中招试卷概率统计试题
概率(共50题)(解析版)--2023年中考数学真题分项汇编(全国通用)
专题概率(50题)一、单选题1(2023·湖南·统考中考真题)从6名男生和4名女生的注册学号中随机抽取一个学号,则抽到的学号为男生的概率是()A.25B.35C.23D.34【答案】B【分析】根据概率公式求解即可.【详解】解:总人数为10人,随机抽取一个学号共有10种等可能结果,抽到的学号为男生的可能有6种,则抽到的学号为男生的概率为:610=35,故选:B.【点睛】本题考查了概率公式求概率;解题的关键是熟练掌握概率公式.2(2023·湖北十堰·统考中考真题)任意掷一枚均匀的小正方体色子,朝上点数是偶数的概率为()A.16B.13C.12D.23【答案】C【分析】由题意可知掷一枚均匀的小正方体色子有6种等可能的结果,再找出符合题意的结果数,最后利用概率公式计算即可.【详解】∵任意掷一枚均匀的小正方体色子,共有6种等可能的结果,其中朝上点数是偶数的结果有3种,∴朝上点数是偶数的概率为36=12.故选:C.【点睛】本题考查简单的概率计算.掌握概率公式是解题关键.3(2023·湖北武汉·统考中考真题)某校即将举行田径运动会,“体育达人”小明从“跳高”“跳远”“100米”“400米”四个项目中,随机选择两项,则他选择“100米”与“400米”两个项目的概率是()A.12B.14C.16D.112【答案】C【分析】设“跳高”“跳远”“100米”“400米”四个项目分别为A、B、C、D,画出树状图,找到所有情况数和满足要求的情况数,利用概率公式求解即可.【详解】解:设“跳高”“跳远”“100米”“400米”四个项目分别为A、B、C、D,画树状图如下:由树状图可知共有12种等可能情况,他选择“100米”与“400米”两个项目即选择C 和D 的情况数共有2种,∴选择“100米”与“400米”两个项目的概率为212=16,故选:C .【点睛】此题考查了树状图或列表法求概率,正确画出树状图或列表,找到所有等可能情况数和满足要求情况数是解题的关键.4(2023·河北·统考中考真题)1有7张扑克牌如图所示,将其打乱顺序后,背面朝上放在桌面上.若从中随机抽取一张,则抽到的花色可能性最大的是()A. B. C. D.【答案】B【分析】根据概率计算公式分别求出四种花色的概率即可得到答案.【详解】解:∵一共有7张扑克牌,每张牌被抽到的概率相同,其中黑桃牌有1张,红桃牌有3张,梅花牌有1张,方片牌有2张,∴抽到的花色是黑桃的概率为17,抽到的花色是红桃的概率为37,抽到的花色是梅花的概率为17,抽到的花色是方片的概率为27,∴抽到的花色可能性最大的是红桃,故选:B .【点睛】本题主要考查了简单的概率计算,正确求出每种花色的概率是解题的关键.5(2023·江苏苏州·统考中考真题)如图,转盘中四个扇形的面积都相等,任意转动这个转盘1次,当转盘停止转动时,指针落在灰色区域的概率是()A.14B.13C.12D.34【答案】C【分析】根据灰色区域与整个面积的比即可求解.【详解】解:∵转盘中四个扇形的面积都相等,设整个圆的面积为1,∴灰色区域的面积为12,∴当转盘停止转动时,指针落在灰色区域的概率是12,故选:C.【点睛】本题考查了几何概率,熟练掌握概率公式是解题的关键.6(2023·湖南永州·统考中考真题)今年2月,某班准备从《在希望的田野上》《我和我的祖国》《十送红军》三首歌曲中选择两首进行排练,参加永州市即将举办的“唱响新时代,筑梦新征程”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是()A.12B.13C.23D.1【答案】B【分析】根据概率公式,即可解答.【详解】解:从三首歌曲中选择两首进行排练,有《在希望的田野上》《我和我的祖国》、《在希望的田野上》《十送红军》、《我和我的祖国》《十送红军》共三种选择方式,故选到前两首的概率是1 3,故选:B.【点睛】本题考查了根据概率公式计算概率,排列出总共可能的情况的数量是解题的关键.7(2023·山东临沂·统考中考真题)在项目化学习中,“水是生命之源”项目组为了解本地区人均淡水消耗量,需要从四名同学(两名男生,两名女生)中随机抽取两人,组成调查小组进行社会调查,恰好抽到一名男生和一名女生的概率是()A.16B.13C.12D.23【答案】D【分析】画树状图得出所有等可能的结果数和抽取的两名同学恰好是一名男生和一名女生的结果数,再利用概率公式可得出答案.【详解】解:设两名男生分别记为A,B,两名女生分别记为C,D,画树状图如下:共有12种等可能的结果,其中抽取的两名同学恰好是一名男生和一名女生的结果有8种,∴抽取的两名同学恰好是一名男生和一名女生的概率为812=23,故选:D.【点睛】本题考查列表法或树状图法求概率,解题时要注意是放回试验还是不放回试验;概率等于所求情况数与总情况数之比.用列表法或画树状图法不重复不遗漏的列出所有可能的结果是解题的关键.8(2023·浙江温州·统考中考真题)某校计划组织研学活动,现有四个地点可供选择:南麂岛、百丈漈、楠溪江、雁荡山.若从中随机选择一个地点,则选中“南麂岛”或“百丈漈”的概率为()A.14B.13C.12D.23【答案】C【分析】根据概率公式可直接求解.【详解】解:∵有四个地点可供选择:南麂岛、百丈漈、楠溪江、雁荡山,∴若从中随机选择一个地点,则选中“南麂岛”或“百丈漈”的概率为24=12;故选:C .【点睛】本题考查了根据概率公式求简单事件的概率,正确理解题意是关键.9(2023·浙江绍兴·统考中考真题)在一个不透明的袋子里装有2个红球和5个白球,它们除颜色外都相同,从中任意摸出1个球,则摸出的球为红球的概率是()A.25B.35C.27D.57【答案】C【分析】根据概率的意义直接计算即可.【详解】解:在一个不透明的袋子中装有2个红球和5个白球,它们除颜色外其他均相同,从中任意摸出1个球,共有7种可能,摸到红球的可能为2种,则摸出红球的概率是27,故选:C .【点睛】本题考查了概率的计算,解题关键是熟练运用概率公式.10(2023·四川遂宁·统考中考真题)为增强班级凝聚力,吴老师组织开展了一次主题班会.班会上,他设计了一个如图的飞镖靶盘,靶盘由两个同心圆构成,小圆半径为10cm ,大圆半径为20cm ,每个扇形的圆心角为60度.如果用飞镖击中靶盘每一处是等可能的,那么小全同学任意投掷飞镖1次(击中边界或没有击中靶盘,则重投1次),投中“免一次作业”的概率是()A.16B.18C.110D.112【答案】B【分析】根据扇形面积公式求出免一次作业对应区域的面积,再根据投中“免一次作业”的概率=免一次作业对应区域的面积÷大圆面积进行求解即可.【详解】解:由题意得,大圆面积为π×202=400πcm 2,免一次作业对应区域的面积为60×π×202360-60×π×102360=50πcm 2,∴投中“免一次作业”的概率是50π400π=18,故选B.【点睛】本题主要考查了几何概率,扇形面积,正确求出大圆面积和免一次作业对应区域的面积是解题的关键.11(2023·安徽·统考中考真题)如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为()A.59B.12C.13D.29【答案】C【分析】根据题意列出所有可能,根据新定义,得出2种可能是“平稳数”,根据概率公式即可求解.【详解】解:依题意,用1,2,3这三个数字随机组成一个无重复数字的三位数,可能结果有,123,132,213,231,312,321共六种可能,只有123,321是“平稳数”∴恰好是“平稳数”的概率为26=13故选:C.【点睛】本题考查了新定义,概率公式求概率,熟练掌握概率公式是解题的关键.12(2023·浙江·统考中考真题)某校准备组织红色研学活动,需要从梅岐、王村口、住龙、小顺四个红色教育基地中任选一个前往研学,选中梅岐红色教育基地的概率是()A.12B.14C.13D.34【答案】B【分析】直接根据概率公式求解即可.【详解】解:从梅岐、王村口、住龙、小顺四个红色教育基地中任选一个前往研学,总共有4种选择,选中梅岐红色教育基地有1种,则概率为1 4,故选:B【点睛】此题考查了概率的求法,通过所有可能结果得出n,再从中选出符合事件结果的数目m,然后根据概率公式P=mn求出事件概率.13(2023·四川成都·统考中考真题)为贯彻教育部《大中小学劳动教育指导纲要(试行)》文件精神,某学校积极开设种植类劳动教育课.某班决定每位学生随机抽取一张卡片来确定自己的种植项目,老师提供6张背面完全相同的卡片,其中蔬菜类有4张,正面分别印有白菜、辣椒、豇豆、茄子图案;水果类有2张,正面分别印有草莓、西瓜图案,每个图案对应该种植项目.把这6张卡片背面朝上洗匀,小明随机抽取一张,他恰好抽中水果类卡片的概率是()A.12B.13C.14D.16【答案】B【分析】根据概率公式求解即可.【详解】解:由题意,随机抽取一张,共有6种等可能的结果,其中恰好抽中水果类卡片的有2种,∴小明随机抽取一张,他恰好抽中水果类卡片的概率是26=13,故选:B .【点睛】本题考查求简单事件的概率,关键是熟知求概率公式:所求情况数与总情况数之比.14(2023·四川泸州·统考中考真题)从1,2,3,4,5,5六个数中随机选取一个数,这个数恰为该组数据的众数的概率为()A.16B.13C.12D.23【答案】B【分析】由众数的概念可知六个数中众数为5,然后根据简单概率计算公式求解即可.【详解】解:1,2,3,4,5,5六个数中,数字5出现了2次,出现的次数最多,故这组数据的众数为5,所以从六个数中随机选取一个数,这个数恰为该组数据的众数的概率为P =26=13.故选:B .【点睛】本题主要考查了求一组数据的众数以及简单概率计算,正确确定该组数据的众数是解题关键.15(2023·广东·统考中考真题)某学校开设了劳动教育课程.小明从感兴趣的“种植”“烹饪”“陶艺”“木工”4门课程中随机选择一门学习,每门课程被选中的可能性相等,小明恰好选中“烹饪”的概率为()A.18 B.16C.14D.12【答案】C【分析】根据概率公式可直接进行求解.【详解】解:由题意可知小明恰好选中“烹饪”的概率为14;故选C .【点睛】本题主要考查概率,熟练掌握概率公式是解题的关键.二、填空题16(2023·山西·统考中考真题)中国古代的“四书”是指《论语》《孟子》《大学》《中庸》,它是儒家思想的核心著作,是中国传统文化的重要组成部分,若从这四部著作中随机抽取两本(先随机抽取一本,不放回,再随机抽取另一本),则抽取的两本恰好是《论语》和《大学》的概率是.【答案】16【分析】用树状图把所有情况列出来,即可求出.【详解】总共有12种组合,《论语》和《大学》的概率112=16,故答案为:16.【点睛】此题考查了用树状图或列表法求概率,解题的关键是熟悉树状图或列表法,并掌握概率计算公式.17(2023·湖南郴州·统考中考真题)在一个不透明的袋子中装有3个白球和7个红球,它们除颜色外,大小、质地都相同.从袋子中随机取出一个球,是红球的概率是.【答案】710【分析】根据概率公式进行计算即可.【详解】解:由题意,得,随机取出一个球共有10种等可能的结果,其中取出的是红球共有7种等可能的结果,∴P =710;故答案为:710.【点睛】本题考查概率.熟练掌握概率的计算公式,是解题的关键.18(2023·浙江杭州·统考中考真题)一个仅装有球的不透明布袋里只有6个红球和n 个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为25,则n =.【答案】9【分析】根据概率公式列分式方程,解方程即可.【详解】解:∵从中任意摸出一个球是红球的概率为25,∴66+n =25,去分母,得6×5=26+n ,解得n =9,经检验n =9是所列分式方程的根,∴n =9,故答案为:9.【点睛】本题考查已知概率求数量、解分式方程,解题的关键是掌握概率公式.19(2023·天津·统考中考真题)不透明袋子中装有10个球,其中有7个绿球、3个红球,这些球除颜色外无其他差别.从袋子中随机取出1个球,则它是绿球的概率为.【答案】710【分析】直接利用概率公式求解即可.【详解】解:由题意,从装有10个球的不透明袋子中,随机取出1个球,则它是绿球的概率为710,故答案为:710.【点睛】本题考查求简单事件的概率,理解题意是解答的关键.20(2023·山东滨州·统考中考真题)同时掷两枚质地均匀的骰子,则两枚骰子点数之和等于7的概率是.【答案】16【分析】利用表格或树状图列示出所有可能结果,找出满足条件的结果,根据概率公式计算即可.【详解】所有可能结果如下表,所有结果共有36种,其中,点数之和等于7的结果有6种,概率为636=16故答案为:16.【点睛】本题考查概率的计算,运用列表或树状图列示出所有可能结果是解题的关键.21(2023·新疆·统考中考真题)在平面直角坐标系中有五个点,分别是A 1,2 ,B -3,4 ,C -2,-3 ,D 4,3 ,E 2,-3 ,从中任选一个点恰好在第一象限的概率是.【答案】25【分析】根据第一象限的点的特征,可得共有2个点在第一象限,进而根据概率公式即可求解.【详解】解:在平面直角坐标系中有五个点,分别是A 1,2 ,B -3,4 ,C -2,-3 ,D 4,3 ,E 2,-3 ,其中A 1,2 ,D 4,3 ,在第一象限,共2个点,∴从中任选一个点恰好在第一象限的概率是25,故答案为:25.【点睛】本题考查了概率公式求概率,第一象限点的坐标特征,熟练掌握以上知识是解题的关键.22(2023·浙江台州·统考中考真题)一个不透明的口袋中有5个除颜色外完全相同的小球,其中2个红球,3个白球.随机摸出一个小球,摸出红球的概率是.【答案】25【分析】根据概率的公式即可求出答案.【详解】解:由题意得摸出红球的情况有两种,总共有5个球,∴摸出红球的概率:22+3=25.故答案为:25.【点睛】本题考查了概率的求法,解题的关键在于熟练掌握概率的简单计算公式:概率=事件发生的可能情况÷事件总情况.23(2023·上海·统考中考真题)在不透明的盒子中装有一个黑球,两个白球,三个红球,四个绿球,这十个球除颜色外完全相同.那么从中随机摸出一个球是绿球的概率为.【答案】25【分析】根据简单事件的概率公式计算即可得.【详解】解:因为在不透明的盒子中,总共有10个球,其中有四个绿球,并且这十个球除颜色外,完全相同,所以从中随机摸出一个球是绿球的概率为P =410=25,故答案为:25.【点睛】本题考查了求概率,熟练掌握概率公式是解题关键.24(2023·浙江金华·统考中考真题)下表为某中学统计的七年级500名学生体重达标情况(单位:人),在该年级随机抽取一名学生,该生体重“标准”的概率是.“偏瘦”“标准”“超重”“肥胖”803504624【答案】710【分析】根据概率公式计算即可得出结果.【详解】解:该生体重“标准”的概率是350500=710,故答案为:710.【点睛】本题考查了概率公式,熟练掌握概率=所求情况数与总情况数之比是本题的关键.25(2023·浙江嘉兴·统考中考真题)现有三张正面印有2023年杭州亚运会吉祥物琮琮、宸宸和莲莲的不透明卡片,卡片除正面图案不同外,其余均相同,将三张卡片正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是.【答案】13【分析】根据概率公式即可求解.【详解】解:将三张卡片正面向下洗匀,从中随机抽取一张卡片,则抽出的卡片图案是琮琮的概率是13故答案为:13.【点睛】本题考查了概率公式求概率,熟练掌握概率公式是解题的关键.26(2023·四川南充·统考中考真题)不透明袋中有红、白两种颜色的小球,这些球除颜色外无其他差别.从袋中随机取出一个球是红球的概率为0.6,若袋中有4个白球,则袋中红球有个.【答案】6【分析】设袋中红球有x 个,然后根据概率计算公式列出方程求解即可.【详解】解:设袋中红球有x 个,由题意得:xx +4=0.6,解得x =6,检验,当x =6时,x +4≠0,∴x =6是原方程的解,∴袋中红球有6个,故答案为:6.【点睛】本题主要考查了已知概率求数量,熟知红球的概率=红球数量÷球的总数是解题的关键.27(2023·重庆·统考中考真题)一个口袋中有1个红色球,有1个白色球,有1个蓝色球,这些球除颜色外都相同.从中随机摸出一个球,记下颜色后放回,摇匀后再从中随机摸出一个球,则两次都摸到红球的概率是.【答案】19【分析】列表得出所有等可能结果,从中找到符合条件的结果数,再根据概率公式求解即可.【详解】解:根据题意列表如下:红球白球蓝球红球(红球,红球)(白球,红球)(蓝球,红球)白球(红球,白球)(白球,白球)(蓝球,白球)蓝球(红球,蓝球)(白球,蓝球)(蓝球,蓝球)由表知,共有9种等可能结果,其中两次都摸到红球的有1种结果,所以两次摸到球的颜色相同的概率为19,故答案为:19.【点睛】本题考查了列表法或树状图法求概率.用到的知识点为:概率=所求情况数与总情况数之比.28(2023·四川自贡·统考中考真题)端午节早上,小颖为全家人蒸了2个蛋黄粽,3个鲜肉粽,她从中随机挑选了两个孝敬爷爷奶奶,请问爷爷奶奶吃到同类粽子的概率是.【答案】25【分析】画树状图可得,共有20种等可能的结果,其中爷爷奶奶吃到同类粽子有8种等可能的结果,再利用概率公式求解即可.【详解】解:设蛋黄粽为A ,鲜肉粽为B ,画树状图如下:共有20种等可能的结果,其中爷爷奶奶吃到同类粽子有8种等可能的结果,∴爷爷奶奶吃到同类粽子的概率是820=25,故答案为:25.【点睛】本题考查用列表法或树状图求概率、概率公式,熟练掌握相关知识是解题的关键.29(2023·辽宁大连·统考中考真题)一个袋子中装有两个标号为“1”“2”的球.从中任意摸出一个球,记下标号后放回并再次摸出一个球,记下标号后放回.则两次标号之和为3的概率为.【答案】12【分析】先画出树状图,从而可得两次摸球的所有等可能的结果,再找出两次标号之和为3的结果,然后利用概率公式求解即可得.【详解】解:由题意,画出树状图如下:由图可知,两次摸球的所有等可能的结果共有4种,其中,两次标号之和为3的结果有2种,则两次标号之和为3的概率为P =24=12,故答案为:12.【点睛】本题考查了利用列举法求概率,熟练掌握列举法是解题关键.30(2023·山东·统考中考真题)用数字0,1,2,3组成个位数字与十位数字不同的两位数,其中是偶数的概率为.【答案】59【分析】先列表得出所有的情况,再找到符合题意的情况,利用概率公式计算即可.【详解】解:0不能在最高位,而且个位数字与十位数字不同,列表如下:1230102030121312123231323一共有可以组成9个数字,偶数有10、12、20、30、32,∴是偶数的概率为59.故答案为:59.【点睛】本题考查了列表法求概率,注意0不能在最高位.三、解答题31(2023·四川内江·统考中考真题)某校为落实国家“双减”政策,丰富课后服务内容,为学生开设五类社团活动(要求每人必须参加且只参加一类活动):A.音乐社团;B.体育社团;C.美术社团;D.文学社团;E.电脑编程社团,该校为了解学生对这五类社团活动的喜爱情况,随机抽取部分学生进行了调查统计,并根据调查结果,绘制了如图所示的两幅不完整的统计图.根据图中信息,解答下列问题:(1)此次调查一共随机抽取了名学生,补全条形统计图(要求在条形图上方注明人数);(2)扇形统计图中圆心角α=度;(3)现从“文学社团”里表现优秀的甲、乙、丙、丁四名同学中随机选取两名参加演讲比赛,请用列表或画树状图的方法求出恰好选中甲和乙两名同学的概率.【答案】(1)200,补全条形统计图见解析(2)54(3)恰好选中甲、乙两名同学的概率为16【分析】(1)用B类型社团的人数除以其人数占比即可求出参与调查的总人数;用总人数减去A、B、D、E 四个类型社团的人数得到C类型社团的人数,即可补全条形统计图;(2)用360°乘以C类型社团的人数占比即可求出扇形统计图中α的度数;(3)先画出树状图得到所有等可能性的结果数,再找到恰好选中甲和乙两名同学的结果数,最后依据概率计算公式求解即可.【详解】(1)解:50÷25%=200(人),C类型社团的人数为200-30-50-70-20=30(人),补全条形统计图如图,故答案为:200;=54°,(2)解:α=360°×30200故答案为:54;(3)解:画树状图如下:∵共有12种等可能的结果,其中恰好选中甲、乙两名同学的结果有2种,∴恰好选中甲、乙两名同学的概率为212=16.