4.75°=______°________′___________″.9.如图,射线OA表示北偏东_____,射线OB表示_____30°,射线OD表示南偏西_______,射线OC表示________方向.10.6点50分钟面上时针与分针所成的角为________度.。
人教版七年级数学上册第四章4.3《角》例题与讲解
4.3 角1.角的定义及其表示方法(1)角的定义:有公共端点的两条射线组成的图形叫做角,这个公共端点是角的顶点,这两条射线是角的两条边.角也可以看作是由一条射线绕着它的端点旋转而形成的图形.当终边和始边成一条直线时,形成等角;当终边和始边重合时,形成周角.(2)角的表示方法:有四种表示角的方法:①用一个阿拉伯数字表示单独的一个角,在角内用一段弧标注; ②用一个大写英文字母表示单独的一个角,当角的顶点处有两个或两个以上的角时,不能用这种方法表示角;③用一个小写希腊字母表示单独的一个角;④用三个大写英文字母表示任意一个角,这时表示顶点的字母一定要写在中间. 破疑点 角的理解 (1)角的大小与边的长短无关,只与构成角的两条射线张开的幅度大小有关,角可以度量,可以比较大小,可以进行运算;(2)如果没有特别说明,所说的角都是指小于平角的角.【例1-1】 下列说法正确的是( ).A .平角是一条直线B .一条射线是一个周角C .两边成一条直线时组成的角是平角D .一个角不是锐角就是钝角解析:要做对这类题目,一定要理解概念,严格按照概念进行判断,才能得出正确的结论.平角、周角都是特殊角,虽然它们与一般角形象不符,但是它们仍然是角,它们都具有一个顶点和两条边,只不过平角的两边成一条直线,周角的两边重合成一条射线罢了. 答案:C【例1-2】 如图,以点B 为顶点的角有几个?请分别把它们表示出来.分析:.射线BA 与BD ,BA 与BC ,BD 与BC 各组成一个角.表示顶点的字母必须写在中间.当一个顶点处有多个角时,不能用一个表示顶点的大写字母表示,所以不能把∠ABC 错写成“∠B ”.书写力求规范,如用数字或希腊字母表示角时要在靠近顶点处加弧线注上阿拉伯数字或小写的希腊字母.注意:角的符号一定要用“∠”,而不能用“<”. 解:以B 为顶点的角有3个,分别是∠ABC ,∠ABD ,∠DBC .2.角的度量与换算(1)角度制:以度、分、秒为单位的角的度量制,叫做角度制.(2)角度的换算:角的度量单位是度、分、秒,把一个周角360等分,每一份就是1度的角,记作1°;把1度的角60等分,每一份就是1分的角,记作1′;把1分的角60等分,每一份就是1秒的角,记作1″.谈重点 角度的换算 (1)度、分、秒的换算是60进制,与时间中的时、分、秒的换算相同;(2)角的度数的换算有两种方法:①由度化成度、分、秒的形式(即从高位向低位化),用乘法,1°=60′,1′=60″;②由度、分、秒化成度的形式(即从低位向高位化),1″=⎝⎛⎭⎫160′,1′=⎝⎛⎭⎫160°,用除法.度及度、分、秒之间的转化必须逐级进行转化,“越级”转化容易出错.【例2】 (1)将70.23°用度、分、秒表示;(2)将26°48′36″用度表示.分析:(1)70.23°实际是70°+0.23°,这里70°不要变,只要将0.23°化为分,然后再把所得的分中的小数部分化为秒.将0.23°化为分,只要用0.23乘以60′即可.(2)将26°48′36″用度表示,应先将36″化成分,然后再将分化成度就可以了.将36″化成分,可以用⎝⎛⎭⎫160′乘以36.解:(1)将0.23°化为分,可得0.23×60′=13.8′,再把0.8′化为秒,得0.8×60″=48″.所以70.23°=70°13′48″.(2)把36″化成分,36″=⎝⎛⎭⎫160′×36=0.6′,48′+0.6′=48.6′,把48.6′化成度,48.6′=⎝⎛⎭⎫160°×48.6=0.81°. 所以26°48′36″=26.81°.3.角的比较与运算(1)角的比较: ①度量法:用量角器量出角的度数,然后按照度数比较角的大小,度数大的角大,度数小的角小;反之,角大度数大,角小度数小. ②叠合法:把两个角的顶点和一边分别重合,另一边放在重合边的同旁,通过另一边的位置关系比较大小.解技巧 角的比较 ①在度量法中,注意三点:对中、重合、度数;②在叠合法中,要注意顶点重合,一边重合,另一边落在重合这边的同侧.(2)角的和差:角的和、差有两种意义,几何意义和代数意义.几何意义对于今后读图形语言有很大帮助,代数意义是今后角的运算的基础.①几何意义:如图所示,∠AOB 与∠BOC 的和是∠AOC ,表示为∠AOB +∠BOC =∠AOC ;∠AOC 与∠BOC 的差为∠AOB ,表示为∠AOC -∠BOC =∠AOB .②代数意义:如已知∠A =23°17′,∠B =40°50′,∠A +∠B 就可以像代数加减法一样计算,即∠A +∠B =23°17′+40°50′=64°7′,∠B -∠A =40°50′-23°17′=17°33′.(3)角的平分线:从一个角的顶点出发,把这个角分成相等的两个角的射线,叫做这个角的平分线.如图所示,射线OC 是∠AOB 的平分线,则有∠1=∠2=12∠AOB 或∠AOB =2∠1=2∠2.警误区 角的平分线的理解 角的平分线是一条射线,不是线段,也不是直线,它必须满足下面的条件:①是从角的顶点引出的射线,且在角的内部;②把已知角分成了两个角,且这两个角相等.【例3】 如图所示,OE 平分∠BOC ,OD 平分∠AOC ,∠BOE =20°,∠AOD =40°,求∠DOE 的度数.解:∵OE平分∠BOC,∴∠BOE=∠COE.∵OD平分∠AOC,∴∠AOD=∠COD.又∵∠BOE=20°,∠AOD=40°,∴∠COE=20°,∠COD=40°.∴∠DOE=∠COE+∠COD=20°+40°=60°.4.余角和补角(1)余角和补角的概念:①余角:如果两个角的和等于90°(直角),就说这两个角互为余角,即其中一个角是另一个角的余角;②补角:如果两个角的和等于180°(平角),就说这两个角互为补角,即其中一个角是另一个角的补角.(2)性质:余角的性质:同角(等角)的余角相等.用数学式子表示为:∠1+∠2=90°,∠3+∠4=90°,又因为∠2=∠4,所以∠1=∠3.补角的性质:同角(等角)的补角相等.用数学式子表示为:∠1+∠2=180°,∠3+∠4=180°,又因为∠2=∠4,所以∠1=∠3.(3)方位角:在航海、航空、测绘中,经常会用到一种角,它是表示方向的角,叫做方位角.通常以正北、正南方向为基准,描述物体运动的方向.通常要先写北或南,再写偏东还是偏西.警误区余角和补角的理解余角和补角是成对出现的,它们之间互相依存,只能说∠1的余角是∠2,∠2的余角是∠1,或者说∠1与∠2互余,而不能说∠1是余角.【例4】如图所示,直线AB,CD,EF相交于点O,且∠AOD=90°,∠1=40°,求∠2的度数.解:因为∠AOD+∠AOC=∠AOD+∠BOD=180°,所以∠AOD=∠AOC=∠BOD=90°.又因为∠1+∠FOC=180°,∠DOF+∠FOC=180°,所以∠DOF=∠1=40°.所以∠2=∠BOD-∠DOF=90°-40°=50°.5.运用整体思想解决角的计算问题整体思想就是根据问题的整体结构特征,不拘泥于部分而是从整体上去把握解决问题的一种重要的思想方法.整体思想突出对问题的整体结构的分析和改造,发现问题的整体结构特征,善于用“集成”的眼光,把某些式子或图形看成一个整体,把握它们之间的关联,进行有目的的、有意识的整体处理.整体思想方法在代数式的化简与求值、解方程、几何解证等方面都有广泛的应用,整体代入、整体运算、整体设元、整体处理、几何中的补形等都是整体思想方法在解数学问题中的具体运用.【例5】如图所示,∠AOB =90°,ON 是∠AOC 的平分线,OM 是∠BOC 的平分线,求∠MON 的大小.分析:解决问题的关键是把∠AOC -∠BOC 视为一个整体,代入求值.解:因为ON 是∠AOC 的平分线,OM 是∠BOC 的平分线,所以∠NOC =12∠AOC ,∠MOC =12∠BOC , 所以∠MON =∠NOC -∠MOC =12∠AOC -12∠BOC =12(∠AOC -∠BOC )=12∠AOB =12×90°=45°. 6.钟表问题对于钟表问题要掌握基本的数量关系,如走一大格为30度,一小格为6度,分针每分钟转6度,时针每分钟转0.5度,分针是时针转速的12倍等.若已知具体时间,求时针与分针的夹角,只需知道它们相距的格数,便可求得;若是已知时针与分针的夹角求相应的时间,则一般需要建立方程求解.【例6】上午9点时,时针与分针成直角,那么下一次时针与分针成直角是什么时候?解:设经过x 分钟,时针与分针再次成直角,则时针转过(0.5x )°,分针转过(6x )°,如图所示,可列方程360-6x -(90-0.5x )=90,解得x =32811.即过32811分钟,时针与分针再一次成直角.7.角中的实验操作题实验操作题是近年来悄然兴起的一种新形式的考题,它集阅读、作图、实验于一体,要求在规定的条件下进行实验,在动手操作中找出答案.这类题目主要是能画出整个过程中的状态示意图,进而求出点的转动角度.【例7】如图,把作图用的三角尺(含30°,60°的那块)从较长的直角边水平状态下开始,在平面上转动一周,求B 点转动的角度(在点的位置没有发生变化的情况下,一律看作点没有转动).解:如图,从位置①到位置②,B 点转过90°;从位置②到位置③,B 点转过120°;从位置③到位置④,由题意B点看作不动.于是在整个过程中B点转过的角度为90°+120°=210°.8.归纳猜想在角的问题中的运用归纳猜想,是一种很重要的数学思想方法,数学史上的许多重要发现:如哥德巴赫猜想、四色猜想、角谷猜想、费马定理等都是由数学家的探究、猜想、总结而得到的.学习数学必须不断地去探索、猜想,不断地总结规律,才会有新发现.运用n(n-1)2这个式子,能解决很多类似的问题,能达到一石数鸟,这都是大家善于借鉴的结果.在学习过程中,注意不断总结、归纳规律,积累经验,运用总结出来的方法、技巧解决问题.【例8】(1)若在n个人的聚会上,每个人都要与另外所有的人握一次手,问握手总次数是多少?(2)如图①中共有多少条线段?如图②中共有多少个角(指小于平角的角)?解:(1)每个人可与另外(n-1)个人握一次手,n个人就有(n-1)·n次握手,其中各重复一次,所以,握手总次数是n(n-1)÷2次.(2)图①中每两个点构成一条线段(类似于两个人握一次手),所以共有n(n-1)÷2条线段.图②中每条射线都与另外(n-1)条射线构成一个角(类似于握手),所以共有n(n-1)÷2个角.9.方位角的应用(1)如图,画两条互相垂直的直线AB和CD相交于点O,其中一条为水平线,则图中四条射线所指方向就是东西南北四大方向,具体是:向上的射线OA表示正北方向,向下的射线OB表示正南方向,向右的射线OD表示正东方向,向左的射线OC表示正西方向.这四大方向简称为上北下南左西右东.建立这四条方向线后,对于点P,如果点P在射线OA上,则称点P在正北方向;如果点P在射线OB上,则称点P在正南方向;如果点P在射线OC上,则称点P在正西方向;如果点P在射线OD上,则称点P在正东方向.(2)在图中,东西和南北方向线把平面分成四个直角,如果点P在正北方向线OA与正东(或正西)方向线OD(或OC)的夹角内,且射线OP与正北方向线OA的夹角是m°,则称点P在北偏东(或西)m°方向;如果点P在正南方向线OB与正东(或正西)方向线OD(或OC)的夹角内,且射线OP与正南方向线OB的夹角为m°,则称点P在南偏东(或西)m°方向.例如图中的射线OA,OB,OC,OD分别称为:北偏东40°、北偏西65°、南偏西45°、南偏东20°.对于偏向45°的方位角,有时也可以说成东南(北)方向或西南(北)方向.如图中的OC,除了说成南偏西45°外,还可以说是西南方向,但不要说成南西方向.【例9】如图,OA的方向是北偏东15°,OB的方向是西偏北50°.(1)若∠AOC=∠AOB,则OC的方向是________;(2)OD是OB的反向延长线,OD的方向是____;(3)∠BOD可看作是OB绕点O逆时针方向至OD,作∠BOD的平分线OE,OE的方向是____;(4)在(1)、(2)、(3)的条件下,∠COE=____.解析:(1)∵OB的方向是西偏北50°,∴∠1=90°-50°=40°,∴∠AOB=40°+15°=55°∵∠AOC=∠AOB,∴∠AOC=55°,∴∠FOC=∠AOF+∠AOC=15°+55°=70°,∴OC的方向是北偏东70°.(2)∵OB的方向是西偏北50°,∴∠1=40°,∴∠DOH=40°,∴OD的方向是南偏东40°.(3)∵OE是∠BOD的平分线,∴∠DOE=90°.∵∠DOH=40°,∴∠HOE=50°,∴OE的方向是南偏西50°.(4)∵∠AOF=15°,∠AOC=55°,∴∠COG=90°-∠AOF-∠AOC=90°-15°-55°=20°.∵∠EOH=50°,∠HOG=90°,∴∠COE=∠EOH+∠HOG+∠COG=50°+90°+20°=160°.答案:(1)北偏东70°(2)南偏东40°(3)南偏西50°(4)160°。
