河南省洛阳市中考数学二模试卷
洛阳市中考数学二模试卷
洛阳市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分) (2019七上·盐津月考) |﹣8|的相反数是()A . ﹣8B . 8C .D .2. (2分)(2019·滦南模拟) 某校组织学生参观绿博园时,了解到某种花的花粉颗粒的直径大约为0.0000065米.将0.0000065用科学记数法表示为a×10n的形式,其中n的值为()A . ﹣6B . 6C . ﹣5D . ﹣73. (2分)已知点P关于x轴的对称点P1的坐标是(2,3),则点P坐标是()A . (-3,-2)B . (-2,3)C . (2,-3)D . (3,-2)4. (2分)(2018·阜宁模拟) 新阜宁大桥某一周的日均车流量分别为13,14,11,10,12,12,15(单位:千辆),则这组数据的中位数与众数分别为()A . 10 ,12B . 12 ,10C . 12 ,12D . 13 ,125. (2分)(2017·石家庄模拟) 定义新运算:a※b= ,则函数y=3※x的图象大致是()A .B .C .D .6. (2分)(2020·岳阳) 对于一个函数,自变量x取c时,函数值等于0,则称c为这个函数的零点.若关于x的二次函数有两个不相等的零点,关于x的方程有两个不相等的非零实数根,则下列关系式一定正确的是()A .B .C .D .二、填空题 (共8题;共8分)7. (1分)分解因式:2a2﹣4a+2=________8. (1分) (2020九上·昭平期末) 在正方形网格中,△ABC的位置如图所示,则sinB的值为 ________9. (1分) (2019七下·中牟期末) 计算: ________.10. (1分) (2017九上·台江期中) 某药品原价每盒25元,为了响应国家解决老百姓看病贵的号召,经过连续两次降价,现在售价每盒16元,则该药品平均每次降价的百分率是________.11. (1分)已知一个圆锥底面圆的半径为6cm,高为8cm,则圆锥的侧面积为________ cm2 . (结果保留π)12. (1分) (2020八下·沈阳期中) 如果关于x的方程的解为负数,则m的取值范围是________.13. (1分) (2019八下·乐陵期末) 已知一次函数的图象如图,根据图中息请写出不等式的解集为________.14. (1分)如图,水平放置的圆柱形油桶的截面半径是,油面高为,截面上有油的弓形(阴影部分)的面积为________ .三、解答题 (共9题;共72分)15. (5分) (2019八下·武侯期末) 解分式方程: .16. (5分) (2019八下·洪洞期末) 先化简,再求值:,其中,17. (5分)(2019·淮安) 某公司用火车和汽车运输两批物资,具体运输情况如下表所示:所用火车车皮数量(节)所用汽车数量(辆)运输物资总量(吨)第一批25130第二批43218试问每节火车车皮和每辆汽车平均各装物资多少吨?18. (10分)(2019·萧山模拟) 为了满足学生的个性化需求,新课程改革已经势在必行,某校积极开展拓展性课程建设,大体分为学科、文体、德育、其他等四个框架进行拓展课程设计。
2024年河南省洛阳市中考招生模拟考试(二)数学试题 (含解析)
洛阳市2024年中招模拟考试(二)数学试卷一、选择题(每小题3分,共30分,下列各小题均有四个选项,其中只有一个是正确的)1. 下列各数中最大的数是( )A. B. 0C. D.2. 榫卯是古代中国建筑、家具及其它器械主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,如图是某个部件“卯”的实物图,它的俯视图是( )A. B. C. D.3. 2024年清明节假期,洛阳地铁客流刷新历史最高记录,4月5日地铁日客运量54.32万人次,创历史新高.数据“54.32万”用科学记数法表示为( )A. B. C. D. 4. 如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O 的光线相交于点P ,点F 为焦点.若,,则的度数为( )A B.C. D. 5. 下列计算,结果正确的是( )A. B. C. D. 6. 不等式组的解集是( )A. B. C. D.的.5-1-454.3210⨯45.43210⨯55.43210⨯65.43210⨯1155∠=︒235∠=︒3∠45︒50︒55︒60︒32a a a -=()2239a a =()222a b a b +=+623a a a ÷=23312x x x -<⎧⎨+≥⎩5x <15x ≤<15x -≤<1x ≤-7. 关于x 的一元二次方程有两个实数根,则m 的取值范围是( )A. B. C. D. 8. 如图,在菱形中,,连接、,则的值为( )A.B.C.D.9. 元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x天可追上慢马,由题意得( )A. B. C.D.10.在中,,D 为上一点,动点P 以每秒1个单位的速度从C 点出发,在三角形边上沿匀速运动,到达点A 时停止,以为边作正方形.设点P 的运动时间为,正方形的面积为S ,当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,图象如图2所示,则线段的长是( )A. 6B. 8C. D. 二、填空题(每小题3分,共15分)2220x x m -+-=3m ≥3m >3m ≤3m <ABCD 60ABC ∠=︒AC BD ACBD1224015024012x x -=⨯24015015012x x -=⨯12240150x x +=12240150x x=-Rt ABC △90C ∠=︒AC CD =C B A →→DP DPEF ()s t DPEF AB11.x 的取值范围是_____.12. 计算的结果是________.13. 某班准备从《歌唱祖国》《我的祖国》《走进新时代》《十送红军》四首歌曲中选择两首进行排练,参加即将举办的“建国七十五周年”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是___.14. 如图,在中,是直径,点C 是圆上一点.过点C 作的切线交的延长线于点D ,若,则图中阴影部分的面积为_____.(结果用含π的式子表示)15. 矩形中,,将边绕点A 逆时针旋转得到线段,过点E 作交直线于点F (旋转角为α,),当点F 、E 、D 三点共线时,线段的长为_____.三、解答题(本大题共8小题,共75分)16. (1)计算:;(2)化简:.17. 我市某校为了解九年级学生体育备考情况,对全校九年级240名男生进行了体育测试,并随机抽取甲、乙两个班(两班男生人数相同)各10名男生的跳绳测试成绩并整理、描述、分析.【收集数据】甲、乙两班10名男生的跳绳成绩(单位:次)如下:甲:135 149 198 150 160 123 155 160 137 186乙:100 132 133 146 146 152 164 173 197 210【分析数据】根据以上数据,得到以下统计量.班级平均中位众211a a a -++O AB O AB 120,ACD CD ∠=︒=ABCD 35AB AD ==,AB AE EF AE ⊥BC 0180a ︒<<︒BF ()01320242--+-+()()()223a b a b a a b -+--统计量数数数甲b 乙a146根据以上信息,回答下列问题:(1)表格中的a =,b =;(2)综合上表中的统计量,你认为哪一个班的男生成绩较好,并说明理由;(3)洛阳市2024年中招体育考试九年级终结性评价评分标准规定:跳绳男子满分标准为150次,估计该校本次测试成绩满分的男生人数.18. 已知:点P 是外一点.(1)尺规作图:如图,以直径作交于E ,F 两点,连接,,;(保留作图痕迹,不要求写作法)(2)在(1)的条件下,求证:,是的切线;(3)在(1)(2)的条件下,若点D 在上(点D 不与E ,F 两点重合),且,则的度数为.19. 如图,菱形的边在x 轴正半轴上,点A的坐标,反比例函数的图象经过的中点D .(1)求k 的值;(2)的垂直平分线交反比例函数的图象于点E ,连接、,求的面积.20. 近年来我市大力实施河渠综合治理,水域治理效果显著,不仅有效改善了小环境,提升城市的防洪能力,同时也提升了群众生活的幸福指数和城市美丽指数.