27.2 相似三角形应用举例教案 新人教版
九年级数学下册 第27章《相似三角形》应用举例(2)(第二课时)教案 新人教版
第27章《相似三角形》应用举例(2)(第二课时)教案教学目标:1、进一步巩固相似三角形的知识,让学生学会运用两个三角形相似解决实际问题。
2、能够运用三角形相似的知识,解决不能直接测量物体的长度和高度(如测量金字塔高度问题、测量河宽问题、盲区问题)等的一些实际问题.。
教学重点:运用三角形相似的知识计算不能直接测量物体的长度和高度。
教学难点:灵活运用三角形相似的知识解决实际问题。
教学方法:讲授法教具:黑板、多媒体、三角板、量角器教学过程设计:一复习回顾1、回顾相似三角形的判定方法。
练习:如图,为了测量水塘边A、B两点之间的距离,在可以看到的A、B的点E处,取AE、BE延长线上的C、D两点,使得CD∥AB,若测得CD=5m,AD=15m,ED=3m,则A、B两点间的距离__________.二、探索新知例1、已知左、右并排的两棵大树的高分别是AB = 8 m和CD = 12 m,两树根部的距离BD = 5 m.一个身高1.6 m的人沿着正对这两棵树的一条水平直路l从左向右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C?归纳:通常测量物体的高度(或长度),利用三角形相似的性质求解,请你总结通常构造的三种类型的图像,并画出图形。
三、练习巩固1、身高为1.6m的小华站在距离路灯杆5m的点C处,测得她在灯光下的影长CD为2.5m,则路灯的高度AB为。
2、如图,某测量工作人员与标杆顶端F、电视塔顶端在同一直线上,已知此人眼睛距地面1.6米,标杆为3.2米,且BC=1米,CD=5米,电视塔的高ED= 。
3、如图,阳光通过窗口照到室内的地面上2.7m宽的亮区,已知亮区一边倒窗下的墙角距离CE=8.7m,窗口AB=1.8m,那么窗口底边离地面的高BC的长度是多少?四、总结反思(1)这节课我们学到了哪些知识?(2)我们用哪些方法获得这些知识的?五、作业中国书法艺术说课教案今天我要说课的题目是中国书法艺术,下面我将从教材分析、教学方法、教学过程、课堂评价四个方面对这堂课进行设计。
人教版数学九年级下册27.2.2《相似三角形的性质》教案
人教版数学九年级下册27.2.2《相似三角形的性质》教案一. 教材分析人教版数学九年级下册27.2.2《相似三角形的性质》是学生在学习了相似三角形的概念和性质之后的一个深化和拓展。
本节内容主要让学生掌握相似三角形的性质,并能够运用这些性质解决一些实际问题。
教材通过生动的例题和丰富的练习,帮助学生理解和掌握相似三角形的性质,培养学生的几何思维和解决问题的能力。
二. 学情分析学生在学习本节内容前,已经学习了相似三角形的概念和性质,对相似三角形的知识有一定的了解。
但学生在运用相似三角形的性质解决实际问题时,往往会存在一定的困难。
因此,在教学过程中,教师需要关注学生的学习情况,及时解答学生的疑问,帮助学生更好地理解和运用相似三角形的性质。
三. 教学目标1.理解相似三角形的性质,并能够运用这些性质解决一些实际问题。
2.培养学生的几何思维和解决问题的能力。
3.提高学生的数学兴趣,使学生能够自主学习,提高学习效果。
四. 教学重难点1.掌握相似三角形的性质。
2.能够运用相似三角形的性质解决实际问题。
五. 教学方法采用问题驱动法、案例教学法和小组合作学习法。
通过提出问题,引导学生思考和探索,从而激发学生的学习兴趣。
通过案例教学,让学生直观地理解和掌握相似三角形的性质。
通过小组合作学习,培养学生的团队协作能力和解决问题的能力。
六. 教学准备1.准备相关的教学案例和练习题。
2.准备多媒体教学设备,如投影仪、电脑等。
七. 教学过程1.导入(5分钟)教师通过提问方式引导学生回顾相似三角形的概念和性质,为新课的学习做好铺垫。
2.呈现(15分钟)教师通过多媒体展示相似三角形的性质,让学生直观地理解和掌握。
同时,教师结合性质给出相应的例题,让学生进一步理解和运用。
3.操练(15分钟)教师给出一些练习题,让学生独立完成。
教师在过程中给予个别学生指导,确保学生能够正确地运用相似三角形的性质解决问题。
4.巩固(10分钟)教师学生进行小组讨论,让学生分享自己的解题心得,互相学习和交流。
人教版九年级下册27.2.3相似三角形应用举例27.2.2相似三角形应用举例课程设计
人教版九年级下册27.2.3相似三角形应用举例27.2.2相似