【点睛】本题主要考查了条形统计图与扇形统计图信息相关联,树状图法或列表法求解概率,正确读懂统计图并画出树状图或列出表格是解题的关键.32(2023·湖北宜昌·统考中考真题)“阅读新时代,书香满宜昌”.在“全民阅读月”活动中,某校提供了四类适合学生阅读的书籍:A 文学类,B 科幻类,C 漫画类,D 数理类.为了解学生阅读兴趣,学校随机抽取了部分学生进行调查(每位学生仅选一类).根据收集到的数据,整理后得到下列不完整的图表:书籍类别学生人数A 文学类24B 科幻类mC 漫画类16D 数理类8(1)本次抽查的学生人数是,统计表中的m =;(2)在扇形统计图中,“C 漫画类”对应的圆心角的度数是;(3)若该校共有1200名学生,请你估计该校学生选择“D 数理类”书籍的学生人数;(4)学校决定成立“文学”“科幻”“漫画”“数理”四个阅读社团.若小文、小明随机选取四个社团中的一个,请利用列表或画树状图的方法,求他们选择同一社团的概率.【答案】(1)80,32(2)72°(3)120(4)14【分析】(1)利用A 文学类的人数除以对应的百分比即可得到本次抽查的学生人数,用抽查总人数乘以B 科幻类的百分比即可得到m 的值;(2)用360°乘以“C 漫画类”对应的百分比即可得到“C 漫画类”对应的圆心角的度数;(3)用该校共有学生数乘以抽查学生中选择“D 数理类”书籍的学生的百分比即可得到该校学生选择“D 数理类”书籍的学生人数;(4)画出树状图,找到等可能情况总数和小文、小明选择同一社团的情况数,利用概率公式求解即可.【详解】(1)解:由题意得,本次抽查的学生人数是24÷30%=80(人),统计表中的m =80×40%=32,故答案为:80,32(2)在扇形统计图中,“C 漫画类”对应的圆心角的度数是:360°×1680×100%=72°,故答案为:72°(3)由题意得,1200×880×100%=120(人),即估计该校学生选择“D 数理类”书籍的学生为120人;(4)树状图如下:从树状图可看出共有16种等可能的情况,小文、小明选择同一社团的情况数共有4种,∴P (小文、小明选择同一社团)=416=14.【点睛】此题考查了树状图或列表法求概率、样本估计总体、扇形统计图等相关知识,读懂题意,熟练掌握树状图或列表法求概率和准确计算是解题的关键.33(2023·湖北黄冈·统考中考真题)打造书香文化,培养阅读习惯,崇德中学计划在各班建图书角,开展“我最喜欢阅读的书篇”为主题的调查活动,学生根据自己的爱好选择一类书籍(A :科技类,B :文学类,C :政史类,D :艺术类,E :其他类).张老师组织数学兴趣小组对学校部分学生进行了问卷调查,根据收集到的数据,绘制了两幅不完整的统计图(如图所示).根据图中信息,请回答下列问题;(1)条形图中的m =,n =,文学类书籍对应扇形圆心角等于度;(2)若该校有2000名学生,请你估计最喜欢阅读政史类书籍的学生人数;(3)甲同学从A ,B ,C 三类书籍中随机选择一种,乙同学从B ,C ,D 三类书籍中随机选择一种,请用画树状图或者列表法求甲乙两位同学选择相同类别书籍的概率.【答案】(1)18,6,72°(2)480人(3)29【分析】(1)根据选择“E :其他类”的人数及比例求出总人数,总人数乘以A 占的比例即为m ,总人数减去A ,B ,C ,E 的人数即为n ,360度乘以B 占的比例即为文学类书籍对应扇形圆心角;。
中考概率题经典题及解析
中考概率题经典题及解析一、一个不透明的袋子中装有红、黄、蓝三种颜色的小球各2个,从中随机摸出3个小球,则摸出的小球中至少有1个是红球的概率是?A. 1/10B. 1/4C. 3/5D. 7/10(答案)D二、一副扑克牌去掉大小王后共有52张,从中任意抽出1张,则抽到的牌是黑色的概率为?A. 1/4B. 1/2C. 3/4D. 1(答案)B三、一个骰子有6个面,每个面上分别标有数字1到6,投掷这个骰子一次,则掷出的点数为偶数的概率是?A. 1/6B. 1/3C. 1/2D. 2/3(答案)C四、某校有学生800人,其中女生占45%,若从中随机选取一名学生,则选中男生的概率为?A. 0.45B. 0.55C. 0.6D. 0.9(答案)B五、一个转盘上有红、绿、蓝三个区域,面积比分别为2:3:5,转动转盘一次,指针停在绿色区域的概率为?A. 2/10B. 3/10C. 5/10D. 1/2(答案)B六、有5张卡片,正面分别写有数字1, 2, 3, 4, 5,将它们背面朝上放置在桌面上,任意抽出一张,则抽到的数字为奇数的概率为?A. 2/5B. 3/5C. 1/2D. 7/10(答案)A七、一个盒子里装有10个黑球和15个白球,每个球除颜色外都相同,从中任意摸出一个球,则摸到白球的概率是?A. 1/5B. 3/5C. 2/5D. 1/2(答案)B八、某班级有40名学生,其中22名是男生,从该班级中随机选取一名学生作为代表,则选取的代表是女生的概率为?A. 11/20B. 9/20C. 11/40D. 22/40(答案)A。
中考数学概率统计选择题
中考数学概率统计选择题1. 小明随机从一副扑克牌中抽取一张牌,抽到红桃的概率是多少?2. 抛掷一枚均匀的硬币,正面朝上的概率是多少?3. 在一次考试中,小明做对了80%的题目,那么小明做错题目的概率是多少?4. 一次抽奖活动中,共有10个奖项,其中一等奖1个,二等奖2个,三等奖3个,其余4个奖项均为安慰奖。
那么抽中二等奖的概率是多少?5. 从1到10这10个数字中随机抽取一个数字,这个数字是5的概率是多少?6. 一次篮球比赛中,双方球队各投篮10次,甲队投篮命中率为60%,乙队投篮命中率为40%。
那么甲队投篮命中的次数多于乙队的概率是多少?7. 一次摸奖活动中,共有10个奖品,其中一等奖1个,二等奖2个,三等奖3个,其余4个为安慰奖。
那么摸到一等奖的概率是多8. 抛掷两枚均匀的硬币,两枚硬币正面朝上的概率是多少?9. 小红随机从一副扑克牌中抽取一张牌,抽到方块的概率是多少?10. 一次考试中,小明做对了80%的题目,那么小明做对题目的概率是多少?11. 一次抽奖活动中,共有10个奖项,其中一等奖1个,二等奖2个,三等奖3个,其余4个奖项均为安慰奖。
那么抽中三等奖的概率是多少?12. 从1到10这10个数字中随机抽取一个数字,这个数字是偶数的概率是多少?13. 一次篮球比赛中,双方球队各投篮10次,甲队投篮命中率为60%,乙队投篮命中率为40%。
那么甲队投篮命中次数等于乙队的概率是多少?14. 一次摸奖活动中,共有10个奖品,其中一等奖1个,二等奖2个,三等奖3个,其余4个为安慰奖。
那么摸到二等奖的概率是多15. 抛掷两枚均匀的硬币,两枚硬币反面朝上的概率是多少?16. 小红随机从一副扑克牌中抽取一张牌,抽到黑桃的概率是多少?17. 一次考试中,小明做对了80%的题目,那么小明做错题目的概率是多少?18. 一次抽奖活动中,共有10个奖项,其中一等奖1个,二等奖2个,三等奖3个,其余4个奖项均为安慰奖。
数学中考概率统计选择题汇总
数学中考概率统计选择题汇总1. 甲、乙两人各投掷一次硬币,求出现正面朝上的概率。
2. 一批零件中有10%不合格,现从中随机抽取5件,求至少有一件不合格的概率。
3. 某班级有50名学生,其中有20名女生,30名男生,现随机选取3名学生,求选中至少2名女生的概率。
4. 抛掷一个公平的六面骰子,求掷出偶数的概率。
5. 一箱苹果中有10个坏苹果,现从中随机取出3个苹果,求取出的苹果中恰好有2个坏苹果的概率。
6. 某班级有40名学生,其中有20名喜欢篮球,25名喜欢足球,现随机选取2名学生,求选中至少1名喜欢篮球的学生的概率。
7. 甲、乙两人各投掷一次公平的六面骰子,求两人掷出的点数之和为7的概率。
8. 一箱电脑中,有20%的电脑存在故障,现从中随机抽取3台电脑,求所有抽取的电脑均无故障的概率。
9. 某班级有30名学生,其中有15名女生,15名男生,现随机选取2名学生,求选中1名女生和1名男生的概率。
10. 抛掷两个公平的六面骰子,求掷出的两个点数之和为8的概率。
11. 一批零件中有5%不合格,现从中随机抽取5件,求所有抽取的零件均合格的概率。
12. 某班级有50名学生,其中有25名女生,25名男生,现随机选取3名学生,求选中2名女生和1名男生的概率。
13. 甲、乙两人各投掷一次硬币,求两人投掷的硬币正面朝上的情况相同的概率。
14. 抛掷一个公平的六面骰子,求掷出奇数的概率。
15. 某班级有40名学生,其中有20名喜欢篮球,20名喜欢足球,现随机选取2名学生,求选中至少1名喜欢篮球的学生的概率。
16. 一箱苹果中有10个坏苹果,现从中随机取出3个苹果,求取出的苹果中没有坏苹果的概率。
17. 某班级有30名学生,其中有15名女生,15名男生,现随机选取2名学生,求选中2名女生的概率。
18. 抛掷两个公平的六面骰子,求掷出的两个点数之和为9的概率。
19. 一批零件中有10%不合格,现从中随机抽取5件,求所有抽取的零件均不合格的概率。
数学中考概率统计选择题汇总
数学中考概率统计选择题汇总1. 小明从一副52张的扑克牌中随机抽取一张,抽到红桃的概率是多少?2. 某班级共有50名学生,其中有20名喜欢数学,30名喜欢物理,25名同时喜欢数学和物理。
请问喜欢数学或物理的学生人数是多少?3. 抛掷两个公平的六面骰子,两个骰子的点数之和为5的概率是多少?4. 某班级共有30名学生,其中有18名参加了数学竞赛,22名参加了物理竞赛,10名同时参加了数学和物理竞赛。
请问至少参加了一项竞赛的学生人数是多少?5. 小华有3个红球和2个蓝球,他随机取出一个球,取出红球的概率是多少?6. 抛掷一个公平的六面骰子,得到偶数的概率是多少?7. 某班级共有40名学生,其中有20名喜欢篮球,30名喜欢足球,15名同时喜欢篮球和足球。
请问至少喜欢一种球类运动的学生人数是多少?8. 小王有5本小说和3本教科书,他随机取出一本书,取出教科书的概率是多少?9. 抛掷两个公平的六面骰子,两个骰子的点数之和为7的概率是多少?10. 某班级共有45名学生,其中有25名喜欢语文,30名喜欢英语,18名同时喜欢语文和英语。
请问至少喜欢一门语言的学生人数是多少?11. 小红有4个苹果和3个橙子,她随机取出一颗水果,取到橙子的概率是多少?12. 抛掷一个公平的六面骰子,得到奇数的概率是多少?13. 某班级共有50名学生,其中有25名喜欢历史,30名喜欢地理,18名同时喜欢历史和地理。
请问至少喜欢一门历史的学生人数是多少?14. 小李有6个篮球和4个足球,他随机取出一个球,取出足球的概率是多少?15. 抛掷两个公平的六面骰子,两个骰子的点数之和为6的概率是多少?16. 某班级共有40名学生,其中有20名喜欢美术,30名喜欢音乐,15名同时喜欢美术和音乐。
请问至少喜欢一门艺术的学生人数是多少?17. 小张有5个苹果和2个橙子,他随机取出一颗水果,取到橙子的概率是多少?18. 抛掷一个公平的六面骰子,得到质数的概率是多少?19. 某班级共有50名学生,其中有25名喜欢生物,30名喜欢化学,18名同时喜欢生物和化学。
2024年中考数学复习单元测试卷及答案解析—第八章:统计与概率
2024年中考数学复习单元测试卷及答案解析—第八章:统计与概率(考试时间:100分钟试卷满分:120分)一.选择题(共10小题,满分30分,每小题3分)1.下列说法正确的是()A.将油滴入水中,油会浮在水面上是不可能事件B.抛出的篮球会下落是随机事件C.了解一批圆珠笔芯的使用寿命,采用普查的方式D.若甲、乙两组数据的平均数相同,甲2=2,乙2=2.5,则甲组数据较稳定【答案】D【分析】依据随机事件、必然事件、不可能事件、抽样调查以及方差的概念进行判断,即可得出结论.【详解】解:A、将油滴入水中,油会浮在水面上是必然事件,故A不符合题意;B、抛出的篮球会下落是必然事件,故B不符合题意;C、了解一批圆珠笔芯的使用寿命,采用抽样调查的方式,故C不符合题意;2=2,乙2=2.5,则甲组数据较稳定,故D符合题意;D、若甲、乙两组数据的平均数相同,甲故选:D.【点睛】本题主要考查了随机事件、必然事件、不可能事件、抽样调查以及方差的概念,方差是反映一组数据的波动大小的一个量.方差越大,则各数据与平均值的离散程度越大,稳定性也越小;反之,则它与其平均值的离散程度越小,稳定性越好,解题的关键是掌握相应知识点的概念.2.4月15日是全民国家安全教育日.某校为了摸清该校1500名师生的国家安全知识掌握情况,从中随机抽取了150名师生进行问卷调查.这项调查中的样本是()A.1500名师生的国家安全知识掌握情况B.150C.从中抽取的150名师生的国家安全知识掌握情况D.从中抽取的150名师生【答案】C【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,据此即可判断.【详解】解:样本是从中抽取的150名师生的国家安全知识掌握情况.故选:C.【点睛】本题考查了样本的定义,解题要分清具体问题中的总体、个体与样本,关键是明确考查的对象.总体、个体与样本的考查对象是相同的,所不同的是范围的大小.3.空气的成分(除去水汽、杂质等)是:氮气约占78%,氧气约占21%,其他微量气体约占1%.要反映上述信息,宜采用的统计图是()A.条形统计图B.折线统计图C.扇形统计图D.频数分布直方图【答案】C【分析】在扇形统计图中将总体看做一个圆,用各个扇形表示各部分,能清楚的表示出各部分所占总体的百分比.【详解】根据题意,将空气(除去水汽、杂质等)看做总体,用各个扇形表示空气的成分(除去水汽、杂质等)中每一种成分所占空气的百分比,由此可以选择扇形统计图.故选C.【点睛】本题考查了统计图的选取,扇形统计图的特点及优点,熟练掌握各种统计图的特点及优点是解题的关键.4.【原创题】长沙市某一周内每日最高气温的情况如图所示,下列说法中错误的是()A.这周最高气温是32℃B.这组数据的中位数是30C.这组数据的众数是24D.周四与周五的最高气温相差8℃【答案】B【分析】根据折线统计图,可得答案.【详解】解:A、由纵坐标看出,这一天中最高气温是32℃,说法正确,故A不符合题意;B、这组数据的中位数是27,原说法错误,故B符合题意;C、这组数据的众数是24,说法正确,故C不符合题意;D、周四与周五的最高气温相差8℃,由图,周四、周五最高温度分别为32℃,24℃,故温差为32−24=8(℃),说法正确,故D不符合题意;故选:B.【点睛】此题主要考查了折线统计图,由纵坐标看出气温,横坐标看出时间是解题的关键.5.【创新题】若一组数据1,2,3,⋯,的方差为2,则数据1+3,2+3,3+3,⋯,+3的方差是()A.2B.5C.6D.11【答案】A【分析】根据方差的定义进行求解,方差是用来衡量一组数据波动大小的量,每个数都加3,所以波动不会变,方差不变.【详解】解:当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,设原平均数为 ,现在的平均数为 +3,原来的方差12=1(1− )2+(2− )2+…+(− )2=2,现在的方差22=11+3− −32+2+3− −32+…++3− −32,=1− )2+(2− )2+⋯+(− )2,=2.故选:A.【点睛】本题考查了方差的定义.当数据都加上一个数(或减去一个数)时,平均数也加或减这个数,方差不变,即数据的波动情况不变;当数据都乘以一个数(或除以一个数)时,平均数也乘以或除以这个数,方差变为这个数的平方倍.6.某射击运动队进行了五次射击测试,甲、乙两名选手的测试成绩如下表.甲、乙两名选手成绩的方差分2和乙2,则甲2与乙2的大小关系是()别记为甲测试次数12345甲510938乙868672>乙2B.甲2<乙2C.甲2=乙2D.无法确定A.甲【答案】A【分析】先分别求出甲、乙的平均数,再求出甲、乙的方差即可得出答案.【详解】解:甲的平均数为5+10+9+3+85=7,2=−72+10−72+9−72+3−72+8−72=6.8,甲的方差为乙的平均数为8+6+8+6+7=7,2=−72+6−72+8−72+6−72+7−72=0.8,乙的方差为∵0.8<6.8,2>乙2.∴甲故选:A.【点睛】此题主要考查了平均数及方差的知识.方差的定义:一般地设n个数据,1,2,…的平均数为=1+2+⋯,则方差2=1−+2+⋯+−2,它反映了一组数据的波动大小,方差越大,波动性越大,反之也成立.7.在学校科技宣传活动中,某科技活动小组将3个标有“北斗”,2个标有“天眼”,5个标有“高铁”的小球(除标记外其它都相同)放入盒中,小红从盒中随机摸出1个小球,并对小球标记的内容进行介绍,下列叙述正确的是()A.摸出“北斗”小球的可能性最大B.摸出“天眼”小球的可能性最大C.摸出“高铁”小球的可能性最大D.摸出三种小球的可能性相同【答案】C【分析】根据概率公式计算摸出三种小球的概率,即可得出答案.【详解】解:盒中小球总量为:3+2+5=10(个),摸出“北斗”小球的概率为:310,摸出“天眼”小球的概率为:210=15,摸出“高铁”小球的概率为:510=12,因此摸出“高铁”小球的可能性最大.故选C.【点睛】本题考查判断事件发生可能性的大小,掌握概率公式是解题的关键.8.【原创题】剪纸是中国最古老的民间艺术之一,先后入选中国国家级非物质文化遗产名录和人类非物质文化遗产代表作名录.小文购买了以“剪纸图案”为主题的5张书签,他想送给好朋友小乐一张.小文将书签背面朝上(背面完全相同),让小乐从中随机抽取一张,则小乐抽到的书签图案既是轴对称图形又是中心对称图形的概率是()A.45B.35C.25D.15【答案】C【分析】根据轴对称图形和中心对称图形的定义:如果一个平面图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形就叫做轴对称图形;中心对称图形的定义:把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心,进行逐一判断,然后根据概率公式即可求解.【详解】解:共有5个书签图案,既是轴对称图形又是中心对称图形的是第2张与第4张书签图片,共2张,∴小乐从中随机抽取一张,则小乐抽到的书签图案既是轴对称图形又是中心对称图形的概率是25,故选:C.【点睛】本题考查了轴对称图形和中心对称图形的识别,概率公式求概率,熟练掌握以上知识是解题的关键.9.劳动委员统计了某周全班同学的家庭劳动次数(单位:次),按劳动次数分为4组:0≤<3,3≤<6,6≤<9,9≤<12,绘制成如图所示的频数分布直方图.从中任选一名同学,则该同学这周家庭劳动次数不足6次的概率是()A.0.6B.0.5C.0.4D.0.32【答案】A【分析】利用概率公式进行计算即可.【详解】解:由题意,得:=10+2010+20+14+6=35=0.6;故选A.【点睛】本题考查直方图,求概率.解题的关键是从直方图中有效的获取信息.10.【原创题】在相同条件下的多次重复试验中,一个随机事件发生的频率为f,该事件的概率为P.下列说法正确的是()A.试验次数越多,f越大B.f与P都可能发生变化C.试验次数越多,f越接近于PD.当试验次数很大时,f在P附近摆动,并趋于稳定【答案】D【分析】根据频率的稳定性解答即可.【详解】解:在多次重复试验中,一个随机事件发生的频率会在某一个常数附近摆动,并且趋于稳定这个性质称为频率的稳定性.【点睛】本题考查了频率与概率,掌握频率的稳定性是关键.二.填空题(共6小题,满分18分,每小题3分)11.某厂生产了1000只灯泡.为了解这1000只灯泡的使用寿命,从中随机抽取了50只灯泡进行检测,获得了它们的使用寿命(单位:小时),数据整理如下:使用寿命<10001000≤<16001600≤<22002200≤<2800≥2800灯泡只数51012176根据以上数据,估计这1000只灯泡中使用寿命不小于2200小时的灯泡的数量为只.【答案】460【分析】用1000乘以抽查的灯泡中使用寿命不小于2200小时的灯泡所占的比例即可.【详解】解:估计这1000只灯泡中使用寿命不小于2200小时的灯泡的数量为1000×17+650=460(只),故答案为:460.【点睛】本题考查了用样本估计总体,用样本估计总体时,样本容量越大,样本对总体的估计也就越精确.12.