为了满足市民健康和休闲的需要,我市某区在一为155.3152.5155.3O OP O ' O OP PE PF PE PF O O 50EPF ∠=︒EDF ∠OABC OC ()34,()0ky x x=>BC AB ()0ky x x=>AE OE AOE △条东西走向的小河AB 的两侧开辟了两条健康步道,如图所示,小河北岸的步道由三个半圆形组成.经数学兴趣小组勘测,点C 在点A 的南偏东方向5千米处,点C 在点B 的南偏西45°方向.该小组成员小聪认为小河北岸健康步道的长度不超过10千米.请通过计算判断小聪的说法是否正确(结果精确到1千米,参考数据:,,,,,,π取3.14).21. 洛邑古城,被誉为“中原渡口”,截止目前景区总接待游客量突破2600万人次,日接待游客量最高突破10万人次.是集游、玩、吃、住、购于一体综合性人文旅游观光区,近期被大数据评为“第一热门汉服打卡地”.洛邑古城内某商铺打算购进A ,B 两种文创饰品对游客销售.若该商铺采购9件A 种和6件B 种共需330元;若采购5件A 种和3件B 种共需175元.两种饰品的售价均为每件30元;(1)求A ,B 饰品每件的进价分别为多少元?(2)该商铺计划采购这两种饰品共400件进行销售,其中A 种饰品的数量不少于150件,且不大于300件.实际销售时,若A 种饰品的数量超过250件时,则超出部分每件降价3元销售.①求该商铺售完这两种饰品获得的利润y (元)与购进A 种饰品的数量x (件)之间的函数关系式,并写出x 的取值范围;②设计能让这次采购的饰品获利最大的方案,并求出最大利润.22. 定义:在平面直角坐标系中,当点N 在图形M 上,且点N 的纵坐标和横坐标相等时,则称这个点为图形M 的“梦之点”.(1)点是反比例函数图象上的一个“梦之点”,则该函数图象上的另一个“梦之点”H 的坐标是;的53︒sin370.60︒≈cos370.80︒≈tan370.75︒≈sin 530.80︒≈cos530.60︒≈tan 53 1.33︒≈xOy ()33G --,1ky x=(2)如图,已知点A ,B 是抛物线上的“梦之点”,点C 是抛物线的顶点,连接,判断的形状,并说明理由:(3)在的范围内,若二次函数的图象上至少存在一个“梦之点”,则m 的取值范围是 .23. 【综合与实践】在一次综合实践活动课上,张老师组织学生开展“如何仅通过折纸的方法来确定特殊平行四边形纸片一边上的三等分点”的探究活动.【操作探究】“求知”小组的同学经过一番思考和讨论交流后,对正方形进行了如下操作:第1步:如图1所示,先将正方形纸片对折,使点A 与点B 重合,然后展开铺平,折痕;第2步:将边沿翻折到的位置;第3步:延长交于点H ,则点H 为边的三等分点.证明过程如下:连接,∵正方形沿折叠,∴① ,又∵,∴,∴.由题意可知E 是的中点,设,则,在中,可列方程:② ,(方程不要求化简)解得:③ ,即H 是边的三等分点.“励志”小组对矩形纸片进行了如下操作:第1步:如图2所示,先将矩形纸片对折,使点A 与点B 重合,然后展开铺平,折痕为;第2步:再将矩形纸片沿对角线翻折,再展开铺平,折痕为,沿翻折得折痕交于点G ;第3步:过点G 折叠矩形纸片,使折痕.为21922y x x =-++AC AB BC ,,ABC 02x <<222y x mx m m =-++ABCD ABCD EF BC CE GC EG AD AD CH ABCD CE 90D B CGH ∠=∠=∠=︒CH CH =CGH CDH ≌△△GH DH =AB 2AB a DH x ==,AE BE EG a ===Rt AEH DH =AD ABCD ABCD EF ABCD BD BD CE CE BD ABCD MN AD ∥【过程思考】(1)“求知”小组的证明过程中,三个空所填的内容分别是①: ,②:,③:;(2)“励志”小组经过上述操作,认为点M 为边的三等分点,请你判断“励志”小组的结论是否正确,并说明理由.【拓展提升】(3)如图3,在菱形中,,E 是上的一个三等分点,记点D 关于的对称点为,射线与菱形的边交于点F ,请直接写出的长.洛阳市2024年中招模拟考试(二)数学试卷一、选择题(每小题3分,共30分,下列各小题均有四个选项,其中只有一个是正确的)1. 下列各数中最大的数是( )A. B. 0C. D.【答案】D 【解析】【分析】此题考查了实数的大小比较法则:正数大于零,零大于负数,两个负数绝对值大的反而小,据此判断.【详解】∵故选:D .2. 榫卯是古代中国建筑、家具及其它器械的主要结构方式,是我国工艺文化精神的传奇;凸出部分叫榫,凹进部分叫卯,如图是某个部件“卯”的实物图,它的俯视图是( )AB ABCD 8,6AC BD ==BD AE D ¢ED 'ABCD D F '5-1-510-<-<<A. B. C. D.【答案】A 【解析】【分析】本题考查三视图,熟练掌握三视图的画法,是解题的关键.根据俯视图是从上向下观察到的图形,进行判断即可,注意,主视图中存在的线段,在俯视图中被遮住或是看不到的线段要用虚线表示.【详解】解:由题意,得:“卯”的俯视图为:.故选A .3. 2024年清明节假期,洛阳地铁客流刷新历史最高记录,4月5日地铁日客运量54.32万人次,创历史新高.数据“54.32万”用科学记数法表示为( )A. B. C. D. 【答案】C 【解析】【分析】本题主要考查科学记数法.科学记数法的表示形式为的形式,其中,n 为整数,据此解答即可.【详解】解:54.32万,故选:C .4. 如图,一束平行于主光轴的光线经凸透镜折射后,其折射光线与一束经过光心O 的光线相交于点P ,点F 为焦点.若,,则的度数为( )A. B.C. D. 【答案】D454.3210⨯45.43210⨯55.43210⨯65.43210⨯10n a ⨯110a ≤<5543200 5.43210==⨯1155∠=︒235∠=︒3∠45︒50︒55︒60︒【分析】本题考查了平行线的性质,三角形外角的性质等知识,掌握这两个知识点是关键.利用平行线的性质及三角形外角的性质即可求解.【详解】解:∵,∴,∴,∵,∴;故选:D .5. 下列计算,结果正确的是( )A. B. C. D. 【答案】B 【解析】【分析】本题考查了积的乘方,合并同类项,同底数幂的除法,完全平方公式;根据以上运算法则进行计算即可求解.【详解】解:A . 与不是同类项,不能合并,故该选项不正确,不符合题意; B . ,故该选项正确,符合题意;C . ,故该选项不正确,不符合题意;D . ,故该选项不正确,不符合题意;故选:B .6. 不等式组的解集是( )A. B. C.D. AB OF ∥1180BFO ∠+∠=︒18015525BFO ∠=︒-︒=︒235POF ∠=∠=︒3352560POF BFO ∠=∠+∠=︒+︒=︒32a a a -=()2239a a =()222a b a b +=+623a a a ÷=3a 2a -()2222339a a a ==()2222ab a ab b +=++62624a a a a -÷==23312x x x -<⎧⎨+≥⎩5x <15x ≤<15x -≤<1x ≤-【解析】【分析】此题考查了求不等式组的解集,求出每个不等式的解集,取公共部分即可.【详解】解:解不等式①得,解不等式②得,∴原不等式组的解集是故选:C7. 关于x 的一元二次方程有两个实数根,则m 的取值范围是( )A. B. C. D. 【答案】C 【解析】【分析】本题考查了一元二次方程的判别式,根据方程两个实数根得出,代入数值计算,即可作答.【详解】解:∵一元二次方程有两个实数根,∴,解得,故选:C .8. 如图,在菱形中,,连接、,则值为( )A.B.C.D.【答案】D 【解析】的23312x x x -<⎧⎨+≥⎩①②5x <1x ≥-15x -≤<2220x x m -+-=3m ≥3m >3m ≤3m <240b ac ∆=-≥2220x x m -+-=()()22424121240b ac m m ∆=-=--⨯⨯-=-≥3m ≤ABCD 60ABC ∠=︒AC BD ACBD12【分析】设AC 与BD 的交点为O ,由题意易得,,进而可得△ABC 是等边三角形,,然后问题可求解.【详解】解:设AC 与BD 的交点为O ,如图所示:∵四边形是菱形,∴,,∵,∴△ABC 是等边三角形,∴,∴,∴,∴,∴故选D .