人教版七年级数学上册第四章《角》课时练习题(含答案)
人教版七年级数学上册第四章《4.3角》课时练习题(含答案)一、单选题1.下列各度数的角,能借助一副三角尺画出的是( )A .55°B .65°C .75°D .85°2.如图所示,正方形网格中有α∠和∠β,如果每个小正方形的边长都为1,估测α∠与∠β的大小关系为( )A .αβ∠<∠B .αβ∠=∠C .αβ∠>∠D .无法估测3.下列换算中,正确的是( )A .23123623.48'''︒=︒B .22.252215'︒=︒C .18183018.183'''︒=︒D .47.1147736︒︒'=''4.已知6032α'∠=︒,则α∠的余角是( )A .2928'︒B .2968'︒C .11928'︒D .11968'︒5.已知∠A =38°,则∠A 的补角的度数是( )A .52°B .62°C .142°D .162° 6.如图,在同一平面内,90AOB COD ∠=∠=︒,AOF DOF ∠=∠,点E 为OF 反向延长线上一点(图中所有角均指小于180︒的角).下列结论:①COE BOE ∠=∠;②180AOD BOC ∠+∠=︒;③90BOC AOD ∠-∠=︒;④180COE BOF ∠+∠=︒.其中正确结论的个数有( )A .1个B .2个C .3个D .4个7.如图,68AOB ∠=︒,OC 平分AOD ∠且15COD ∠=︒,则BOD ∠的度数为( ).A .28︒B .38︒C .48︒D .53︒8.一个角的补角为138︒,则这个角的余角为( )A .38︒B .42︒C .48︒D .132︒二、填空题9.如图,过直线AB 上一点O 作射线OC ,∠BOC =29°18′,则∠AOC 的度数为_____.10.如图,直线,AB CD 相交于O ,OE 平分,∠⊥AOC OF OE ,若46BOD ∠=︒,则DOF ∠的度数为______︒.11.已知,如图,A 、O 、B 在同一直线上,OF 平分AOB ∠,12∠=∠,3=4∠∠.(1)射线OD 是_______的角平分线;(2)AOC ∠的补角是_______;(3)AOC ∠的余角是_______;(4)_______是2∠的余角;(5)DOB ∠的补角是_______;(6)_______是COF ∠的补角.12.如图,若OC 、OD 三等分AOB ∠,则AOB ∠=_______AOC ∠=_______AOD ∠,COD ∠=_______AOB ∠,BOC ∠=∠_______.13.如图,已知∠AOB =90°,射线OC 在∠AOB 内部,OD 平分∠AOC ,OE 平分∠BOC ,则∠DOE =_____°.14.如图,将一副三角尺的两个锐角(30°角和45°角)的顶点P 叠放在一起,没有重叠的部分分别记作∠1和∠2,若∠1与∠2的和为61°,则∠APC 的度数是 _____.三、解答题15.如图,点P 是直线l 外一点,过点P 画直线P A ,PB ,PC ,…,分别交直线l 于点A ,B ,C ,….用量角器量出1∠,2∠,3∠的度数,并量出P A ,PB ,PC 的长度,你发现了什么?16.如图,两个直角三角形的直角顶点重合,∠AOC =40°,求∠BOD 的度数.结合图形,完成填空:解:因为∠AOC+∠COB = °,∠COB+∠BOD = ①所以∠AOC = .②因为∠AOC =40°,所以∠BOD = °.在上面①到②的推导过程中,理由依据是: .17.如图①,已知线段AB=18cm,CD=2cm,线段CD在线段AB上运动,E,F分别是AC,BD的中点.(1)若AC=4cm,则EF=cm;(2)当线段CD在线段AB上运动时,试判断EF的长度是否发生变化?如果不变,请求出EF的长度,如果变化,请说明理由.(3)a.我们发现角的很多规律和线段一样,如图②,已知∠COD在∠AOB内部转动,OE,OF分别平分∠AOC和∠BOD,若∠AOB=140°,∠COD=40°,求∠EOF.b.由此,你猜想∠EOF,∠AOB和∠COD会有怎样的数量关系.(直接写出猜想即可)18.如图1,点O为直线AB上一点,过O点作射线OC,使∠BOC=120°.将一块直角三角板的直角顶点放在点O处,边OM与射线OB重合,另一边ON位于直线AB的下方.(1)将图1的三角板绕点O逆时针旋转至图2,使边OM在∠BOC的内部,且恰好平分∠BOC,问:此时ON所在直线是否平分∠AOC?请说明理由;(2)将图1中的三角板绕点O以每秒6°的速度沿逆时针方向旋转一周,设旋转时间为t秒,在旋转的过程中,ON所在直线或OM所在直线何时会恰好平分∠AOC?请求所有满足条件的t值;(3)将图1中的三角板绕点O顺时针旋转至图3,使边ON在∠AOC的内部,试探索在旋转过程中,∠AOM和∠CON的差是否会发生变化?若不变,请求出这个定值;若变化,请求出变化范围.19.已知:160AOD ∠=︒,OB 、OM 、ON 是AOD ∠内的射线.(1)如图1,若OM 平分AOB ∠,ON 平分BOD ∠.当射线OB 绕点O 在AOD ∠内旋转时,求MON ∠的度数.(2)OC 也是AOD ∠内的射线,如图2,若20BOC ∠=︒,OM 平分AOC ∠,ON 平分BOD ∠,当射线OB 绕点O 在AOD ∠内旋转时,求MON ∠的大小.20.【阅读理解】定义:在一条直线同侧的三条具有公共端点的射线之间若满足以下关系,其中一条射线分别与另外两条射线组成的角恰好满足2倍的数量关系,则称该射线是另外两条射线的“双倍和谐线”.如图1,点P 在直线l 上,射线PR ,PS ,PT 位于直线l 同侧,若PS 平分∠RPT ,则有∠RPT =2∠RPS ,所以我们称射线PR 是射线PS ,PT 的“双倍和谐线”.【迁移运用】(1)如图1,射线PS(选填“是”或“不是”)射线PR,PT的“双倍和谐线”;射线PT(选填“是”或“不是”)射线PS,PR的“双倍和谐线”;(2)如图2,点O在直线MN上,OA MN,∠AOB=40°,射线OC从ON出发,绕点O以每秒4°的速度逆时针旋转,运动时间为t秒,当射线OC与射线OA重合时,运动停止.①当射线OA是射线OB,OC的“双倍和谐线”时,求t的值;②若在射线OC旋转的同时,∠AOB绕点O以每秒2°的速度逆时针旋转,且在旋转过程中,射线OD平分∠AOB.当射线OC位于射线OD左侧且射线OC是射线OM,OD的“双倍和谐线”时,求∠CON的度数。
2019-2020年七年级数学上册 4.3角同步练习1 人教新课标版
DABC 2019-2020年七年级数学上册 4.3角同步练习1 人教新课标版一、选择:1.下列关于角的说法正确的个数是( )①角是由两条射线组成的图形;②角的边越长,角越大; ③在角一边延长线上取一点D;④角可以看作由一条射线绕着它的端点旋转而形成的图形. A.1个 B.2个 C.3个 D.4个2.下列4个图形中,能用∠1,∠AOB,∠O 三种方法表示同一角的图形是( )AA1BO BA1B OCA B OCDA 1BOD3.图中,小于平角的角有( )A.5个B.6个C.7个D.8个 二、填空:4.将一个周角分成360份,其中每一份是______°的角, 直角等于____°,平角等于______°.5.30.6°=_____°_____′=_______′;30°6′=_______′______°. 三、解答题:6.计算:(1)49°38′+66°22′; (2)180°-79°19′; (2)22°16′×5; (4)182°36′÷4.7.根据下列语句画图:(1)画∠AOB=100°;(2)在∠AOB的内部画射线OC,使∠BOC=50°;(3)在∠AOB的外部画射线OD,使∠DOA=40°;(4)在射线OD上取E点,在射线OA上取F,使∠OEF=90°.8.任意画一个三角形,估计其中三个角的度数,再用量角器检验你的估计是否准确.9.分别确定四个城市相应钟表上时针与分钟所成的角的度数.10.九点20分时,时钟上时钟与分钟的夹角a等于多少度?11.马路上铺的地砖有很多种图案,如图所示的图案是某街面方砖铺设的示意图,请你用量角器量一下其中出现的所有的角度?12.如图,在∠AOB的内部引一条射线OC,可得几个小于平角的角? 引两条射线OC、OD呢?引三条射线OC、OD、OE呢?若引十条射线一共会有多少个角?ABO13.请用直线、线段、角等图形设计成表示客观事物的图画,如图, 并为你的图画命名.一盏吊灯一帆风顺答案:1.A2.B3.D4.1,90,1805.30,36,1836;1806,30.16.(1)116°;(2)100°41′;(3)111°20′;(4)45°39′.9.30°;0°;120°;90°10.160°12. 引1条射线有2+1=3个角;引2条射线有3+2+1=6个角;引3条射线有4+3+2+1=10个角;引10条射线有11+10+9+……+3+2+1=66个角.4.3 角的比较一、填空:1.如图1,∠AOB______∠AOC,∠AOB_______∠BOC(填>,=,<); 用量角器度量∠BOC=____°,∠AOC=______°,∠AOC______∠BOC.OC(1)AB O DC(2)ABOD C (3)A B2.如图2,∠AOC=______+______=______-______;∠BOC=______-______= _____-________.3.OC 是∠AOB 内部的一条射线,若∠AOC=12________,则OC 平分∠AOB;若OC 是∠AOB 的角平分线,则_________=2∠AOC. 二、选择:4.下列说法错误的是( )A.角的大小与角的边画出部分的长短没有关系;B.角的大小与它们的度数大小是一致的;C.角的和差倍分的度数等于它们的度数的和差倍分;D.若∠A+∠B>∠C,那么∠A 一定大于∠C 。
人教版数学七年级上册:4.3.1《角》习题课件(附答案)
4.如图,图中共有 3 个角,它们分别是 ∠BOC, ∠AOB,∠AOC .
第4题图
第5题图
5.如图,∠ABC 可以表示成∠ 1 或∠ B ,∠α 可
以表示成 ∠ACB ,∠2 可以表示成 ∠CAD .
6.如图,写出符合下列条件的角(图中所有的角均指 小于平角的角). (1)能用一个大写字母表示的角; (2)以点 A 为顶点的角. 解:(1)能用一个大写字母表示 的角有∠C,∠B. (2)以点 A 为顶点的角有∠CAB, ∠CAD 和∠DAB.
知识点一 角的定义及表示方法 1.下面表示∠ABC 的图是( C )
2.如图,下面四种表示角的方法,其中正确的是
(A) A.∠A B.∠B C.∠C D.∠D
3.下列说法正确的是( B ) ①平角就是直线;②角的大小与边的长短无关;③ 角的两边可以画一样长,也可以画一长一短;④角 的两边是两条线段. A.①② B.②③ C.②④ D.③④
(1)时针每分钟转动的角度为 0.5 °,分针每分钟转 动的角度为 6 °; (2)8 点整,钟面角∠AOB= 120 °,钟面角与此相 等的整点还有 4 点;
(3)如图,设半径 OC 指向 12 点方向,在图中画出 6 点 15 分时半径 OA、OB 的大概位置,并求出此时 ∠AOB 的度数. 解:如图,∠AOB=3×30°+ 15×0.5°=97.5°.