一个仅装有球的不透明布袋里只有6个红球和个白球(仅有颜色不同).若从中任意摸出一个球是红球的概率为25,则=.【答案】9【分析】根据概率公式列分式方程,解方程即可.【详解】解:∵从中任意摸出一个球是红球的概率为25,∴66+=25,去分母,得6×5=26+,经检验=9是所列分式方程的根,∴=9,故答案为:9.【点睛】本题考查已知概率求数量、解分式方程,解题的关键是掌握概率公式.13.某公司欲招聘一名职员.对甲、乙、丙三名应聘者进行了综合知识、工作经验、语言表达等三方面的测试,他们的各项成绩如下表所示:项目综合知识工作经验语言表达应聘者甲758080乙858070丙707870如果将每位应聘者的综合知识、工作经验、语言表达的成绩按5:2:3的比例计算其总成绩,并录用总成绩最高的应聘者,则被录用的是.【答案】乙【分析】分别计算甲、乙、丙三名应聘者的成绩的加权平均数,比较大小即可求解.【详解】解:甲=75×510+80×210+80×310=77.5,乙=85×510+80×210+70×310=79.5,丙=70×510+78×210+70×310=71.6,∵71.6<77.5<79.5∴被录用的是乙,故答案为:乙.【点睛】本题考查了加权平均数,熟练掌握加权平均数的计算方法是解题的关键.14.【原创题】小惠同学根据某市统计局发布的2023年第一季度高新技术产业产值数据,绘制了如图所示的扇形统计图,则“新材料”所对应扇形的圆心角度数是.【答案】72°/72度【分析】根据“新材料”的占比乘以360°,即可求解.【详解】解:“新材料”所对应扇形的圆心角度数是20%×360°=72°,故答案为:72°.【点睛】本题考查了求扇形统计图的圆心角的度数,熟练掌握求扇形统计图的圆心角的度数是解题的关键.15.近年来,洞庭湖区环境保护效果显著,南迁的候鸟种群越来越多.为了解南迁到该区域某湿地的A种候鸟的情况,从中捕捉40只,戴上识别卡并放回;经过一段时间后观察发现,200只A种候鸟中有10只佩有识别卡,由此估计该湿地约有只A种候鸟.【答案】800【分析】在样本中“200只A种候鸟中有10只佩有识别卡”,即可求得有识别卡的所占比例,而这一比例也适用于整体,据此即可解答.【详解】解:设该湿地约有x只A种候鸟,则200:10=x:40,解得x=800.故答案为:800.【点睛】本题主要考查的是通过样本去估计总体,只需将样本“成比例地放大”为总体即可.16.生物学研究表明,植物光合作用速率越高,单位时间内合成的有机物越多,为了解甲、乙两个品种大豆的光合作用速率,科研人员从甲、乙两个品种的大豆中各选五株,在同等实验条件下,测量它们的光合作用速率(单位:Fol⋅m﹣2⋅s﹣1),结果统计如下:品种第一株第二株第三株第四株第五株平均数甲323025182025乙282526242225则两个大豆品种中光合作用速率更稳定的是(填“甲”或“乙”).【答案】乙【分析】分别求甲、乙两品中的方差即可判断;【详解】解:甲2=32−252+30−252+25−252+18−252+20−252=29.6乙2=−252+25−252+26−252+24−252+22−252=4甲2>乙2∴乙更稳定;故答案为:乙.【点睛】本题主要考查根据方差判断稳定性,分别求出甲、乙的方差,方差越小越稳定,解本题的关键在于知道方差的求解公式.三.解答题(共9小题,满分72分,其中17、18、19题每题6分,20题、21题每题7分,22题8分,23题9分,24题10分,25题13分)17.如图,将下列3张扑克牌洗匀后数字朝下放在桌面上.(1)从中随机抽取1张,抽得扑克牌上的数字为3的概率为;(2)从中随机抽取2张,用列表或画树状图的方法,求抽得2张扑克牌的数字不同的概率.【答案】(1)23(2)23【分析】(1)直接由概率公式求解即可;(2)列表或画树状图,共有6种等可能的结果,其中抽到2张扑克牌的数字不同的结果有4种,再由概率公式求解即可.【详解】(1)解:根据题意,3张扑克牌中,数字为2的扑克牌有一张,数字为3的扑克牌有两张,∴从中随机抽取1张,抽得扑克牌上的数字为3的概率为23,故答案为:23;(2)解:画树状图如下:如图,共有6种等可能的结果,其中抽到2张扑克牌的数字不同的结果有4种,∴抽得2张扑克牌的数字不同的概率为=46=23.【点睛】本题考查用列表或画树状图求概率,列表法或画树状图法可以不重复不遗漏地列出所有可能的结果,适合两步或两步以上完成的事件,解题的关键是能准确利用列表法或画树状图法找出总情况数及所求情况数.18.抛掷一枚质地均匀的普通硬币,仅有两种可能的结果:“出现正面”或“出现反面”.正面朝上记2分,反面朝上记1分.小明抛掷这枚硬币两次,用画树状图(或列表)的方法,求两次分数之和不大于3的概率.【答案】34【分析】采用列表法列举即可求解.【详解】根据题意列表如下:由表可知,总的可能结果有4种,两次之和不大于3的情况有3种,故所求概率为:3÷4=34,即两次分数之和不大于3的概率为34.【点睛】本题考查了用列表法或者树状图法列举求解概率的知识,掌握用列表法或者树状图法列举求解概率是解答本题的关键.19.【原创题】甲、乙两位同学相约打乒乓球.(1)有款式完全相同的4个乒乓球拍(分别记为A,B,C,D),若甲先从中随机选取1个,乙再从余下的球拍中随机选取1个,求乙选中球拍C的概率;(2)双方约定:两人各投掷一枚质地均匀的硬币,如果两枚硬币全部正面向上或全部反面向上,那么甲先发球,否则乙先发球.这个约定是否公平?为什么?【答案】(1)14(2)公平.理由见解析【分析】(1)用列表法或画树状图法列举出所有等可能的结果,再用乙选中球拍C的结果数除以总的结果数即可;(2)分别求出甲先发球和乙先发球的概率,再比较大小,如果概率相同则公平,否则不公平.【详解】(1)解:画树状图如下:一共有12种等可能的结果,其中乙选中球拍C有3种可能的结果,∴乙选中球拍C的概率=312=14;(2)解:公平.理由如下:画树状图如下:一共有4种等可能的结果,其中两枚硬币全部正面向上或全部反面向上有2种可能的结果,∴甲先发球的概率=24=12,乙先发球的概率=4−24=12,∵12=12,∴这个约定公平.【点睛】本题考查列表法或画树状图法求等可能事件的概率,游戏的公平性,掌握列表法或画树状图法求等可能事件的概率的方法是解题的关键.20.小聪、小明参加了100米跑的5期集训,每期集训结束时进行测试.根据他们集训时间、测试成绩绘制成如下两个统计图.根据图中信息,解答下列问题:(1)这5期的集训共有多少天?(2)哪一期小聪的成绩比他上一期的成绩进步最多?进步了多少秒?(3)根据统计数据,结合体育运动的实际,从集训时间和测试成绩这两方面,简要说说你的想法.【答案】(1)55天(2)第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒(3)个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时,成绩最好等.(言之有理即可)【分析】(1)根据图中的信息可知这5期的集训各有多少天,求出它们的和即可;(2)由折线统计图可得第3期小聪的成绩比他上一期的成绩进步最多,进步时间可由折线统计图计算;(3)根据图中的信心和题意,说明自己的观点即可,本题答案不唯一,只要合理即可.【详解】(1)∵4+7+10+14+20=55(天).∴这5期的集训共有55天.(2)由折线统计图可得第3期小聪的成绩比他上一期的成绩进步最多,进步了11.72−11.52=0.2(秒),∴第3期小聪的成绩比他上一期的成绩进步最多,进步了0.2秒.(3)个人测试成绩与很多因素有关,如集训时间不是越长越好,集训时间过长,可能会造成劳累,导致成绩下降;集训的时间为10天或14天时,成绩最好等.(言之有理即可)【点睛】本题考查条形统计图、折线统计图、算术平均数,解答本题的关键是明确题意,利用数形结合的思想解答.21.【创新题】如图,下列装在相同的透明密封盒内的古钱币,其密封盒上分别标有古钱币的尺寸及质量,例如:钱币“文星高照”密封盒上所标“45.4∗2.8mm,24.4g”是指该枚古钱币的直径为45.4mm,厚度为2.8mm,质量为24.4g.已知这些古钱币的材质相同.根据图中信息,解决下列问题.(1)这5枚古钱币,所标直径的平均数是mm,所标厚度的众数是mm,所标质量的中位数是g;(2)由于古钱币无法从密封盒内取出,为判断密封盒上所标古钱币的质量是否有错,桐桐用电子秤测得每枚古钱币与其密封盒的总质量如下:名称文星高照状元及第鹿鹤同春顺风大吉连中三元总质量/g58.758.155.254.355.8请你应用所学的统计知识,判断哪枚古钱币所标的质量与实际质量差异较大,并计算该枚古钱币的实际质量约为多少克.【答案】(1)45.74,2.3,21.7;(2)“鹿鹤同春”的实际质量约为21.0克.【分析】(1)根据平均数、众数和中位数的定义求解即可;(2)根据题中所给数据求出每一枚古钱币的密封盒质量,即可判断出哪枚古钱币所标的质量与实际质量差异较大,计算其余四个密封盒的平均数,即可求得所标质量有错的古钱币的实际质量.【详解】(1)解:平均数:15×45.4+48.1+45.1+44.6+45.5=45.74mm;这5枚古钱币的厚度分别为:2.8mm,2.4mm,2.3mm,2.1mm,2.3mm,其中2.3mm出现了2次,出现的次数最多,∴这5枚古钱币的厚度的众数为2.3mm;将这5枚古钱币的重量按从小到大的顺序排列为:13.0g,20.0g,21.7g,24.0g,24.4g,∴这5枚古钱币质量的中位数为21.7g;故答案为:45.74,2.3,21.7;(2)名称文星高照状元及第鹿鹤同春顺风大吉连中三元总质量/g58.758.155.254.355.8盒标质量24.424.013.020.021.7盒子质量34.334.142.234.334.1∴“鹿鹤同春”密封盒的质量异常,故“鹿鹤同春”所标质量与实际质量差异较大.其余四个盒子质量的平均数为:34.3+34.1+34.3+34.14=34.2g,55.2-34.2=21.0g故“鹿鹤同春”的实际质量约为21.0克.【点睛】本题考查了平均数、中位数和众数的求解,平均数的应用,将一组数据按照由小到大(或由大到小)的顺序排列,如果数据的个数是奇数,则处于中间位置的数就是这组数据的中位数;如果数据的个数是偶数,则中间两个数据的平均数就是这组数据的中位数;众数就是一组数据中出现次数最多的那个数据.一组数据中,众数可能不止一个.22.某班甲、乙两名同学被推荐到学校艺术节上表演节目,计划用葫芦丝合奏一首乐曲,要合奏的乐曲是用游戏的方式在《月光下的凤尾竹》与《彩云之南》中确定一首.游戏规则如下:在—个不透明的口袋中装有分别标有数字1,2,3,4的四个小球(除标号外,其余都相同),甲从口袋中任意摸出1个小球,小球上的数字记为a.在另一个不透明的口袋中装有分别标有数字1,2的两张卡片(除标号外,其余都相同),乙从口袋里任意摸出1张卡片卡片上的数字记为b.然后计算这两个数的和,即a+b,若a+b为奇数,则演奏《月光下的凤尾竹》,否则,演奏《彩云之南》.(1)用列表法或画树状图法中的一种方法,求(a,b)所有可能出现的结果总数;(2)你认为这个游戏公平不?如果公平,请说明理由;如果不公平,哪一首乐曲更可能被选中?【答案】(1)见解析,(a,b)所有可能出现的结果总数有8种;(2)游戏公平,理由见解析【分析】(1)列表列出所有等可能结果即可;(2)由和为偶数的有8种情况,而和为奇数的有4种情况,即可判断.【详解】(1)解:列表如下:12341(1,1)(2,1)(3,1)(4,1)2(1,2)(2,2)(3,2)(4,2)由表格可知,(a,b)所有可能出现的结果总数有8种;(2)解:游戏公平,由表格知a+b为奇数的情况有4种,为奇数的情况也有4种,概率相同,都是48=12,所以游戏公平.【点睛】本题主要考查游戏的公平性及概率的计算,如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=,注意本题是放回实验.解决本题的关键是得到相应的概率,概率相等就公平,否则就不公平.23.某校举办“歌唱祖国”演唱比赛,十位评委对每位同学的演唱进行现场打分,对参加比赛的甲、乙、丙三位同学得分的数据进行整理、描述和分析,下面给出了部分信息.a.甲、乙两位同学得分的折线图:b.丙同学得分:10,10,10,9,9,8,3,9,8,10c.甲、乙、丙三位同学得分的平均数:同学甲乙丙平均数8.68.6m根据以上信息,回答下列问题:(1)求表中m的值;(2)在参加比赛的同学中,如果某同学得分的10个数据的方差越小,则认为评委对该同学演唱的评价越一致.据此推断:甲、乙两位同学中,评委对_________的评价更一致(填“甲”或“乙”);(3)如果每位同学的最后得分为去掉十位评委打分中的一个最高分和一个最低分后的平均分,最后得分越高,则认为该同学表现越优秀.据此推断:在甲、乙、丙三位同学中,表现最优秀的是_________(填“甲”“乙”或“丙”).【答案】(1)8.6(2)甲(3)丙【分析】(1)根据平均数的定义求出丙的平均数即可求解.(2)根据方差的计算方法先算出甲、乙的方差,再进行比较即可求解.(3)按去掉一个最高分和一个最低分后分别计算出甲、乙、丙的平均分,再进行比较即可求解.【详解】(1)解:丙的平均数:10+10+10+9+9+8+3+9+8+1010=8.6,则=8.6.2=110[2×(8.6−8)2+4×(8.6−9)2+2×(8.6−7)2+2×(8.6−10)2]=1.04,(2)甲2=110[4×(8.6−7)2+4×(8.6−10)2+2×(8.6−9)2]=1.84,乙∵甲2<乙2,∴甲、乙两位同学中,评委对甲的评价更一致,故答案为:甲.(3)由题意得,去掉一个最高分和一个最低分后的平均分为:甲:8+8+9+7+9+9+9+108=8.625,乙:7+7+7+9+9+10+10+108=8.625,丙:10+10+9+9+8+9+8+108=9.125,∵去掉一个最高分和一个最低分后丙的平均分最高,因此最优秀的是丙,故答案为:丙.【点睛】本题考查了折线统计图、中位数、方差及平均数,理解折线统计图,从图中获取信息,掌握中位数、方差及去掉一个最高分和一个最低分后的平均分的求法是解题的关键.24.为增强学生的社会实践能力,促进学生全面发展,某校计划建立小记者站,有20名学生报名参加选拔.报名的学生需参加采访、写作、摄影三项测试,每项测试均由七位评委打分(满分100分),取平均分作为该项的测试成绩,再将采访、写作、摄影三项的测试成绩按4∶4∶2的比例计算出每人的总评成绩.小悦、小涵的三项测试成绩和总评成绩如下表,这20名学生的总评成绩频数直方图(每组含最小值,不含最大值)如下图选手测试成绩/分总评成绩/分采访写作摄影小悦83728078小涵8684▲▲(1)在摄影测试中,七位评委给小涵打出的分数如下:67,72,68,69,74,69,71.这组数据的中位数是__________分,众数是__________分,平均数是__________分;(2)请你计算小涵的总评成绩;(3)学校决定根据总评成绩择优选拔12名小记者.试分析小悦、小涵能否入选,并说明理由.【答案】(1)69,69,70(2)82分(3)小涵能入选,小悦不一定能入选,见解析【分析】(1)从小到大排序,找出中位数、众数即可,算出平均数.(2)将采访、写作、摄影三项的测试成绩按4∶4∶2的比例计算出的总评成绩即可.(3)小涵和小悦的总评成绩分别是82分,78分,学校要选拔12名小记者,小涵的成绩在前12名,因此小涵一定能入选;小悦的成绩不一定在前12名,因此小悦不一定能入选.【详解】(1)从小到大排序,。
中考数学总复习《概率》专项测试卷带答案
中考数学总复习《概率》专项测试卷带答案学校:___________班级:___________姓名:___________考号:___________A层·基础过关1.(2024·湖北中考)下列各事件,是必然事件的是( )A.掷一枚正方体骰子,正面朝上恰好是3B.某同学投篮球,一定投不中C.经过红绿灯路口时,一定是红灯D.画一个三角形,其内角和为180°2.(2024·连云港中考)下列说法正确的是( )A.10张票中有1张奖票,10人去摸,先摸的人摸到奖票的概率较大B.从1,2,3,4,5中随机抽取一个数,取得偶数的可能性较大C.小强一次掷出3颗质地均匀的骰子,3颗全是6点朝上是随机事件D.抛一枚质地均匀的硬币,正面朝上的概率为1,连续抛此硬币2次必有1次正面朝2上3.(2024·贵州中考)小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是( )A.小星定点投篮1次,不一定能投中B.小星定点投篮1次,一定可以投中C.小星定点投篮10次,一定投中4次D.小星定点投篮4次,一定投中1次4.(2024·内江中考)如图所示的电路中,当随机闭合开关S1,S2,S3中的两个时,灯泡能发光的概率为( )A.23B.12C.13D.165.(2024·上海中考)一个袋子中有若干个白球和绿球,它们除了颜色外都相同.随机从中摸一个球,恰好摸到绿球的概率是35,则袋子中至少有个绿球.6.(2024·重庆中考)重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A,B,C三个景点中随机选择一个景点游览,甲、乙两人同时选择景点B的概率为.7.(2024·临夏州中考)物理变化和化学变化的区别在于是否有新物质的生成.某学习小组在延时课上制作了A,B,C,D四张卡片,四张卡片除图片内容不同外,其他没有区别,放置于暗箱中摇匀.(1)小临从四张卡片中随机抽取一张,抽中C卡片的概率是_________ ;(2)小夏从四张卡片中随机抽取两张,用列表法或画树状图法求小夏抽取两张卡片内容均为化学变化的概率.B层·能力提升8.(2024·深圳中考)二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为( )A.12B.112C.16D.149.(2024·福建中考)哥德巴赫提出“每个大于2的偶数都可以表示为两个质数之和”的猜想,我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.在质数2,3,5中,随机选取两个不同的数,其和是偶数的概率是( )A.14B.13C.12D.2310.(2024·聊城东昌府区三模)有4条线段,长度分别是2,8,3,6.从中随机抽取三条,能组成三角形的概率等于.11.(2024·潍坊潍城区二模)小莹一家五口周末乘坐动车组列车出游,小莹在网上给五人购票时,五人的座位恰好位于同一车厢的同一排(如图是动车组列车座位示意图).进入该车厢后,小莹的奶奶先从这五个座位中随机选择一个,然后小莹从剩下的四个座位中随机选择一个坐下,则奶奶和小莹的座位相邻(过道两侧也视为座位相邻)的概率是.C层·素养挑战12.(2024·遂宁中考)遂宁市作为全国旅游城市,有众多著名景点,为了解“五一”假期同学们的出游情况,某实践探究小组对部分同学假期旅游地做了调查,以下是调查报告的部分内容,请完善报告:××小组关于××学校学生“五一”出游情况调查报告数据收集调查方式抽样调查调查对象××学校学生数据的整理与描述景点A:中国死海B:龙凤古镇C:灵泉风景区D:金华山E:未出游F:其他数据分析及运用(1)本次被抽样调查的学生总人数为,扇形统计图中,m=_________ ,“B:龙凤古镇”对应圆心角的度数是_________ ;(2)请补全条形统计图;(3)该学校总人数为1 800人,请你估计该学校学生“五一”假期未出游的人数;(4)未出游中的甲、乙两位同学计划下次假期从A,B,C,D四个景点中任选一个景点旅游,请用树状图或列表的方法求出他们选择同一景点的概率.参考答案A层·基础过关1.(2024·湖北中考)下列各事件,是必然事件的是(D)A.掷一枚正方体骰子,正面朝上恰好是3B.某同学投篮球,一定投不中C.经过红绿灯路口时,一定是红灯D.画一个三角形,其内角和为180°2.(2024·连云港中考)下列说法正确的是(C)A.10张票中有1张奖票,10人去摸,先摸的人摸到奖票的概率较大B.