三角形应用举例课程设计
一、课程背景
本次课程是人教版九年级下册数学教材中“相似三角形应用举例”部分的教学设计。
在九年级学习过程中,学生已经学习了三角形的基本概念、性质以及相似三角形的判定方法等内容。
本节课旨在通过具体的例子引导学生运用所学知识判断并解决实际问题,提高学生的综合运用能力。
二、教学目标
1.知识目标:
•了解相似三角形的性质及判定方法
•学习相似三角形在实际生活中的应用,并通过解决问题提高对知识点的理解
2.能力目标:
•能够理解并判断相似三角形情况,进行运用和解决实际问题
•能够分析和思考问题,发掘问题的解决方法
3.情感目标:
•培养学生勇于实践、勇于探究的探索精神
•培养学生注重思维方式和方法,进而形成良好的思维习惯
三、教学内容
1.知识点:相似三角形的应用举例,包括周长比、面积比的计算、高度
定理等
2.教学方法:通过例题展开讲解,引导学生积极参与,理解和掌握知识
点
1。
27.2相似三角形(教案)
1.分组讨论:学生们将分成若干小组,每组讨论一个与相似三角形相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作。这个操作将演示相似三角形的基本原理。
3.成果展示:每个小组将向全班展示他们的讨论成果和实验操作的结果。
(四)学生小组讨论(用时10分钟)
5.培养学生的创新意识:鼓励学生在解决相似三角形问题时,敢于尝试新方法,勇于突破传统思维,培养创新意识。
本节课旨在使学生在学习相似三角形的过程中,全面提升学科核心素养,为未来的学习和生活打下坚实基础。
三、教学难点与重点
1.教学重点
(1)相似三角形的定义及判定方法:理解并掌握相似三角形的定义,以及SSS、SAS、ASA、AAS等判定方法,这是本节课的核心内容。
此外,在小组讨论环节,虽然学生们都能够积极参与,但在成果分享时,部分学生表达能力较弱,不能很好地将讨论成果展示出来。针对这个问题,我计划在接下来的课程中,多给予学生一些表达机会,培养他们的语言组织和表达能力。
还有一个值得注意的地方是,在课堂总结时,我发现部分学生对相似三角形在实际生活中的应用仍然感到困惑。为了让学生更好地理解这一点,我打算在下一节课引入更多生活中的实例,让学生们感受到数学知识在实际生活中的重要性。
在教学方法上,我认识到传统的讲授式教学并不能满足所有学生的需求。今后,我需要尝试更多元化的教学方法,如翻转课堂、小组合作学习等,以提高学生的学习兴趣和参与度。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解相似三角形的基本概念。相似三角形是指具有相同形状但大小不同的三角形。它们在几何学中具有重要地位,广泛应用于实际问题中。
2.案例分析:接下来,我们来看一个具体的案例。通过分析案例,展示相似三角形在实际中的应用,以及如何帮助我们解决问题。
九年级数学下册27.2.2相似三角形的应用举例教案新人教版
态 度
价值观
教学重点
运用三角形相似的知识计算不能直接测量物体的长度和高度.
教学难点
灵活运用三角形相似的知识解决实际问题(如何把实际问题抽象为数学问题).
教学准备
教师
多媒体课件
学生
“五个一”
课 堂 教 学 程 序 设 计
设计意图
一、课堂引入
问:世界现存规模最大的金字塔位于哪个国家,叫什么金字塔?
胡夫金字塔是埃及现存规模最大的金字塔,被喻为“世界古代七大奇观之一”.塔的4个斜面正对东南西北四个方向,塔基呈正方形,每边长约230多米.据考证,为建成大金字塔,共动用了10万人花了20年时间.原高146.59米,但由于经过几千年的风吹雨打,顶端被风化吹蚀,所以高度有所降低.
在古希腊,有一位伟大的科学家叫泰勒斯.一天,希腊国王阿马西斯对他说:“听说你什么都知道,那就请你测量一下埃及金字塔的高度吧!”,这在当时条件下是个大难题,因为是很难爬到塔顶的.你知道泰勒斯是怎样测量大金字塔的高度的吗?
解法二:如图构造相似三角形(解法略).
例3(教材P49例5——盲区问题)
分析:略(见教材P49)
解:略(见教材P50)
三、课堂练习
1.在同一时刻物体的高度与它的影长成正比例.在某一时刻,有人测得一高为1.8米的竹竿的影长为3米,某一高楼的影长为60米,那么高楼的高度是多少米?
2.小明要测量一座古塔的高度,从距他2米的一小块积水处C看到塔顶的倒影,已知小明的眼部离地面的高度DE是1.5米,塔底中心B到积水处C的距离是40米.求塔高?