13.如图,点 O 在直线 AB 上,则图中小于平角的角 共有( C ) A.7 个 B.8 个 C.9 个 D.10 个
14.若∠P=25°12′,∠Q=25.12°,∠R=25.2°,则下 列结论:①∠P=∠Q;②∠Q=∠R;③∠P=∠R; ④∠P=∠Q=∠R.其中错误的有 ①②④ (填序号). 15.某校在上午 9:30 开展“大课间”活动,上午 9:30 这一时刻钟面上分针与时针所夹的角等于
(新)冀教版四年级数学上册《角度表示方法和角的度量》配套练习(附答案)
4.3 角度表示方法和角的度量⏹教学内容教材第40~42页角的表示方法和角的度量⏹教学提示《角的表示方法和角的度量》是冀教版四年级数学上册第三单元第二部分《角》的第一课时。
教材通过呈现生活中常见事物中不同的角,引导学生学习角的表示法和读写方法,并通过比较两个角的大小,引出认识量角器和角的度量单位,并学会用量角器测量角。
角的表示方法教材安排了两个活动。
活动一是认识角,教材呈现了生活中常见事物中不同的角,在学生找角的基础上,学习角的表示方法和读写方法。
活动二是比较角的大小,教材呈现了开口方向不同的两个角,让学生利用已有的知识进行比较。
在交流比较方法的基础上引出还可以用量角器量出角的大小。
这样安排的目的是让学生在比较后体会交流角的度量单位的必要性,然后认识量角器和学习度量单位,如何测量角的度数。
⏹教学目标知识与能力1、认识表示角的符号“∠”,会读、写角;能用量角器测量指定角的度数。
2、认识角的计量单位——“度”,会用量角器正确测量角的度数。
过程与方法1、认识表示角的符号“∠”,会读、写角;能用量角器测量指定角的度数。
2、使学生能够熟练使用量角器测量角的度数,能用所学到的知识解决生活中的数学问题。
情感、态度与价值观激发学生参与数学活动的积极性,培养合作、探究意识。
⏹重点、难点重点认识表示角的符号、角的表示方法、书写方法和读法。
难点认识量角器并用量角器测量角。
⏹教学准备教师准备:量角器、课件、折扇三角板等。
学生准备:量角器三角板长方形白纸一张。
⏹教学过程(一)新课导入创设情境,导入新课。
师:手举三角板,这是什么?生:这是三角板。
师:为什么叫三角板呢?生:因为它有三个角。
师:(拿出五角星)为什么叫五角星呢?生:因为它有五个角。
师:在日常生活中,我们经常看到各种各样的角,谁能说说自己见过的角吗?(预设)生1:课本面有四个角。
生2:衣服的领子尖尖的有角,剪刀张开也有角。
……(课件出示:生活中的角)师:生活中处处都能见到角。
人教版七年级上册数学第15周角测试题
【人教版七年级(上)数学周周测】第15周测试卷(测试范围:4.3角)班级:___________ 姓名:___________ 得分:___________一、选择题(每小题3分,共30分)1.如图所示四个图形中,能用∠α、∠AOB、∠O三种方法表示同一个角的图形是( )A. B. C. D.2.如图,甲从A点出发向北偏东70°方向走到点B,乙从点A出发向南偏西15°方向走到点C,则∠BAC的度数是( )A. 85°B.160°C.125°D.105°第2题图第5题图第6题图3.已知∠α=35°19′,则∠α的余角等于( )A.144°41′B.144°81′C.54°41′D.54°81′4.将一副三角板按如图方式摆放在一起,若∠2=30°10′,则∠1的度数等于( )A.30°10′B.60°10′C.59°50′D.60°50′5.如图,对图中各射线表示的方向下列判断错误的是( )A.OA表示北偏东15°B.OB表示北偏西50°C.OC表示南偏东45°D.OD表示西南方向6.如图,直线AB、CD相交于点O,OA平分∠EOC,∠EOC=70°,则∠BOD的度数等于( )A.40°B.35°C.30°D.20°第6题图第7题图7.如图,∠AOB是平角,OC是射线,OD平分∠AOC,OE平分∠BOC,∠BOE=18°,则∠AOD的度数为( )A.78°B.62°C.88°D.72°8.钟表在3点时,它的时针和分针所组成的角(小于180°)是( )A.30°B.60°C.75°D.90°9.如图,将两块直角三角尺的直角顶点O叠放在一起,若∠AOD=130°,则∠BOC的度数为( )A.40°B.45°C.50°D.60°第9题图 第10题图10.如果所示,已知∠1=∠2,∠3=∠4,则下列结论正确的个数为( ) ①AD 平分∠BAF ;②AF 平分∠DAC ;③AE 平分∠DAF ;④AE 平分∠BA C. A.1 B.2 C.3 D.4二、填空题(每小题3分,共30分)11.把能用一副三角尺直接画出(或利用其角的加减可画出)的角的度数从左边框内挑出写入右边框内.12.∠A =32°36′它的补角为 。
人教版数学 七年级上册第4章 4.3.3 余角和补角 同步练习(含答案)
人教版数学(七上)第4章 4.3.3 余角和补角同步练习一、选择题1. 若一个角为65°,则它的补角的度数为()A.25° B.36° C.115° D.125°2.若一个角为75°,则它的余角的度数为()A.285° B.105° C.75° D.15°3. 下列说法正确的是()A.90°角是余角B.如果一个角有补角,那么它一定有余角C.若∠1+∠2+∠3=180°,则∠1,∠2,∠3互补D.66°角的余角是24°4. 如图,直线AB,CD交于点O,因为∠1+∠3=180°,∠2+∠3=180°,所以∠1=∠2的依据是()A.同角的余角相等B.等角的余角相等C.同角的补角相等D.等角的补角相等5. 如图,下列说法中不正确的是()A.射线OA表示北偏东25°B.射线OB表示西北方向C.射线OC表示西偏南80°D.射线OD表示南偏东70°6. 如图,OA是北偏东30°方向的一条射线,若射线OB与射线OA夹角为90°,则OB的方位角是()A.北偏西30° B.北偏西60°C.东偏北30° D.东偏北60°7. 已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,以下符合条件的示意图是()A BC D8. 已知M,N,P,Q四点的位置如图所示,下列结论中,正确的是()A.∠NOQ=42°B.∠NOP=132°C.∠PON比∠MOQ大D.∠MOQ与∠MOP互补9. 将一副三角尺按不同的位置摆放,下列摆放方式中∠α与∠β互余的是()A B C D二、填空题10. (1)若∠α=35°,则∠α的补角为____,∠α的余角为____,∠α的补角与余角的差为____;(2)若∠α的补角为76°28′,则∠α=____.(3)一个角是70°39′,则它的余角的度数是____.11. 如图,∠1=32°,则∠2=____,∠AOD=____.12. 一个角的余角比这个角的补角的一半小40°,则这个角为____°.13. 南偏西15°与北偏东25°的两条射线组成的小于平角的角等于____.三、解答题14. 如图,已知∠AOC=∠BOD=90°.(1)若∠DOC=55°,求∠AOD和∠BOC的度数;(2)试说明:∠AOD=∠BOC.15. 如图,直线AB,CD相交于点O,OF平分∠AOE,∠DOF=90°.(1)写出图中所有与∠AOD互补的角;(2)若∠AOE=120°,求∠BOD的度数.16. 如图,点O是直线AB上任一点,射线OD和射线OE分别平分∠AOC和∠BOC.(1)填空:与∠AOE互补的角有;(2)若∠COD=30°,求∠DOE的度数;(3)当∠AOD=α°时,请直接写出∠DOE的度数.参考答案一、选择题1. 若一个角为65°,则它的补角的度数为()A.25° B.36° C.115° D.125°【答案】C2.若一个角为75°,则它的余角的度数为()A.285° B.105° C.75° D.15°【答案】D3. 下列说法正确的是()A.90°角是余角B.如果一个角有补角,那么它一定有余角C.若∠1+∠2+∠3=180°,则∠1,∠2,∠3互补D.66°角的余角是24°【答案】D4. 如图,直线AB,CD交于点O,因为∠1+∠3=180°,∠2+∠3=180°,所以∠1=∠2的依据是()A.同角的余角相等B.等角的余角相等C.同角的补角相等D.等角的补角相等【答案】C5. 如图,下列说法中不正确的是()A.射线OA表示北偏东25°B.射线OB表示西北方向C.射线OC表示西偏南80°D.射线OD表示南偏东70°【答案】C6. 如图,OA是北偏东30°方向的一条射线,若射线OB与射线OA夹角为90°,则OB的方位角是()A.北偏西30° B.北偏西60°C.东偏北30° D.东偏北60°【答案】B7. 已知:岛P位于岛Q的正西方,由岛P,Q分别测得船R位于南偏东30°和南偏西45°方向上,以下符合条件的示意图是()A BC D【答案】D8. 已知M,N,P,Q四点的位置如图所示,下列结论中,正确的是()A.∠NOQ=42°B.∠NOP=132°C.∠PON比∠MOQ大D.∠MOQ与∠MOP互补【答案】C【解析】如图所示:∠NOQ=138°,故选项A错误;∠NOP=48°,故选项B错误;∠PON=48°,∠MOQ=42°,故∠PON比∠MOQ大,故选项C正确;∵∠MOQ=42°,∠MOP=132°,∠MOQ+∠MOP≠180°,∴∠MOQ与∠MOP 不互补,选项D错误.故选C.9. 将一副三角尺按不同的位置摆放,下列摆放方式中∠α与∠β互余的是()A B C D【答案】A【解析】 A 中∠α与∠β互余,B 中∠α=∠β,C 中∠α=∠β,D 中∠α与∠β互补.故选A.二、填空题10. (1)若∠α=35°,则∠α的补角为____,∠α的余角为____,∠α的补角与余角的差为____;(2)若∠α的补角为76°28′,则∠α=____. (3)一个角是70°39′,则它的余角的度数是____. 【答案】(1) 145°; 55°; 90°(2) 103°32′;(3) 19°21′11. 如图,∠1=32°,则∠2=____,∠AOD =____.【答案】32°; 148°12. 一个角的余角比这个角的补角的一半小40°,则这个角为____°. 【答案】80【解析】 设这个角为x ,则它的余角为(90°-x ),补角为(180°-x ).根据题意,得12(180°-x )-(90°-x )=40°,解得x =80°.13. 南偏西15°与北偏东25°的两条射线组成的小于平角的角等于____. 【答案】170°【解析】 依题意画图如答图,则90°+15°+90°-25°=170°.三、解答题14. 如图,已知∠AOC=∠BOD=90°.(1)若∠DOC=55°,求∠AOD和∠BOC的度数;(2)试说明:∠AOD=∠BOC.【答案】解:(1)∵∠AOC=∠BOD=90°,∠DOC=55°,∴∠AOD=∠AOC-∠DOC=90°-55°=35°,∠BOC=∠BOD-∠DOC=90°-55°=35°;(2)∵∠AOD+∠DOC=90°,∠BOC+∠DOC=90°,∴∠AOD=∠BOC(同角的余角相等).15. 如图,直线AB,CD相交于点O,OF平分∠AOE,∠DOF=90°.(1)写出图中所有与∠AOD互补的角;(2)若∠AOE=120°,求∠BOD的度数.【答案】解:(1)∵直线AB,CD相交于点O,∴∠AOC和∠BOD与∠AOD互补.∵OF平分∠AOE,∴∠AOF=∠EOF,∵∠DOF=90°,∴∠COF=90°,则∠DOE=∠AOC(等角的余角相等),∴∠DOE也是∠AOD的补角.综上,与∠AOD互补的角有∠AOC,∠BOD,∠DOE;(2)由(1)知∠AOC=∠BOD=∠DOE,又∵∠AOC+∠AOE+∠DOE=180°,∴∠BOD=∠AOC=180°-120°2=30°.16. 如图,点O是直线AB上任一点,射线OD和射线OE分别平分∠AOC和∠BOC.(1)填空:与∠AOE互补的角有;(2)若∠COD=30°,求∠DOE的度数;(3)当∠AOD=α°时,请直接写出∠DOE的度数.【答案】解:(1)∵OE平分∠BOC,∴∠BOE=∠COE;∵∠AOE+∠BOE=180°,∴∠AOE+∠COE=180°,∴与∠AOE互补的角是∠BOE、∠COE;故答案为∠BOE、∠COE;(2)∵OD、OE分别平分∠AOC、∠BOC,∴∠COD=∠AOD=30°,∠COE=∠BOE=∠BOC,∴∠AOC=2×30°=60°,∴∠BOC=180°﹣60°=120°,∴∠CO E=∠BOC=60°,∴∠DOE=∠COD+∠COE=90°;(3)当∠AOD=α°时,∠DOE=90°.。
2022二年级上册数学模拟练习题 4.3锐角和钝角 冀教版(含解析)
二年级上册数学一课一练锐角和钝角一、单项选择题1角的两边是两条〔〕A 直线B 线段C 射线2一共有几个直角,几个锐角〔〕A 2个直角,1个锐角B 1个直角,1个锐角C 3个直角,1个锐角3平角不可能是由〔〕拼成的A 两个锐角B 两个直角C 一个锐角和一个钝角4在点子图里画一个平角,哪个画对了?AB二、判断题5判断对错.比平角小的角都是锐角.6锐角比直角大。
〔〕7用一个10倍的放大镜看35°的角,这个角是350°〔判断对错〕8判断正误.用一副三角尺可以拼出135°的角.三、填空题9写出下面各角是哪一种角?________________10直角=________度;平角=________度;周角=________度.11下面的图形中是角的将序号填在横线上。