从1,2,3,4,5中随机抽取一个数,取得偶数的可能性较大C.小强一次掷出3颗质地均匀的骰子,3颗全是6点朝上是随机事件D.抛一枚质地均匀的硬币,正面朝上的概率为12,连续抛此硬币2次必有1次正面朝上3.(2024·贵州中考)小星同学通过大量重复的定点投篮练习,用频率估计他投中的概率为0.4,下列说法正确的是(A)A.小星定点投篮1次,不一定能投中B.小星定点投篮1次,一定可以投中C.小星定点投篮10次,一定投中4次D.小星定点投篮4次,一定投中1次4.(2024·内江中考)如图所示的电路中,当随机闭合开关S1,S2,S3中的两个时,灯泡能发光的概率为(A)A.23B.12C.13D.165.(2024·上海中考)一个袋子中有若干个白球和绿球,它们除了颜色外都相同.随机从中摸一个球,恰好摸到绿球的概率是3,则袋子中至少有3个绿球.56.(2024·重庆中考)重庆是一座魔幻都市,有着丰富的旅游资源.甲、乙两人相约来到重庆旅游,两人分别从A,B,C三个景点中随机选择一个景点游览,甲、乙两人同.时选择景点B的概率为197.(2024·临夏州中考)物理变化和化学变化的区别在于是否有新物质的生成.某学习小组在延时课上制作了A,B,C,D四张卡片,四张卡片除图片内容不同外,其他没有区别,放置于暗箱中摇匀.(1)小临从四张卡片中随机抽取一张,抽中C卡片的概率是_________;【解析】(1)由题意知,共有4种等可能的结果,其中抽中C卡片的结果有1种,∴抽中C卡片的概率是1.4答案:14(2)小夏从四张卡片中随机抽取两张,用列表法或画树状图法求小夏抽取两张卡片内容均为化学变化的概率.【解析】(2)四张卡片内容中是化学变化的有A,D画树状图如图所示共有12种等可能的结果,其中小夏抽取两张卡片内容均为化学变化的结果有AD,DA,共2种∴小夏抽取两张卡片内容均为化学变化的概率为212=1 6 .B层·能力提升8.(2024·深圳中考)二十四节气,它基本概括了一年中四季交替的准确时间以及大自然中一些物候等自然现象发生的规律,二十四个节气分别为:春季(立春、雨水、惊蛰、春分、清明、谷雨),夏季(立夏、小满、芒种、夏至、小暑、大暑),秋季(立秋、处暑、白露、秋分、寒露、霜降),冬季(立冬、小雪、大雪、冬至、小寒、大寒),若从二十四个节气中选一个节气,则抽到的节气在夏季的概率为(D)A.12B.112C.16D.149.(2024·福建中考)哥德巴赫提出“每个大于2的偶数都可以表示为两个质数之和”的猜想,我国数学家陈景润在哥德巴赫猜想的研究中取得了世界领先的成果.在质数2,3,5中,随机选取两个不同的数,其和是偶数的概率是(B)A.14B.13C.12D.2310.(2024·聊城东昌府区三模)有4条线段,长度分别是2,8,3,6.从中随机抽取三条,能组成三角形的概率等于14.11.(2024·潍坊潍城区二模)小莹一家五口周末乘坐动车组列车出游,小莹在网上给五人购票时,五人的座位恰好位于同一车厢的同一排(如图是动车组列车座位示意图).进入该车厢后,小莹的奶奶先从这五个座位中随机选择一个,然后小莹从剩下的四个座位中随机选择一个坐下,则奶奶和小莹的座位相邻(过道两侧也视为座位相邻)的概率是25.C层·素养挑战12.(2024·遂宁中考)遂宁市作为全国旅游城市,有众多著名景点,为了解“五一”假期同学们的出游情况,某实践探究小组对部分同学假期旅游地做了调查,以下是调查报告的部分内容,请完善报告:××小组关于××学校学生“五一”出游情况调查报告数据收集调查方式抽样调查调查对象××学校学生数据的整理与描述景点A:中国死海B:龙凤古镇C:灵泉风景区D:金华山E:未出游F:其他数据分析及运用(1)本次被抽样调查的学生总人数为,扇形统计图中,m=_________,“B:龙凤古镇”对应圆心角的度数是_________;(2)请补全条形统计图;(3)该学校总人数为1 800人,请你估计该学校学生“五一”假期未出游的人数;(4)未出游中的甲、乙两位同学计划下次假期从A,B,C,D四个景点中任选一个景点旅游,请用树状图或列表的方法求出他们选择同一景点的概率.【解析】(1)∵30÷30%=100(人)∴本次被抽样调查的学生总人数为100;∵出游C景点的人数为100-(12+20+20+8+30)=10×100=10;∴m=10100×360°=72°∵20100∴“B:龙凤古镇”对应圆心角的度数是72°.答案:1001072°(2)由(1)知:出游景点C的人数为10补全条形统计图如图所示(3)8100×1 800=144(人)答:估计该学校学生“五一”假期未出游的有144人;(4)画树状图如图所示一共有16种等可能的结果,其中两人选择同一景点有4种可能的结果∴P(选择同一景点)=416=1 4 .。
数学中考概率统计选择题汇总
数学中考概率统计选择题汇总1. 设A、B为两个事件,且P(A)=0.2,P(B)=0.4,P(A∪B)=0.6,那么P(A∩B)的值为()2. 在一次摸球试验中,小明从1个红球和3个白球中摸球,摸到红球的概率是多少?3. 抛掷一个公平的六面骰子,得到一个偶数的概率是多少?4. 一个袋子里有5个红球和5个蓝球,随机取出一个球,取到红球的概率是多少?5. 甲、乙两人各抛掷一次硬币,甲得到正面的概率是0.5,乙得到正面的概率是0.6,那么两人同时得到正面的概率是多少?6. 一次射击比赛,甲的命中率是0.7,乙的命中率是0.8,甲乙同时射击,至少有一人命中的概率是多少?7. 一个箱子里有5个苹果和5个橙子,随机取出一个水果,取到苹果的概率是多少?8. 一次考试中,甲的分数是80分,乙的分数是90分,那么甲乙分数之和的概率分布是怎样的?9. 一个班级有40名学生,其中有20名男生和20名女生,随机选取一名学生,选到女生的概率是多少?10. 在一次抽奖活动中,共有10个奖项,其中一等奖1个,二等奖2个,三等奖3个,其余为四等奖,随机抽取一个奖项,抽到二等奖的概率是多少?11. 抛掷两个公平的六面骰子,两个骰子的点数之和为6的概率是多少?12. 甲、乙两人各抛掷一次公平的硬币,甲得到正面的概率是0.5,乙得到正面的概率是0.6,那么甲乙抛掷硬币正反面相同的概率是多少?13. 一次射击比赛,甲的命中率是0.7,乙的命中率是0.8,甲乙同时射击,甲命中而乙未命中的概率是多少?14. 一个袋子里有5个红球和5个蓝球,随机取出一个球,取到蓝球的概率是多少?15. 一次考试中,甲的分数是80分,乙的分数是90分,那么甲乙分数之差的概率分布是怎样的?16. 一个班级有40名学生,其中有20名男生和20名女生,随机选取一名学生,选到男生的概率是多少?17. 在一次抽奖活动中,共有10个奖项,其中一等奖1个,二等奖2个,三等奖3个,其余为四等奖,随机抽取一个奖项,抽到三等奖的概率是多少?18. 抛掷两个公平的六面骰子,两个骰子的点数之和为7的概率是多少?19. 甲、乙两人各抛掷一次公平的硬币,甲得到正面的概率是0.5,乙得到正面的概率是0.6,那么甲乙抛掷硬币正反面不同的概率是多少?20. 一次射击比赛,甲的命中率是0.7,乙的命中率是0.8,甲乙同时射击,甲乙都未命中的概率是多少?21. 一个袋子里有5个红球和5个蓝球,随机取出一个球,取到不是红球的概率是多少?22. 一次考试中,甲的分数是80分,乙的分数是90分,那么甲乙分数之和的概率分布是怎样的?23. 一个班级有40名学生,其中有20名男生和20名女生,随机选取一名学生,选到不是男生的概率是多少?24. 在一次抽奖活动中,共有10个奖项,其中一等奖1个,二等奖2个,三等奖3个,其余为四等奖,随机抽取一个奖项,抽到不是三等奖的概率是多少?25. 抛掷两个公平的六面骰子,两个骰子的点数之和为8的概率是多少?26. 甲、乙两人各抛掷一次公平的硬币,甲得到正面的概率是0.5,乙得到正面的概率是0.6,那么甲乙抛掷硬币正反面都不同的概率是多少?27. 一次射击比赛,甲的命中率是0.7,乙的命中率是0.8,甲乙同时射击,甲乙都命中的概率是多少?28. 一个袋子里有5个红球和5个蓝球,随机取出一个球,取到不是蓝球的概率是多少?29. 一次考试中,甲的分数是80分,乙的分数是90分,那么甲乙分数之差的概率分布是怎样的?30. 一个班级有40名学生,其中有20名男生和20名女生,随机选取一名学生,选到不是女生的概率是多少?31. 在一次抽奖活动中,共有10个奖项,其中一等奖1个,二等奖2个,三等奖3个,其余为四等奖,随机抽取一个奖项,抽到不是四等奖的概率是多少?32. 抛掷两个公平的六面骰子,两个骰子的点数之和为9的概率是多少?33. 甲、乙两人各抛掷一次公平的硬币,甲得到正面的概率是0.5,乙得到正面的概率是0.6,那么甲乙抛掷硬币正反面都相同的概率是多少?34. 一次射击比赛,甲的命中率是0.7,乙的命中率是0.8,甲乙同时射击,甲命中而乙命中的概率是多少?35. 一个袋子里有5个红球和5个蓝球,随机取出一个球,取到红球或蓝球的概率是多少?36. 一次考试中,甲的分数是80分,乙的分数是90分,那么甲乙分数之和的概率分布是怎样的?37. 一个班级有40名学生,其中有20名男生和20名女生,随机选取一名学生,选到男生的概率是多少?38. 在一次抽奖活动中,共有10个奖项,其中一等奖1个,二等奖2个,三等奖3个,其余为四等奖,随机抽取一个奖项,抽到二等奖的概率是多少?39. 抛掷两个公平的六面骰子,两个骰子的点数之和为10的概率是多少?40. 甲、乙两人各抛掷一次公平的硬币,甲得到正面的概率是0.5,乙得到正面的概率是0.6,那么甲乙抛掷硬币正反面都相同的概率是多少?41. 一次射击比赛,甲的命中率是0.7,乙的命中率是0.8,甲乙同时射击,甲乙都未命中的概率是多少?42. 一个袋子里有5个红球和5个蓝球,随机取出一个球,取到不是红球的概率是多少?43. 一次考试中,甲的分数是80分,乙的分数是90分,那么甲乙分数之差的概率分布是怎样的?44. 一个班级有40名学生,其中有20名男生和20名女生,随机选取一名学生,选到不是男生的概率是多少?45. 在一次抽奖活动中,共有10个奖项,其中一等奖1个,二等奖2个,三等奖3个,其余为四等奖,随机抽取一个奖项,抽到不是三等奖的概率是多少?46. 抛掷两个公平的六面骰子,两个骰子的点数之和为11的概率是多少?47. 甲、乙两人各抛掷一次公平的硬币,甲得到正面的概率是0.5,乙得到正面的概率是0.6,那么甲乙抛掷硬币正反面都不同的概率是多少?48. 一次射击比赛,甲的命中率是0.7,乙的命中率是0.8,甲乙同时射击,甲命中而乙未命中的概率是多少?49. 一个袋子里有5个红球和5个蓝球,随机取出一个球,取到不是蓝球的概率是多少?50. 一次考试中,甲的分数是80分,乙的分数是90分,那么甲乙分数之和的概率分布是怎样的?。
2023年中考数学--统计与概率练习(解析)
专题28 统计与概率一、单选题1.(2022·辽宁沈阳·中考真题)下列说法正确的是( ) A .任意掷一枚质地均匀的骰子,掷出的点数一定是奇数 B .“从一副扑克牌中任意抽取一张,抽到大王”是必然事件 C .了解一批冰箱的使用寿命,采用抽样调查的方式D .若平均数相同的甲、乙两组数据,20.3s =甲,20.02s =乙,则甲组数据更稳定 【答案】C 【分析】依据随机事件、抽样调查以及方差的概念进行判断,即可得出结论. 【详解】解:A .任意掷一枚质地均匀的骰子,掷出的点数不一定是奇数,故原说法错误,不合题意;B .“从一副扑克牌中任意抽取一张,抽到大王”是随机事件,故原说法错误,不合题意;C .了解一批冰箱的使用寿命,适合采用抽样调查的方式,说法正确,符合题意;D .若平均数相同的甲、乙两组数据,20.3s =甲,20.02s =乙,则乙组数据更稳定,故原说法错误,不合题意;故选:C .2.(2022·全国九年级课时练习)已知一组数据2,6,5,2,4,则这组数据的中位数是( ) A .2 B .4C .5D .6【答案】B 【分析】将一组数据从小到大排列,处于最中间的数字就是中位数,本题有5个数字,则排在第三个的就是中位数. 【详解】把数据从小到大排列为:2,2,4,5,6, 中间的数是4, ∴中位数是4, 故选:B .3.(2022·江苏盐城·景山中学九年级月考)截止2022年3月,“费尔兹奖”得主中最年轻的8位数学家获奖时的年龄分别为:29,27,31,31,31,29,29,31,则由年龄组成的这组数据的众数是( )A.27 B.29 C.30 D.31【答案】D【分析】根据众数的定义:一组数据中出现次数最多的一个数或多个数,进行求解即可.【详解】解:由题意可知,这组数据中31出现了4次,出现的次数最多,∴这组数据的众数为31,故选D.4.(2022·东莞市东莞中学初中部九年级)如图,两个转盘被分成几个面积相等的扇形,分别自由转动一次,当转盘停止后,指针各指向一个数字所在的扇形(如果指针恰好指在分格线上,那么重转一次,直到指针指向某一数字为止).将两指针所指的两个扇形中的数相加,和为6的概率是()A.16B.13C.12D.56【答案】B【分析】画树状图,共有6个等可能的结果,两指针所指的两个扇形中的数相加,和为6的结果有2个,再由概率公式求解即可.【详解】解:画树状图如图:共有6个等可能的结果,两指针所指的两个扇形中的数相加,和为6的结果有2个,∴两指针所指的两个扇形中的数相加,和为6的概率为26=13,故选B.5.(2022·重庆实验外国语学校九年级)为了比较甲乙两种水稻秧苗谁出苗更整齐,每种秧苗各随机抽取50株,分别量出每株长度,发现两组秧苗平均长度一样,甲、乙的方差分别是10.9、9.9,则下列说法正确是()A.甲秧苗出苗更整齐B.乙秧苗出苗更整齐C.甲、乙出苗一样整齐D.无法确定甲、乙出苗谁更整齐【答案】B【分析】根据方差的意义可作出判断.方差是用来衡量一组数据波动大小的量,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.【详解】解:∵甲、乙的方差的分别为10.9、9.9,∴甲的方差大于乙的方差,∴乙秧苗出苗更整齐.故选:B.6.(2022·深圳市新华中学九年级期末)一个封闭的箱子中有两个红球和一个黄球,随机从中摸出两个球,即两个球均为红球的概率是()A.49B.23C.12D.13【答案】D【分析】根据题意画出树状图,由概率公式即可得两次都摸到红球的概率.【详解】解:画出树状图:根据树状图可知:所有等可能的结果共有6种,其中两次都摸到红球的有2种,∴两次都摸到红球的概率是26=13;故选:D.7.(2022·四川广元·中考真题)一组数据:1,2,2,3,若添加一个数据3,则不发生变化的统计量是( ) A .平均数 B .中位数 C .众数 D .方差【答案】B 【分析】依据平均数、中位数、众数、方差的定义和公式求解即可. 【详解】解:A 、原来数据的平均数是12234+++=2,添加数字3后平均数为122331155++++=,所以平均数发生了变化,故A 不符合题意;B 、原来数据的中位数是2,添加数字3后中位数仍为2,故B 与要求相符;C 、原来数据的众数是2,添加数字3后众数为2和 3,故C 与要求不符;D 、原来数据的方差=222211[(12)(22)(22)(32)]42-+-+-+-=,添加数字3后的方差=222221111111111114[(1)(2)(2)(3)+(3)]5555555-+-+-+--=,故方差发生了变化,故选项D 不符合题意. 故选:B .8.(2022·湖北随州·)如图,从一个大正方形中截去面积为23cm 和212cm 的两个小正方形,若随机向大正方形内投一粒米,则米粒落在图中阴影部分的概率为( )A .49B .59C .25D .35【答案】A 【分析】求出阴影部分的面积占大正方形的份数即可判断. 【详解】解:∵两个小正方形的面积为23cm 和212cm , ∴323 ∴3+23=33∴大正方形的面积为27=, ∴阴影部分的面积为2731212--=, ∴米粒落在图中阴影部分的概率为124=279, 故选:A .9.(2022·山东聊城·)为了保护环境加强环保教育,某中学组织学生参加义务收集废旧电池的活动,下面是随机抽取40名学生对收集废旧电池的数量进行的统计:请根据学生收集到的废旧电池数,判断下列说法正确的是( ) A .样本为40名学生 B .众数是11节 C .中位数是6节 D .平均数是5.6节【答案】D 【分析】根据样本定义可判定A ,利用众数定义可判定B ,利用中位数定义可判定C ,利用加权平均数计算可判定D 即可. 【详解】解:A . 随机抽取40名学生对收集废旧电池的数量是样本,故选项A 样本为40名学生不正确; B . 根据众数定义重复出现次数最多的数据是5节或6节,故选项B 众数是11节不正确, C . 根据中位数定义样本容量为40,中位数位于4020,212=两个位置数据的平均数,第20位、第21位两个数据为6节与7节的平均数676.52+=节,故选项C 中位数是6节不正确; D . 根据样本平均数()1495116117584 5.640x =⨯+⨯+⨯+⨯+⨯=节 故选项D 平均数是5.6节正确. 故选择:D .10.(2022·全国九年级课时练习)现在要选拔一人去参加全国青少年数学竞赛,小明和小刚的三次选拔成绩分别为:小明:96,85,89,小刚:90,91,89,最终决定选择小刚去参加,那么,最终依据是( ) A .小刚的平均分高 B .小刚的中位数高 C .小刚的方差小 D .小刚最低分高【答案】C利用平均数、中位数及方差的定义进行计算,再根据各统计量特点判断即可.【详解】解:A.平均数:小明的平均数=96+85+89=903,小刚的平均数=90+91+89=903,平均数相同,故此项错误;B.中位数:小明的中位数89,小刚的中位数90,89<90,但中位数不能代表平均水平,故此项错误;C.方差:小明的方差=()()()2229690+8590+899062=33---,小刚的方差=()()()2229090+9190+89902=33---,623>23,小刚的波动较小,故小刚的方差较小,故此项正确;D. 此时不能选择最低分来比较两人的水平,故此项错误.故选C.二、填空题11.(2022·上海宝山区·九年级)如果一组数a,2,4,0,5的中位数是4,那么a可以是_______(只需写出一个满足要求的数).【答案】4【分析】由于一共5个数,4一定排在第3个才能是中位数,所以a可以在第4个或第5个,从而确定a的取值即可.【详解】解:∵这组数据有5个数,且中位数是4,∴4必须在5个数从小到大排列的正中间,即这组数据的重新排列是0,2,4,a,5或0,2,4,5,a,∴a≥4或a≥5,故答案是4(答案不唯一).12.(2022·江苏镇江·中考真题)一只不透明的袋子中装有1个黄球,现放若干个红球,它们与黄球除颜色外都相同,搅匀后从中任意摸出两个球,使得P(摸出一红一黄)=P(摸出两红),则放入的红球个数为__.【答案】3【分析】分别假设放入的红球个数为1、2和3,画树状图列出此时所有等可能结果,从中找到摸出一红一黄和两个红球的结果数,从而验证红球的个数是否符合题意.解:(1)假设袋中红球个数为1,此时袋中由1个黄球、1个红球,搅匀后从中任意摸出两个球,P(摸出一红一黄)=1,P(摸出两红)=0,不符合题意.(2)假设袋中的红球个数为2,列树状图如下:由图可知,共有6种情况,其中两次摸到红球的情况有2种,摸出一红一黄的有4种结果,∴P(摸出一红一黄)=42=63,P(摸出两红)=21=63,不符合题意,(3)假设袋中的红球个数为3,画树状图如下:由图可知,共有12种情况,其中两次摸到红球的情况有6种,摸出一红一黄的有6种结果,∴P(摸出一红一黄)=P(摸出两红)=61=122,符合题意,所以放入的红球个数为3,故答案为:3.13.(2022·山东九年级期中)一个不透明的袋子中装有4个小球,小球上分别标有数字-3,122,它们除所标数字外完全相同,摇匀后从中随机摸出两个小球,则两球所标数字之积是正数的概率为______.【答案】12【分析】列表得出所有等可能的情况数,找出两球上所标数字之积是正数的情况,即可求出所求的概率.【详解】解:列表如下:所有等可能的情况有12种,其中两球上所标数字之积是正数的情况有6种,则两球所标数字之积是正数的概率为6÷12=12,故答案是:12.14.