教学时间
课题
27பைடு நூலகம்2.2 相似三角形的应用举例
课型
新授课
教
学
目
人教版数学九年级下册27.2.3相似三角形的应用举例优秀教学案例
3.教师巡回指导,对学生的解题过程进行观察和评价,及时给予指导和鼓励。
4.邀请小组代表分享他们的讨论结果和解题过程,引导其他学生进行学习和借鉴。
(四)总结归纳
1.引导学生回顾本节课所学习的内容,总结相似三角形的性质和应用方法。
1.培养学生对数学学科的兴趣,使他们愿意主动学习数学,提高他们的数学素养。
2.培养学生勇于探究、积极思考的学习精神,使他们养成良好的学习习惯。
3.使学生认识到数学在现实生活中的重要性,培养他们运用数学知识解决实际问题的意识。
4.通过对本节课的学习,使学生感受到数学的乐趣,提高他们的学习积极性。
三、教学策略
2.鼓励学生对自己的学习过程进行评价,发现优点和不足,提高自我认知。
3.组织学生进行互评,让他们在评价中互相学习,共同进步。
4.教师对学生的学习情况进行总结性评价,关注学生的成长和进步,给予肯定和鼓励。
四、教学内容与过程
(一)导入新课
1.利用多媒体展示一幅图片,图片中包含两个相似的三角形,引导学生观察并思考这两个三角形的相似性质。
二、教学目标
(一)知识与技能
1.理解相似三角形的性质,并掌握其在解决实际问题中的应用方法。
2.能够通过具体实例,将实际问题转化为数学问题,并运用相似三角形的性质进行解答。
3.熟练运用相似三角形的性质进行证明和计算,提高解题能力。
4.了解相似三角形在现实生活中的应用,感受数学与生活的紧密联系。
(二)过程与方法
人教版数学九年级下册27.2.3相似三角形的应用举例优秀教学案例
一、案例背景
本节内容是“人教版数学九年级下册27.2.3相似三角形的应用举例”,是在学生已经掌握了相似三角形的性质和判定方法的基础上进行学习的。通过本节课的学习,使学生能够运用相似三角形的性质解决实际问题,提高他们的数学应用能力。
人教版数学九年级下册27.2.3《相似三角形应用举例》教学设计1
人教版数学九年级下册27.2.3《相似三角形应用举例》教学设计1一. 教材分析人教版数学九年级下册27.2.3《相似三角形应用举例》一节,是在学生学习了相似三角形的性质和判定之后,进一步探讨相似三角形在实际问题中的应用。
通过本节课的学习,使学生了解相似三角形在实际生活中的重要性,提高他们运用数学知识解决实际问题的能力。
二. 学情分析九年级的学生已经掌握了相似三角形的性质和判定,具备了一定的逻辑思维能力和空间想象能力。
但学生在解决实际问题时,往往缺乏将数学知识与实际问题相结合的能力。
因此,在教学过程中,教师需要注重引导学生将所学知识应用于实际问题,提高他们的数学应用能力。
三. 教学目标1.理解相似三角形在实际问题中的应用,提高学生运用数学知识解决实际问题的能力。
2.培养学生的逻辑思维能力和空间想象能力。
3.增强学生对数学学科的兴趣和自信心。
四. 教学重难点1.重点:相似三角形在实际问题中的应用。
2.难点:将实际问题转化为数学问题,运用相似三角形的性质和判定解决实际问题。
五. 教学方法1.采用问题驱动的教学方法,引导学生主动探究相似三角形在实际问题中的应用。
2.利用多媒体课件辅助教学,直观展示实际问题,提高学生的空间想象能力。
3.采用小组合作学习的方式,培养学生的团队协作能力和沟通能力。
4.注重个体差异,因材施教,使每个学生都能在课堂上得到有效的训练和提高。
六. 教学准备1.准备相关实际问题,用于引导学生运用相似三角形知识解决。
2.准备多媒体课件,展示实际问题及解题过程。
3.准备练习题,巩固所学知识。
七. 教学过程1.导入(5分钟)教师通过展示一些生活中的实际问题,如建筑物的设计、尺子测量等,引导学生思考这些实际问题与数学知识的联系。
从而引出本节课的主题——相似三角形在实际问题中的应用。
2.呈现(10分钟)教师展示一个实际问题:在同一平面内,有两座建筑物,一座高度为30米,另一座高度为18米。
请问,在离这两座建筑物等距离的地点,如何测量出两座建筑物的高度比?教师引导学生分析问题,并提出解决方法:利用相似三角形。
人教版九年级数学下册:27.2.3《相似三角形应用举例》教学设计1
人教版九年级数学下册:27.2.3《相似三角形应用举例》教学设计1一. 教材分析人教版九年级数学下册第27.2.3节《相似三角形应用举例》是学生在学习了相似三角形的性质和判定之后的内容,是相似三角形知识在实际问题中的应用。
本节内容通过具体的实例,让学生了解相似三角形在实际问题中的应用,培养学生的数学应用意识,提高学生的解决问题的能力。
二. 学情分析九年级的学生已经掌握了相似三角形的性质和判定,具备了一定的逻辑思维能力和解决问题的能力。
但是,对于如何将相似三角形应用到实际问题中,可能还存在一定的困难。
因此,在教学过程中,教师需要引导学生将理论知识与实际问题相结合,提高学生的应用能力。
三. 教学目标1.理解相似三角形在实际问题中的应用。
2.能够运用相似三角形解决实际问题。
3.培养学生的数学应用意识和解决问题的能力。
四. 教学重难点1.重点:相似三角形在实际问题中的应用。
2.难点:如何将相似三角形应用到实际问题中,解决实际问题。
五. 教学方法采用问题驱动法,通过具体的实例,引导学生自主探究相似三角形在实际问题中的应用,培养学生的数学应用意识和解决问题的能力。