________12求出下列图中∠1、∠2、∠3的度数,你能发现什么?∠1=________°∠2=________°∠3=________°四、解答题13再添几个三角形设计一个美丽的图案。
14把下面各角的度数填在相应的圆里.42°、108°、4°、90°、175°91°、180°、88°、125°、78°五、综合题15求如图中各个角的度数.〔1〕如果∠1=60°,求∠2,∠3,∠4的度数;〔2〕∠4=35°∠5=30°,求∠1,∠2,∠3的度数.六、应用题16填上角的各局部名称参考答案一、单项选择题1【答案】C【解析】【解答】解:根据角的特征可知,角的两边是两天射线故答案为:C【分析】角是由两条有共同端点的射线组成的图形,两条射线叫作角的两条边,共同的端点叫作角的顶点2【答案】A【解析】【解答】这个四边形有两个直角,直角就是等于九十度的角。
还有一个锐角跟一个钝角组成。
新人教版第四章第三节 4.3角习题精选(含答案)
新人教版第四章第三节 4.3 《角》习题精选(含答案)1.如果∠α= 3∠β,∠α= 2∠θ,则必有( )A.∠β=∠θ B.∠β=∠θ C.∠β=∠θ D.∠β=∠θ答案:C说明:由已知不难得到3∠β= 2∠θ,即∠β=∠θ,所以答案为C.2.在时刻为8:30时,时钟上的时针和分针之间的夹角为( )A.85º B.75º C.70º D.60º答案:B说明:时钟上每一格的度数为:360º÷12 = 30º,而在时刻为8:30时,时针与分针之间有两格半,因此,此时它们之间的夹角应该是30º×2.5 = 75º,答案为B.3.38º 12’等于( )A.38.02º B.38.2º C. 2282’ D. 2302’答案:B说明:因为 60’ = 1º,所以 12’ = 1º÷(60÷12) = 1º÷5 = 0.2º,因此38º 12’ = 38.2º,答案为B.4.如图,在∠AOB的内部有4条射线,则图中角的个数为( )A.10B.15C.5D.20答案:B说明:如图,图中的角有:∠AOB,∠AOF,∠AOE,∠AOD,∠AOC,∠COB,∠COF,∠COE,∠COD,∠DOB,∠DOF,∠DOE,∠EOB,∠EOF,∠FOB,一共15个,所以答案为B.5.互为补角的两个角的差为35º,则较大的角是( )A.97.5º B.108.5º C.72.5º D.107.5º答案:D说明:设较小角为xº,则较大角为180º−xº,根据题意得180º−xº−xº = 35º,解得x = 72.5º,所以180º−xº = 107.5º,答案为D.6.船的航向由正北方向顺时针转到东南方向,则它转了( )A.135ºB.225ºC.180ºD.90º答案:A说明:如图,不难看出由正北方向顺时针转到东南方向,它转的角为90º+45º = 135º,答案为A.7.两个角的大小之比为7:3,它们的差是72º,则这两个角的关系是( )A.相等 B.互补 C.互余 D.无法确定答案:B说明:设这两个角为3x,7x,则7x−3x = 72º,x = 18º,∴3x = 54º,7x = 126º,54º+126º = 180º,故选B.8.从钝角的顶点,在其内部引一条射线,那么图形中出现( )A.2个锐角 B.1个锐角 C.至少2个锐角 D.至少1个锐角答案:D说明:从钝角的顶点,在其内部引一条射线,则将这个钝角分成两个角,若这两个角中没有锐角,则这两个角不是直角就是钝角,显然它们的和不小于180º,因为90º<钝角<180º,所以可知这个钝角分成的两个角中不可能没有锐角,如果这条射线将这个钝角平分,则这两个角必定都是锐角,另外,还可以将这个钝角分成一个直角和一个锐角,因此,A、B、C选项的答案都不正确,答案应该是D.9.下列语句:①由两条射线组成的图形叫做角;②角可以看成是一条射线绕着端点从一个位置旋转到另一个位置所成的图形;③因为平角的两边成一条直线,所以一条直线可以看作是平角;④一个角至少可以用两种方法表示.其中不正确的个数是( )A.1个 B.2个 C.3个 D.4个答案:C说明:①错误,两条射线应该有公共的端点,它们组成的图形才叫做角,否则不是;②正确;③错误,因为平角的始边与终边互为反向延长线,但它并不是一条直线;④错误,因为当同一顶点有两条以上的射线时,只能用三个大写字母来表示最大的,也即最外部的两条射线组成的角;所以答案为C.10.如图,下列说法正确的是( )①∠1就是∠A ②∠2就是∠B③∠3就是∠C ④∠4就是∠DA.①② B.②③ C.②③④ D.只有②答案:B说明:顶点A有三条射线,因此∠A这种表示方法错误,同样顶点D也有三条射线,因此∠D这种表示方法也是错误的,则①④错误;∠2就是∠B这个说法正确;∠3就是∠C这个说法也正确;即②③正确,所以答案为B.11.如图,射线OB、OC将∠AOD分成三部分,下列判断错误的是( )A.如果∠AOB =∠COD,那么∠AOC =∠BODB.如果∠AOB>∠COD,那么∠AOC>∠BODC.如果∠AOB<∠COD,那么∠AOC<∠BODD.如果∠AOB =∠BOC,那么∠AOC =∠BOD答案:D说明:由图中可知,∠AOC =∠AOB+∠BOC,∠BOD =∠COD+∠BOC,因此,A、B、C选项中的判断都是正确的,只有D是错误的,答案为D.12.在∠AOB的内部任取一点C,作射线OC,则一定存在( )A.∠AOB>∠AOC B.∠AOC>∠BOC C.∠BOC>∠AOC D.∠AOC =∠BOC答案:A说明:因为C点在∠AOB的内部,所以∠AOB =∠AOC+∠BOC,因此,∠AOB一定比∠AOC要大,即选项A是正确的,答案为A.13.已知∠1与∠2互补,∠3与∠4互补,且∠1 =∠3,那么( )A.∠2>∠4 B.∠2<∠ 4 C.∠2 =∠4 D.∠2与∠4大小不定答案:C说明:由已知∠1+∠2 = 180º,∠3+∠4 = 180º,则∠2 = 180º−∠1,∠4 = 180º−∠3,而∠1 =∠3,所以180º−∠1 = 180º−∠3,即∠2 =∠4,答案为C.判断正误(1)具有公共点的两条射线所组成的图形叫做角.( )(2)直线是平角,射线是周角.( )(3)平角的两边成一条直线;两边成一条直线的角是平角.( )(4)点P不在∠α的内部,就在∠α的外部.( )解析:(1)“具有公共点”但不一定是“具有公共端点”,可能相交,而交点不是公共端点,这时所组成的图形不是角,所以(1)是错误的.(2)直线与平角不是同一个图形,直线向两方无限延伸,无长度,而平角两边互为反向延长线,成一条直线,有大小,其度数为180º,所以,直线不是平角,同理射线也不是周角.(3)正确,根据平角的定义不难判断.(4)错误,点P还可以为∠α的顶点,或者在∠α的边上.解答题:1.如图,OD是∠BOC的平分线,OE是∠AOC的平分线,找出图中互补的角、互余的角.解:∠DOE =∠EOC+∠DOC =∠AOC+∠BOC =×∠AOB = 90º∴∠EOC与∠COD互余,∠AOE与∠BOD互余,∠AOE与∠EOB互补,∠AOC与∠COB互补,∠AOD与∠DOB互补.2.如图,已知∠AOB = 90º,∠AOC = 60º,OD平分∠BOC,OE平分∠AOC.(1)求∠DOE.(2)如果原题中的∠AOC = 60º这个条件改为∠AOC是锐角,你能否求出∠DOE?若能,请你求出来;若不能,请说明理由.解:(1)由OD平分∠BOC,OE平分∠AOC,得∠BOD =∠DOC =∠BOC,∠AOE =∠EOC =∠AOC,∠DOE =∠DOC−∠EOC =(∠BOC−∠AOC) =×90º = 45º(2)∠DOE仍是45º(解法同上).3.一个角的余角和它的补角之比是3:7,求这个角的度数.解:设这个角的余角为3x,补角为7x,由题意知7x−3x = 90º,4x = 90º,x = 22.5º,∴90º−3x = 22.5º答:这个角为22.5º.。
4.3 《角》一课一练习题2(含答案)2021-2022学年七年级数学人教版上册
4.3 《角》习题2一、选择题1.设时钟的时针与分针所成角是α,则正确的说法是( )A .八点一刻时,α∠是平角B .十点五分时,α∠是锐角C .十一点十分时,α∠是钝角D .十二点一刻时,α∠是直角2.在上午八点半钟的时候,时针和分针所夹的角度是( )A .85°B .75°C .65°D .55°3.若钟表分针走30分钟,则钟表的时针转 ( )A .5︒B .15︒C .30D .120︒4.上午9:30,时钟上分针与时针之间的夹角为( )A .90B .105C .120D .1355.如图所示,射线OP 表示的方向是( )A .东偏北65°B .北偏东25°C .北偏西65°D .北偏东65°6.图,点A 位于点O 的( )A .南偏东35°方向上B .北偏西65°方向上C .南偏东65°方向上D .南偏西65°方向上7.射线OA 位于北偏东25︒方向,射线OB 位于南偏东20︒方向,则AOB ∠的度数是( )A.135︒B.95︒C.45︒D.25︒8.某人在点A处看点B在北偏东40的方向上,看点C在北偏西35的方向上,则∠的度数为( )BACA.65B.75C.40D.359.如图所示,由点A测点B的方向是( )A.南偏东38°B.南偏东52°C.北偏西38°D.北偏西52°10.若点B在点A北偏东30°处,点C在点A南偏东40°处,那么BAC∠的度数是( )A.70°B.80°C.100°D.110°11.如图,OA是表示北偏东55︒方向的一条射线,则OA的反向延长线OB表示的是( )A.北偏西55︒方向上的一条射线B.北偏西35︒方向上的一条射线C.南偏西35︒方向上的一条射线D.南偏西55︒方向上的一条射线12.用两个三角板(一个是30,一个是45︒)不可能画出的角度是( )A.105︒B.115︒C.120︒D.135︒13.如图,将一副直角三角尺叠放在一起,使直角顶点重合与点O,若∠DOC=28°,则∠AOB的度数为( )A .62°B .152°C .118°D .无法确定14.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是( )A .30°B .25°C .20°D .15°15.如图,将一个三角板60°角的顶点与另一个三角板的直角顶点重合,∠1=27°40′,∠2的大小是( )A .27°40′B .57°40′C .58°20′D .62°20′16.如图,将两块三角尺AOB 与COD 的直角顶点O 重合在一起,若∠AOD=4∠BOC ,OE 为∠BOC 的平分线,则∠DOE 的度数为( )A .36°B .45°C .60°D .72°17.如图所示,90AOC ∠=︒,COB α∠=,OD 平分AOB ∠,则COD ∠的度数为( )A .2αB .45α︒-C .452α︒- D .90α︒-18.在同一平面内,若∠AOB =90º,∠BOC =40º,则∠AOB 的平分线与∠BOC 的平分线的夹角等于( ).A .65ºB .25ºC .65º或25ºD .60º或20º19.如图,点O 在直线AB 上,射线OC 平分∠DOB .若∠COB =35°,则∠AOD 等于( ).A .35°B .70°C .110°D .145°20.如图,∠AOB 是平角,∠AOC =30°,∠BOD =60°,OM 、ON 分别是∠AOC 、∠BOD 的平分线,∠MON 等于( )A .90°B .135°C .150°D .120°21.如图,点O 为直线AB 上一点,OC ⊥OD .如果∠1=35°,那么∠2的度数是( )A .35°B .45°C .55°D .65°二、填空题1.某校七年级在下午5:00开展“阳光体育”活动,下午5:00时刻,时钟上分针与时针所夹的角等于_______度.2.上午8:25时,时钟的时针和分针的夹角(小于平角的角)度数是_______.3.由2点30分到2点55分,时钟的时针旋转了________度,分针旋转了________度,此刻时针与分针的夹角是_________度4.时钟的分针从4点整的位置起,顺时针方向转_______度时,分针才能第一次与时针重合.5.如图,上午6:30时,时针和分针所夹锐角的度数是_____.6.若从点A 看点B 的方向是南偏东30,那么从点B 看点A 的方向是_______.7.A 、B 两个城市的位置如图所示,那么B 城在A 城的_______方向.8.根据图填空:点A 在点O 的______________方向,点C 在点O 的______________方向.9.如图,直线EF 与CD 相交于点O ,OA OB ⊥,且OC 平分AOF ∠,若40AOE ∠︒=,则BOD ∠的度数为_____.10.(1)已知13010'∠=︒,24519'∠=︒,则12∠+∠=_______;(2)已知160∠=︒,23520'∠=︒,则12∠-∠=_______.11.计算:581934165542'''''︒+︒'=________________;903124︒-︒'=________________.12.计算:48°37'+53°35'=_____.13.计算:90°﹣18°35'=__.14.计算30°52′+43°50′=______15.如图,将一副三角板叠放一起,使直角的顶点重合于点O ,则∠AOD +∠COB 的度数为___________度.16.