【点睛】本题主要考查菱形的性质、含30°角的直角三角形的性质及勾股定理,熟练掌握菱形的性质、含30°角的直角三角形的性质及勾股定理是解题的关键.9. 元朝朱世杰所著的《算学启蒙》中,记载了这样一道题:良马日行二百四十里,驽马日行一百五十里,驽马先行一十二日,问良马几何日追及之?其大意是:快马每天行240里,慢马每天行150里,慢马先行12天,快马几天可追上慢马?若设快马x 天可追上慢马,由题意得( )A. B. C. D. 【答案】B1,2ABD CBD ABC AB BC ∠=∠=∠=,,AC BD BO DO AO CO ⊥==BO =ABCD 1,2ABD CBD ABC AB BC ∠=∠=∠=,,AC BD BO DO AO CO ⊥==60ABC ∠=︒30,ABO AB AC ∠=︒=12AO AB =OB ==,2BD AC AO ==AC BD ==24015024012x x -=⨯24015015012x x -=⨯12240150x x +=12240150x x =-【解析】【分析】本题考查了一元一次方程的应用,根据题意列出方程是解题的关键.设快马x 天可追上慢马,根据路程相等,列出方程即可求解.【详解】解:设快马x 天可追上慢马,由题意得.故选:B .10. 在中,,D 为上一点,动点P 以每秒1个单位速度从C 点出发,在三角形边上沿匀速运动,到达点A 时停止,以为边作正方形.设点P 的运动时间为,正方形的面积为S ,当点P 由点B 运动到点A 时,经探究发现S 是关于t 的二次函数,图象如图2所示,则线段的长是( )A. 6B. 8C.D. 【答案】A【解析】【分析】本题考查了二次函数图象,求二次函数解析式,在中,则,求得的长,设函数的顶点解析式,用待定系数法,求出函数表达式,即可求解.【详解】解:在中,则,当时,,解得:(负值已舍去),∴,∴抛物线经过点,∵抛物线顶点为:,的24015015012x x -=⨯Rt ABC △90C ∠=︒AC CD =C B A →→DP DPEF ()s t DPEFABRt ABC△CD =,PC t=22222S PD t t ==+=+BC Rt ABC△CD =,PC t=22222S PD t t ==+=+6S =262t =+2t =2BC =()2,6()4,2设抛物线解析式为:,将代入,得:,解得:,∴,当时,(舍)或,∴,故选:A .二、填空题(每小题3分,共15分)11.x 的取值范围是_____.【答案】【解析】【分析】本题考查了分母不为零,二次根式的被开方数是非负数,熟练掌握二次根式和分式有意义的条件是解题的关键.根据分母不为零,二次根式的被开方数是非负数,列出不等式计算即可.有意义,∴且,∴且,故答案为:.12. 计算的结果是________.【答案】【解析】【分析】此题考查了分式的加减法,分式加减法的关键是通分,通分的关键是找出各分母的最简公分母.原式通分并利用同分母分式的减法法则计算,即可得到结果.【详解】解:原式,故答案为:.13. 某班准备从《歌唱祖国》《我的祖国》《走进新时代》《十送红军》四首歌曲中选择两首进行排练,参加即将举办的“建国七十五周年”合唱选拔赛,那么该班恰好选中前面两首歌曲的概率是___.()242S a t =-+()2,6()26242a =-+1a =()242S t =-+18y =()218420t t =-+=,8t =826AB =-=5x ≥50x -≥0x ≠5x ≥0x ≠5x ≥211a a a -++11a +2(1)(1)111a a a a a -+-==++11a +【答案】【解析】【分析】本题主要考查等可能事件的概率,画出树状图展示所有等可能的结果,是解题的关键.根据题意画出树状图得出所有等可能情况数和恰好选中前面两首歌曲的情况数,然后根据概率公式即可得出答案.【详解】解:将《歌唱祖国》《我的祖国》《走进新时代》《十送红军》四首歌曲分别用甲,乙,丙,丁表示,根据题意画图如下:共有12种等可能的结果数,其中恰好选中前面两首歌曲的有2种,则恰好选中甲、乙两位选手的概率,故答案为:.14. 如图,在中,是直径,点C 是圆上一点.过点C 作的切线交的延长线于点D ,若,则图中阴影部分的面积为_____.(结果用含π的式子表示)【答案】【解析】【分析】本题主要考查切线的性质以及扇形的面积计算,连接,根据切线的性质得出由得由三角形外角的性质得根据勾股定理得,再根据求解即可【详解】解:连接如图,1621126==16O AB O AB 120,ACD CD ∠=︒=2π3-OC 90,30,OCD OCD ∠=︒∠=︒OC OA =,OAC OCA ∠=∠60,BOC ∠=︒2OC ==OCD BOC S S S - 阴影扇形OC ,∵是的切线,∴∴∵∴∵∴,∴∴∴即∴∴,故答案为:15. 矩形中,,将边绕点A 逆时针旋转得到线段,过点E 作交直线于点F (旋转角为α,),当点F 、E 、D 三点共线时,线段的长为_____.CD O ,OC CD ⊥90,OCD ∠=︒120,ACD ∠=︒1209030,ACO ACD OCD ∠=∠-∠=︒-︒=︒,OC OA ==30ACO OAC ∠=∠︒303060,COD OCA OAC ∴∠=∠+∠=︒+︒=︒30,CDO ∠=︒2,DO CO =222,CD CO DO +=(2224,CO CO +=2,CO ==OCD BOC S S S - 阴影扇形2160222360π⨯=⨯-23π=-2π3-ABCD 35AB AD ==,AB AE EF AE ⊥BC 0180a ︒<<︒BF【答案】1或9【解析】【分析】本题考查了矩形的性质,全等三角形的判定和性质,旋转的性质,勾股定理等知识,分为:当点E 在上时,连接,可证得,从而,设,则,可求得,在中列出,进而求得的值;当点E 在的延长线上时,同样方法求得结果.【详解】解:∵四边形是矩形,∴当点E 在上时,连接,如图,∵,∴∴,∵,∴,∴,设,则,由旋转得:,∵,∴,∴,在中,由勾股定理得,,∴,∴,DF AF Rt Rt ABF AEF ≌ BF EF =BF EF x ==5CF x =-4DE ===Rt DCF ()()222534x x -+=+BF FD ABCD 3,5,90,CD AB BC AD ABC BCD CDA ====∠=∠=∠=︒DF AF EF AE ⊥90,AEF ∠=︒90AEF B ∠=∠=°AE AB AF AF ==,Rt Rt ABF AEF ≌ BF EF =BF EF x ==5CF x =-3AE AB ==EF AE ⊥90AED AEF ∠=∠=︒4DE ===Rt DCF 222CF CD DF +=()()222534x x -+=+1x =∴,如图,当点E 在的延长线上时,同理上可得:,,设,则,,∴,∴,∴,综上所述:或9.故答案为:1或9三、解答题(本大题共8小题,共75分)16. (1)计算:;(2)化简:.【答案】(1);(2)【解析】【分析】本题主要考查了实数混合运算,整式乘法混合运算,解题的关键是熟练掌握运算法则,准确计算.(1)根据算术平方根定义,零指数幂和负整数指数幂运算法则进行计算即可;(2)根据平方差公式和单项式乘多项式运算法则进行计算即可.【详解】解:(1)1BF =FD EFBF =4DE =EF BF a ==4DF a =-5CF a =-()()222534a a -+=-9a =9BF =1BF =()01320242--+-+()()()223a b a b a a b -+--1122233a b ab-+()01320242--+-+13132=+-+;(2).17. 我市某校为了解九年级学生体育备考情况,对全校九年级240名男生进行了体育测试,并随机抽取甲、乙两个班(两班男生人数相同)各10名男生的跳绳测试成绩并整理、描述、分析.【收集数据】甲、乙两班10名男生的跳绳成绩(单位:次)如下:甲:135 149 198 150 160 123 155 160 137 186乙:100 132 133 146 146 152 164 173 197 210【分析数据】根据以上数据,得到以下统计量.班级统计量平均数中位数众数甲b 乙a 146根据以上信息,回答下列问题:(1)表格中的a = ,b = ;(2)综合上表中的统计量,你认为哪一个班的男生成绩较好,并说明理由;(3)洛阳市2024年中招体育考试九年级终结性评价评分标准规定:跳绳男子满分标准为150次,估计该校本次测试成绩满分的男生人数.