六. 教学准备1.教学课件。
2.相关实例。
七. 教学过程1.导入(5分钟)通过提问方式,复习相似三角形的性质和判定,为新课的学习做好铺垫。
2.呈现(10分钟)呈现一些实际问题,如测量身高、测量两地距离等,让学生尝试用相似三角形解决这些问题。
引导学生发现这些实际问题中存在相似三角形,从而引出本节课的主题。
3.操练(10分钟)让学生分组讨论,每组选取一个实例,尝试用相似三角形解决问题。
教师巡回指导,解答学生的疑问。
4.巩固(10分钟)选取几组学生的解题过程,进行讲解和分析,总结解决类似问题的方法和步骤。
让学生进一步巩固相似三角形在实际问题中的应用。
5.拓展(10分钟)让学生尝试解决一些更有挑战性的实际问题,如复杂的图形测量、建筑设计等。
引导学生将相似三角形应用到更广泛的领域。
人教版九年级数学下册:27.2.3《相似三角形应用举例》教学设计4
人教版九年级数学下册:27.2.3《相似三角形应用举例》教学设计4一. 教材分析《人教版九年级数学下册:27.2.3》这一节内容是在学生已经掌握了相似三角形的性质和判定方法的基础上进行授课的。
本节课的主要内容是让学生通过具体的例子,进一步理解相似三角形的应用,提高解决实际问题的能力。
教材中给出了两个典型的例子,分别是“计算电阻”和“测量河宽”。
通过这两个例子,让学生学会如何运用相似三角形来解决实际问题。
二. 学情分析九年级的学生已经具备了一定的数学基础,对相似三角形的概念和性质有一定的了解。
但是,对于如何将相似三角形应用到实际问题中,可能还存在一定的困难。
因此,在教学过程中,教师需要通过具体的例子,引导学生将理论知识与实际问题相结合,提高学生的解决问题的能力。
三. 教学目标1.理解相似三角形的应用,掌握用相似三角形解决实际问题的方法。
2.提高学生的动手操作能力和解决实际问题的能力。
3.培养学生的逻辑思维能力和团队协作能力。
四. 教学重难点1.重点:相似三角形的应用,用相似三角形解决实际问题。
2.难点:如何引导学生将相似三角形与实际问题相结合,提高解决问题的能力。
五. 教学方法1.采用问题驱动的教学方法,通过具体的例子引导学生思考和探索。
2.运用小组合作学习的方式,培养学生的团队协作能力和沟通能力。
3.利用多媒体教学手段,直观地展示相似三角形的应用过程。
六. 教学准备1.准备相关的教学课件和教学素材。
2.准备计算器和测量工具,以便学生在课堂上进行实际操作。
七. 教学过程1.导入(5分钟)教师通过提问方式复习相似三角形的性质和判定方法,引导学生思考相似三角形在实际问题中的应用。
2.呈现(10分钟)教师展示教材中的两个例子:“计算电阻”和“测量河宽”。
引导学生观察和分析这两个例子,让学生初步了解如何用相似三角形解决实际问题。
3.操练(15分钟)教师学生进行小组讨论,让学生尝试用相似三角形的方法解决这两个例子。
人教版九年级数学下册:27.2.3《相似三角形应用举例》教案1
人教版九年级数学下册:27.2.3《相似三角形应用举例》教案1一. 教材分析《相似三角形应用举例》是人教版九年级数学下册第27章的一部分。
本节内容主要通过具体的例子来介绍相似三角形的应用,帮助学生理解和掌握相似三角形的性质和应用。
教材通过丰富的例题和练习题,使学生能够将相似三角形的知识应用到实际问题中,提高解决问题的能力。
二. 学情分析九年级的学生已经学习了一定程度的代数和几何知识,对相似三角形的性质有一定的了解。
但是,学生可能对相似三角形在实际问题中的应用还不够熟悉。
因此,在教学过程中,需要通过具体的例子和实际问题,引导学生理解和掌握相似三角形的应用。
三. 教学目标1.理解相似三角形的性质。
2.能够运用相似三角形解决实际问题。
3.提高学生的逻辑思维能力和解决问题的能力。
四. 教学重难点1.重点:相似三角形的性质和应用。
2.难点:如何将相似三角形的知识应用到实际问题中。
五. 教学方法采用问题驱动的教学方法,通过具体的例子和实际问题,引导学生理解和掌握相似三角形的应用。
同时,运用小组合作和讨论的方式,激发学生的学习兴趣,提高学生的参与度。
六. 教学准备1.准备相关的例题和练习题。
2.准备教学PPT或者黑板。
七. 教学过程1.导入(5分钟)通过一个实际问题引入本节内容。
例如,一个梯形的对角线长度分别为8cm和12cm,求梯形的面积。
让学生尝试解决这个问题,从而引出相似三角形的性质和应用。
2.呈现(15分钟)通过PPT或者黑板,呈现相似三角形的性质和应用的例题。
例如,两个相似三角形的边长比例为2:3,求这两个三角形的面积比例。
引导学生观察和分析例题,理解相似三角形的性质。
3.操练(15分钟)让学生分组合作,解决一些类似的实际问题。
例如,两个相似三角形的边长比例为3:4,求这两个三角形的面积比例。
通过小组合作和讨论,引导学生运用相似三角形的性质解决问题。
4.巩固(10分钟)提供一些练习题,让学生独立完成。
2019-2020年九年级下数学《27.2.2 相似三角形应用举例》教学设计 新人教版