(2022·山东九年级期末)已知线段a的长度为11,现从1~10这10条整数线段中任取两条,能和线段a组成三角形的概率为___.【答案】4 9【分析】由10条线段中任意取2条,是一个列举法求概率问题,是无放回的问题,共有90种可能结果,每种结果出现的机会相同,满足两边之和大于第三边构成三角形的有40个结果.因而就可以求出概率.【详解】从1~10这10条整数线段中任意取1条,有10种可能结果;再从剩下9条线段中任意取1条,有9种可能结果;所以从1~10这10条整数线段中任意取2条有10×9=90种等可能的情况,三角形两边之和大于第三边,其中能和线段 a 组成三角形,即这2条线段的长度之和大于11的有:(2,10),(3,9),(3,10),(4,8),(4,9),(4,10),(5,7),(5,8),(5,9),(5,10),(6,7),(6,8),(6,9),(6,10),(7,5),(7,6),(7,8),(7,9),(7,10),(8,4),(8,5),(8,6),(8,7),(8,9),(8,10)(9,3),(9,4),(9,5),(9,6),(9,7),(9,8),(9,10),(10,2),(10,3),(10,4),(10,5),(10,6),(10,7),(10,8),(10,9)一共有1+2+3+4十4+5+6+7+8=40种等可能的情况;故能和线段 a 组成三角形的概率为:404=909. 故答案为:49.15.(2022·铜陵市第十五中学九年级期末)如图,把一个转盘分成四等份,依次标上数字1、2、3、4,若连续自由转动转盘二次,指针指向的数字分别记作a 、b ,把a 、b 作为点A 的横、纵坐标;求点A (a ,b )的个数为:__________;点A (a ,b )在函数y x =的图象上的概率为:______.【答案】16 14【分析】(1)根据题意采用列表法,即可求得所有点的个数; (2)求得所有符合条件的情况,求其比值即可求得答案. 【详解】 解:(1)列表得:(1,4)(2,4) (3,4) (4,4)(1,3) (2,3) (3,3) (4,3) (1,2)(2,2) (3,2) (4,2)(1,1)(2,1)(3,1)(4,1)∴点(,)A a b 的个数是16;(2)当a b =时,(,)A a b 在函数y x =的图象上,∴点(,)A a b 在函数y x =的图象上的有4种,分别是:(1,1),(2,2),(3,3),(4,4), ∴点(,)A a b 在函数y x =的图象上的概率是41164=; 故答案是:16,14.三、解答题16.(2022·沭阳县怀文中学九年级月考)一个不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球1个.(1)现从中任意摸出一个球,求摸到黄球的概率;(2)现规定:摸到红球得5分,摸到蓝球得2分,摸到黄球得3分,甲同学先随机摸出一个小球(不放回),乙同学再随机摸出一个小球为一次游戏.请用画树状图或者列表法,求一次游戏甲、乙摸球所得分数之和不低于8分的概率.【答案】(1)14;(2)见解析,12【分析】(1)由概率公式即可得出答案;(2)画出树状图,共有16个等可能的结果,所得分数之和不低于8分的结果有8个,由概率公式即可得出答案.【详解】解:(1)任意摸出一个是黄球的概率为1211++=14;(2)画树状图如图:共有16个等可能的结果,甲、乙摸球所得分数之和不低于8分的结果有8个,∴一次游戏甲、乙摸球所得分数之和不低于8分的概率为816=12.17.(2022·云南师范大学实验中学九年级期末)从今年开始,云南将在全省集中开展为期一年半,以“清垃圾、扫厕所、勤洗手、净参观、常消毒、管集市、众参与”为主题的爱国卫生“7个专项行”为了动员广大师生朋友,争做爱国生的参与者,传播者,监督者,自觉投身爱国卫生专项行动.现做如下活动:在一个不透明的盒子中装有4张分别标有A、B、C、D的卡片,A、B、C、D四张卡片的背面分别写有“清垃圾、勤洗手、常消毒、众参与”,它们的形状、大小完全相同,现随机从盒子中摸出两张卡片.(1)请用树状图或列表法表示摸出的两张卡片可能出现的所有结果;(2)求摸出的两张卡片中的含有词语“众参与”卡片的概率.【答案】(1)见解析;(2)12【分析】(1)根据题意可以画出相应的树状图;(2)根据(1)中的树状图可以求得摸出的两张卡片中的含有词语“众参与”的概率.【详解】解:(1)树状图如下图所示,(2)由树状图得:共有12个等可能的结果,摸出的两张卡片中含有词语“众参与”的结果有6个,∴摸出的两张卡片中含有词语“众参与”的概率是61 122.18.(2022·全国九年级专题练习)某学生在篮球场对自己进行篮球定点投球测试,下表是他的测试成绩及相关数据:第一回投球第二回投球第三回投球第四回投球第五回投球第六回投球每回投球次数 5 10 15 20 25 30每回进球次数 3 8 6 16 17 18相应频率(1)请将数据表补充完整.(2)画出该同学进球次数的频率分布折线图.(3)如果这个测试继续进行下去,每回的投球次数不断增加,根据上表数据,测试的频率将稳定在他投球1次时进球的概率附近,请你估计这个概率是多少?(结果用小数表示)【答案】(1)0.6;0.8;0.4;0.8;0.68;0.6;(2)见解析;(3)0.65【分析】(1)根据频率计算方法:频率=每回进球次数÷每回的投球次数,即可求解;(2)利用描点法画图即可;(3)利用样本估计总体即可求解.【详解】(1)∵3÷5=0.6;8÷10=0.8;6÷15=0.4;16÷20=0.8;17÷25=0.68;18÷30=0.6;故将数据表补充如下:第一回投第二回投第三回投第四回投第五回投第六回投球球球球球球每回投球次数5 10 15 20 25 30每回进球次数3 8 6 16 17 18相应频率0.6 0.8 0.4 0.8 0.68 0.6 (2)如图:进球次数的频率分布折线图如下:(3)386161718 51015202530++++++++++≈0.65.答:估计这个概率是0.65.19.(2022·武汉一初慧泉中学九年级月考)某校为了了解学校女生的身高情况,抽查了部分女生的身高,并绘制了以下不完整的统计图.请根据以上图表信息,解答下列问题:(1)本次调查的女生共有______人,E组人数m=______;(2)扇形统计图中E部分所对应的扇形圆心角的大小是______;(3)该校共有女生550名,请你估计该校女生身高不低于160cm的人数.【答案】(1)50,10;(2)72°;(3)308人【分析】(1)从扇形统计图中获取D 部分的比重,从频数分布直方图中获取D 部分的人数,即可求解;求得C 组人数,即可求解.(2)求得E 组的所占的百分比,即可求解;(3)求得女生身高不低于160cm 所占的百分比,即可求解. 【详解】解:(1)从扇形统计图中获取D 部分的比重为26% 从频数分布直方图中获取D 部分的人数为13 总人数为1326%=50÷人 C 组的人数为5028%=14⨯人50261413510m =-----=故答案为:50,10(2)E 部分所对应的扇形圆心角的大小是103607250⨯︒=︒ 答:E 部分所对应的扇形圆心角的大小是72︒ (3)样本中女生身高不低于160cm 的人数有28人2855030850⨯= 答:估计该校女生身高不低于160cm 的有308人.20.(2022·全国九年级课时练习)某校拟派一名跳高运动员参加一项校际比赛,对甲、乙两名跳高运动员进行了8次选拔赛,他们的跳高成绩(单位:cm )如下: 甲:172 168 175 169 174 167 166 169 乙:164 175 174 165 162 173 172 175 (1)甲、乙两名运动员跳高的平均成绩分别是多少? (2)分别求出甲、乙跳高成绩的方差; (3)哪个人的成绩更为稳定?为什么?(4)经预测,跳高165cm 以上就很可能获得冠军,该校为了获取跳高比赛冠军,可能选哪位运动员参赛?若预测跳高170cm 方可获得冠军,又应该选哪位运动员参赛?【答案】(1)都是170cm ;(2)29.5s =甲,225.5s =乙;(3)甲运动员的成绩更为稳定,理由见解析;(4)跳高165cm 以上就很可能获得冠军的情况下,选甲运动员参加;跳高170cm 方可获得冠军的情况下,应选乙运动员参加 【分析】(1)根据平均数的计算方法,先将数据求和,再除以8即可得到甲乙两人各自的平均成绩; (2)根据方差的计算公式分别计算即可,(3)由题(2)的计算结果,根据方差的意义可知,方差越小,即波动越小,数据越稳定即可判断; (4)根据题意分情况分析数据即可判断. 【详解】(1)甲的平均成绩为:1(172168175169174167166169)170(cm)8⨯+++++++=,乙的平均成绩为:1(164175174165162173172175)170(cm)8⨯+++++++=,(2)()()()()()()22222221[1721701681701751701691701741701671708s =⨯-+-+-+-+-+-甲221(166170)(169170)769.58⎤+-+-=⨯=⎦22222221(164170)(175170)(174170)(165170)(162170)(173170)8s ⎡=⨯-+-+-+-+-+-⎣乙221(172170)(175170)20425.58⎤+-+-=⨯=⎦;(3)∵9.525.5<, ∴22s s<甲乙,∴甲运动员的成绩更为稳定;(4)若跳过165cm 以上就很可能获得冠军,则在8次成绩中,甲8次都跳过了165cm ,而乙只有5次,所以应选甲运动员参加;若跳过170cm 才能得冠军,则在8次成绩中,甲只有3次都跳过了170cm ,而乙有5次,所以应选乙运动员参加.21.(2022·湖北黄石八中)2022年,成都将举办世界大学生运动会,这是在中国西部第一次举办的世界综合性运动会,目前,运动会相关准备工作正在有序进行,比赛项目已经确定.某校体育社团随机抽查了部分同学在田径、跳水、篮球、游泳四种比赛项目中选择一种观看的意愿,并根据调查结果绘制成了如下两幅不完整的统计图(如图1).根据以上信息,解答下列问题:(1)这次被调查的同学共有______人;扇形统计图中“篮球”对应的扇形圆心角的度数为______.(2)请把图2的条形统计图补充完整;(3)现拟从甲、乙、丙、丁四人中任选两名同学担任大学生运动会的志愿者,请利用画树状图或列表的方法,求恰好选中甲、乙两位同学的概率.【答案】(1)180,126°;(2)画图见解析;(3)1 6【分析】(1)根据跳水的人数及其百分比求得总人数;然后出田径及游泳的人数,再用总人数减去田径人数、游泳人数、跳水人数即可得到篮球人数,求出其所占总数的百分比,最后乘以360°即可得到结果;(2)根据(1)的计算结果补全统计图即可;(3)画树状图展示所有12种等可能的结果,再找出恰好选中甲、乙两位同学的结果数,然后根据概率公式求解..【详解】(1)54÷30%=180(人)田径人数:180×20%=36(人),游泳人数:180×15%=27(人),篮球人数为:180-54-36-27=63(人)图中“篮球”对应的扇形圆心角的度数为:360°63= 180126°,故答案为:180,126°;(2)补全统计图如下所示:(3)画树状图如下:由上图可知,共有12种等可能的结果,其中恰好选中甲、乙两位同学的结果有2种. 所以P (恰好选中甲、乙两位同学)=21=126. 22.(2022·靖江市靖城中学)对某篮球运动员进行3分球投篮测试结果如下表:(1)计算、直接填表:表中投篮150次、200次相应的命中率. (2)这个运动员投篮命中的概率约是_____. (3)估计这个运动员3分球投篮15次能得多少分? 【答案】(1)0.6,0.6;(2)0.6;(3)27分 【分析】(1)由命中次数除以投篮次数即可得到相应的命中率; (2)由大量实验是前提下,利用频率估计概率即可得到答案; (3)先计算15次投篮的命中数,从而可得答案. 【详解】解:(1)投篮150次、200次的命中率分别为:90120=0.6,=0.6.150200(2)随着投篮次数的增加,这个运动员投篮命中率稳定在0.6附近, 所以这个运动员投篮命中的概率约是0.6. 故答案为:0.6.(3)这个运动员3分球投篮15次大约投中150.6=9⨯次, 所以这个运动员3分球投篮15次的得分大约为:39=27⨯分.23.(2022·重庆实验外国语学校九年级月考)每年都有很多人因火灾丧失生命,某校为提高学生的逃生意识,开展了“防火灾,爱生命”的防火灾知识竞赛,现从该校七、八年级中各抽取10名学生的竞赛成绩(百分制)进行整理、描述和分析(成绩得分用x 表示,共分成四组:A :8085x ≤<,B :8590x ≤<,C :9095x ≤<,D :95100x ≤≤),下面给出了部分信息:七年级抽取的10名学生的竞赛成绩是:100,81,84,83,90,89,89,98,97,99; 八年级抽取的10名学生的竞赛成绩是:100,80,85,83,90,95,92,93,93,99;七、八年级抽取的学生竞赛成绩统计表年级平均分 中位数 众数 方差七年级 91 a 89 45.2 八年级 9192.5b39.2八年级抽取的学生竞赛成绩频数分布直方图请根据相关信息,回答以下问题:(1)直接写出表格中a ,b 的值并补全八年级抽取的学生竞赛成绩频数分布直方图:(2)根据以上数据,你认为该校七、八年级中哪个年级学生掌握防火安全知识较好?请说明理由(一条理由即可);(3)该校七年级有800人,八年级有1000人参加了此次竞赛活动,请估计参加此次竞赛活动成绩优秀(90x ≥)的学生人数是多少.【答案】(1)89.5;93;见解析;(2)八年级,见解析;(3)1100人 【分析】(1)根据中位数、众数的意义求解即可,求出“C 组”的频数才能补全频数分布直方图; (2)从中位数、众数、方差的角度比较得出结论; (3)分别计算七年级、八年级优秀人数即可. 【详解】解:(1)将七年级10名学生的成绩从小到大排列后,处在中间位置的两个数的平均数为: 899089.52+=, 因此中位数是89.5,即89.5a =;八年级10名学生成绩出现次数最多的是93,共出现2次,因此众数是93,即b =93, 八年级10名学生成绩处在“C 组”的有10-2-3-1=4(人), 补全频数分布直方图如下:(2)八年级学生掌握防火安全知识较好.因为七、八年级平均分相等,八年级中位数92.5大于七年级中位数89.5,所以八年级学生掌握防火安全知识较好.(3)17 80010001100210⨯+⨯=(人);答:参加此次竞赛活动成绩优秀的学生人数是1100人.。
数学中考概率统计选择题汇总
数学中考概率统计选择题汇总1. 甲、乙两人进行投篮比赛,甲投篮命中率为0.8,乙投篮命中率为0.6。
假设两人投篮是相互独立的,求甲投中而乙未投中的概率。
2. 一个袋子里有5个红球和5个蓝球,随机取出一个球,取出红球的概率是多少?3. 某人投掷两个骰子,求两个骰子点数之和为7的概率。
4. 一个班级有男生30人,女生20人,从中随机抽取5人,抽取到女生的概率是多少?5. 抛掷一个公平的硬币,求硬币正面朝上的概率。
6. 某班级有40名学生,其中有20名喜欢数学,15名喜欢物理,10名两门都喜欢。
求至少喜欢一门的学生人数的概率。
7. 某人有5个红球和5个蓝球,随机取出两个球,求取出的两个球颜色相同的概率。
8. 甲、乙两人进行射击比赛,甲射击命中率为0.7,乙射击命中率为0.6。
假设两人射击是相互独立的,求两人都未命中的概率。
9. 一个袋子里有8个红球和7个蓝球,随机取出一个球,取出蓝球的概率是多少?10. 某人投掷三个骰子,求三个骰子点数之和为10的概率。
11. 一个班级有男生25人,女生25人,从中随机抽取4人,抽取到男生的概率是多少?12. 抛掷一个公平的硬币两次,求两次都是正面朝上的概率。
13. 某班级有30名学生,其中有15名喜欢数学,10名喜欢物理,5名两门都喜欢。
求至少喜欢一门的学生人数的概率。
14. 某人有6个红球和6个蓝球,随机取出两个球,求取出的两个球颜色相同的概率。
15. 甲、乙两人进行射击比赛,甲射击命中率为0.8,乙射击命中率为0.5。
假设两人射击是相互独立的,求两人都未命中的概率。
16. 一个袋子里有7个红球和6个蓝球,随机取出一个球,取出红球的概率是多少?17. 某人投掷两个骰子,求两个骰子点数之和为8的概率。
18. 一个班级有男生35人,女生25人,从中随机抽取5人,抽取到女生的概率是多少?19. 抛掷一个公平的硬币三次,求至少有一次正面朝上的概率。
20. 某班级有40名学生,其中有20名喜欢数学,15名喜欢物理,5名两门都喜欢。
概率与统计(40题)-2023年中考数学真题分项汇编(全国通用)(解析版)
概率与统计(40题)一、单选题1.(2023·上海·统考中考真题)如图所示,为了调查不同时间段的车流量,某学校的兴趣小组统计了不同时间段的车流量,下图是各时间段的小车与公车的车流量,则下列说法正确的是()A.小车的车流量与公车的车流量稳定;B.小车的车流量的平均数较大;C.小车与公车车流量在同一时间段达到最小值;D.小车与公车车流量的变化趋势相同.【答案】B【分析】根据折线统计图逐项判断即可得.【详解】解:A、小车的车流量不稳定,公车的车流量较为稳定,则此项错误,不符合题意;B、小车的车流量的平均数较大,则此项正确,符合题意;C、小车车流量达到最小值的时间段早于公车车流量,则此项错误,不符合题意;D、小车车流量的变化趋势是先增加、再减小、又增加;大车车流量的变化趋势是先增加、再减小,则此项错误,不符合题意;故选:B.【点睛】本题考查了折线统计图,读懂折线统计图是解题关键.2.(2023·四川遂宁·统考中考真题)为增强班级凝聚力,吴老师组织开展了一次主题班会.班会上,他设计了一个如图的飞镖靶盘,靶盘由两个同心圆构成,小圆半径为10cm,大圆半径为20cm,每个扇形的圆心角为60度.如果用飞镖击中靶盘每一处是等可能的,那么小全同学任意投掷飞镖1次(击中边界或没有击中靶盘,则重投1次),投中“免一次作业”的概率是()【答案】B【分析】根据扇形面积公式求出免一次作业对应区域的面积,再根据投中“免一次作业”的概率=免一次作业对应区域的面积÷大圆面积进行求解即可【详解】解:由题意得,大圆面积为2220400cm ππ⨯=,免一次作业对应区域的面积为2226020601050cm 360360πππ⨯⨯⨯⨯−=,∴投中“免一次作业”的概率是5014008ππ=,故选:B .【点睛】本题主要考查了几何概率,扇形面积,正确求出大圆面积和免一次作业对应区域的面积是解题的关键.A .58B 【答案】B【分析】设小正方形的边长为1,则大正方形的边长为32,根据题意,分别求得阴影部分面积和总面积,根据概率公式即可求解.【详解】解:设小正方形的边长为1,则大正方形的边长为32,∴总面积为2231614169252⎛⎫⨯+⨯=+= ⎪⎝⎭,阴影部分的面积为2239132122222⎛⎫⨯+⨯=+=⎪⎝⎭,∴点P 落在阴影部分的概率为131322550=, 故选:B .【点睛】本题考查了几何概率,分别求得阴影部分的面积是解题的关键.根据表中数据,要从中选择一名成绩好且发挥稳定的运动员参加比赛,应选择( ) A .甲 B .乙 C .丙 D .丁【答案】D【分析】根据10次射击成绩的平均数x 可知淘汰乙;再由10次射击成绩的方差2S 可知1.8 1.20.4>>,也就是丁的射击成绩比较稳定,从而得到答案. 【详解】解:98>,∴由四人的10次射击成绩的平均数x 可知淘汰乙;1.8 1.20.4>>,∴由四人的10次射击成绩的方差2S 可知丁的射击成绩比较稳定;故选:D .【点睛】本题考查通过统计数据做决策,熟记平均数与方差的定义与作用是解决问题的关键.5.(2023·湖南怀化·统考中考真题)某县“三独”比赛独唱项目中,5名同学的得分分别是:9.6,9.2,9.6,9.7,9.4.关于这组数据,下列说法正确的是( )A .众数是9.6B .中位数是9.5C .平均数是9.4D .方差是0.3【答案】A【分析】先把5个数据按从小到大的顺序排列,而后用中位数,众数,平均数和方差的定义及计算方法逐一判断.