【答案】(1)149,160(2)甲班成绩较好;甲、乙两班样本平均数相同,但甲班的中位数和众数均高于乙班,所以甲班成绩较好(3)132人【解析】【分析】本题考查条形统计图、中位数、众数、平均数:(1)根据中位数的意义,将乙班的抽查的10人成绩排序找出处在中间位置的两个数的平均数即可为中位的112=()()()223a b a b a a b -+--()22243a b a ab =---22243a b a ab=--+2233a b ab -+=155.3152.5155.3数,从甲班成绩中找出出现次数最多的数即为众数;(2)根据平均数、中位数,众数可以分析得出;(3)根据题意,计算出两班级成绩为满分的学生的百分比,然后乘以总人数即可解答本题.【小问1详解】解:由题意得:乙班10名男生的跳绳成绩按大小顺序排列最中间的两个分数为146,153,故中位数;甲班10名男生的跳绳成绩出现次数最多的是160分,共出现2次,故众数;故答案为:149;160;【小问2详解】解:甲班成绩较好;理由如下:甲、乙两班样本的平均数相同,但甲班的中位数和众数均高于乙班,所以甲班成绩较好;【小问3详解】解:(人),答:估计该校本次测试成绩满分的男生有132人.18. 已知:点P 是外一点.(1)尺规作图:如图,以为直径作交于E ,F 两点,连接,,;(保留作图痕迹,不要求写作法)(2)在(1)的条件下,求证:,是的切线;(3)在(1)(2)的条件下,若点D 在上(点D 不与E ,F 两点重合),且,则的度数为 .【答案】(1)见解析(2)见解析 (3)或【解析】【分析】(1)如图1,连接,作的垂线交于点,以为圆心,为半径画圆,连接,即可;1461521492a +==160c =1124013220⨯=O OP O ' O OP PE PF PE PF O O 50EPF ∠=︒EDF ∠65︒115︒OP OP OP O 'O 'O P 'PE PF(2)如图1,连接,由为直径,可得,即,,进而结论得证;(3)如图1,,由题意知,,由圆周角定理可得;由圆内接四边形可得,;计算求解即可.【小问1详解】解:如图1,连接,作的垂线交于点,以为圆心,为半径画圆,连接,即可;图1【小问2详解】证明:如图1,连接,∵为直径,∴,即,,∵是半径,∴,是的切线;【小问3详解】解:如图1,,由题意知,,∵,∴;由圆内接四边形可得,;综上所述,的度数为或,故答案为:或.【点睛】本题考查了作垂线,直径所对的圆周角为直角,切线的判定.圆周角定理,圆内接四边形的性质等知识.熟练掌握作垂线,直径所对的圆周角为直角,切线的判定.圆周角定理,圆内接四边形的性质是解题的关键.OE OF ,OP 90PEO PFO ∠=∠=︒OE PE ⊥OF PF ⊥D D ',360130EOF EPF PEO PFO ∠=︒-∠-∠-∠=︒12EDF EOF ∠=∠180ED F EDF '∠=︒-∠OP OP OP O 'O 'O P 'PE PF OE OF ,OP 90PEO PFO ∠=∠=︒OE PE ⊥OF PF ⊥OE OF ,PE PF O D D ',360130EOF EPF PEO PFO ∠=︒-∠-∠-∠=︒ EFEF =1652EDF EOF ∠=∠=︒180115ED F EDF '∠=︒-∠=︒EDF ∠65︒115︒65︒115︒19. 如图,菱形的边在x 轴正半轴上,点A 的坐标,反比例函数的图象经过的中点D .(1)求k 的值;(2)的垂直平分线交反比例函数的图象于点E ,连接、,求的面积.【答案】(1)13(2)【解析】【分析】本题考查反比例函数的综合,菱形的性质,垂直平分线的定义,中点坐标公式,三角形的面积求法等知识,运用数形结合思想是解题的关键.(1)先求出的长度,也就是菱形的边长,从而求出点的坐标,再用中点公式求出点D 的坐标,从而得解;(2)根据点的坐标求出点E 的横坐标,继而求出点E 的坐标,再利用割补法求面积即可.【小问1详解】解:∵A 点坐标∴∵四边形是菱形∴, ∴;【小问2详解】∵,∴反比例函数解析式是∵E 在AB 的垂直平分线上,A ,,OABC OC ()34,()0k y x x=>BC AB ()0k y x x =>AE OE AOE △8211OA C B 、A B 、()34,5OA =OABC ()50C ,()84B ,13,22D ⎛⎫∴ ⎪⎝⎭13k xy ==13k =()130y x x=>()34,()84B ,E 点横坐标为把 优人 得: 过A 作⊥ x 轴于 H ,的垂直平分线交x 轴于 F ,则.20. 近年来我市大力实施河渠综合治理,水域治理效果显著,不仅有效改善了小环境,提升城市的防洪能力,同时也提升了群众生活的幸福指数和城市美丽指数.为了满足市民健康和休闲的需要,我市某区在一条东西走向的小河AB 的两侧开辟了两条健康步道,如图所示,小河北岸的步道由三个半圆形组成.经数学兴趣小组勘测,点C 在点A 的南偏东方向5千米处,点C 在点B 的南偏西45°方向.该小组成员小聪认为小河北岸健康步道的长度不超过10千米.请通过计算判断小聪的说法是否正确(结果精确到1千米,参考数据:,,,,,,π取3.14).【答案】小聪的说法不正确,见解析【解析】【分析】本题考查了解直角三角形的应用.过C 作于D ,在中,利用三角函数的定义求得和的长,在中,求得,据此求得北岸健康步道的长度,即可判断.【详解】解:过C 作于D ,垂足为D,112,112x =()130y x x =>2611y =1126,211E ⎛⎫∴ ⎪⎝⎭AH AB AOE AOB FOEAEFH S S S S =+-△△△梯形112611133443221122⎛⎫⎛⎫=⨯⨯+⨯+⨯-- ⎪ ⎪⎝⎭⎝⎭8211=53︒sin370.60︒≈cos370.80︒≈tan370.75︒≈sin 530.80︒≈cos530.60︒≈tan 53 1.33︒≈CD AB ⊥Rt ACD △CD AD Rt BCD BD CD =CD AB ⊥由题意得:,,千米,在中,,千米千米,在中,,∴千米,∴千米,∴北岸健康步道的长度为,因此小聪的说法不正确.21. 洛邑古城,被誉为“中原渡口”,截止目前景区总接待游客量突破2600万人次,日接待游客量最高突破10万人次.是集游、玩、吃、住、购于一体的综合性人文旅游观光区,近期被大数据评为“第一热门汉服打卡地”.洛邑古城内某商铺打算购进A ,B 两种文创饰品对游客销售.若该商铺采购9件A 种和6件B 种共需330元;若采购5件A 种和3件B 种共需175元.两种饰品的售价均为每件30元;(1)求A ,B 饰品每件的进价分别为多少元?(2)该商铺计划采购这两种饰品共400件进行销售,其中A 种饰品的数量不少于150件,且不大于300件.实际销售时,若A 种饰品的数量超过250件时,则超出部分每件降价3元销售.①求该商铺售完这两种饰品获得的利润y (元)与购进A 种饰品的数量x (件)之间的函数关系式,并写出x 的取值范围;②设计能让这次采购的饰品获利最大的方案,并求出最大利润.【答案】(1)A 饰品的进价为20元/件,B 饰品的进价为25元/件 (2)①;②购进A 饰品数量300件,购进B 饰品的数量100件时,获利最大,最大利润为3350元【解析】【分析】本题考查二元一次方程组和一次函数的应用,分段函数等知识,审清题意找出等量关系并正确列的905337CAD ∠=︒-︒=︒45CBD ∠=︒5AC =Rt ACD △37CAD ∠=︒·sin 3750.63CD AC =︒≈⨯=cos3750.84AD AC =⋅︒≈⨯=Rt BCD 45CBD ∠=︒3BD CD ==7AB AD BD =+=77π314111022≈⨯≈>.()()5200015025022750250300x x y x x ⎧+≤≤⎪=⎨+<≤⎪⎩式和方程是解题的关键.(1)设A 饰品每件的进价为a 元,B 饰品每件的进价为b 元,根据题意列出方程组求解即可;(2)①由购进A 饰品的数量为x 件,得购进B 饰品的数量为件,再分当时和当时两种情况,根据总利润的计算公式求出总利润即可;②根据两种情况下的解析式分别求出最大值,再比较即可.【小问1详解】解:设A 饰品每件的进价为a 元,B 饰品每件的进价为b 元,由题意列方程组为: , 解得 答:A 饰品的进价为20元/件,B 饰品的进价为25元/件;【小问2详解】①购进A 饰品的数量为x 件,则购进B 饰品的数量为件,∴当时,;当时,,综上所述:这两种饰品获得的利润y (元)与购进A 种饰品的数量x (件)之间的函数关系式是;②当时, ∴当时,y 取最大值,此时(元).