如图,将一副三角板叠在一起,使它们的直角顶点重合于O 点,且∠AOB =155°,则∠COD =_____.17. 将两块直角三角尺的直角顶点重合为如图所示的形状,若∠AOD=127°,则∠BOC=_______.18.如图,将一副三角板叠放在一起,使直角顶点重合于O ,则∠AOC+∠DOB =_____.三、解答题1.如图,O 为直线AB 上一点,∠AOC =48°,OD 平分∠AOC ,∠DOE =90°.(1)图中有 个小于平角的角;(2)求出∠BOD 的度数;(3)试判断OE 是否平分∠BOC ,并说明理由.2.如图,已知50AOB ∠=︒,OD 是COB ∠的平分线.(1)如图1,当AOB ∠与COB ∠互补时,求COD ∠的度数;(2)如图2,当AOB ∠与COB ∠互余时,求COD ∠的度数.3.如图,以点O 为端点按顺时针方向依次作射线OA 、OB 、OC 、OD .(1)若∠AOC 、∠BOD 都是直角,∠BOC =60°,求∠AOB 和∠DOC 的度数.(2)若∠BOD =100°,∠AOC =110°,且∠AOD =∠BOC +70°,求∠COD 的度数.(3)若∠AOC =∠BOD =α,当α为多少度时,∠AOD 和∠BOC 互余?并说明理由.4.点O 在直线AB 上,射线OC 上的点C 在直线AB 上方,4AOC BOC ∠=∠(1)如图(1),求AOC ∠的度数;(2)如图(2),点D 在直线AB 上方,AOD ∠与BOC ∠互余,OE 平分COD ∠,求∠BOE 的度数;(3)在(2)的条件下,点,F G 在直线AB 下方,OG 平分FOB ∠,若FOD ∠与BOG ∠互补,求EOF ∠的度数.5.如图,直线AB与CD相交于点O,OE平分∠AOD,OF平分∠BOD.(1)若∠AOC=70°,求∠DOE和∠EOF的度数;(2)请写出图中∠AOD的补角和∠AOE的余角.6.如图,一副三角板的两个直角顶点重合在一起.(1)比较∠EOM与∠FON的大小,并写出理由;(2)求∠EON+∠MOF的度数.答案一、选择题1.B .2.B . 3.B .4.B 5.D 6.B .7.A .8.B .9.A10.D11.D12.B 13.B 14.B 15.B 16.D 17.C 18.C 19.C 20.B 21.C二、填空题1.1502.102.5°.3.12.5 150 117.54.1013011. 5.15°.6.北偏西30.7.北偏东30.8.东偏北50° 西南9.20º.10.7529'︒,2440'︒.11.751516'''︒;5836︒'.12.10212'︒13.7125'︒14.74°42′.15.18016.2517.53°18.180°三、解答题1.(1)小于平角的角有:,,,,,,,,AOD AOC AOE DOC DOE DOB COE COB EOB ∠∠∠∠∠∠∠∠∠,共有9个 故答案是: 9;(2)∵OD 平分AOC ∠,48AOC ∠=︒∴1242AOD COD AOC ∠=∠=∠=︒ ∴180********BOD AOD ∠=︒-∠=︒-︒=︒;(3)OE 平分BOC ∠,理由如下:∵90DOE ∠=︒,48AOC ∠=︒∴902466COE DOE COD ∠=∠-∠=︒-︒=︒180180249066BOE AOD DOE ∠=︒-∠-∠=︒-︒-︒=︒∴COE BOE ∠=∠∴OE 平分BOC ∠.2.(1)65°;(2)20°3.(1)∵∠AOC =90°,∠BOD =90°,∠BOC =60°,∴∠AOB =∠AOC ﹣∠BOC =90°﹣60°=30°,∠DOC =∠BOD ﹣∠BOC =90°﹣60°=30°;(2)设∠COD =x °,则∠BOC =100°﹣x °.∵∠AOC =110°,∴∠AOB =110°﹣(100°﹣x °)=x °+10°.∵∠AOD =∠BOC +70°,∴100°+10°+x °=100°﹣x °+70°,解得:x =30,即∠COD =30°;(3)当α=45°时,∠AOD 与∠BOC 互余.理由如下:要使∠AOD 与∠BOC 互余,即∠AOD +∠BOC =90°,∴∠AOB +∠BOC +∠COD +∠BOC =90°,即∠AOC +∠BOD =90°.∵∠AOC =∠BOD =α,∴∠AOC =∠BOD =45°,即α=45°,∴当α=45°时,∠AOD 与∠BOC 互余.4.解:(1)设∠BOC=α,则∠AOC=4α,∵∠BOC+∠AOC=180°,∴α+4α=180°,∴α=36°,∴∠AOC=144°;(2)∵∠AOD与∠BOC互余,∴∠AOD=90°-∠BOC=90°-36°=54°,∴∠COD=180°-∠AOD-∠BOC=180°-54°-36°=90°,∵OE平分∠COD,∴∠COE=12∠COD=12×90°=45°,∴∠BOE=∠COE+∠BOC=45°+36°=81°,(3)①如图1,∵OG平分∠FOB,∴∠FOG=∠BOG,∵∠FOD与∠BOG互补,∴∠FOD+∠BOG=180°,设∠BOG=x°,∠BOF=2x°,∠BOD=∠DOC+∠BOC=36°+90°=126°,∵∠FOD=∠BOD+∠BOF,∴126+2x+x=180,解得:x=18,∴∠EOF=∠BOE+∠BOF=81°+2×18°=117°;②如图2,∵OG平分∠FOB,∴∠FOG=∠BOG,∵∠FOD与∠BOG互补,∴∠FOD+∠BOG=180°,∴∠FOD+∠FOG=180°,∴D,O,G共线,∴∠BOG=∠AOD=54°,∴∠AOF=180°-∠BOF=72°,∴∠AOE=180°-∠BOE=180°-81°=99°,∴∠EOF=∠AOF+∠AOE=72°+99°=171°.5.(1)因为∠AOC=70°,所以∠AOD=180°-∠AOC=110°,所以∠BOD=180°-∠AOD=70°.又因为OE平分∠AOD,所以∠DOE=12∠AOD=55°,又因为OF平分∠BOD,所以∠DOF=12∠BOD=35°.所以∠EOF=∠DOE+∠DOF=90°.(2)∠AOD的补角:∠AOC和∠BOD;∠AOE的余角:∠DOF和∠BOF.6.(1)∠EOM=∠FON.∵∠EOM+∠MOF=90°=∠FON+∠MOF,∴∠EOM=∠FON;(2)∵∠EON+∠MOF=∠EOM+∠MOF+∠FON+∠MOF,∴∠EON+∠MOF=∠EOF+∠MON=180°.。
北师大版七年级上册数学 4.3 角 同步练习(含解析)
4.3 角同步练习一.选择题1.如图,小明从A处出发沿北偏东40°方向行走至B处,又从B处沿南偏东70°方向行走至C处.则∠ABC等于()A.130°B.120°C.110°D.100°2.小明从A处出发沿正东方向行驶至B处,又沿南偏东75°方向行驶至C处,此时需把方向调整到正东方向,则小明应该()A.右转165°B.左转75°C.右转15°D.左转15°3.张燕同学按如图所示方法用量角器测量∠AOB的大小,她发现OB边恰好经过80°的刻度线末端.你认为∠AOB的大小应该为()A.80°B.40°C.100°D.50°4.钟表上8点30分时,时针与分针的夹角为()A.15°B.30°C.75°D.60°5.射线OA,OB,OC,OD的位置如图所示,可以读出∠COB的度数为()A.50°B.40°C.70°D.90°6.如图所示,下列说法错误的是()A.∠DAO可用∠DAC表示B.∠COB也可用∠O表示C.∠2也可用∠OBC表示D.∠CDB也可用∠1表示7.如图所示,下列表示角的方法错误的是()A.∠1与∠PON表示同一个角B.∠α表示的是∠MOPC.∠MON也可用∠O表示D.图中共有三个角∠MON,∠POM,∠PON8.下列四个图形中的∠1也可用∠AOB,∠O表示的是()A.B.C.D.9.如图,∠AOB=148°,在灯塔O处观测到轮船A位于北偏西51°的方向,则在灯塔O 处观测轮船B的方向为()A.南偏东17°B.南偏东19°C.东偏南17°D.东偏南73°10.嘉淇乘坐一艘游船出海游玩,游船上的雷达扫描探测得到的结果如图所示,每相邻两个圆之间距离是1km(最小圆的半径是1km),下列关于小艇A,B的位置描述,正确的是()A.小艇A在游船的北偏东60°方向上,且与游船的距离是3kmB.游船在小艇A的南偏西60°方向上,且与小艇A的距离是3kmC.小艇B在游船的北偏西30°方向上;且与游船的距离是2kmD.游船在小艇B的南偏东60°方向上,且与小艇B的距离是2km二.填空题11.已知如图,点A在点O的东南方向,则∠AOB=°.12.时钟上八点二十的时候,时针与分针所夹锐角的度数是.13.如图,在一笔直的海岸线上有A、B两个观测站,A在B的正西方向,从A测得船C在北偏东52°的方向,从B测得船C在北偏西30°的方向,则∠ACB=°.14.如图,O是直线AB上的一点,∠AOC=26°17,则∠COB=15.小红从O点出发向北偏西32°方向走到A点,小明从O点出发向南偏西54°方向走到B点,则∠AOB的度数是.三.解答题16.如图(1)利用尺规作∠CED,使得∠CED=∠A.(不写作法,保留作图痕迹).(2)判断直线DE与AB的位置关系:.17.如图,货轮O在航行过程中,发现灯塔A在它北偏东60°的方向上,同时,在它南偏西20°、西北(即北偏西45°)方向上又分别发现了客轮B和海岛C,仿照表示灯塔方位的方法,画出表示客轮B和海岛C方向的射线.18.如图,一艘轮船按箭头所示方向行驶,C处有一灯塔,点A表示轮船的初始位置,点B 表示轮船行进中某一时刻的位置.(1)当轮船从A点行驶到B点时,请根据图中所标数据求∠ACB的大小;(2)当轮船从点行驶到距离灯塔最近点时,∠ACB=.参考答案1.解:如图:∵小明从A处沿北偏东40°方向行走至点B处,又从点B处沿南偏东70°方向行走至点C处,∴∠DAB=40°,∠CBE=70°,∵向北方向线是平行的,即AD∥BE,∴∠ABE=∠DAB=40°,∴∠ABC=∠ABE+∠EBC=40°+70°=110°.故选:C.2.解:由题意得:∠BEC=75°,∵AB∥CD,∴∠DCF=75°,∵需把方向调整到正东方向,∴∠FCD=15°,∴左转15°,故选:D.3.解:如图,由图可知,∠ACD=100°,根据同弧所对的圆周角等于它所对圆心角的一半可知,∠AOB=.故选:D.4.解:∵8点30分,时针在8和9正中间,分针指向6,中间相差两个半大格,而钟表12个数字,每相邻两个数字之间的夹角为30°,∴8点30分时,时针与分针的夹角的度数为:30°×2.5=75°.故选:C.5.解:∠COB=∠AOC﹣∠AOB=140°﹣50°=90°,故选:D.6.解:A、∠DAO可用∠DAC表示,本选项说法正确;B、∠COB不能用∠O表示,本选项说法错误;C、∠2也可用∠OBC表示,本选项说法正确;D、∠CDB也可用∠1表示,本选项说法正确;故选:B.7.解:A、∠1与∠PON表示同一个角是正确的,不符合题意;B、∠α表示的是∠MOP是正确的,不符合题意;C、∠MON不能用∠O表示,原来的说法错误,符合题意;D、图中共有三个角∠MON,∠POM,∠PON是正确的,不符合题意.故选:C.8.解:A、图形中的∠1可用∠AOB,但不能用∠O表示,故此选项错误;B、图形中的∠1可用∠AOB,也可用∠O表示,故此选项正确;C、图形中的∠1不可用∠AOB和∠O表示,故此选项错误;D、图形中的∠1可用∠AOB,但不能用∠O表示,故此选项错误;故选:B.9.解:如图,∠1=∠AOB﹣90°﹣(90°﹣51°)=148°﹣90°﹣(90°﹣51°)=19°.故在灯塔O处观测轮船B的方向为南偏东19°,故选:B.10.解:A、小艇A在游船的北偏东30°,且距游船3km,故本选项不符合题意;B、游船在小艇A的南偏西30°方向上,且与小艇A的距离是3km,故本选项不符合题意;C、小艇B在游船的北偏西60°,且距游船2km,故本选项不符合题意;D、游船在小艇B的南偏东60°方向上,且与小艇B的距离是2km,故本选项符合题意.故选:D.11.解:如图所示:∵点A在点O的东南方向,∴∠COA=45°,则∠AOB=90°+45°=135°.故答案为:135.12.解:4×30°+20×0.5°=120°+10°=130°.故答案为:130°.13.解:∵∠CAB=90°﹣52°=38°,∠CBA=90°﹣30°=60°,∴∠ACB=180°﹣38°﹣60°=82°.故答案为:82.14.解:∵∠AOC+∠BOC=180°,∴∠COB=180°﹣∠AOC=180°﹣26°17′=153°43′故答案为:153°43′.15.解:根据题意得:∠AOB=180°﹣32°﹣54°=94°.故答案为:94°.16.解:(1)如图1,如图2;(2)如图1,∵∠CED=∠A,∴DE∥AB,;如图2,DE与AB相交.故答案为平行或相交.17.解:如图所示,18.解:(1)如图所示,过点C作CE⊥AB,交AB延长线于点E,则轮船行驶到点C时距离灯塔最近;当轮船从A点行驶到B点时,∠ACB的度数是72°﹣29°=43°;(2)当轮船行驶到距离灯塔的最近点时,即∠ACB=∠ACE=61°.故答案为:61°.。
人教七年级数学上册-角(附习题)
问题 角用符号“∠”来表示.那么如何表示
下面这个角? A
O
B
a.用三个大写字母表示:∠AOB 或∠BOA;
b.用一个大写字母表示:∠O.