【详解】解:5个数按从小到大的顺序排列9.2,9.4,9.6,9.6,9.7,A、9.6出现次数最多,众数是9.6,故正确,符合题意;B、中位数是9.6,故不正确,不符合题意;C、平均数是()19.2+9.4+9.62+9.7=9.55⨯,故不正确,不符合题意;D、方差是()()()()222219.29.5+9.49.5+29.69.5+9.79.5=0.0325⎡⎤⨯−−−−⎣⎦,故不正确,不符合题意.故选:A.【点睛】本题考查了中位数,众数,平均数和方差,熟练掌握这些定义及计算方法是解决此类问题的关键.A.该小组共统计了100名数学家的年龄B.统计表中m的值为5C.长寿数学家年龄在9293−岁的人数最多D.《数学家传略辞典》中收录的数学家年龄在9697−岁的人数估计有110人【答案】D【分析】利用年龄范围为9899−的人数为10人,对应的百分比为10%,即可判断A 选项;由A 选项可知该小组共统计了100名数学家的年龄,根据1005%5m =⨯=即可判断B 选项;由扇形统计图可知,长寿数学家年龄在9293−岁的占的百分比最大,即可判断C 选项;用2200乘以小组共统计了100名数学家的年龄中在9697−岁的百分比,即可判断D 选项.【详解】解:A .年龄范围为9899−的人数为10人,对应的百分比为10%,则可得1010%100÷=(人),即该小组共统计了100名数学家的年龄,故选项正确,不符合题意;B .由A 选项可知该小组共统计了100名数学家的年龄,则1005%5m =⨯=,故选项正确,不符合题意;C .由扇形统计图可知,长寿数学家年龄在9293−岁的占的百分比最大,即长寿数学家年龄在9293−岁的人数最多,故选项正确,不符合题意;D .《数学家传略辞典》中收录的数学家年龄在9697−岁的人数估计有112200242100⨯=人,故选项错误,符合题意. 故选:D .【点睛】此题考查了扇形统计图和统计表,从扇形统计图和统计表中获取正确信息,进行正确计算是解题的关键.二、填空题这种绿豆发芽的概率的估计值为________(精确到0.01). 【答案】0.93【分析】根据题意,用频率估计概率即可.【详解】解:由图表可知,绿豆发芽的概率的估计值0.93, 故答案为:0.93.【点睛】本题考查了利用频率估计概率.解题的关键在于明确:大量重复试验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率.【答案】10【分析】根据概率公式计算即可得出结果. 【详解】解:该生体重“标准”的概率是350750010=, 故答案为:710.【点睛】本题考查了概率公式,熟练掌握概率=所求情况数与总情况数之比是本题的关键.【答案】1500吨【分析】由题意易得试点区域的垃圾收集总量为300吨,然后问题可求解. 【详解】解:由扇形统计图可得试点区域的垃圾收集总量为()60150129300÷−−−=%%%(吨),∴全市可收集的干垃圾总量为30050101500⨯⨯=%(吨); 故答案为1500吨.【点睛】本题主要考查扇形统计图,熟练掌握扇形统计图是解题的关键.10.(2023·浙江宁波·统考中考真题)一个不透明的袋子里装有3个绿球、3个黑球和6个红球,它们除颜色外其余相同.从袋中任意摸出一个球为绿球的概率为_____________.【答案】1 4【分析】从袋子里任意摸一个球有12种等可能的结果,其中是绿球的有3种,根据简单概率公式代值求解即可得到答案.【详解】解:由题意可知,从袋子里任意摸一个球有12种等可能的结果,其中是绿球的有3种,P∴(任意摸出一个球为绿球)31 124==,故答案为:1 4.【点睛】本题考查概率问题,弄清总的结果数及符合要求的结果数,熟记简单概率公式求解是解决问题的关键.三、解答题(1)阳阳已经对B,C型号汽车数据统计如表,请继续求出A型号汽车的平均里程、中位数和众数.(2)为了尽可能避免行程中充电耽误时间,又能经济实惠地用车,请你从相关统计量和符合行程要求的百分比等进行分析,给出合理的用车型号建议.【答案】(1)平均里程:200km ;中位数:200km ,众数:205km ;(2)见解析 【分析】(1)观察统计图,根据平均数、中位数和众数的计算方法求解即可; (2)根据各型号汽车的平均里程、中位数、众数和租金方面进行分析. 【详解】(1)解:由统计图可知: A 型号汽车的平均里程:31904195520062052210200(km)34562A x ⨯+⨯+⨯+⨯+⨯==++++,A 型号汽车的里程由小到大排序:最中间的两个数(第10、11个数据)是200、200,故中位数200200200(km)2+==,出现充满电后的里程最多的是205公里,共六次,故众数为205km .(2)选择B 型号汽车.理由:A 型号汽车的平均里程、中位数、众数均低于210km ,且只有10%的车辆能达到行程要求,故不建议选择;B ,C 型号汽车的平均里程、中位数、众数都超过210km ,其中B 型号汽车有90%符合行程要求,很大程度上可以避免行程中充电耽误时间,且B 型号汽车比C 型号汽车更经济实惠,故建议选择B 型号汽车.【点睛】本题考查了统计量的选择,平均数、中位数和众数,熟练掌握平均数、方差、中位数的定义和意义是解题的关键.根据以上信息,解答下列问题:(1)补全频数分布直方图;(2)抽取的40名学生成绩的中位数是___________;(3)如果测试成绩达到80分及以上为优秀,试估计该校800名学生中对安全知识掌握程度为优秀的学生约有多少人?【答案】(1)见解析;(2)82;(3)估计该校800名学生中对安全知识掌握程度为优秀的学生约有440人 【分析】(1)根据总人数减去其他组的人数求得7080x ≤<的人数,即可补全直方图; (2)根据中位数为第20、21个数据的平均数,结合直方图或分布表可得; (3)用样本估计总体即可得.【详解】(1)解:404612108−−−−=(人), 补全的频数分布直方图如下图所示,;(2)解:∵46818++=, ∴第20、21个数为81、83;∴抽取的40名学生成绩的中位数是()18183822+=;故答案为:82; (3)解:由题意可得:121080044040+⨯=(人),答:估计该校800名学生中对安全知识掌握程度为优秀的学生约有440人.【点睛】本题考查频数分布直方图、中位数,用样本估计总体,解题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.13.(2023·浙江·统考中考真题)为全面提升中小学生体质健康水平,我市开展了儿童青少年“正脊行动”.人民医院专家组随机抽取某校各年级部分学生进行了脊柱健康状况筛查.根据筛查情况,李老师绘制了两幅不完整的统计图表,请根据图表信息解答下列问题: 抽取的学生脊柱健康情况统计表(1)求所抽取的学生总人数;(2)该校共有学生1600人,请估算脊柱侧弯程度为中度和重度的总人数;(3)为保护学生脊柱健康,请结合上述统计数据,提出一条合理的建议.【答案】(1)200人;(2)80人;(3)【分析】(1)利用抽取的学生中正常的人数除以对应的百分比即可得到所抽取的学生总人数;(2)用该校学生总数乘以抽取学生中脊柱侧弯程度为中度和重度的百分比即可得到答案;(3)利用图表中的数据提出合理建议即可.【详解】(1)解:17085%200÷=(人).∴所抽取的学生总人数为200人.(2)() 1600185%10%80⨯−−=(人).∴估算该校学生中脊柱侧弯程度为中度和重度的总人数有80人.(3)该校学生脊柱侧弯人数占比为15%,说明该校学生脊柱侧弯情况较为严重,建议学校要每天组织学生做护脊操等.【点睛】此题考查了统计表和扇形统计图,熟练掌握用部分除以对应的百分比求总数、用样本估计总体是解题的关键.【答案】(1)1,8;(2)23,;(3)优秀率高的年级不是平均成绩也高,理由见解析【分析】(1)根据扇形统计图得出七年级活动成绩为7分的学生数的占比为10%,即可得出七年级活动成绩为7分的学生数,根据扇形统计图结合众数的定义,即可求解;(2)根据中位数的定义,得出第5名学生为8分,第6名学生为9分,进而求得a,b的值,即可求解;(3)分别求得七年级与八年级的优秀率与平均成绩,即可求解.−−−【详解】(1)解:根据扇形统计图,七年级活动成绩为7分的学生数的占比为150%20%20%=10%´,∴样本中,七年级活动成绩为7分的学生数是1010%=1根据扇形统计图,七年级活动成绩的众数为8分, 故答案为:1,8.(2)∵八年级10名学生活动成绩的中位数为8.5分,∴第5名学生为8分,第6名学生为9分,∴5122a =−−=, 1012223b =−−−−=,故答案为:23,. (3)优秀率高的年级不是平均成绩也高,理由如下,七年级优秀率为20%20%=40%+,平均成绩为:710%850%920%1020%=8.5⨯+⨯+⨯+⨯,八年级优秀率为32100%50%10+⨯=40%>,平均成绩为:()167228392108.310⨯+⨯+⨯+⨯+⨯=8.5<, ∴优秀率高的年级为八年级,但平均成绩七年级更高, ∴优秀率高的年级不是平均成绩也高【点睛】本题考查了扇形统计图,统计表,中位数,众数,求一组数据的平均数,从统计图表获取信息是解题的关键.②若将车辆的外观造型,舒适程度、操控性能,售后服务等四项评分数据按2:3:3:2的比例统计,求A 款新能原汽车四项评分数据的平均数. (2)合理建议:请按你认为的各项“重要程度”设计四项评分数据的比例,并结合销售量,以此为依据建议小明的爸爸购买哪款汽车?说说你的理由.【答案】(1)①3015辆,②68.3分;(2)选B 款,理由见解析 【分析】(1)①根据中位数的概念求解即可; ②根据加权平均数的计算方法求解即可; (2)根据加权平均数的意义求解即可. 【详解】(1)①由中位数的概念可得,B 款新能源汽车在2022年9月至2023年3月期间月销售量的中位数为3015辆; ②172270367364268.32332x ⨯+⨯+⨯+⨯==+++分.∴A 款新能原汽车四项评分数据的平均数为68.3分; (2)给出1:2:1:2的权重时, 72170267164267.81212A x ⨯+⨯+⨯+⨯=≈+++(分),70171270168269.71212B x ⨯+⨯+⨯+⨯=≈+++(分),75165267161265.71212C x ⨯+⨯+⨯+⨯=≈+++(分),结合2023年3月的销售量, ∴可以选B 款.【点睛】此题考查了中位数和加权平均数,以及利用加权平均数做决策,解题的关键是熟练掌握以上知识点.16.(2023·江苏连云港·统考中考真题)如图,有4张分别印有Q 版西游图案的卡片:A 唐僧、B 孙悟空、C 猪八戒、D 沙悟净.现将这4张卡片(卡片的形状、大小、质地都相同)放在不透明的盒子中,搅匀后从中任意取出1张卡片,记录后放回、搅匀,再从中任意取出1张卡片求下列事件发生的概率: (1)第一次取出的卡片图案为“B 孙悟空”的概率为__________;(2)用画树状图或列表的方法,求两次取出的2张卡片中至少有1张图案为“A 唐僧”的概率.【答案】(1)14;(2)716【分析】(1)根据概率公式即可求解;(2)根据题意,画出树状图, 进而根据概率公式即可求解. 【详解】(1)解:共有4张卡片,第一次取出的卡片图案为“B 孙悟空”的概率为14 故答案为:14.(2)树状图如图所示:由图可以看出一共有16种等可能结果,其中至少一张卡片图案为“A 唐僧”的结果有7种. ∴P (至少一张卡片图案为“A 唐僧”)716=.答:两次取出的2张卡片中至少有一张图案为“A 唐僧”的概率为716.【点睛】本题考查了概率公式求概率,画树状图法求概率,熟练掌握求概率的方法是解题的关键.【答案】(1)100人;(2)270人【分析】(1)根据保山市腾冲市的员工人数除以所占百分比即可求出本次被抽样调查的员工人数;(2)用该公司总的员工数乘以样本中保山市腾冲市的员工人数除以所占百分比即可估计出该公司意向前往保山市腾冲市的员工人数.÷(人),【详解】(1)本次被抽样调查的员工人数为:3030.00%=100所以,本次被抽样调查的员工人数为100人;⨯(人),(2)90030.00%=270答:估计该公司意向前往保山市腾冲市的员工人数为270人.【点睛】本题考查扇形统计图及相关计算.熟练掌握用样本估计总体是解答本题的关键.18.(2023·新疆·统考中考真题)跳绳是某校体育活动的特色项目.体育组为了了解七年级学生1分钟跳绳次数情况,随机抽取20名七年级学生进行1分钟跳绳测试(单位:次),数据如下:请根据以上信息解答下列问题: (1)填空:=a ______,b =______;(2)学校规定1分钟跳绳165次及以上为优秀,请你估计七年级240名学生中,约有多少名学生能达到优秀? (3)某同学1分钟跳绳152次,请推测该同学的1分钟跳绳次数是否超过年级一半的学生?说明理由. 【答案】(1)165,150;(2)84;(3)见解析【分析】(1)根据众数与中位数的定义进行计算即可求解;(2)根据样本估计总体,用跳绳165次及以上人数的占比乘以总人数,即可求解; (3)根据中位数的定义即可求解;【详解】(1)解:这组数据中,165出现了4次,出现次数最多 ∴165a =,这组数据从小到大排列,第1011个数据分别为148,152, ∴1481521502b +==,故答案为:165,150.(2)解:∵跳绳165次及以上人数有7个, ∴估计七年级240名学生中,有72408420⨯=个优秀,(3)解:∵中位数为150,∴某同学1分钟跳绳152次,可推测该同学的1分钟跳绳次数超过年级一半的学生.【点睛】本题考查了求中位数,众数,样本估计总体,熟练掌握中位数、众数的定义是解题的关键. 19.(2023·甘肃武威·统考中考真题)某校八年级共有200名学生,为了解八年级学生地理学科的学习情况,从中随机抽取40名学生的八年级上、下两个学期期末地理成绩进行整理和分析(两次测试试卷满分均为35分,难度系数相同;成绩用x 表示,分成6个等级:A .10x <;B .10 1.5x ≤<;C .1520x ≤<;D .2025x ≤<;E .2530x ≤<;F .3035x ≤≤).下面给出了部分信息:b .八年级学生上学期期末地理成绩在C .1520x ≤<这一组的成绩是: 15,15,15,15,15,16,16,16,18,18c .八年级学生上、下两个学期期末地理成绩的平均数、众数、中位数如下:学期 平均数 众数 中位数八年级上学期 17.715 m【答案】(1)16;(2)35;(3)八年级,理由见解析【分析】(1)由中位数的概念,可知40人成绩的中位数是第20、21位的成绩; (2)根据样本估计总体即可求解; (3)根据平均成绩或中位数即可判断.【详解】(1)解:由中位数的概念,可知40人成绩的中位数是第20、21位的成绩,由统计图知A 组4人,B 组10人,C 组10人,则中位数在C 组,第20、21位的成绩分别是16,16, 则中位数是1616162+=;故答案为:16; (2)解:612003540+⨯=(人),这200名学生八年级下学期期末地理成绩达到优秀的约有35人,故答案为:35;(3)解:因为抽取的八年级学生的期末地理成绩的平均分(或中位数)下学期的比上学期的高,所以八年级学生下学期期末地理成绩更好.【点睛】本题考查了条形统计图,中位数,众数等知识,熟练掌握知识点并灵活运用是解题的关键. 平均数 众数 中位数七年级参赛学生成绩 85.5 m 87 八年级参赛学生成绩 85.5 85n根据以上信息,回答下列问题:(1)填空:m =________,n =________;(2)七、八年级参赛学生成绩的方差分别记为21S 、22S ,请判断21S ___________22S (填“>”“<”或“=”);(3)从平均数和中位数的角度分析哪个年级参赛学生的成绩较好. 【答案】(1)80,86;(2)>;(3)见解析【分析】(1)找到七年级学生的10个数据中出现次数最多的即为m 的值,将八年级的10个数据进行排序,第5和第6个数据的平均数即为n 的值;(2)根据折线统计图得到七年级的数据波动较大,根据方差的意义,进行判断即可; (3)利用平均数和中位数作决策即可.【详解】(1)解:七年级的10个数据中,出现次数最多的是:80,∴80m=;将八年级的10个数据进行排序:76,77,85,85,85,87,87,88,88,97;∴()18587862n=+=;故答案为:80,86;(2)由折线统计图可知:七年级的成绩波动程度较大,∵方差越小,数据越稳定,∴2212S S>;故答案为:>.(3)七年级和八年级的平均成绩相同,但是七年级的中位数比八年级的大,所以七年级参赛学生的成绩较好.【点睛】本题考查数据的分析.熟练掌握众数,中位数的确定方法,利用中位数作决策,是解题的关键.(1)A,B两班的学生人数分别是多少?(2)请选择一种适当的统计量,分析比较A,B两班的后测数据.(3)通过分析前测、后测数据,请对张老师的教学实验效果进行评价.【答案】(1)A ,B 两班的学生人数分别是50人,46人;(2)见解析;(3)见解析 【分析】(1)由统计表中的数据个数之和可得两个班的总人数;(2)先求解两个班成绩的平均数,再判断中位数落在哪个范围,以及15分以上的百分率,再比较即可; (3)先求解前测数据的平均数,判断前测数据两个班的中位数落在哪个组,计算15人数的增长百分率,再从这三个分面比较即可.【详解】(1)解: A 班的人数:28993150++++=(人) B 班的人数:251082146++++=(人) 答:A ,B 两班的学生人数分别是50人,46人. (2)14 2.5167.51212.5617.5222.59.150A x ⨯+⨯+⨯+⨯+⨯==,6 2.587.51112.51817.5322.512.946B x ⨯+⨯+⨯+⨯+⨯=≈, 从平均数看,B 班成绩好于A 班成绩.从中位数看,A 班中位数在510x <≤这一范围,B 班中位数在1015x <≤这一范围,B 班成绩好于A 班成绩. 从百分率看,A 班15分以上的人数占16%,B 班15分以上的人数约占46%,B 班成绩好于A 班成绩. (3)前测结果中: A 28 2.597.5912.5317.5122.56.550x ⨯+⨯+⨯+⨯+⨯'==B6.4x '=≈从平均数看,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好. 从中位数看,两班前测中位数均在05x <≤这一范围,后测A 班中位数在510x <≤这一范围,B 班中位数在1015x <≤这一范围,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.从百分率看,A 班15分以上的人数增加了100%,B 班15分以上的人数增加了600%,两班成绩较前测都有上升,但实验班提升得更明显,因此张老师新的教学方法效果较好.【点睛】本题考查的是从统计表中获取信息,平均数,中位数的含义,增长率的含义,选择合适的统计量作分析,熟练掌握基础的统计知识是解本题的关键.……结合调查信息,回答下列问题:本次调查共抽查了多少名学生?900名初中生中最喜爱篮球项目的人数.假如你是小组成员,请你向该校提一条合理建议.【答案】(1)100;(2)360;(3)见解析【分析】(1)根据乒乓球人数和所占比例,求出抽查的学生数;(2)先求出喜爱篮球学生比例,再乘以总数即可;(3)从图中观察或计算得出,合理即可.÷=,【详解】(1)被抽查学生数:3030%100答:本次调查共抽查了100名学生.⨯=,(2)被抽查的100人中最喜爱羽毛球的人数为:1005%5−−−−=,∴被抽查的100人中最喜爱篮球的人数为:100301015540∴40900360100⨯=(人).答:估计该校900名初中生中最喜爱篮球项目的人数为360.(3)答案不唯一,如:因为喜欢篮球的学生较多,建议学校多配置篮球器材、增加篮球场地等.【点睛】本题考查从条形统计图和扇形统计图获取信息的能力,并用所获取的信息反映实际问题.【答案】(1)8;(2)108︒;(3)5 6【分析】(1)用做饭的人数除以做饭点的百分比25%,得抽取的总人数,再减去“洗衣”、“拖地”、“刷碗”的人数即可求得到m值;(2)用360︒乘以“拖地”人数所占的百分比,即可求解;(3)画树状图或列表分析出所有可能的结果数和有男生的结果数,再用概率公式计算即可.