当时, ,当时y 取最大值,此时,∵,∴当,即购进A 饰品的数量为件,则购进B 饰品的数量为件时,y 取最大值元.22. 定义:在平面直角坐标系中,当点N 在图形M 上,且点N 的纵坐标和横坐标相等时,则称这个点为图形M 的“梦之点”.()400x -150250x ≤≤250300x <≤9633053175a b a b +=⎧⎨+=⎩2025a b =⎧⎨=⎩()400x -150250x ≤≤()()()3020302540052000y x x x =-+--=+250300x <≤()()()()()302025030203250302540022750y x x x =-⨯+--⨯-+--=+()()5200015025022750250300x x y x x ⎧+≤≤⎪=⎨+<≤⎪⎩150250x ≤≤52000y x =+250x =525020003250y =⨯+=250300x <≤22750y x =+300x =230027503350y =⨯+=32503350<300x =3001003350xOy(1)点是反比例函数图象上的一个“梦之点”,则该函数图象上的另一个“梦之点”H 的坐标是 ;(2)如图,已知点A ,B 是抛物线上的“梦之点”,点C 是抛物线的顶点,连接,判断的形状,并说明理由:(3)在的范围内,若二次函数的图象上至少存在一个“梦之点”,则m 的取值范围是 .【答案】(1) (2)是直角三角形,理由见解析(3)【解析】【分析】本题主要考查了二次函数与x 轴的交点问题,一次函数与反比例函数的交点问题,勾股定理,二次函数的性质等等:(1)利用待定系数法求出反比例函数解析式,再求出时,自变量的值即可得到答案;(2)先求出时的自变量的值,进而求出点A 和点B 的坐标,再把解析式化为顶点式得到点C 的坐标,最后利用勾股定理和勾股定理的逆定理证明即可得到结论;(3)把解析式化为顶点式得到抛物线的顶点坐标为,分以下几种情况:当时,抛物线的图象上至少存在一个“梦之点”;当时,直线与抛物线在范围内不存在交点;当抛物线恰好经过原点时,则,解得或,当时,联立解得或,符合题意;()33G --,1k y x =21922y x x =-++AC AB BC ,,ABC 02x <<222y x mx m m =-++()33,ABC 12m -<<1y x =21922y x x x =-++=222AC AB BC +=()m m ,02m <<222y x mx m m =-++2m ≥y x =222y x mx m m =-++02x <<222y x mx m m =-++20m m +=0m =1m =-0m =2y x y x⎧=⎨=⎩00x y ==⎧⎨⎩11x y =⎧⎨=⎩。
河南省洛阳市中考数学二模考试试卷
河南省洛阳市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)下列各对数中,不是互为相反数的一对是()A . -(+5)和+(-5)B . -(-2)与-2C . 0和0D . -1和1.52. (2分)下列计算中,正确的是()A . a3÷a3=a3﹣3=a0=1B . x2m+3÷x2m﹣3=x0=1C . (﹣a)3÷(﹣a)=﹣a2D . (﹣a)5÷(﹣a)3×(﹣a)2=13. (2分) (2017八下·龙海期中) 有一种细菌的直径为0.000 000 012米,将这个数用科学记数法表示为()A . 12×108B . 12×10﹣8C . 1.2×10﹣8D . 1.2×10﹣94. (2分) (2016八上·平谷期末) 如果式子有意义,那么x的取值范围在数轴上表示出来,正确的是()A .B .C .D .5. (2分)(2016·海拉尔模拟) 如图,有一矩形纸片ABCD,AB=6,AD=8,将纸片折叠使AB落在AD边上,折痕为AE,再将△ABE以BE为折痕向右折叠,AE与CD交于点F,则的值是()A . 1B .C .D .6. (2分) 10个棱长为1的正方体木块堆成如图所示的形状,则它的表面积是()A . 30B . 34C . 36D . 487. (2分) (2019九上·长白期中) 若关于x的一元二次方程有两个相等的实数根,则a等于()A . 4B . —4C . 0或4D . 0或—48. (2分) (2017九上·顺义月考) 某种商品原价是100元,经两次降价后的价格是90元.设平均每次降价的百分率为x,可列方程为()A . 100x(1-2x)=90B . 100(1+2x)=90C . 100(1-x)2=90D . 100(1+x)2=909. (2分)△ABC的一个内角的大小是40°,且∠A=∠B,那么∠C的外角的大小是()A . 80°或140°B . 80°或100°C . 100°或140°D . 140°10. (2分)如图,在矩形ABCD中,AB<BC,AC,BD相交于点O,则图中等腰三角形的个数是()A . 8B . 6C . 4D . 2二、填空题 (共3题;共3分)11. (1分) (2017八上·南召期中) 分解因式: ________.12. (1分)下列两个条件:①y随x的增大而减小;②图象经过点(1,2).写出1个同时具备条件①、②的一个一次函数表达式________13. (1分) (2019九下·徐州期中) 已知反比例函数的图像经过点,那么的值是________.三、解答题 (共10题;共70分)14. (1分) (2019八上·长兴期中) 如图是“赵爽弦图”,△ABH、△BCG、△CDF和△DAE是四个全等的直角三角形,四边形ABCD和EFGH都是正方形.如果AB=13,EF=7,那么AH等于________。
洛阳市数学中考二模试卷
洛阳市数学中考二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)﹣3的倒数是()A . 3B . ±3C .D . -2. (2分) (2015八下·金平期中) 若代数式有意义,则实数x的取值范围是()A . x≠1B . x≥0C . x>0D . x≥0且x≠13. (2分)(2017·北仑模拟) 设M(m,n)在反比例函数y=﹣上,其中m是分式方程﹣1= 的根,将M点先向上平移4个单位,再向左平移1个单位,得到点N.若点M,N都在直线y=kx+b上,直线解析式为()A . y=﹣ x﹣B . y= x+C . y=4x﹣5D . y=﹣4x+54. (2分)现有甲、乙两个合唱队队员的平均身高为170cm,方程分别是、,且>,则两个队的队员的身高较整齐的是()A . 甲队B . 乙队C . 两队一样整齐D . 不能确定5. (2分) (2019八下·余杭期中) 若多边形的边数由3增加到n(n为大于3的正整数),则其外角和的度数()A . 增加B . 减少C . 不变D . 不能确定6. (2分) (2019八下·赵县期末) 在正方形ABCD中,E、F是对角线AC上两点连接BE、BF、DE、DF,则A 添加下列哪一个条件可以判定四边形BEDF是菱形()A . ∠1=∠2B . BE=DFC . ∠EDF=60°D . AB=AF7. (2分)(2016·贺州) 已知圆锥的母线长是12,它的侧面展开图的圆心角是120°,则它的底面圆的直径为()A . 2B . 4C . 6D . 88. (2分)(2012·锦州) 下列说法正确的是()A . 同位角相等B . 梯形对角线相等C . 等腰三角形两腰上的高相等D . 对角线相等且垂直的四边形是正方形9. (2分)(2013·绵阳) 下列说法正确的是()A . 对角线相等且互相垂直的四边形是菱形B . 对角线互相垂直的梯形是等腰梯形C . 对角线互相垂直的四边形是平行四边形D . 对角线相等且互相平分的四边形是矩形10. (2分)如图,在平面直角坐标系中,O为坐标原点,正方形ABCD的对角线AC落在x轴上,A(﹣1,0),C(7,0),连接OB,则∠BOC的正弦值为()A .B .C .D .