2019-2020年九年级下数学《27.2.2 相似三角形应用举例》教学设计新人教版教学任务分析教学流程安排教学过程设计[活动1] 提出问题:学校操场上的国旗旗杆的高度是多少?你有什么办法测量?小组讨论;师生共同交流.[活动2]例3:据史料记载,古希腊数学家、天文学家泰勒斯曾经利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成的两个相似三角形来测量金字塔的高度.你能画出示意图吗?你能说明其中蕴含的数学知识吗?小组讨论;师生共同交流.得到示意图:如图,如果木杆EF长2 m,它的影长FD 为3 m,测得OA为201 m,求金字塔的高度BO.(思考如何测出OA的长?)[活动3]问题:估算河的宽度,你有什么好办法吗?例 4 如图,为了估算河的宽度,我们可以在河对岸选定一个目标P,在近岸取点Q 和S,使点P、Q、S共线且直线PS与河垂直,接着在过点S且与PS垂直的直线a上选择适当的点T,确定PT与过点Q且垂直PS的直线b的交点R.如果测得QS = 45 m,ST = 90 m,QR = 60 m,求河的宽度PQ.对于活动3提出的问题,先小组讨论;这是一个利用数学知识解决实际问题的能力形成的重要契机,教师在这一活动中重点关注学生们探究的主动性,特别应关注那些平时学习有一定困难的学生,他们往往在解决实际问题时,显示出创造的能力,这也是树立这些学生自信心的一个契机,然后通过例4进一步完善学生们的想法.DEB CA[活动4]例5 已知左、右并排的两棵大树的高分别是AB = 8 m和CD = 12 m,两树根部的距离BD = 5 m.一个身高1.6 m的人沿着正对这两棵树的一条水平直路l从左向右前进,当他与左边较低的树的距离小于多少时,就不能看到右边较高的树的顶端点C?在这一活动中,重点引导学生认真体会这一生活实际中常见的场景,借助图形把这一实际中常见的场景,抽象成数学图形,利用相似的性质解决这一实际问题,图形可以滞后给出,先让学生经历这一抽象的过程.如果学生对于如何用数学语言表述有一定的困难,教师应与学生一起认真板书解答过程.[活动5]练习:教材51页.[活动6]谈谈你这节课的收获?学生通过练习进一步掌握利用相似三角形解决实际问题中不能直接测量的物体的长度的问题.利用三角形的相似,可以解决一些不能直接测量的物体的长度的问题.在活动6中教师应重点关注:(1)学生参与活动的热情及语言归纳数学结论的能力;(2)学生对于相似多边形的性质的运用的掌握情况.布置作业:教材56页 8~12-----如有帮助请下载使用,万分感谢。
人教版九年级数学下册:27.2.3《相似三角形应用举例》说课稿3
人教版九年级数学下册:27.2.3《相似三角形应用举例》说课稿3一. 教材分析《相似三角形应用举例》是人教版九年级数学下册第27章第2节的一个内容。
本节主要通过实例让学生掌握相似三角形的性质,并能够运用相似三角形解决一些实际问题。
在教材中,安排了三个典型的例题,分别涉及到相似三角形的边长比例、面积比和角度相等三个方面的性质。
这些例题既有理论性,又有实践性,既能让学生理解和掌握相似三角形的性质,又能让学生学会如何将数学知识应用于解决实际问题。
二. 学情分析九年级的学生已经学习了三角形的性质、相似三角形的判定等知识,对数学有一定的认识和理解。
但学生在解决实际问题时,往往缺乏思路,不知道如何将数学知识与实际问题相结合。
因此,在教学本节内容时,教师需要引导学生将所学知识应用于实际问题,培养学生的数学应用能力。
三. 说教学目标1.知识与技能目标:让学生理解相似三角形的性质,能够运用相似三角形解决实际问题。
2.过程与方法目标:通过实例分析,让学生学会如何将数学知识应用于解决实际问题,培养学生的数学应用能力。
3.情感态度与价值观目标:激发学生学习数学的兴趣,培养学生的团队合作精神。
四. 说教学重难点1.教学重点:相似三角形的性质,以及如何运用相似三角形解决实际问题。
2.教学难点:如何引导学生将数学知识与实际问题相结合,培养学生的数学应用能力。
五. 说教学方法与手段1.教学方法:采用案例教学法、问题驱动法、分组讨论法等。
2.教学手段:利用多媒体课件、黑板、粉笔等。
六. 说教学过程1.导入新课:通过一个实际问题,引发学生对相似三角形的思考,导入新课。
2.讲解相似三角形的性质:通过PPT展示教材中的三个例题,引导学生发现相似三角形的性质。
3.实践操作:让学生分组讨论,每组选择一个例题,运用相似三角形的性质解决问题。
4.总结提升:引导学生总结相似三角形的性质,并学会如何运用相似三角形解决实际问题。
5.课堂练习:布置一些相关的练习题,让学生巩固所学知识。
人教版九年级数学下册:27.2.3《相似三角形应用举例》教学设计3
人教版九年级数学下册:27.2.3《相似三角形应用举例》教学设计3一. 教材分析《人教版九年级数学下册》第27.2.3节《相似三角形应用举例》是学生在学习了相似三角形的性质和判定方法后,进一步探讨相似三角形的应用。
本节课通过具体的例子,让学生了解相似三角形在实际问题中的应用,培养学生的数学应用能力。
教材中给出了几个典型的应用例子,如相似三角形的面积比、相似三角形的边长比等,教师在教学过程中可以结合实际问题,让学生更好地理解相似三角形的应用。
二. 学情分析九年级的学生已经掌握了相似三角形的性质和判定方法,具备一定的逻辑思维能力和数学应用能力。
但在实际应用中,学生可能对如何将实际问题转化为数学问题还不够熟练,需要教师在教学过程中进行引导和培养。
三. 教学目标1.理解相似三角形的面积比和边长比的应用。
2.能够将实际问题转化为数学问题,利用相似三角形解决问题。
3.培养学生的数学应用能力和解决问题的能力。