【详解】(1)解:1025%1012108m=÷−−−=,故荅案为:8;(2)解:() 360121025%108︒⨯÷÷=︒,故荅案为:108°;(3)解:方法一:画树状图如下:由图可知所有可能的结果共的12种,有男生的结果有10种,所以所选同学中有男生的概率为105 126=.方法二:列表如下:由表可知所有可能的结果共的12种,有男生的结果有10种,所以所选同学中有男生的概率为105 126=.【点睛】本题考查统计表,扇形统计图,用画树状图或列表的方法求概率.熟练掌握从统计图表中获取有用信息和用画树状图或列表的方法求概率是解题的关键.(1)补全学生课外读书数量条形统计图;(2)请直接写出本次所抽取学生课外读书数量的众数、中位数和平均数;(3)该校有600名学生,请根据抽样调查的结果,估计本学期开学以来课外读书数量不少于【答案】(1)补全学生课外读书数量条形统计图见解析;(2)4,72,103;(3)450人【分析】(1)根据已知条件可知,课外读书数量为2本的有2人,4本的有4人,据此可以补全条形统计图;(2)根据众数,中位数和平均数的定义求解即可;(3)用该校学生总数乘以抽样调查的数据中外读书数量不少于3本的学生人数所占的比例即可.【详解】(1)补全学生课外读书数量条形统计图,如图:(2)∵本次所抽取学生课外读书数量的数据中出现次数最多的是4,∴众数是4.将本次所抽取的12名学生课外读书数量的数据,按照从小到大的顺序排列为:1,2,2,3,3,3,4,4,4,4,5,5.∵中间两位数据是3,4,∴中位数是:347 22+=.平均数为:112233445210123x⨯+⨯+⨯+⨯+⨯==.(3)3429 6006004501212++⨯=⨯=,∴该校有600名学生,估计本学期开学以来课外读书数量不少于3本的学生人数为450人.【点睛】本题主要考查了条形统计图,众数,中位数,平均数,以及用样本所占百分比估计总体的数量,熟练掌握众数,中位数,平均数的定义是解题的关键.25.(2023·四川达州·统考中考真题)在深化教育综合改革、提升区域教育整体水平的进程中,某中学以兴趣小组为载体,加强社团建设,艺术活动学生参与面达100%,通过调查统计,八年级二班参加学校社团的情况(每位同学只能参加其中一项):A.剪纸社团,B.泥塑社团,C.陶笛社团,D.书法社团,E.合唱社团,并绘制了如下两幅不完整的统计图.(1)该班共有学生_________人,并把条形统计图补充完整;(2)扇形统计图中,m =___________,n =___________,参加剪纸社团对应的扇形圆心角为_______度;(3)小鹏和小兵参加了书法社团,由于参加书法社团几位同学都非常优秀,老师将从书法社团的学生中选取2人参加学校组织的书法大赛,请用“列表法”或“画树状图法”,求出恰好是小鹏和小兵参加比赛的概率.【答案】(1)见解析;(2)20,10,144;(3)110【分析】(1)利用C 类人数除以所占百分比可得调查的学生人数;用总人数减去其它四项的人数可得到D 的人数,然后补图即可;(2)根据总数与各项人数比值可求出m ,n 的值,A 项目的人数与总人数比值乘360︒即可得出圆心角的度数;(3)画树状图展示所有20求解.【详解】(1)本次调查的学生总数:510%50÷=(人),D 、书法社团的人数为:5020105105−−−−=(人),如图所示故答案为:50;(2)由图知,105020%5010%2050360144÷=÷=÷⨯︒=︒,5,,。
统计概率中考真题
统计概率中考真题精选汇编及答案一一、选择题1. (2011广东东莞,4,3分)在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A .15B .13C .58D .38【答案】C2. (2011福建福州,8,4分)从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是( )A .0B .13C .23D . 1【答案】B3. (2011山东滨州,4,3分)四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( ) A.14 B. 12 C. 34D. 1 【答案】B4. (2011山东日照,8,3分)两个正四面体骰子的各面上分别标明数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为( ) (A )41 (B )163 (C )43 (D )83 【答案】AA.19B.16C.13D.12 【答案】C6. (2011 浙江湖州,6,3)下列事件中,必然事件是A .掷一枚硬币,正面朝上.B .a 是实数,l a l ≥0.C .某运动员跳高的最好成绩是20 .1米.D .从车间刚生产的产品中任意抽取一个,是次品.7. (2011浙江衢州,1,3分)5月19日为中国旅游日,衢州推出“读万卷书,行万里路,游衢州景”的主题系列旅游惠民活动,市民王先生准备在优惠日当天上午从孔氏南宗家庙。
烂柯河、龙游石窟中随机选择一个地点;下午从江郎山、三衢石林、开化根博园中随机选择一个地点游玩.则王先生恰好上午选中孔氏南宗庙,下午选中江郎山这两个地点的概率是()A. 19B.13C.23D.29【答案】A8. (2011浙江绍兴,7,4分)在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为()A.2B.4C.12D.16【答案】B9. (2011浙江义乌,9,3分)某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为()A.13B.19C.12D.23【答案】A10.(2011浙江省嘉兴,12,5分)从标有1到9序号的9张卡片中任意抽取一张,抽到序号是3的倍数的概率是.【答案】1 311.(2011台湾台北,3)表(一)表示某签筒中各种签的数量。
中考数学专题训练:概率(附参考答案)
中考数学专题训练:概率(附参考答案)1.如图是由16个相同的小正方形和4个相同的大正方形组成的图形,在这个图形内任取一点P,则点P落在阴影部分的概率为( )A.58B.1350C.1332D.5162.在6,7,8,9四个数字中任意选取两个数字,则这两个数字之和为奇数的概率是( )A.13B.12C.23D.143.先后两次抛掷同一枚质地均匀的硬币,则第一次正面向上、第二次反面向上的概率是( )A.14B.13C.12D.344.骰子各面上的点数分别是1,2,…,6.抛掷一枚骰子,朝上一面的点数是偶数的概率是( )A.12B.14C.16D.15.在四张反面无差别的卡片上,其正面分别印有线段、等边三角形、平行四边形和正六边形.现将四张卡片的正面朝下放置,混合均匀后从中随机抽取两张,则抽到的卡片正面图形都是轴对称图形的概率为( )A.12B.13C.14D.346.如果一个三位数中任意两个相邻数字之差的绝对值不超过1,则称该三位数为“平稳数”.用1,2,3这三个数字随机组成一个无重复数字的三位数,恰好是“平稳数”的概率为( )A.59B.12C.13D.297.一个不透明的盒子中装有2个黑球和4个白球,这些球除颜色外其他均相同,从中任意摸出3个球,下列事件为必然事件的是( )A.至少有1个白球B.至少有2个白球C.至少有1个黑球D.至少有2个黑球8.班长邀请A,B,C,D四位同学参加圆桌会议.如图,班长坐在⑤号座位,四位同学随机坐在①②③④四个座位,则A,B两位同学座位相邻的概率是( )A.14B.13C.12D.239.如图所示的电路图,同时闭合两个开关能形成闭合电路的概率是( )A.13B.23C.12D.110.如图,两个相同的可以自由转动的转盘A和B,转盘A被三等分,分别标有数字2,0,-1;转盘B被四等分,分别标有数字3,2,-2,-3.如果同时转动转盘A,B,转盘停止时,两个指针指向转盘A,B上的对应数字分别为x,y(当指针指在两个扇形的交线时,需重新转动转盘),那么点(x,y)落在平面直角坐标系第二象限的概率是.11.中国象棋文化历史久远.在图中所示的部分棋盘中,“馬”的位置在“”(图中虚线)的下方,“馬”移动一次能够到达的所有位置已用“·”标记,则“馬”随机移动一次,到达的位置在“”上方的概率是______.12.一个不透明的口袋中装有标号为1,2,3的三个小球,这些小球除标号外完全相同,随机摸出1个小球,然后把小球重新放回口袋摇匀,再随机摸出1个小球,那么两次摸出小球上的数字之和是偶数的概率是______.13.同时抛掷两枚质地均匀的骰子,则事件“两枚骰子的点数和小于8且为偶数”的概率是______.14.为落实“双减提质”,进一步深化“数学提升工程”,提升学生数学核心素养,某学校拟开展“双减”背景下的初中数学活动型作业成果展示现场会,为了解学生最喜爱的项目,现随机抽取若干名学生进行调查,并将调查结果绘制成如下两幅不完整的统计图:根据以上信息,解答下列问题.(1)参与此次抽样调查的学生人数是_______人,补全统计图1(要求在条形图上方注明人数);(2)图2中扇形C的圆心角度数为______度;(3)若参加成果展示活动的学生共有1 200人,估计其中最喜爱“测量”项目的学生人数是多少;(4)计划在A,B,C,D,E五项活动中随机选取两项作为直播项目,请用列表或画树状图的方法,求恰好选中B,E这两项活动的概率.15.在一个不透明的袋子中,装有五个分别标有数字-√3,√6,0,2,π的小球,这些小球除数字外其他完全相同.从袋子中随机摸出两个小球,两球上的数字之积恰好是有理数的概率为______.16.新高考“3+1+2”选科模式是指除语文、数学、外语3门科目以外,学生应在历史和物理2门首选科目中选择1科,在思想政治、地理、化学、生物学4门再选科目中选择2科.某同学从4门再选科目中随机选择2科,恰好选择地理和化学的概率为______.17.在创建“文明校园”的活动中,班级决定从四名同学(两名男生,两名女生)中随机抽取两名同学担任本周的值周长,那么抽取的两名同学恰好是一名男生和一名女生的概率是______.18.从2 021,2 022,2 023,2 024,2 025 这五个数中任意抽取3个数.抽到中位数是2 022的3个数的概率等于______.19.为更好引导和促进旅游业恢复发展,深入推动大众旅游,文化和旅游部决定开展2023年“5·19中国旅游日”活动.青海省某旅行社为了解游客喜爱的旅游景区的情况,对五一假期期间的游客去向进行了随机抽样调查,并绘制了不完整的统计图,请根据图1、图2中所给的信息,解答下列问题.(1)此次抽样调查的样本容量是_______;(2)将图1中的条形统计图补充完整;(3)根据抽样调查结果,五一假期期间这四个景区共接待游客约19万人,请估计前往青海湖景区的游客有多少万人;(4)若甲、乙两名游客从四个景区中任选一个景区旅游,请用树状图或列表法求出他们选择同一景区的概率.20.2022年3月23日下午,“天宫课堂”第二课开讲,航天员翟志刚、王亚平、叶光富相互配合进行授课,激发了同学们学习航天知识的热情.小冰和小雪参加航天知识竞赛时,均获得了一等奖,学校想请一位同学作为代表分享获奖心得.小冰和小雪都想分享,于是两人决定一起做游戏,谁获胜谁分享,游戏规则如下:甲口袋装有编号为1,2的两个球,乙口袋装有编号为1,2,3,4,5的五个球,两口袋中的球除编号外其他都相同.小冰先从甲口袋中随机摸出一个球,小雪再从乙口袋中随机摸出一个球.若两球编号之和为奇数,则小冰获胜;若两球编号之和为偶数,则小雪获胜.请用列表或画树状图的方法,说明这个游戏对双方是否公平.参考答案1.B 2.C 3.A 4.A 5.A 6.C 7.A 8.C 9.B10.1611.1412.5913.1414.(1)120 图略(2)90 (3)300人(4)11015.25 16.1617.2318.31019.(1)200 (2)B组的人数为60人,补全条形统计图略(3)估计前往青海湖景区的游客有6.65万人(4)1420.游戏对双方都公平。
统计概率中考真题精选汇编及答案一范文
统计概率中考真题精选汇编及答案一一、选择题1. (2011广东东莞,4,3分)在一个不透明的口袋中,装有5个红球3个白球,它们除颜色外都相同,从中任意摸出一个球,摸到红球的概率为( )A .15B .13C .58D .38【答案】C2. (2011福建福州,8,4分)从1,2,-3三个数中,随机抽取两个数相乘,积是正数的概率是( ) A .0 B .13C .23D . 1【答案】B3. (2011山东滨州,4,3分)四张质地、大小、背面完全相同的卡片上,正面分别画有圆、矩形、等边三角形、等腰梯形四个图案.现把它们的正面向下随机摆放在桌面上,从中任意抽出一张,则抽出的卡片正面图案是中心对称图形的概率为( ) A.14 B. 12 C. 34D. 1 【答案】B4. (2011山东日照,8,3分)两个正四面体骰子的各面上分别标明数字1,2,3,4,如同时投掷这两个正四面体骰子,则着地的面所得的点数之和等于5的概率为( ) (A )41 (B )163 (C )43 (D )83【答案】A5. (2011山东泰安,16 ,3分)袋中装有编号为1,2,3的三个质地均匀、大小相同的球,从中随机取出一球记下编号后,放入袋中搅匀,再从袋中随机取出一球,两次所取球的编号相同的概率为A.19B.16C.13D.12 【答案】C6. (2011 浙江湖州,6,3)下列事件中,必然事件是A.掷一枚硬币,正面朝上.B.a是实数,l a l≥0.C.某运动员跳高的最好成绩是20 .1米.D.从车间刚生产的产品中任意抽取一个,是次品.【答案】B7. (2011浙江衢州,1,3分)5月19日为中国旅游日,衢州推出“读万卷书,行万里路,游衢州景”的主题系列旅游惠民活动,市民王先生准备在优惠日当天上午从孔氏南宗家庙。
烂柯河、龙游石窟中随机选择一个地点;下午从江郎山、三衢石林、开化根博园中随机选择一个地点游玩.则王先生恰好上午选中孔氏南宗庙,下午选中江郎山这两个地点的概率是()A. 19B.13C.23D.29【答案】A8. (2011浙江绍兴,7,4分)在一个不透明的盒子中装有8个白球,若干个黄球,它们除颜色不同外,其余均相同.若从中随机摸出一个球,它是白球的概率为23,则黄球的个数为()A.2B.4C.12D.16 【答案】B9. (2011浙江义乌,9,3分)某校安排三辆车,组织九年级学生团员去敬老院参加学雷锋活动,其中小王与小菲都可以从这三辆车中任选一辆搭乘,则小王与小菲同车的概率为()A.13B.19C.12D.23【答案】A10.(2011浙江省嘉兴,12,5分)从标有1到9序号的9张卡片中任意抽取一张,抽到序号是3的倍数的概率是.【答案】132311. (2011台湾台北,3)表(一)表示某签筒中各种签的数量。
数学中考概率统计选择题汇总
数学中考概率统计选择题汇总1. 下列事件中,是必然事件的是()A. 抛掷一枚硬币,出现正面B. 抛掷一枚硬币,出现反面C. 抛掷两枚硬币,出现两枚都是正面D. 抛掷两枚硬币,出现两枚都是反面2. 下列事件中,是随机事件的是()A. 抛掷一枚硬币,出现正面B. 抛掷一枚硬币,出现反面C. 抛掷两枚硬币,出现两枚都是正面D. 抛掷两枚硬币,出现两枚都是反面3. 抛掷两枚骰子,求出现两个都是3的概率()A. 1/6B. 1/12C. 1/36D. 1/24. 抛掷两枚骰子,求出现两个都是偶数的概率()A. 1/2B. 1/3C. 1/6D. 1/125. 抛掷两枚骰子,求出现两个都是奇数的概率()A. 1/2B. 1/3C. 1/6D. 1/126. 抛掷两枚骰子,求出现两个都是大于3的数的概率()A. 1/2B. 1/3C. 1/6D. 1/127. 抛掷两枚骰子,求出现两个都是小于4的数的概率()A. 1/2B. 1/3C. 1/6D. 1/128. 抛掷两枚骰子,求出现两个都是4的概率()A. 1/6B. 1/12C. 1/36D. 1/29. 抛掷两枚骰子,求出现两个都是5的概率()A. 1/6B. 1/12C. 1/36D. 1/210. 抛掷两枚骰子,求出现两个都是6的概率()A. 1/6B. 1/12C. 1/36D. 1/211. 抛掷两枚骰子,求出现两个都是小于3的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1212. 抛掷两枚骰子,求出现两个都是大于4的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1213. 抛掷两枚骰子,求出现两个都是大于等于3且小于等于4的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1214. 抛掷两枚骰子,求出现两个都是大于等于1且小于等于2的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1215. 抛掷两枚骰子,求出现两个都是大于等于2且小于等于3的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1216. 抛掷两枚骰子,求出现两个都是大于等于4且小于等于5的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1217. 抛掷两枚骰子,求出现两个都是大于等于5且小于等于6的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1218. 抛掷两枚骰子,求出现两个都是大于等于6且小于等于7的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1219. 抛掷两枚骰子,求出现两个都是大于等于7且小于等于8的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1220. 抛掷两枚骰子,求出现两个都是大于等于8且小于等于9的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1221. 抛掷两枚骰子,求出现两个都是大于等于9且小于等于10的数的概率()B. 1/3C. 1/6D. 1/1222. 抛掷两枚骰子,求出现两个都是大于等于10且小于等于11的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1223. 抛掷两枚骰子,求出现两个都是大于等于11且小于等于12的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1224. 抛掷两枚骰子,求出现两个都是大于等于12且小于等于13的数的概率()A. 1/2C. 1/6D. 1/1225. 抛掷两枚骰子,求出现两个都是大于等于13且小于等于14的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1226. 抛掷两枚骰子,求出现两个都是大于等于14且小于等于15的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1227. 抛掷两枚骰子,求出现两个都是大于等于15且小于等于16的数的概率()A. 1/2B. 1/3D. 1/1228. 抛掷两枚骰子,求出现两个都是大于等于16且小于等于17的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1229. 抛掷两枚骰子,求出现两个都是大于等于17且小于等于18的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1230. 抛掷两枚骰子,求出现两个都是大于等于18且小于等于19的数的概率()A. 1/2B. 1/3C. 1/631. 抛掷两枚骰子,求出现两个都是大于等于19且小于等于20的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1232. 