二、填空题 (共8题;共10分)11. (1分)分解因式2x2﹣4x+2的最终结果是________12. (1分) (2019八下·泉港期末) 某公司测试自动驾驶5G技术,发现移动中汽车“5G”通信中每个IP数据包传输的测量精度约为0.0000018秒,请将数据0.0000018用科学记数法表示为________.13. (1分) (2019九下·徐州期中) 已知反比例函数的图像经过点,那么的值是________.14. (1分) (2020八上·江汉期末) 分式和的最简公分母是________.15. (2分)(2017·合川模拟) 如图,▱ABCD中,M、N是BD的三等分点,连接CM并延长交AB于点E,连接EN并延长交CD于点F,以下结论:①E为AB的中点;②FC=4DF;③S△ECF= ;④当CE⊥BD时,△DFN是等腰三角形.其中一定正确的是________.16. (2分)如图是由若干个棱长为2的小正方体组合而成的一个几何体的三视图,则这个几何体的体积是________.17. (1分)已知:直线y=(n为正整数)与两坐标轴围成的三角形面积为Sn ,则________ .18. (1分)(2018·张家界) 如图,矩形ABCD的边AB与x轴平行,顶点A的坐标为(2,1),点B与点D 都在反比例函数y= (x>0)的图象上,则矩形ABCD的周长为________.三、解答题 (共10题;共98分)19. (10分) (2019七下·北京期末) 计算: .20. (10分) (2017七下·大同期末) 已知x是整数,且与的差大于3且小于5,求的值.21. (10分) (2020七下·泰兴期末) 如图,BD是△ABC的角平分线,DE∥BC,交AB于点E.(1)若∠A=45°,∠BDC=60°,求∠BED的度数;(2)若∠A-∠ABD=31°,∠EDC=76°,求∠A的度数.22. (2分)(2016·安徽模拟) 在刚刚闭幕的2016全国“两会”,民生话题依然是社会焦点,某市记者为了了解百姓对“两会民生话题”的聚焦点,随机调查了部分市民,并对调查结果进行整理.绘制了如图所示的统计图表(不完整).頻数分布表组别焦点话题频数(人数)A医疗卫生100B食品安全mC教育住房40D社会保障80E生态环境nF其他60请根据图表中提供的信息解答下列问题:(1)填空:m=________,n=________.扇形统计图中E组,F组所占的百分比分别为________、________ (2)该市现有人口大约800万,请你估计其中关注B组话题的人数;(3)若在这次接受调查的市民中,随机抽查一人,则此人关注A组话题的概率是多少?23. (6分)(2017·宿迁) 桌面上有四张正面分别标有数字1,2,3,4的不透明卡片,它们除数字外其余全部相同,现将它们背面朝上洗匀.(1)随机翻开一张卡片,正面所标数字大于2的概率为________;(2)随机翻开一张卡片,从余下的三张卡片中再翻开一张,求翻开的两张卡片正面所标数字之和是偶数的概率.24. (10分) (2016九上·龙湾期中) 如图1,在△ABC中,以AB为直径作⊙O分别交AC,BC于点D,E,且(1)求证:AB=AC.(2)若∠C=70°,求的度数.(3)如图2,点F在⊙O上,,连结DF,DE.求证:∠ADF=∠CDE.25. (10分) (2019九上·徐闻期末) 某种新商品每件进价是120元,在试销期间发现,当每件商品售价为130元时,每天可销售70件,当每件商品售价高于130元时,每涨价1元,日销售量就减少1件.据此规律,请回答:(1)当每件商品售价定为170元时,每天可销售多少件商品商场获得的日盈利是多少?(2)在商品销售正常的情况下,每件商品的涨价为多少元时,商场日盈利最大?最大利润是多少?26. (15分)(2017·洪泽模拟) 已知点A,B分别是x轴、y轴上的动点,点C,D是某个函数图象上的点,当四边形ABCD(A,B,C,D各点依次排列)为正方形时,称这个正方形为此函数图象的伴侣正方形.例如:如图,正方形ABCD是一次函数y=x+1图象的其中一个伴侣正方形.(1)若某函数是一次函数y=x+1,求它的图象的所有伴侣正方形的边长;(2)若某函数是反比例函数y= (k>0),他的图象的伴侣正方形为ABCD,点D(2,m)(m<2)在反比例函数图象上,求m的值及反比例函数解析式;(3)若某函数是二次函数y=ax2+c(a≠0),它的图象的伴侣正方形为ABCD,C、D中的一个点坐标为(3,4).写出伴侣正方形在抛物线上的另一个顶点坐标________,写出符合题意的其中一条抛物线解析式________,并判断你写出的抛物线的伴侣正方形的个数是奇数还是偶数________.27. (10分)(2018·大庆) 如图,抛物线y=x2+bx+c与x轴交于A、B两点,B点坐标为(4,0),与y轴交于点C(0,4).(1)求抛物线的解析式;(2)点P在x轴下方的抛物线上,过点P的直线y=x+m与直线BC交于点E,与y轴交于点F,求PE+EF的最大值;(3)点D为抛物线对称轴上一点.①当△BCD是以BC为直角边的直角三角形时,直接写出点D的坐标;②若△BCD是锐角三角形,直接写出点D的纵坐标n的取值范围.28. (15分)如图1,中,,分别是上的点,且满足 .(1)求证:(2)在图1中,是否存在与AP相等的线段?若存在,请找出来,并加以证明;若不存在,说明理由.(3)若将“ 为上的点”改为:“ 为DB延长线上的点”其他条件不变(如图2)若,求线段之间的数量关系(用含的式子表示)参考答案一、单选题 (共10题;共20分)1-1、2-1、3-1、4-1、5-1、6-1、7-1、8-1、9-1、10-1、二、填空题 (共8题;共10分)11-1、12-1、13-1、14-1、15-1、16-1、17-1、18-1、三、解答题 (共10题;共98分)19-1、20-1、21-1、21-2、22-1、22-2、22-3、23-1、23-2、24-1、24-2、24-3、25-1、25-2、26-1、26-2、26-3、27-1、27-2、27-3、28-1、28-2、28-3、。
河南省洛阳市中考数学二模试卷
河南省洛阳市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共10题;共20分)1. (2分)(2018·娄底模拟) ﹣2018的倒数是()A . ﹣2018B . 2018C . ﹣D .2. (2分)如图是一块带有圆形空洞和矩形空洞的小木板,则下列物体中最有可能既可以堵住圆形空洞,又可以堵住矩形空洞的是()A . 正方体B . 球C . 圆锥D . 圆柱体3. (2分)(2017·天桥模拟) 我国最新研制的巨型计算机“曙光3000超级服务器”,它的运算峰值可以达到每秒403200000000次.这个数字用科学记数法来表示()A . 4032×108B . 4.032×1010C . 4.032×1011D . 4.032×10124. (2分) (2019九上·滦南期中) 某车间20名工人每天加工零件数如表所示:每天加工零件数45678人数36542这些工人每天加工零件数的众数、中位数分别是()A . 5,5B . 5,6C . 6,6D . 6,55. (2分)(2016·张家界模拟) 如图,已知∠1=50°,如果CD∥BE,那么∠B的度数是()A . 50°B . 100°C . 120°D . 130°6. (2分)已知点P(-4,3),则点P到y轴的距离为()A . 4B . -4C . 3D . -37. (2分)半径为2cm 的⊙O中有长为2cm的弦AB,则弦AB所对的圆周角度数为()A . 60°B . 90°C . 60°或120°D . 45°或90°8. (2分)(2016·兰州) 一元二次方程x2+2x+1=0的根的情况()A . 有一个实数根B . 有两个相等的实数根C . 有两个不相等的实数根D . 没有实数根9. (2分) (2018九上·翁牛特旗期末) 要得到y=(x-3)2-2的图象,只要将y=x2的图象()A . 由向左平移3个单位,再向上平移2个单位;B . 由向右平移3个单位,再向下平移2个单位;C . 由向右平移3个单位,再向上平移2个单位;D . 由向左平移3个单位,再向下平移2个单位.10. (2分)已知,A、B两地相距120千米,甲骑自行车以20千米/时的速度由起点A前往终点B,乙骑摩托车以40千米/时的速度由起点B前往终点A.两人同时出发,各自到达终点后停止.设两人之间的距离为s(千米),甲行驶的时间为t(小时),则下图中正确反映s与t之间函数关系的是()A .B .C .D .二、填空题 (共8题;共11分)11. (1分) (2016九下·句容竞赛) 分解因式: =________12. (1分) (2017九上·萍乡期末) 均匀的正四面体的各面上依次标有1,2,3,4四个数字,同时抛掷两个这样的正四面体,着地的一面数字之和为5的概率是________.13. (2分)(2016·浙江模拟) 如图1所示的晾衣架,支架主视图的基本图形是菱形,其示意图如图2,晾衣架伸缩时,点G在射线DP上滑动,∠CED的大小也随之发生变化,已知每个菱形边长均等于20cm,且AH=DE=EG=20cm.(1)当∠CED=60°时,CD=________cm.(2)当∠CED由60°变为120°时,点A向左移动了________cm(结果精确到0.1cm)(参考数据≈1.73).14. (2分) (2018九上·渠县期中) 如图已知正方形ABCD的对角线长为,将正方形ABCD沿直线EF 折叠,则图中阴影部分的周长________。