四. 教学重难点1.难点:如何将实际问题转化为数学问题,灵活运用相似三角形的性质。
2.重点:掌握相似三角形的面积比和边长比的应用。
五. 教学方法1.讲授法:教师讲解相似三角形的应用例子,引导学生理解相似三角形的实际应用。
2.案例分析法:教师给出实际问题,引导学生进行分析,转化为数学问题。
3.小组讨论法:学生分组讨论实际问题,共同解决问题,培养学生的合作能力。
六. 教学准备1.准备相关的实际问题,如测量物体的高度、计算物体的体积等。
2.准备课件,展示相似三角形的应用例子。
七. 教学过程1.导入(5分钟)教师通过一个简单的实际问题引入本节课的主题,如“如何测量一棵大树的高度?”引导学生思考相似三角形在实际问题中的应用。
2.呈现(10分钟)教师呈现课件,展示相似三角形的面积比和边长比的应用例子,如测量物体的高度、计算物体的体积等。
引导学生理解相似三角形的应用。
3.操练(10分钟)教师给出一个实际问题,如“一个长方形和一个三角形,它们的面积相等,求长方形的长和宽。
九年级数学下册(2722 相似三角形应用举例)教案 新人教版 教案
湖南省宁乡县三仙坳初级中学九年级数学下册《27.2.2 相似三角形应用举例》教案 新人教版教学目标 (一)知识与技能让学生学会运用两个三角形相似来解决实际问题。
(二)过程与方法1、让能学生综合运用相似的知识,加深对相似三角形的理解和认识。
2、让学生经历从实际问题到建立数学模型的过程,发展学生的抽象概括能力。
(三)情感态度与价值观培养学生的观察﹑归纳﹑建模﹑应用能力;发展学生的数学应用意识。
〔教学重点与难点〕教学重点:运用两个三角形相似解决实际问题 教学难点:在实际问题中建立数学模型 教学过程 新课引入:1、 复习相似三角形的定义及相似三角形相似比的定义2、 回顾相似三角形的概念及判定方法提出问题:利用三角形的相似,如何解决一些不能直接测量的物体的长度的问题?(学生小组讨论)“相似三角形对应边的比相等”⇒四条对应边中若已知三条则可求第四条。
一试牛刀:例3:据史料记载,古希腊数学家、天文学家泰勒斯曾利用相似三角形的原理,在金字塔影子的顶部立一根木杆,借助太阳光线构成两个相似三角形,来测量金字塔的高度。
如图27.2-8,如果木杆EF 长2m ,它的影长FD 为3 m ,测得OA 为201 m ,求金字塔的高度BO 。
分析:BF ∥ED ⇒∠BAO=∠EDF 又∠AOB=∠DFE=900⇒∆ABO ∽∆DEF ⇒BO OA EF FD =⇒20123BO = 二试牛刀:例4:如图27.2-9,为了估算河的宽度,我们可以在河对岸选定一个目标点P ,在近岸取点Q 和S ,使点P 、Q 、S 共线且直线PS 与河垂直,接着在过点S 且与PS 垂直的直线a 上选择适当的点T ,确定PT 与过点Q 且垂直PS 的直线b 的交点R 。
如果测得QS=45 m ,ST=90 m ,QR=60 m ,求河的宽度PQ 。
分析:∠PQR=∠PST=900,∠P=∠P⇒∆PQR ∽∆PST⇒8 1.6 6.4512 1.610.4FH FH -==+-,即PQ QR PQ QS ST =+,604590PQ PQ =+,90(45)60PQ PQ ⨯=+⨯。
人教版九年级下册第二十七章:27.2相似三角形应用举例优秀教学案例
4.培养学生运用几何画板等工具,直观地展示相似三角形的性质和应用。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣和自信心,感受数学在生活中的实际应用。
2.培养学生勇于探索、坚持真理的精神,对待数学问题要有耐心和细心。
3.培养学生合作交流的能力,学会倾听他人的意见,共同解决问题。
案例背景以一幅校园里的风景画为背景,画中有两个相似的三角形。一方面,这两个三角形在形状上具有相似性,另一方面,它们在实际问题中的应用也具有相似性。通过这个案例,让学生更好地理解相似三角形的性质,并能够运用相似三角形解决实际问题。
二、教学目标
(一)知识与技能
1.理解相似三角形的判定方法,能够运用相似三角形的性质解决实际问题。
(四)总结归纳
1.教师引导学生总结本节课所学的内容,包括相似三角形的判定方法、性质和应用等。
2.学生分享自己在小组讨论中的收获和感悟,总结解决问题的方法和经验。
3.教师对学生的总结进行点评和补充,强调本节课的重点和难点。
(五)作业小结
1.教师布置相关的作业,要求学生运用所学知识解决实际问题,巩固所学内容。
3.结合实例讲解相似三角形在实际问题中的应用,如测量物体长度、角度等。
(三)学生小组讨论
1.将学生分成小组,每组分配一个实际问题,要求学生运用相似三角形的知识解决。
2.鼓励学生在小组内积极讨论、分享自己的想法,共同探讨解决问题的方法。
3.引导学生运用几何画板等工具,直观地展示相似三角形的性质和应用,提升学生的合作能力和技术能力。
2.学生完成作业后,进行自我检查和总结,巩固所学知识。
3.教师对学生的作业进行批改和评价,关注学生的知识掌握程度和能力发展水平,为学生提供指导和帮助。
27.2.3三角形相似应用举例教案
的比、对应角平分线的比都等于相似比.)
(3)周长的比等于相似比.
(4)面积的比等于相似比的平方.
例1.据史料记载,古希腊数学家,天文学家泰勒斯曾利用相似 三角形的原理,在金字塔影子的顶部立一根木杆.借助太阳光 线构成两个相似三角形,来测量金字塔的高度.