注意
1 用三个大写字母表示时,
A
中间字母是顶点字母;
2 用一个大写字母表示时, O
B
顶点处只能有一个角.
思考 还有别的表示方法吗?
(1)弄清楚余角、补角的意义及其性质. (2)运用余角、补角的性质解决一些简单的问题. (3)会根据方位角确定物体的方位.
推进新课
知识点1 余角和补角的定义 问题 根据你的理解,如何定义余角?
90°
如果两个角的和等于90º(直角),就说这两个角 互Hale Waihona Puke 余角,即其中每一个角是另一个角的余角.
问题 类比余角的定义,怎么定义补角?
O
B
1. 如果EC与OD重合,那么∠AEC等于∠BOD, 记作∠AEC=∠BOD.
D C
E
A
O
B
2. 如果EC落在∠BOD的内部,那么∠AEC小 于∠BOD,记作∠AEC<∠BOD.
C D
E
AO
B
3. 如果EC落在∠BOD的外部,那么∠AEC大于 ∠BOD,记作∠AEC>∠BOD.
思考 图中共有几个角?它们之间有什么关 系?
分析:∠AOB是 平角, ∠BOC= ∠AOB-∠AOC .
解:由题意可知,∠AOB是平角, ∠AOB=∠AOC+∠BOC,
所以∠BOC= ∠AOB-∠AOC =180°- 53°17′ =126°43′.
例2 把一个周角7等分,每一份是多少度的 角(精确到分)?
解:360°÷7=51°+3°÷7 =51°+180′÷7 ≈51°26′.
人教版数学七年级上学期4.3 角测试(原卷+解析版)
专题4.3 角一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2020·聊城市茌平区教育和体育局教研室期末)如图,能用∠1、∠ABC 、∠B 三种方法表示同一个角的是( )A .B .C .D .2.(2020·新疆期末)如图,甲从A 点出发向北偏东70°方向走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则∠BAC 的度数是( )A .85°B .105°C .125°D .160°3.(2020·全国单元测试)将一个直角分成1:2:3的三个角,那么这三个角中,最大的角与最小的角相差( ) A .10°B .20°C .30°D .40°4.(2020·陕西西安·西北工业大学附属中学初一期末)如图,射线OB 和OD 分别为AOC ∠和COE ∠的角平分线,45,20AOB DOE ∠=︒∠=︒,则AOE ∠=( )A .110°B .120°C .130°D .140°5.(2020·内蒙古海勃湾·初一期末)2018年4月12日我军在南海举行了建国以来海上最大的军事演习,位于点O 处的军演指挥部观测到军舰A 位于点O 的北偏东70°方向(如图),同时观测到军舰B 位于点O 处的南偏西15°方向,那么∠AOB 的大小是( )A .85°B .105°C .115°D .125°6.(2020·全国课时练习)已知180αβ∠+∠=︒,且αβ∠>∠,那么β∠的余角一定是( ) A .αβ∠-∠ B .90α︒-∠ C .90α∠-︒D .90β∠-︒7.(2020·全国课时练习)如图所示,OC 是AOB ∠的平分线,OD 是BOC ∠的平分线,那么下列各式中正确的是( )A .23AOD AOB ∠=∠ B .13BOD AOB =∠∠C .23BOC AOB ∠=∠ D .12∠=∠COD BOC8.(2020·浙江镇海·期末)一个角的余角比它的补角的一半少30,则这个角的度数为( ) A .20︒B .40︒C .60︒D .80︒9.(2020·北京海淀实验中学开学考试)如图,已知CO ⊥AB 于点O ,∠AOD =5∠DOB +6°,则∠COD 的度数( )A .58°B .59°C .60°D .61°10.(2020·岳阳市第十中学初一期末)下列语句中,正确的个数是( )①直线AB 和直线BA 是两条直线;②射线AB 和射线BA 是两条射线;③若∠1+∠2+∠3=90°,则∠1、∠2、∠3互余;④一个角的余角比这个角的补角小;⑤一条射线就是一个周角;⑥两点之间,线段最短. A .1个B .2个C .3个D .4个11.(2020·内蒙古额尔古纳·期末)将一副三角尺按不同位置摆放,摆放方式中∠α 与∠β 互余的是( ) A .B .C .D .12.(2020·山东莘县·期末)如图,∠AOC 和∠BOC 互补,∠AOB =α,OM 是∠AOC 的平分线,ON 是∠BOC 的平分线,∠MON 的度数是( )A .1802α-B .12a C .1902a +D .1902a -13.(2020·浙江松阳·期末)在同一平面内,已知∠AOB =70°,∠BOC =20°,如果OP 是∠AOC 的平分线,则∠BOP 的度数为( ) A .25°B .25°或35°C .35°D .25°或45°14.(2020·湖南湘潭电机子弟中学初一月考)如图,已知点A ,O ,B 在同一直线上,∠2是锐角,则∠2的余角是( )A .1122∠-∠B .()1123∠+∠ C .()1122∠-∠ D .131222∠-∠二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.(2020·怀安县教育体育和科学技术局教育科学研究室开学考试)图书馆在餐厅的北偏东40°方向,那么餐厅在图书馆的________方向.16.(2020·全国初一课时练习)下列角度换算错误的是( ) A .10.6°=10°36″ B .900″=0.25° C .1.5°=90′D .54°16′12″=54.27°17.(2020·聊城市茌平区教育和体育局教研室期末)若一个角的补角加上10º后等于这个角的4倍,则这个角的度数为____.18.(2020·全国单元测试)过点O 引三条射线OA 、OB 、OC ,使2AOC AOB ∠=∠,如果32AOB ∠=︒,那么BOC ∠的度数是_______.三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分) 19.(2020·全国课时练习)用一副三角尺画角. (1)135AOB ∠=︒. (2)150BOC ∠=︒.20.(2019·全国初一课时练习)计算: (1)2027'3554'︒+︒;(2)90431836"'︒-°.21.(2020·湖南古丈·初一期末)完成推理填空:如图,直线AB 、CD 相交于O ,∠EOC =90°,OF 是∠AOE 的角平分线,∠COF =34°,求∠BOD 的度数.其中一种解题过程如下:请在括号中注明根据,在横线上补全步骤.解:∵∠EOC =90°,∠COF =34°( ) ∴∠EOF = °又∵OF 是∠AOE 的角平分线( ) ∴∠AOF = =56°( ) ∴∠AOC =∠ —∠ = ° ∴∠BOD =∠AOC = °( )22.(2020·新疆期末)如图,已知直线AB 和CD 相交于点O,∠COE= 90︒, OF 平分∠AOE, ∠COF=28︒.求∠AOC 的度数.23.(2019·黑龙江甘南·初一期末)请仔细观察如图所示的折纸过程,然后回答下列问题:(1)2∠的度数为__________; (2)1∠与3∠有何数量关系:______; (3)1∠与AEC ∠有何数量关系:__________;24.(2020·辽宁庄河·期末)如图,已知直线和直线外三点A ,B ,C ,按下列要求画图:(1)画线段AB (2)画出射线BC(3)以A 为顶点画出表示东西南北的十字线,再画出表示北偏西30的射线AD (注:D 为射线与直线l 的焦点,标注字母D 与30角)25.(2020·云南兰坪·期末)如图,OM ,ON 分别是BOC ∠和AOC ∠的平分线,且84AOB ∠=︒.(1)当OC 静止时,求MON ∠的度数;(2)当OC 在AOB ∠内转动时,MON ∠的大小是否会发生变化,简单说明理由. 26.(2020·哈尔滨工业大学附属中学校初一开学考试)已知:AOB ∠和COD ∠是直角. (1)如图,当射线OB 在COD ∠内部时,请探究AOD ∠和BOC ∠之间的关系;(2)如图2,当射线,OA 射线OB 都在COD ∠外部时,过点О作射线OE ,射线OF ,满足13BOE BOC ∠=∠,23DOF AOD ∠=∠,求EOF ∠的度数.(3)如图3,在(2)的条件下,在平面内是否存在射线OG ,使得:2:3GOF GOE ∠∠=,若不存在,请说明理由,若存在,求出GOF ∠的度数.专题4.3 角一、选择题(本大题共14个小题,每题2分,共28分,在每个小题的四个选项中只有一项是符合题目要求的)1.(2020·聊城市茌平区教育和体育局教研室期末)如图,能用∠1、∠ABC 、∠B 三种方法表示同一个角的是( )A .B .C .D .【答案】A【解析】解:B 、C 、D 选项中,以B 为顶点的角不只一个,所以不能用∠B 表示某个角,所以三个选项都是错误的;A 选项中,以B 为顶点的只有一个角,并且∠B=∠ABC=∠1,所以A 正确. 故选A .2.(2020·新疆期末)如图,甲从A 点出发向北偏东70°方向走到点B ,乙从点A 出发向南偏西15°方向走到点C ,则∠BAC 的度数是( )A .85°B .105°C .125°D .160°【答案】C【解析】根据题意得:∠BAC =(90°﹣70°)+15°+90°=125°, 故选:C .3.(2020·全国单元测试)将一个直角分成1:2:3的三个角,那么这三个角中,最大的角与最小的角相差( ) A .10° B .20° C .30° D .40°【答案】C【解析】最大角为:39045123︒︒⨯=++,最小角为:19015123︒︒⨯=++,451530︒︒︒-=,故选:C .4.(2020·陕西西安·西北工业大学附属中学初一期末)如图,射线OB 和OD 分别为AOC ∠和COE ∠的角平分线,45,20AOB DOE ∠=︒∠=︒,则AOE ∠=( )A .110°B .120°C .130°D .140°【答案】C【解析】∵射线OB 和OD 分别为AOC ∠和COE ∠的角平分线, ∴290,240AOC AOB COE DOE ∠=∠=︒∠=∠=︒, ∴AOE ∠=AOC ∠+COE ∠=130° 故选C .5.(2020·内蒙古海勃湾·初一期末)2018年4月12日我军在南海举行了建国以来海上最大的军事演习,位于点O 处的军演指挥部观测到军舰A 位于点O 的北偏东70°方向(如图),同时观测到军舰B 位于点O 处的南偏西15°方向,那么∠AOB 的大小是( )A .85°B .105°C .115°D .125°【答案】D【解析】∵A 位于点O 的北偏东70°方向,B 位于点O 处的南偏西15° ∴∠AOB =20°+90°+15°=125°, 故选D.6.(2020·全国课时练习)已知180αβ∠+∠=︒,且αβ∠>∠,那么β∠的余角一定是( ) A .αβ∠-∠ B .90α︒-∠ C .90α∠-︒ D .90β∠-︒【答案】C【解析】∵180αβ∠+∠=︒,且αβ∠>∠,∴β∠是锐角,∴β∠的余角为90°-β∠=90°-(180°-α∠)=90α∠-︒ 故选C .7.(2020·全国课时练习)如图所示,OC 是AOB ∠的平分线,OD 是BOC ∠的平分线,那么下列各式中正确的是( )A .23AOD AOB ∠=∠ B .13BOD AOB =∠∠C .23BOC AOB ∠=∠ D .12∠=∠COD BOC【答案】D【解析】∵OC 是∠AOB 的平分线,OD 是∠BOC 的平分线, ∴∠BOC =∠AOC =12∠AOB ,COD ∠=∠BOD =12∠AOC =12∠BOC , ∴∠AOD =34∠AOB ,∠BOD =14∠AOB故选:D .8.