2023年河南省洛阳市东方第二中学中考二模数学试题(含答案解析)
2023年河南省洛阳市东方第二中学中考二模数学试题学校:___________姓名:___________班级:___________考号:___________A ....4.下列运算正确的是()A .()236222a b a b =.239-=-()2211b b -=-.()(66x x +-5.乐乐观察“抖空竹时发现,可以将某一时刻的情形抽象成数学问题:如图,已知AB ∥CD ,∠BAE =92°,∠DCE =115°A .32°6.下列调查中,适宜采用抽样调查的是(A.49.如图,为测量一条河的宽度,分别在河岸一边相距标注物P,测得∠A.tan tantan tanaαβαβ+米10.如图,点A坐标为得到对应线段A B'',若点A.455二、填空题11.写出一个在第二象限内,12.代数式(3x xx+-13.盒子里装4张形状、15.如图1,在平面直角坐标系果将直线y x =-沿x 轴正方向平移,三、解答题16.(1)计算:()21332cos 6020233π-⎛⎫---+︒-- ⎪⎝⎭;(2)解方程:321236xx x =+--.17.第24届冬奥会于2022年2月20日在北京胜利闭幕.某校七、八年级各有500学生,为了解这两个年级学生对本次冬奥会的关注程度,现从这两个年级各随机抽取名学生进行冬奥会知识测试,将测试成绩按以下六组进行整理(得分用x 表示):A :7075x ≤<,B :7580x ≤<,C :8085x ≤<,D :8590x ≤<,E :9095x ≤<,F :95100x ≤≤,已知八年级测试成绩D 组的全部数据如下:86,85,87,86,请根据以上信息,完成下列问题:(1)n =________,=a ________;(2)八年级D 组测试成绩的中位数是________;(3)若测试成绩不低于90分,则认定该学生对冬奥会关注程度高.请估计该校七、八两(1)求反比例函数的关系式;(2)若一次函数1y k x b =+与(1)请用无刻度的直尺和圆规过点(2)连接AB ,若(1)中所作垂线分别与①求证:CBD DCB ∠∠=;②若O 的半径为4,cos参考答案:;故选:C.【点睛】本题考查了三视图,解题关键是明确俯视图的定义,准确进行判断.4.B【分析】根据积的乘方,有理数的乘方,完全平方公式,平方差公式进行计算即可求解.【详解】解:A.故选:B.【点睛】本题考查了积的乘方,有理数的乘方,完全平方公式,平方差公式,熟练掌握积的乘方,有理数的乘方,完全平方公式,平方差公式是解题的关键.5.D【分析】延长DC交AE于F,依据AB∥CD,∠BAE=92°,可得∠CFE=92°,再根据三角形外角性质,即可得到∠E=∠DCE-∠CFE.【详解】解:如图,延长DC交AE于F,∵AB∥CD,∠BAE=92°,∴∠CFE=92°,又∵∠DCE=115°,∴∠E=∠DCE-∠CFE=115°-92°=23°,故选:D.【点睛】本题考查平行线的性质和三角形外角的性质,解题关键是掌握:两直线平行,同位角相等.6.A【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似解答.【详解】解:A、调查某批中性笔的使用寿命,具有破坏性,适宜采用抽样调查,符合题意;B、调查奥运会马拉松比赛运动员兴奋剂的使用情况,涉及公平性,适宜采用全面调查,不符合题意;C、调查九年级一班全体50名学生的视力情况,适宜采用全面调查,不符合题意;D、调查神舟十五号载人飞船各零部件的质量,涉及安全性,适宜采用全面调查,不符合题意;故选A.【点睛】本题考查的是抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或PC AB ⊥ ,PAB ∠=90PCA PCB ∴∠=∠=︒,tan PCAC α∴=,tan PC BC =AB a = ,AB AC =+tan tan PC PC a αβ∴=+,过A 作AC x ⊥轴于点由AOA BOB ''∠=∠可得, OCA ODB '∠=则ΔΔAOC B OD ~'OA OCOB OD∴=' 点A 坐标为(2,1)-,点∴2OC =,4OB =∴22OA OC OA =+∴2OC OB OD OA '== 故选:B .【点睛】本题考查了三角形相似的判定与性质以及勾股定理,相关知识点是解题的关键.∴BC BN AC AM=,21ABBC=,3AM=,∴13 BCAC=,1BN∴=,(2)①证明:∵直线l 与∴OB l ⊥,∴90OBD ∠=︒,即90OBA DBC ∠+∠=︒,∵OD OA ⊥,(2)①(1)中的结论仍然成立,理由如下:连接BF ,BD ,如图,∵四边形ABCD 和四边形GBEF ∴45ABD GBF ∠=∠=︒,BGF ∠∴BGF 和BAD 为等腰直角三角形,∴ABG ABF ABF ∠+∠=∠+∠∴ABG DBF ∠=∠,BF BD BG AB=∴ABG DBF ∽,∵ABG DBF ∽,∴GAB BDF ∠=∠,∵ANM DNB ∠=∠,∵四边形GBEF 是正方形,∴45BFG ∠=︒,∵45AGD ∠=︒,∴AGD BFG ∠=∠,∵AB 边的中点为O ,∵四边形ABCD为正方形,=,∴BC CD=,由折叠的性质可得:BC CE=,∴CE CD⊥,∵CQ DF。
河南省洛阳市中考数学二模考试试卷
河南省洛阳市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题(本题共16分,每小题2分)第1-8题均有四个选。
正确 (共8题;共16分)1. (2分)下列说法中正确的是()A . 无理数的相反数也是无理数B . 无理数就是带根号的数C . 平行四边形既是中心对称图形,又是轴对称图形D . 无限小数都是无理数。
2. (2分) (2018七上·龙港期中) 如图,,,,,分别是数轴上五个连续整数所对应的点,其中有一点是原点,数对应的点在与之间,数对应的点在与之间,若则原点可能是()A . 或B . 或C . 或D . 或3. (2分) (2019八上·江岸期中) 一个多边形的内角和是外角和的倍,则这个多边形的边数为()A .B .C .D .4. (2分)(2019·长春模拟) 从2019年起,长春市开始了城市轨道交通第三期建设,在建设规划中未来长春市城市轨道交通总长度将达到460000米,460000这个数字用科学记数法表示为()A . 4.6×104B . 46×104C . 4.6×105D . 4.6×1065. (2分)(2017·海珠模拟) 如图,点A.B.C在⊙D上,∠ABC=70°,则∠ADC的度数为()A . 110°B . 140°C . 35°D . 130°6. (2分)(2018·北京) 如果,那么代数式的值为()A .B .C .D .7. (2分)(2019·上城模拟) 有一组数据:2,0,2,1,﹣2,则这组数据的中位数、众数分别是()A . 1,2B . 2,2C . 2,1D . 1,18. (2分)如图,已知抛物线和直线.我们约定:当x任取一值时,x对应的函数值分别为y1、y2 ,若y1≠y2 ,取y1、y2中的较小值记为M;若y1=y2 ,记M= y1=y2.下列判断:①当x>2时,M=y2;②当x<0时,x值越大,M值越大;③使得M大于4的x值不存在;④若M=2,则x=1.其中正确的有A . 1个B . 2个C . 3个D . 