知识回顾
1、判定三角形相似的方法:
方法1:定义法 方法2:(平行法)平行于三角形一边的直线和其它两边相交 ,
所构成的三角形与原三角形相似。 方法3:三边对应成比例.(SSS) 方法4:两边对应成比例且夹角相等.(SAS) 方法5:两角对应相等.(AA) 方法6:斜边直角边对应成比例.(HL)
2、相似三角形的性质:
墙的高度是( B ) A. 6米 B. 8米 C. 18米 D. 24米
4、如图,铁道口的栏杆短臂长1m,长臂长16m, 当短臂端点下降0.5m时,长臂端点升高 8 m。
16m ?
0.5m 1m
拓展训练
1、如图,△ABC是一块锐角三角形余料,边BC=120毫米, 高AD=80毫米,要把它加工成正方形零件,使正方形的一 边在BC上,其余两个顶点分别在AB、AC上,这个正方形 零件的边长是多少?
A
P
N
E
B
QD
M
C
D
M
解:正方形PQMN的QM边在BC上 PN ∥ BC △APN ∽△ABC
PN AE BC AD
设ED x PN MN ED x,AE 80 x C x 80 x
120 80 解得x 48
答:这个正方形零件的边长是48毫米
拓展训练
2、某同学想利用树影测量树高.他在某一时刻测得小树EF 高为1.5米时,其影长FG为1.2米,当他测量教学楼旁的一 棵大树AB影长时,因大树靠近教学楼,有一部分影子在墙 上.经测量,地面部分影长BC为6.4米,墙上影长CD为1.4 米,那么这棵大树AB高多少米?
人教版九年级数学下27.2相似三角形小结优秀教学案例
1.利用生活情境,引发学生兴趣。
在导入新课时,我会利用与生活相关的情境,引发学生的学习兴趣。例如,我可以展示一些建筑设计图,让学生观察并思考:如何在设计中利用相似三角形的性质?这样既能激发学生的学习兴趣,又能引导学生思考相似三角形在实际生活中的应用。
2.回已有知识,为新课学习做好铺垫。
(五)作业小结
1.设计具有针对性的作业,巩固所学知识。
在布置作业时,我会设计一些具有针对性的题目,让学生通过完成作业,巩固所学知识。例如,我可以设计一些关于相似三角形的判定和性质的练习题,让学生在完成作业的过程中,加深对知识的理解和运用。
2.鼓励学生进行自我反思,提高自我监控能力。
在布置作业时,我会鼓励学生进行自我反思,让学生思考自己在学习过程中的优点和不足,从而提高学生的自我监控能力。例如,我可以让学生在作业中总结自己在学习相似三角形时的思维方式和方法,以及遇到的困难和解决方法。
2.培养学生运用数学知识解决实际问题的能力,提高学生的创新思维。
在教学过程中,我会以一个实际问题为背景,让学生分组讨论,探讨相似三角形在实际问题中的应用,培养学生的合作意识和解决问题的能力。同时,我会鼓励学生提出问题,引导他们通过讨论、思考解决问题,从而提高学生的思维能力和创新能力。
(二)过程与方法
在教学过程中,我会引导学生分工合作,完成一些具有挑战性的任务。例如,在讲解相似三角形的判定时,我可以让学生分组进行实验,通过实际操作验证相似三角形的性质,从而提高学生的团队协作能力。
(四)反思与评价
1.引导学生进行自我反思,提高学生的自我监控能力。
在教学过程中,我会引导学生进行自我反思,让学生思考自己在学习过程中的优点和不足,从而提高学生的自我监控能力。例如,在讲解相似三角形的性质时,我可以让学生回顾自己的学习过程,思考自己在解决问题时的思维方式和方法。
27.2.2相似三角形应用举例(教案)-九年级下学期数学教材解读(人教版)
1.培养学生的几何直观:通过相似三角形应用举例的学习,使学生在实际问题中运用几何知识,发展几何直观能力,提高空间观念。
2.提升学生的逻辑推理能力:引导学生运用相似三角形的性质进行推理和解决问题,培养学生严谨的逻辑推理能力。
3.增强学生的数学应用意识:通过优选问题、图形放大与缩小等实际案例,使学生体会数学在现实生活中的广泛应用,提高数学应用意识。
c.解决问题的策略选择:在解决相似三角形应用问题时,学生需要选择合适的解题策略。例如,在图形放大与缩小的问题中,学生需要知道如何根据给定的比例因子来计算新的图形尺寸。
d.多步骤问题的解决:在实际问题中,相似三角形的应用往往涉及多个步骤和复杂的计算。学生需要具备分解问题、逐步解决的能力,这对于逻辑思维和问题解决能力要求较高。
2.优选问题:介绍相似三角形在工程、设计等领域中的优选问题,如相似三角形在桥梁、道路设计中的应用。
3.图形放大与缩小:探讨如何运用相似三角形的性质,对图形进行放大或缩小,并应用于日常生活和艺术创作中。
4.实际案例解析:结合教材中的例题,分析相似三角形在解决实际问题中的关键作用,培养学生解决问题的能力。
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解相似三角形的基本概念。相似三角形是指具有相同形状但大小不同的三角形,它们的对应角度相等,对应边长成比例。相似三角形在测量、设计等领域具有重要应用。
2.案例分析:接下来,我们来看一个具体的案例。通过测量两物体在地面上形成的影子长度,利用相似三角形的性质,可以计算出物体的高度。这个案例展示了相似三角形在实际中的应用,以及它如何帮助我们解决问题。