(2020·浙江镇海·期末)一个角的余角比它的补角的一半少30,则这个角的度数为( ) A .20︒ B .40︒C .60︒D .80︒【答案】C【解析】解:设这个角为,x ︒ 则它的余角为()90,x -︒ 它的补角为()180,x -︒()19018030,2x x ∴-=-- 180218060x x ∴-=--60,x ∴=故选C .9.(2020·北京海淀实验中学开学考试)如图,已知CO ⊥AB 于点O ,∠AOD =5∠DOB +6°,则∠COD 的度数( )A.58°B.59°C.60°D.61°【答案】D【解析】解:∵∠AOD=5∠BOD+6°,设∠BOD=x°,∠AOD=5x°+6°.∵∠AOD+∠BOD=180°,∴x+5x+6°=180.∴x=29°.∴∠BOD=29°.∵CO⊥AB,∴∠BOC=90°.∴∠COD=∠BOC-∠BOD=90°-29°=61°.故选:D.10.(2020·岳阳市第十中学初一期末)下列语句中,正确的个数是()①直线AB和直线BA是两条直线;②射线AB和射线BA是两条射线;③若∠1+∠2+∠3=90°,则∠1、∠2、∠3互余;④一个角的余角比这个角的补角小;⑤一条射线就是一个周角;⑥两点之间,线段最短.A.1个B.2个C.3个D.4个【答案】C【解析】解:①直线AB和直线BA是一条直线,原来的说法是错误的;②射线AB和射线BA是两条射线是正确的;③互余是指的两个角的关系,原来的说法是错误的;④一个角的余角比这个角的补角小是正确的;⑤周角的特点是两条边重合成射线.但不能说成周角是一条射线,原来的说法是错误的;⑥两点之间,线段最短是正确的.故正确的个数是3个.故选:C.11.(2020·内蒙古额尔古纳·期末)将一副三角尺按不同位置摆放,摆放方式中∠α 与∠β 互余的是()A.B.C.D.【答案】C【解析】解:A、∠α与∠β不互余,故本选项错误;B、∠α与∠β不互余,故本选项错误;C、∠α与∠β互余,故本选项正确;D、∠α与∠β不互余,∠α和∠β互补,故本选项错误;故选:C.12.(2020·山东莘县·期末)如图,∠AOC和∠BOC互补,∠AOB=α,OM是∠AOC的平分线,ON是∠BOC的平分线,∠MON的度数是()A.1802α-B.12a C.1902a+D.1902a-【答案】B【解析】解:∵∠AOC和∠BOC互补,∴∠AOC+∠BOC=180°①,∵OM是∠AOC的平分线,ON是∠BOC的平分线,∴∠AOM=12∠AOC,∠CON=12∠BOC,∴∠AOM+∠CON=90°,∵∠AOB=α,∴∠AOC﹣∠BOC=∠AOB=α②,①+②得:2∠AOC=180°+α,∴∠AOC=90°+12α,∴∠MON=∠AOC﹣∠AOM﹣∠CON=90°+12﹣90°=12α.故选B.13.(2020·浙江松阳·期末)在同一平面内,已知∠AOB=70°,∠BOC=20°,如果OP是∠AOC的平分线,则∠BOP的度数为()A .25°B .25°或35°C .35°D .25°或45°【答案】D【解析】①当∠BOC 在∠AOB 的外部时, ∠AOC =∠AOB +∠BOC =70°+20°=90°, ∵OP 是∠AOC 的平分线, ∴∠COP =12∠AOC =45°, ∴∠BOP =∠COP -∠COB =25°;②当∠BOC 在∠AOB 的内部时,∠AOC =∠AOB -∠BOC =70°-20°=50°, ∵OP 是∠AOC 的平分线, ∴∠COP =12∠AOC =25°, ∴∠BOP =∠COP +∠COB =45°;故选D .14.(2020·湖南湘潭电机子弟中学初一月考)如图,已知点A ,O ,B 在同一直线上,∠2是锐角,则∠2的余角是( )A .1122∠-∠B .()1123∠+∠ C .()1122∠-∠ D .131222∠-∠【答案】C【解析】解:∵点A ,O ,B 在同一直线上, ∴∠1+∠2=180°∵1122∠-∠+∠2=112∠,而112∠≠90°,故A 不符合题意; ()1123∠+∠+∠2=60°+∠2,不一定等于90°,故B 不符合题意; ()1122∠-∠+∠2=()1122∠+∠=90°,故C 符合题意;131222∠-∠+∠2=111222∠-∠,不等于90°,故D不符合题意.故选C .二、填空题(本题共4个小题;每个小题3分,共12分,把正确答案填在横线上)15.(2020·怀安县教育体育和科学技术局教育科学研究室开学考试)图书馆在餐厅的北偏东40°方向,那么餐厅在图书馆的________方向. 【答案】南偏西40°(或西偏南50°) 【解析】∵图书馆在餐厅的北偏东40°方向, ∴餐厅在图书馆的南偏西40°(或西偏南50°), 故答案为:南偏西40°(或西偏南50°).16.(2020·全国初一课时练习)下列角度换算错误的是( ) A .10.6°=10°36″ B .900″=0.25° C .1.5°=90′ D .54°16′12″=54.27°【答案】A【解析】解:A 、10.6°=10°36',错误; B 、900″=0.25°,正确; C 、1.5°=90′,正确; D 、54°16′12″=54.27°,正确; 故选:A .17.(2020·聊城市茌平区教育和体育局教研室期末)若一个角的补角加上10º后等于这个角的4倍,则这个角的度数为____. 【答案】38º【解析】解:设这个角为x ,由题意得:180°-x+10°=4x ,解得x=38° 故答案为38°.18.(2020·全国单元测试)过点O 引三条射线OA 、OB 、OC ,使2AOC AOB ∠=∠,如果32AOB ∠=︒,那么BOC ∠的度数是_______. 【答案】32︒或96︒【解析】解:∵∠AOC=2∠AOB ,∠AOB=32°, ∴∠AOC=64°.(1)当∠BOC 在∠AOC 的内部时, ∠BOC=∠AOC -∠AOB=64°-32° =32°,(2)当∠BOC 在∠AOC 的外部时, ∠BOC=∠AOB+∠AOC =32°+64° =96°.故∠BOC 的度数为32°或96°.三、解答题(本题共8道题,19-21每题6分,22-25每题8分,26题10分,满分60分) 19.(2020·全国课时练习)用一副三角尺画角. (1)135AOB ∠=︒. (2)150BOC ∠=︒.【答案】(1)答案见解析;(2)答案见解析 【解析】(1)如图,∠AOB 为所求;(2)如图,∠BOC 为所求;20.(2019·全国初一课时练习)计算: (1)2027'3554'︒+︒;(2)90431836"'︒-°. 【答案】(1)5621'︒(2)4641'24"︒【解析】(1)2027'3554'5581'5621'+=︒=°°°︒-︒=︒-︒=︒′(2)904318'36"8959'60"4318'36"464124"21.(2020·湖南古丈·初一期末)完成推理填空:如图,直线AB、CD相交于O,∠EOC=90°,OF是∠AOE 的角平分线,∠COF=34°,求∠BOD的度数.其中一种解题过程如下:请在括号中注明根据,在横线上补全步骤.解:∵∠EOC=90°,∠COF=34°()∴∠EOF=°又∵OF是∠AOE的角平分线()∴∠AOF==56°()∴∠AOC=∠—∠=°∴∠BOD=∠AOC=°()【答案】已知;56;已知;∠EOF;角平分线定义;AOF;COF;22;22;对顶角相等【解析】解:∵∠EOC=90°∠COF=34° (已知)∴∠EOF=90°-34°=56°,∵OF是∠AOE的角平分线∴∠AOF=∠EOF=56°(角平分线定义)∴∠AOC=∠AOF-∠COF=22°,∴∠BOD=∠AOC=22° (同角的余角相等),22.(2020·新疆期末)如图,已知直线AB和CD相交于点O,∠COE= 90︒,OF平分∠AOE, ∠COF=28︒.求∠AOC的度数.【答案】34°【解析】解:∵∠EOF=∠COE-∠COF=90°-28°=62°.又∵OF平分∠AOE,∴∠AOF=∠EOF=62°,∴∠AOC=∠AOF-∠COF=62°-28°=34°.23.(2019·黑龙江甘南·初一期末)请仔细观察如图所示的折纸过程,然后回答下列问题:(1)2∠的度数为__________; (2)1∠与3∠有何数量关系:______; (3)1∠与AEC ∠有何数量关系:__________;【答案】(1)90°;(2)1390︒∠+∠=;(3)1180AEC ︒∠+∠=. 【解析】解:(1)根据折叠的过程可知:∠2=∠1+∠3, ∵∠1+∠2+∠3=∠BEC ,B 、E 、C 三点共线 ∴∠2=180°÷2=90°. 故答案是:90°. (2)∵∠1+∠3=∠2, ∴∠1+∠3=90°. 故答案是:∠1+∠3=90°. (3)∵B 、E 、C 三点共线, ∴∠1+∠AEC=180°, 故答案是:∠1+∠AEC=180°.24.(2020·辽宁庄河·期末)如图,已知直线和直线外三点A ,B ,C ,按下列要求画图:(1)画线段AB (2)画出射线BC(3)以A 为顶点画出表示东西南北的十字线,再画出表示北偏西30的射线AD (注:D 为射线与直线l 的焦点,标注字母D 与30角) 【答案】(1)图见详解; (2)图见详解; (3)图见详解.【解析】解:(1)线段AB 作图如下,(2)射线BC 作图如下,(3)方向角作图如下,25.(2020·云南兰坪·期末)如图,OM ,ON 分别是BOC ∠和AOC ∠的平分线,且84AOB ∠=︒.(1)当OC 静止时,求MON ∠的度数;(2)当OC 在AOB ∠内转动时,MON ∠的大小是否会发生变化,简单说明理由. 【答案】(1)42MON ∠=︒;(2)MON ∠的大小不会发生变化,42MON ∠=︒. 【解析】解:(1)OM ,ON 分别是BOC ∠和AOC ∠的平分线,11,,22MOC BOC NOC AOC ∴∠=∠∠=∠()11,22MON MOC NOC BOC AOC AOB ∴∠=∠+∠=∠+∠=∠ 84AOB ∠=︒,18442.2MON ∴∠=⨯︒=︒(2)MON ∠的大小不会发生变化,理由如下: OM ,ON 分别是BOC ∠和AOC ∠的平分线,11,,22MOC BOC NOC AOC ∴∠=∠∠=∠()11,22MON MOC NOC BOC AOC AOB ∴∠=∠+∠=∠+∠=∠ 84AOB ∠=︒,18442.2MON ∴∠=⨯︒=︒所以只要∠AOB 的大小不变,无论OC 在∠AOB 内怎样转动,∠MON 的值都不会变. 26.(2020·哈尔滨工业大学附属中学校初一开学考试)已知:AOB ∠和COD ∠是直角. (1)如图,当射线OB 在COD ∠内部时,请探究AOD ∠和BOC ∠之间的关系;(2)如图2,当射线,OA 射线OB 都在COD ∠外部时,过点О作射线OE ,射线OF ,满足13BOE BOC ∠=∠,23DOF AOD ∠=∠,求EOF ∠的度数.(3)如图3,在(2)的条件下,在平面内是否存在射线OG ,使得:2:3GOF GOE ∠∠=,若不存在,请说明理由,若存在,求出GOF ∠的度数.【答案】(1)180AOD BOC ∠+∠=︒,详见解析;(2)150;(3)GOF ∠的度数是60︒或84 【解析】解:(1)180AOD BOC ∠+∠=︒ , 证明:AOB ∠和COD ∠是直角,90AOB COD ∴∠=∠=︒, BOD BOC COD ∠+∠=∠, 90BOD BOC ∴∠=︒-∠,同理:90AOC BOC ∠=︒-∠,9090180AOD AOB BOD BOC BOC ∴∠=∠+∠=︒+︒-∠=-∠,180AOD BOC ∴∠+∠=︒;(2)解:设BOE α∠=,则3BOC α∠=,BOE EOC BOC ∠+∠=∠,2EOC BOC BOE α∴∠=∠-∠=,360AOD COD BOC AOB ∠+∠+∠+∠=︒,360AOD COD BOC AOB ∴∠=︒-∠-∠-∠360903901803a α=︒-︒--︒=︒-,23DOF AOD ∠=∠,21803103(22DOF a a ∴∠=︒-=︒-),(1118036033AOF AOD a a ∴∠=∠=-=︒-),9060150EOF BOE AOB AOF a α∴∠=∠+∠+∠=+︒+︒-=︒,答:EOF ∠的度数是150;(3)①如图,当射线OG 在EOF ∠内部时,:2:3GOF GOE ∠∠=,222150602355GOF EOF EOF ∴∠=∠=∠=⨯︒=︒+,②如图,当射线OG 在EOF ∠外部时,:2:3GOF GOE ∠∠=,()()222352360360*********GOF EOF ︒∴∠=∠=+-︒-︒=⨯︒=︒,综上所述,GOF ∠的度数是60︒或84︒.人教版数学七年级上学期课时练习21。