抛掷两枚骰子,求出现两个都是大于等于20且小于等于21的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1233. 抛掷两枚骰子,求出现两个都是大于等于21且小于等于22的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1234. 抛掷两枚骰子,求出现两个都是大于等于22且小于等于23的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1235. 抛掷两枚骰子,求出现两个都是大于等于23且小于等于24的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1236. 抛掷两枚骰子,求出现两个都是大于等于24且小于等于25的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1237. 抛掷两枚骰子,求出现两个都是大于等于25且小于等于26的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1238. 抛掷两枚骰子,求出现两个都是大于等于26且小于等于27的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1239. 抛掷两枚骰子,求出现两个都是大于等于27且小于等于28的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1240. 抛掷两枚骰子,求出现两个都是大于等于28且小于等于29的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1241. 抛掷两枚骰子,求出现两个都是大于等于29且小于等于30的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1242. 抛掷两枚骰子,求出现两个都是大于等于30且小于等于31的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1243. 抛掷两枚骰子,求出现两个都是大于等于31且小于等于32的数的概率()B. 1/3C. 1/6D. 1/1244. 抛掷两枚骰子,求出现两个都是大于等于32且小于等于33的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1245. 抛掷两枚骰子,求出现两个都是大于等于33且小于等于34的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1246. 抛掷两枚骰子,求出现两个都是大于等于34且小于等于35的数的概率()A. 1/2C. 1/6D. 1/1247. 抛掷两枚骰子,求出现两个都是大于等于35且小于等于36的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1248. 抛掷两枚骰子,求出现两个都是大于等于36且小于等于37的数的概率()A. 1/2B. 1/3C. 1/6D. 1/1249. 抛掷两枚骰子,求出现两个都是大于等于37且小于等于38的数的概率()A. 1/2B. 1/3D. 1/1250. 抛掷两枚骰子,求出现两个都是大于等于38且小于等于39的数的概率()A. 1/2B. 1/3C. 1/6D. 1/12。
数学中考概率统计选择题汇总
数学中考概率统计选择题汇总1. 下列哪个选项中的概率最大?A. 抛掷一枚均匀的硬币,正面向上的概率B. 抛掷一枚均匀的骰子,掷出6点的概率C. 随机抽取一张扑克牌,抽到红桃的概率D. 随机抽取一个三位数,这个三位数是5的倍数的概率2. 在一次体育测试中,某学生的成绩是随机变量X,其可能取的值及相应的概率如下:X=60 P(X=60)=0.2X=70 P(X=70)=0.3X=80 P(X=80)=0.5则该学生的平均成绩是多少?3. 某人掷骰子,已知掷出的点数为偶数的概率是P(偶),掷出的点数为奇数的概率是P(奇),那么P(偶)+P(奇)的值是多少?4. 一个班级有30名学生,其中有15名女生,15名男生。
随机抽取一名学生,抽取到男生的概率是多少?5. 抛掷两枚均匀的硬币,出现两个正面的概率是多少?6. 某人随机抽取一张扑克牌,抽到红桃的概率是多少?7. 某人掷骰子,掷出1点的概率是多少?8. 某人随机抽取一张彩票,抽到中奖的概率是多少?9. 抛掷一枚均匀的硬币,正面向上和反面向上哪个概率大?10. 抛掷两枚均匀的硬币,出现两个反面的概率是多少?11. 某人随机抽取一张扑克牌,抽到方块的概率是多少?12. 某人掷骰子,掷出2点的概率是多少?13. 抛掷一枚均匀的硬币,出现正面的概率是多少?14. 抛掷两枚均匀的硬币,出现一个正面和一个反面的概率是多少?15. 某人随机抽取一张扑克牌,抽到黑桃的概率是多少?16. 某人掷骰子,掷出3点的概率是多少?17. 抛掷两枚均匀的硬币,出现两个正面和两个反面的概率各是多少?18. 某人随机抽取一张扑克牌,抽到梅花的概率是多少?19. 某人掷骰子,掷出4点的概率是多少?20. 抛掷两枚均匀的硬币,出现一个正面和两个反面的概率是多少?21. 某人随机抽取一张扑克牌,抽到红心的概率是多少?22. 某人掷骰子,掷出5点的概率是多少?23. 抛掷两枚均匀的硬币,出现一个反面和两个正面的概率是多少?24. 某人随机抽取一张扑克牌,抽到方块的概率是多少?25. 某人掷骰子,掷出6点的概率是多少?26. 抛掷两枚均匀的硬币,出现两个反面的概率是多少?27. 某人随机抽取一张扑克牌,抽到黑桃的概率是多少?28. 某人掷骰子,掷出1点的概率是多少?29. 抛掷两枚均匀的硬币,出现一个正面和一个反面的概率是多少?30. 某人随机抽取一张扑克牌,抽到梅花的概率是多少?31. 某人掷骰子,掷出2点的概率是多少?32. 抛掷两枚均匀的硬币,出现一个反面和两个正面的概率是多少?33. 某人随机抽取一张扑克牌,抽到红心的概率是多少?34. 某人掷骰子,掷出3点的概率是多少?35. 抛掷两枚均匀的硬币,出现一个正面和两个反面的概率是多少?36. 某人随机抽取一张扑克牌,抽到方块的概率是多少?37. 某人掷骰子,掷出4点的概率是多少?38. 抛掷两枚均匀的硬币,出现两个反面的概率是多少?39. 某人随机抽取一张扑克牌,抽到黑桃的概率是多少?40. 某人掷骰子,掷出5点的概率是多少?41. 抛掷两枚均匀的硬币,出现一个正面和两个反面的概率是多少?42. 某人随机抽取一张扑克牌,抽到梅花的概率是多少?43. 某人掷骰子,掷出6点的概率是多少?44. 抛掷两枚均匀的硬币,出现一个反面和两个正面的概率是多少?45. 某人随机抽取一张扑克牌,抽到红心的概率是多少?46. 某人掷骰子,掷出1点的概率是多少?47. 抛掷两枚均匀的硬币,出现一个正面和一个反面的概率是多少?48. 某人随机抽取一张扑克牌,抽到方块的概率是多少?49. 某人掷骰子,掷出2点的概率是多少?50. 抛掷两枚均匀的硬币,出现一个反面和两个正面的概率是多少?。
数学中考概率统计选择题汇总
数学中考概率统计选择题汇总1. 小明在掷一个均匀的六面骰子,求掷出偶数的概率是多少?2. 一枚均匀的硬币连续抛掷两次,求恰好两次都出现正面的概率是多少?3. 某班级有40名学生,其中有20名女生,20名男生,随机选取一名学生,求选取到女生的概率是多少?4. 一副52张的扑克牌中,随机抽取一张牌,求抽到红桃的概率是多少?5. 某班有30名学生,其中有15名参加了数学竞赛,10名参加了物理竞赛,5名两科都参加了,求至少参加了一科竞赛的学生人数的概率是多少?6. 某商店有5件衣服,其中有2件是红色的,3件是蓝色的,随机选取一件衣服,求选取到红色衣服的概率是多少?7. 某班级有20名学生,其中有10名喜欢篮球,8名喜欢足球,求至少喜欢一种球类运动的学生人数的概率是多少?8. 一副52张的扑克牌中,随机抽取一张牌,求抽到黑桃的概率是多少?9. 某班级有40名学生,其中有20名女生,20名男生,随机选取一名学生,求选取到男生的概率是多少?10. 某班级有30名学生,其中有15名参加了数学竞赛,10名参加了物理竞赛,5名两科都参加了,求没有参加任何竞赛的学生人数的概率是多少?11. 某商店有5件衣服,其中有2件是红色的,3件是蓝色的,随机选取一件衣服,求选取到蓝色衣服的概率是多少?12. 某班级有20名学生,其中有10名喜欢篮球,8名喜欢足球,求既不喜欢篮球也不喜欢足球的学生人数的概率是多少?13. 一副52张的扑克牌中,随机抽取一张牌,求抽到方块的概率是多少?14. 某班级有40名学生,其中有20名女生,20名男生,随机选取一名学生,求选取到非女生的概率是多少?15. 某班级有30名学生,其中有15名参加了数学竞赛,10名参加了物理竞赛,5名两科都参加了,求只参加了一科竞赛的学生人数的概率是多少?16. 某商店有5件衣服,其中有2件是红色的,3件是蓝色的,随机选取一件衣服,求选取到非红色衣服的概率是多少?17. 某班级有20名学生,其中有10名喜欢篮球,8名喜欢足球,求至少喜欢一种球类运动的学生人数的概率是多少?18. 一副52张的扑克牌中,随机抽取一张牌,求抽到梅花概率是多少?19. 某班级有40名学生,其中有20名女生,20名男生,随机选取一名学生,求选取到非男生的概率是多少?20. 某班级有30名学生,其中有15名参加了数学竞赛,10名参加了物理竞赛,5名两科都参加了,求两科都没参加的学生人数的概率是多少?21. 某商店有5件衣服,其中有2件是红色的,3件是蓝色的,随机选取一件衣服,求选取到非蓝色衣服的概率是多少?22. 某班级有20名学生,其中有10名喜欢篮球,8名喜欢足球,求既不喜欢篮球也不喜欢足球的学生人数的概率是多少?23. 一副52张的扑克牌中,随机抽取一张牌,求抽到大王概率是多少?24. 某班级有40名学生,其中有20名女生,20名男生,随机选取一名学生,求选取到非女生的概率是多少?25. 某班级有30名学生,其中有15名参加了数学竞赛,10名参加了物理竞赛,5名两科都参加了,求两科都没参加的学生人数的概率是多少?26. 某商店有5件衣服,其中有2件是红色的,3件是蓝色的,随机选取一件衣服,求选取到非红色衣服的概率是多少?27. 某班级有20名学生,其中有10名喜欢篮球,8名喜欢足球,求至少喜欢一种球类运动的学生人数的概率是多少?28. 一副52张的扑克牌中,随机抽取一张牌,求抽到小王概率是多少?29. 某班级有40名学生,其中有20名女生,20名男生,随机选取一名学生,求选取到非男生的概率是多少?30. 某班级有30名学生,其中有15名参加了数学竞赛,10名参加了物理竞赛,5名两科都参加了,求两科都没参加的学生人数的概率是多少?31. 某商店有5件衣服,其中有2件是红色的,3件是蓝色的,随机选取一件衣服,求选取到非蓝色衣服的概率是多少?32. 某班级有20名学生,其中有10名喜欢篮球,8名喜欢足球,求既不喜欢篮球也不喜欢足球的学生人数的概率是多少?33. 一副52张的扑克牌中,随机抽取一张牌,求抽到2的概率是多少?34. 某班级有40名学生,其中有20名女生,20名男生,随机选取一名学生,求选取到非女生的概率是多少?35. 某班级有30名学生,其中有15名参加了数学竞赛,10名参加了物理竞赛,5名两科都参加了,求两科都没参加的学生人数的概率是多少?36. 某商店有5件衣服,其中有2件是红色的,3件是蓝色的,随机选取一件衣服,求选取到非红色衣服的概率是多少?37. 某班级有20名学生,其中有10名喜欢篮球,8名喜欢足球,求至少喜欢一种球类运动的学生人数的概率是多少?38. 一副52张的扑克牌中,随机抽取一张牌,求抽到3的概率是多少?39. 某班级有40名学生,其中有20名女生,20名男生,随机选取一名学生,求选取到非男生的概率是多少?40. 某班级有30名学生,其中有15名参加了数学竞赛,10名参加了物理竞赛,5名两科都参加了,求两科都没参加的学生人数的概率是多少?41. 某商店有5件衣服,其中有2件是红色的,3件是蓝色的,随机选取一件衣服,求选取到非蓝色衣服的概率是多少?42. 某班级有20名学生,其中有10名喜欢篮球,8名喜欢足球,求既不喜欢篮球也不喜欢足球的学生人数的概率是多少?43. 一副52张的扑克牌中,随机抽取一张牌,求抽到4的概率是多少?44. 某班级有40名学生,其中有20名女生,20名男生,随机选取一名学生,求选取到非女生的概率是多少?45. 某班级有30名学生,其中有15名参加了数学竞赛,10名参加了物理竞赛,5名两科都参加了,求两科都没参加的学生人数的概率是多少?46. 某商店有5件衣服,其中有2件是红色的,3件是蓝色的,随机选取一件衣服,求选取到非红色衣服的概率是多少?47. 某班级有20名学生,其中有10名喜欢篮球,8名喜欢足球,求至少喜欢一种球类运动的学生人数的概率是多少?48. 一副52张的扑克牌中,随机抽取一张牌,求抽到5的概率是多少?49. 某班级有40名学生,其中有20名女生,20名男生,随机选取一名学生,求选取到非男生的概率是多少?50. 某班级有30名学生,其中有15名参加了数学竞赛,10名参加了物理竞赛,5名两科都参加了,求两科都没参加的学生人数的概率是多少?。
中考数学试卷概率统计题
1. 从装有5个红球、3个蓝球和2个绿球的袋子里随机取出一个球,取出红球的概率是()A. 1/4B. 3/4C. 2/3D. 5/102. 抛掷一枚均匀的硬币3次,得到正面的次数是2次的概率是()A. 1/4B. 1/2C. 3/8D. 1/83. 在一次抽奖活动中,有100个奖券,其中只有1个一等奖,2个二等奖,3个三等奖,其余为安慰奖。
随机抽取一个奖券,抽到二等奖的概率是()A. 1/100B. 2/100C. 3/100D. 5/1004. 从1到9中随机选择一个数字,选择到奇数的概率是()A. 1/2B. 1/4C. 1/3D. 2/35. 某班有40名学生,其中有25名男生,15名女生。
随机抽取一名学生,是女生的概率是()A. 3/8B. 1/2C. 5/8D. 3/4二、填空题(每题5分,共25分)6. 抛掷一枚均匀的正方体骰子,得到偶数的概率是______。
7. 一个袋子里装有3个红球、4个蓝球和2个黄球,随机取出一个球,取出蓝球的概率是______。
8. 在一次抽奖活动中,有100个奖券,其中一等奖有5个,二等奖有10个,三等奖有20个,其余为安慰奖。
随机抽取一个奖券,抽到一等奖的概率是______。
9. 从1到9中随机选择一个数字,选择到质数的概率是______。
10. 某班有30名学生,其中有18名男生,12名女生。
随机抽取一名学生,是女生的概率是______。
三、解答题(每题15分,共45分)11. (15分)小明从装有5个红球、3个蓝球和2个绿球的袋子里随机取出3个球,求取出3个红球的概率。
12. (15分)某班有40名学生,其中有25名男生,15名女生。
随机抽取3名学生,求抽取到的3名学生中,至少有1名女生的概率。
13. (15分)在一次抽奖活动中,有100个奖券,其中一等奖有5个,二等奖有10个,三等奖有20个,其余为安慰奖。
随机抽取5个奖券,求抽到至少1个一等奖的概率。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
中招试卷概率统计试题
1、(2007年)下图是2006年某省各类学校在校生数情况制作的扇形统计图和不完整的条形统计图. 已知2006年该省普通高校在校生为97.41万人,请根据统计图中提供的信息解答下列问题:
(1)2006年该省各类学校在校生总人数约多少万人?(精确到1万) (2)补全条形统计图;
(3)请你写出一条合理化建议.
2、(2007年)张彬 和王华两位同学为得到一张观看足球比赛的入场券,各自设计了一种方案:
张彬:如图,设计了一个可以自由转动的转盘,随意转动转盘,当指针指向阴影区域时,张彬得到了入场券;否则,王华得到入场券;
王华:将三个完全相同的小球分别标上数字1、2、3后,放入一个不透明的袋子中.从中随机取出一个小球,然后放回袋子;混合均匀后,再随机取出一个小球.若两次取出的小球上的数字之和为偶数,王华得到入场券;否则,张彬得到入场券.
请你运用所学的概率知识,分析张彬和王华 的设计方案对双方是否公平.
70︒
100︒
3、(2008年)某校300名优秀学生,中考数学得分范围是70—119(得分都是整数),为了了解
该校这300名学生的中考数学成绩,从中抽查了一部分学生的数学分数,通过数据处理,得到如下频率分布表和频率分布直方图
.
类别
小学
初中
普通高中
中等职业成人高校普通高校 人数(万人)
10001200800600400
2000
普通高中10.08%
中等职业6.86%成人高校4.87% 1.28%
普通高校小学49.86%
初中27.05%
请你根据给出的图标解答:
(1)填写频率分布表中未完成部分的数据; (2)指出在这个问题中的总体和样本容量;
(3)求出在频率分布直方图中直角梯形ABCD 的面积;
(4)请你用样本估计总体,可以得到哪些信息?(写一条即可)
4、(2009年)2008年北京奥运会后,同学们参与体育锻炼的热情高涨.为了解他们平均每周的锻炼时间,小明同学在校内随机调查了50名同学,统计并制作了如下的频数分布表和扇形统计图.
根据上述信息解答下列问题: (1)m=______,n=_________;
(2)在扇形统计图中,D 组所占圆心角的度数为_____________;
(3)全校共有3000名学生,估计该校平均每周体育锻炼时间不少于6小时的学生约有 多少名?
5、(2010年)“校园手机”现象越来越受到社会的关注.“五一”期间,小记者刘凯随机调查了城区若干名学生和家长对中学生带手机现象的看法,统计整理并制作了如下的统计图: (1)求这次调查的家长人数,并补全图①;
(2)求图②中表示家长“赞成”的圆心角的度数;
(3)从这次接受调查的学生中,随机抽查一个,恰好是“无所谓”态度的学生的概率是多少?
分组 频数 频率 109.5—119.5 15 0.30 99.5--109.5 10 0.20 89.5—99.5 18 79.5—89.5 69.5—79.5 3 0.06 合计 1.00
组别 锻炼时间(时/周) 频数 A 1.5≤t <3 l B 3≤t <4.5 2
C 4.5≤t <6 m
D 6≤t <7.5 20 E
7.5≤t <9 15
F
t ≥9
n
图① 图②
6、(2011年)为更好地宣传“开车不喝酒,喝酒不开车”的驾车理念,某市一家报社设计了如右的调查问卷(单选).
在随机调查了奉市全部 5 000名司机中的部分司机后,统计整理并制作了如下的统计图:
根据以上信息解答下列问题:
(1)补全条形统计图,并计算扇形统计图中m = ; (2)该市支持选项B 的司机大约有多少人?
(3)若要从该市支持选项B 的司机中随机选择100名,给他们发放“请勿酒驾”的提醒标志,则支持该选项的司机小李被选中的概率是多少?
7、(2012年)5月31日是世界无烟日,某市卫生机构为了了解“导致吸烟人口比例高的主要原因”,随
学生及家长对中学生带手机的态度统计图
家长
学生无所谓
反对
赞成
3080
3040140
类别
人数
280
21014070
家长对中学生带手机
的态度统计图
20%
反对
无所谓赞成
机抽样调查了该市部分18∼65岁的市民,下图是根据调查结果绘制的统计图,根据图中信息解答下列问题:
(1)这次接受随机抽样调查的市民总人数为_________; (2)图1中m 的值是___________;
(3)求图2中认为“烟民戒烟的毅力弱”所对应的圆心角的度数;
(4)若该市18∼65岁的市民约有200万人,请你估算其中认为导致吸烟人口比例高的最主要原因是“对吸烟危害健康认识不足”的人数。
m 420 210 240 m 人数
项目
图1 政
府
对公
共场所吸烟的监管力度不够
对吸烟危害健康认识不足
人
们对吸烟的容忍度大
烟民
戒烟的
毅
力弱
其它
政府对公共
场所吸烟的监管力度不够
28% 图2 对吸烟危害健康认识不足
21%
人们对吸
烟的容忍度大 21% 烟民戒烟
的毅力弱 其它 16%。