3.重点难点解析:在讲授过程中,我会特别强调相似三角形的性质和在实际问题中的应用这两个重点。对于难点部分,如相似三角形测量问题中的比例关系建立,我会通过举例和比较来帮助大家理解。
九年级数学《相似三角形应用举例2》教案
巩固运用效果评价活动31、若旗杆的影子长为8m,同时测得旗杆顶端到地面的距离为6m,某同学测得学校钟楼顶端的影子长为16m,钟楼的高 m,顶端到它影子顶端的距离是 m。
2、古代一位数学家想出了一种测量山高的方法:如图所示,为了测量山的高度OB,先竖一根已知长度的木棒O´B´,比较木棒的影长A´B´,即可近似算出山高OB,如果O´B´=1,A´B´=2,AB=274,山高。
3、某天,身高1.6m的张刚站在操场上看棋杆,发现旗杆刚好被一棵树档住后,张刚的眼睛、小树顶端和旗杆顶在同一直线上,经过测量,此时张刚距小树2m,距旗杆10m已知小树高2m,求旗杆高。
4、我侦察员在距敌方200米的地方发现敌人的一座建筑物,但不知其高度又不能靠近建筑物测量,机灵的侦察员食指竖直举在右眼前,闭上左眼,并将食指前后移动,使食指恰好将该建筑物遮住.若此时眼睛到食指的距离约为40cm,食指的长约为8cm,你能根据上述条件计算出敌方建筑物的高度吗?请说出你的思路.1、教师出示问题,学生独立思考练习1、2、3,教师点拨纠偏。
对于学生出现的问题,教师应根据错因,对症强调。
2、教师引导学生共同探讨分析4题,教师板演解题过程。
强调过程的严谨和规范。
本次活动中教师应重点关注:1、学生能否把例题中的已知条件转化为两边对应成比例这一判定相似的条件;2、学生是否能灵活准确地运用本课结论;3、学生能否理解练习中的实际问题,从而将其转化为数学问题来解答。
【媒体使用】依次出示习题及答案。
【设计意图】通过练习的设置不仅达到巩固知识的目的,同时也实现了将知识向能力的转化。
实际问题的设置进一步培养了学生用数学的意识。
通过练习,及时反馈学生学习的情况,便于教师把握授课效果,并能及时查漏补缺,进一步优化教学,也培养了学生踏实、严谨的作风。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相似三角形应用举例
一、教学目标
1.经历对实际问题的思考和讨论过程,会利用相似三角形解决高度测量问题.
2.培养把实际问题转化为数学问题的能力,发展应用意识
. 三、教学过程
(一)创设情境,导入新课
从初一到现在,我们已经学了不少图形的知识,我们学过相交线平行线,我们学过三角形四边形,我们学过圆,这些天我们又学了相似三角形.这些关于图形的知识是怎么形成的呢?据说在很久很久以前,埃及的尼罗河水每年都会泛滥,两岸的田地就被淹没,水退后人们要重新划定田界,这便促使人们学会了计算简单图形边长、面积的方法,逐步形成了图形的知识.可见,图形知识是由于测量的实际需要而形成的.本节课我们要学的也与测量有关,我们要利用相似三角形的知识来解决一个测量问题,先来看这样一个实际问题.
(二)尝试指导,讲授新课
(师出示下图)
这是旗杆,旗杆很高,怎么测量出旗杆的高度?请大家想出一个可行的测量办法.
测量旗杆的高度有很多办法,其中有一种比较好的办法是利用相似三角形来测量,怎么利用相似三角形来测量?旗杆在地上会有影子,假如这条线是旗杆的影子.我们在旗杆影子的顶端立一根木杆,木杆在地上也会影子,这条线是木杆的影子.现在连结这两条线段,就构成了两个三角形,我们把三角形的顶点都标上字母。
△ABC 与△DEA 相似,
假如我们量出旗杆影子AC 的长度为8米,木杆的高度为2米,木杆影子的长度为1.6米,那么旗杆高度是多少米?大家算一算.
解:∵DE ,AB 是太阳光线,
∴DE ∥AB.
∴∠BAC=∠D.
而∠C=∠DAE=90°,
∴△ABC ∽△DEA. ∴BC AC EA DA =,即BC 82 1.6
=. ∴BC=10(米).
因此,旗杆的高度为10米
.
B C
(三)试探练习,回授调节
1.填空:
如图,在某一时刻,测得一根高为1.8m 的竹竿的影长为3m ,同时测得一栋高楼的影长为90m ,则这栋高楼的高度是 m.
2.填空:
如图,测得BD=120m ,DC=60m ,EC=50m ,
则河宽AB= m.
(四)归纳小结, 本节课我们利用相似三角形解决了测量旗杆高度的问题,通过解决这个问题,不知道大家有没有意识到,其实测量可以分成两种,一种是可以直接测量的,譬如,我们的身高,教室的长度,马路的宽度,这些都可以直接测量.另一种是不能直接测量的,譬如,旗杆的高度,珠峰的高度,地球和月亮的距离,这些都不能直接测量.不能直接测量的问题怎么解决?(稍停)解决不能直接测量的问题,实质上是把不能直接测量的问题转化为可以直接测量的问题.(指准图)譬如,旗杆的高度是不能直接测量的,但它的影子,还有木杆及影子的长度都是可以直接测量,利用相似三角形可以求出旗杆的高度.
不能直接测量就利用相似三角形间接地测量,这种想法很巧妙很高明,从中我们可以看到数学知识在解决实际问题中的作用,看到数学的价值,看到人的聪明才智.
(五)布置作业:1.课本习题 2.作业本
教学反思:
1.8m
90m。