浙教新版九年级上册《4.3 相似三角形》2024年同步练习卷(2)+答案解析
浙教新版九年级上册《4.3相似三角形》2024年同步练习卷(2)一、选择题:本题共4小题,每小题3分,共12分。
在每小题给出的选项中,只有一项是符合题目要求的。
1.已知∽,相似比为2,则下列说法正确的是()A.是的2倍B.是的2倍C.AB是DE的2倍D.DE是AB的2倍2.下列说法正确的是()A.所有的等腰三角形都相似B.所有的等边三角形都相似C.所有的直角三角形都相似D.两相似三角形必是全等三角形3.如图,点A、B、C、D、E、F、G、H、K都是方格纸中的格点,为使∽,则点M应是F、G、H、K四点中的()A.FB.GC.HD.K4.已知∽,∽,下列关于和关系的结论正确的是()A.全等B.周长相等C.面积相等D.相似二、填空题:本题共5小题,每小题3分,共15分。
5.如图,已知∽,相似比为2:3,则BC:DE的值为______.6.如图,AB,CD相交于O点,∽,OC::3,,则BD的长为______.7.如图,∽,则图中的DE的对应边是______,的对应角是______.8.一个三角形的各边之比为2:5:6,和它相似的另一个三角形的最大边为15cm,则它的最小边长为______9.如图是一个边长为1的正方形组成的网络,与都是格点三角形顶点在网格交点处,并且∽,则与的相似比是______.三、解答题:本题共5小题,共40分。
解答应写出文字说明,证明过程或演算步骤。
10.本小题8分如图,O是内任意一点,,,,那么与相似吗?说明理由.11.本小题8分如图,D,E分别是AB,AC上的点,已知∽,,,,求AE的长.12.本小题8分如图,已知∽,,,垂足分别为E,写出这两个相似三角形对应边的比例式.若,,,求BC的长.13.本小题8分如图,中,D是AB上的一点,∽,且AD::4,,求,的度数;若,求AB的长.14.本小题8分如图,点D、E分别在的边AB、AC上,且,,,若使与相似,求AE的长.答案和解析1.【答案】C【解析】解:∽,相似比为2,,AB是DE的2倍,选项A、B、D说法错误,不符合题意;选项C说法正确,符合题意;故选:根据相似三角形的对应角相等、对应边的比等于相似比判断即可.本题考查的是相似三角形的性质,掌握相似三角形的对应角相等、对应边的比等于相似比是解题的关键.2.【答案】B【解析】解:所有的等腰三角形不一定相似,只有顶角相等的等腰三角形都相似,所以A选项不符合题意;B.所有的等边三角形都相似,所以B选项符合题意;C.所有的直角三角形不一定相似,只有有一锐角相等的直角三角形相似,所以B选项不符合题意;D.全等三角形必相似,但两相似三角形不一定全等,所以D选项不符合题意.故选:利用等腰三角形的性质和相似三角形的判定方法对A进行判断;利用等边三角形的性质和相似三角形的判定方法对A进行判断;利用直角三角形相似的判定方法对C进行判断;根据相似三角形的性质全等三角形的判定方法对D进行判断.本题考查了相似三角形的判定:三组对应边的比相等的两个三角形相似;两组对应边的比相等且夹角对应相等的两个三角形相似;有两组角对应相等的两个三角形相似.也考查了全等三角形的判定、等腰三角形的性质和相似三角形的性质.3.【答案】C【解析】【分析】本题主要考查相似三角形的判定.由图形可知的边,,,当∽时,AB和DE是对应边,相似比是1:2,则AC的对应边是3,则点M的对应点是【解答】解:根据题意,当DE::AC时,∽,,,应是H故选:4.【答案】D【解析】解:∽,,,∽,,,,,∽,故选:先利用相似三角形的性质得到,;,,则,,于是可判断∽,从而可对各选项进行判断.本题考查了相似三角形的判定:有两组角对应相等的两个三角形相似.也考查了相似三角形的性质.5.【答案】3:2【解析】解:∽,且相似比为2:3,::2,故答案为3:由于∽,且已知了它们的相似比,因此两三角形的对应边的比等于相似比.由此可求出BC、DE的比例关系.本题考查对相似三角形性质的理解.相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方;相似三角形对应高的比、对应中线的比、对应角平分线的比都等于相似比.6.【答案】4【解析】解:::3,::2,∽,,即,解得:,故答案为:根据OC::3,求得OC::2,根据相似三角形的对应边的比相等列出方程,计算即可.本题考查的是相似三角形的性质,掌握相似三角形的对应角相等,对应边的比相等是解题的关键.7.【答案】【解析】解:∽,与是对应角,DE与DG是对应边.故答案为:DG,根据相似三角形的对应角相等以及对应角的定义,可以确定的对应角;根据∽,结合字母所在的对应位置,可以得到DE的对应边.本题主要考查相似三角形的对应边与对应角的定义,可以结合定义进行解答.8.【答案】5【解析】解:两三角形相似,三边比:5:6,另一三角形三边比:5:6,设此三角形各边为2x,5x,6x,,解得,根据相似三角形的性质,一个三角形的各边之比为2:5:6,和它相似的另一个三角形的各边之比也是2:5:6,设和它相似的另一个三角形的各边为2x,5x,6x,得到关于x的方程,解即可.本题考查相似三角形的对应边的比相等.9.【答案】【解析】解:由图可知,,与的相似比是:先利用勾股定理求出AC,那么AC:即是相似比.本题考查对相似三角形性质的理解,相似三角形边长的比等于相似比.解答此题的关键是找出相似三角形的对应边.10.【答案】解:∽理由:,∽,同理可得,,,∽【解析】先根据得出∽,故,同理可得,,由此可得出结论.本题考查的是三角形的判定,熟知三组对应边的比相等的两个三角形相似是解答此题的关键.11.【答案】解:∽,,,,,即,解得【解析】直接根据相似三角形的对应边成比例即可得出结论.本题考查的是相似三角形的性质,熟知相似三角形的对应边成比例是解答此题的关键.12.【答案】解:;,,,,解得:,【解析】根据∽对应边成比例,直接写出即可;根据∽对应边成比例求出AB,再由勾股定理求出BC即可.本题主要考查了相似三角形的性质、勾股定理,根据相似三角形的对应边成比例列出是解决此题的关键.13.【答案】解:∽,,;而,,,,;又∽,,,即AB的长为【解析】直接利用相似三角形的对应角相等这一性质即可解决问题.直接利用相似三角形的对应边成比例,列出比例式求解即可.本题主要考查了相似三角形的性质及其应用问题;解题的关键是找准相似三角形的对应角和对应边,准确列出比例式.14.【答案】解:①若对应时,,即,解得;②当对应时,,即,解得所以AE的长为2或【解析】由于与相似,但其对应角不能确定,所以应分两种情况进行讨论.本题考查的是相似三角形的性质,即相似三角形的对应边成比例.。
《4.3 角》训练卷3
《4.3 角》训练卷3一、选择题(共10小题)1.用度、分、秒表示21.24°为()A.21°14'24″B.21°20'24″C.21°34'D.21°2.如图,C岛在A岛的北偏东45°方向,C岛在B岛的北偏西25°方向,则从C岛看A、B两岛的视角∠ACB的度数是()A.70°B.20°C.35°D.110°3.10时10分,分针与时针的夹角为()A.110°B.115°C.120°D.135°4.在△ABC中,作BC边上的高,以下作图正确的是()A.B.C.D.5.∠α和∠β的顶点和一边都重合,另一边都在公共边的同侧,且∠α>∠β,那么∠α的另一边落在∠β的()A.另一边上B.内部C.外部D.以上结论都不对6.已知∠AOB=20°,∠AOC=4∠AOB,OD平分∠AOB,OM平分∠AOC,则∠MOD的度数是()A.20°或50°B.20°或60°C.30°或50°D.30°或60°7.如图,OC为∠AOB内的一条射线,下列条件中不能确定OC平分∠AOB的是()A.∠AOC=∠BOC B.∠AOC+∠COB=∠AOBC.∠AOB=2∠BOC D.8.如图,将长方形纸片ABCD的角C沿着GF折叠(点F在BC上,不与B,C重合),使点C落在长方形内部点E处,若FH平分∠BFE,则∠GFH的度数α是()A.90°<α<180°B.0°<α<90°C.α=90°D.α随折痕GF位置的变化而变化9.如果一个角的度数比它补角的2倍多30°,那么这个角的度数是()A.50°B.70°C.130°D.160°10.有下列说法:①射线是直线的一半;②线段AB是点A与点B的距离;③角的大小与这个角的两边所画的长短有关;④两个锐角的和一定是钝角.其中正确的个数有()A.0个B.1个C.2个D.3个二、填空题(共5小题)11.若∠A与∠B互为余角,∠A=30°,则∠B的补角是度.12.如图,已知O是直线AB上一点,OD平分∠BOC,∠2=80°,∠1的度数是.13.2700″=′=度.14.某校下午第一节2:30下课,这时钟面上时针与分针的夹角是度.15.如图,∠AOC和∠BOD都是直角,如果∠DOC=36°,则∠AOB是度.三、解答题(共5小题)16.一个角的余角比这个角少20°,则这个角的补角为多少度.17.如图,BD平分∠ABC,BE把∠ABC分成2:5的两部分,∠DBE=21°,求∠ABC的度数.18.如图,已知∠AOB=90°,∠EOF=60°,OE平分∠AOB,OF平分∠BOC,求∠COB 和∠AOC的度数.19.如图,已知∠α,∠β,用直尺和圆规作△ABC,使得∠A=∠α,∠B=∠β,AB=c.20.如图,B岛在A岛的南偏西40°方向,C岛在A岛的南偏东15°方向,C岛在B岛的北偏东80°方向,求从C岛看A,B两岛的视角∠ACB的度数.。
数学人教新版七年级上册同步训练:4.3-角(2)角的度量与画法【含答案】
数学人教新版七年级上册实用资料七年级数学(人教版上)同步练习第四章第三节 角(二)角的度量与画法一. 教学内容:角的度量与画法【知识点讲解】1. 角的度量:按对线、对中、度数的步骤用量角器量出角的度数2. 角的度数计算:角的单位是度分秒,都是60进制,可以比照时间中的时分秒理解,分别用“°”、“ ’”、“ ””来表示。
3. 余角、补角的概念与性质:如果两个角的和是90度(或直角)时,叫做两个角互余;4. 如果两个角的和是180度(或平角)时,叫做两个角互补。
的余角也是的余角,是互余与1221219021∠∠∠∠∠∠∴︒=∠+∠Θ(补角同理)性质:同角(或等角)的余角相等;同角(或等角)的补角相等︒=∠+∠︒=∠+∠90319021Θ3219031902∠=∠∴∠-︒=∠∠-︒=∠∴(补角同理)42390419023190439021∠=∠∴∠-︒=∠∠-︒=∠∴∠=∠︒=∠+∠︒=∠+∠ΘΘ又5. 能利用三角板画出15°、30°、45°、60°、75°、90°等11种特殊角6. 会用尺规画一个角等于已知角,角的和、差的画法。
【技能要求】1. 掌握度、分、秒的计算。
2. 逐步掌握学过的几何图形的表示方法,懂得学过的几何语句,能由这些语句准确、整洁地画出图形。
认识学过的图形,会用语句描述这些简单的几何图形。
【典型例题】例1. 将33.72°用度、分、秒表示。
解:33.72°=33°+(0.72×60′)=33°+43.2′=33°+43′+(0.2′×60″)=33°43′12″例2. 用度表示152°13′30″。
解:152°13′30″=152°+(136030)′=152°+13.5′=152°+(605.13)°=152.225°例3. 判断下列计算的对错,对的画“√”,错的说明错在哪里,并改正。