4个二、填空题(本题共16分,每小题2分) (共8题;共16分)9. (2分) (2019七上·福田期末) 下列某种几何体从正面、左面、上面看到的形状图都相同,则这个几何体是________(填写序号)①三棱锥;②圆柱;③球.10. (2分)(2016·淮安) 若分式在实数范围内有意义,则x的取值范围是________.11. (2分)(2017·德州模拟) 数据80,82,85,89,100的标准差为________(小数点后保留一位).12. (2分) (2018八上·海口期中) 如图,∠1=∠2,由SAS判定△ABD≌△ACD,则需添加的条件是________.13. (2分) (2017七下·高阳期末) 《孙子算经》中有一道题:“今有木,不知长短,引绳度之,余绳四尺五寸;屈绳量之,不足一尺,木长几何?”译文大致是:“用一根绳子去量一根木条,绳子剩余4.5尺;将绳子对折再量木条,木条剩余1尺,问木条长多少尺?”如果设木条长x尺,绳子长y尺,可列方程组为________;14. (2分)(2017·顺义模拟) 如图的四边形均为矩形或正方形,根据图形的面积,写出一个正确的等式:________.15. (2分)如图,在四边形ABCD中,DA⊥AB,DA=AB= ,BC= ,DC=1.则∠ADC的度数是________.16. (2分)离物体越近,视角越________ ,离物体越远,视角越________ .三、解答题(本题共68分,第17-21题,每小题5分,第22-2 (共12题;共62分)17. (5.0分)结合本班实际,画出班级的简易平面图形,找出其中的垂线和平行线.18. (5分)(2019·黄埔模拟) 计算:(1)(2).19. (2分)不等式的解集在数轴上的表示方法:不等式表示x>a x<a x≥a x≤a数轴表示在数轴上表示不等式的解集时,要注意边界点是实心圆点还是空心圆圈.20. (5.0分) (2019九上·遵义月考) 已知关于x的一元二次方程x2−(3k+1)x+2k2+2k=0.(1)求证:无论k取何实数值,方程总有实数根;(2)若等腰△ABC的一边长a=6,另两边长b、c恰好分别是这个方程的两个根,求k的值.21. (2分)(2018·来宾模拟) 如图,已知点A(1,a)是反比例函数的图象上一点,直线与反比例函数的图象的交点为点B、D,且B(3,-1),求:(1)求反比例函数的解析式;(2)求点D坐标,并直接写出y1>y2时x的取值范围;(3)动点P(x,0)在x轴的正半轴上运动,当线段PA与线段PB之差达到最大时,求点P的坐标.22. (6分) (2017八下·扬州期中) 如图是规格为8×8的正方形网格,请在所给网格中按下列要求操作:(1)请在网格中建立平面直角坐标系, 使A点坐标为(2,4),B点坐标为(4,2);(2)请在(1)中建立的平面直角坐标系的第一象限内的格点上确定点C, 使点C与线段AB组成一个以AB 为底的等腰三角形, 且腰长是无理数, 则C点坐标是________,△ABC的周长是________(结果保留根号);(3)以(2)中△ABC的点C为旋转中心、旋转180°后的△A′B′C, 连结AB′和A′B, 试说出四边形ABA′B′是何特殊四边形, 并说明理由.23. (6.0分)(2018·朝阳模拟) 为了传承中华优秀传统文化,某校组织八年级学生参加了“汉字听写”大赛,赛后发现所有参赛学生的成绩均不低于50分.为了更好地了解大赛的成绩分布情况,随机抽取了其中若干名学生的成绩(成绩x取整数,总分100分)作为样本进行整理,绘制如下不完整的条形统计图.汉字听写大赛成绩分数段统计表分数段频数2691815汉字听写大赛成绩分数段条形统计图(1)补全条形统计图.(2)这次抽取的学生成绩的中位数在________的分数段中;这次抽取的学生成绩在的分数段的人数占抽取人数的百分比是________.(3)若该校八年级一共有学生350名,成绩在90分以上(含90分)为“优”,则八年级参加这次比赛的学生中成绩“优”等的约有多少人?24. (6分)(2017·天门) 如图,AB为⊙O的直径,C为⊙O上一点,AD与过点C的切线互相垂直,垂足为点D,AD交⊙O于点E,连接CE,CB.(1)求证:CE=CB;(2)若AC=2 ,CE= ,求AE的长.25. (6分)(2016九上·苏州期末) 如图,在平面直角坐标系中,直线与抛物线交于A、B两点,点A在x轴上,点B的横坐标为-8.(1)求该抛物线的解析式;(2)点P是直线AB上方的抛物线上一动点(不与点A、B重合),过点P作x轴的垂线,垂足为C,交直线AB于点D,作PE⊥AB于点E.①设△PDE的周长为,点P的横坐标为,求关于的函数关系式,并求出的最大值;②连接PA,以PA为边作图示一侧的正方形APFG.随着点P的运动,正方形的大小、位置也随之改变.当顶点F或G恰好落在轴上时,求出对应点P的坐标.26. (6分)(2017·祁阳模拟) 将抛物线c1:沿x轴翻折,得到抛物线c2 ,如图1所示.(1)请直接写出抛物线c2的表达式;(2)现将抛物线c1向左平移m个单位长度,平移后得到新抛物线的顶点为M,与x轴的交点从左到右依次为A、B;将抛物线c2向右也平移m个单位长度,平移后得到新抛物线的顶点为N,与x轴的交点从左到右依次为D、E.①当B、D是线段AE的三等分点时,求m的值;②在平移过程中,是否存在以点A、N、E、M为顶点的四边形是矩形的情形?若存在,请求出此时m的值;若不存在,请说明理由.27. (6分) (2017八下·临泽期末) 如图,方格纸中的每个小方格都是边长为1个单位长度的正方形,每个小正方形的顶点叫格点,△ABC的顶点均在格点上,请按要求完成下列步骤:(1)画出将△ABC向上平移3个单位后得到的△A1B1C1,(2)画出将△A1B1C1绕点C1按顺时针方向旋转90°后所得到的△A2B2C1.28. (7.0分)(2017·永嘉模拟) 如图,抛物线y=ax2+3x交x轴正半轴于点A(6,0),顶点为M,对称轴MB交x轴于点B,过点C(2,0)作射线CD交MB于点D(D在x轴上方),OE∥CD交MB于点E,EF∥x轴交CD于点F,作直线MF.(1)求a的值及M的坐标;(2)当BD为何值时,点F恰好落在该抛物线上?(3)当∠DCB=45°时:①求直线MF的解析式;________②延长OE交FM于点G,四边形DEGF和四边形OEDC的面积分别记为S1、S2,则S1:S2的值为________(直接写答案)参考答案一、选择题(本题共16分,每小题2分)第1-8题均有四个选。
河南省洛阳市中考数学二模试卷
河南省洛阳市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共6题;共12分)1. (2分) (2019八上·北京期中) 下列计算正确的是()A . a + a = aB . (ab ) = abC . a • a = aD . a ÷ a = a2. (2分) (2018九上·桥东月考) 已知抛物线y=x2+2x上三点A(﹣5,y1),B(2.5,y2),C(12,y3),则y1 , y2 , y3满足的关系式为()A . y1<y2<y3B . y3<y2<y1C . y2<y1<y3D . y3<y1<y23. (2分)(2017·通州模拟) 小明、小华两名射箭运动员在某次测试中各射箭10次,两人的平均成绩均为7.5环,如图做出了表示平均数的直线和10次射箭成绩的折线图.S1 , S2分别表示小明、小华两名运动员这次测试成绩的方差,则有()A . S1<S2B . S1>S2C . S1=S2D . S1≥S24. (2分) (2018九上·肇庆期中) 下列图形中,是中心对称图形,但不是轴对称图形的是()A .B .C .D .5. (2分)下列说法中,正确的是()A . 同位角相等B . 对角线相等的四边形是平行四边形C . 四条边相等的四边形是菱形D . 矩形的对角线一定互相垂直6. (2分)(2020·嘉定模拟) 下列四个选项,其中的数不是分数的选项是()A . ﹣4B .C .D . 50%二、填空题 (共12题;共12分)7. (1分)(2020·泉州模拟) 若意义,则x的取值范围是________.8. (1分)(2019·呼和浩特模拟) 分解因式x2﹣y2﹣z2﹣2yz=________.9. (1分)是整数,则正整数n的最小值是________10. (1分) (2019九上·台安月考) 关于x的反比例函数的图像位于第二、四象限,则m的取值范围是________.11. (1分)(2020·顺德模拟) 掷一枚质地均匀的硬币,前9次都是反面朝上,则掷第10次时反面朝上的概率是________.12. (1分) (2019九上·西城期中) 若一个扇形的圆心角是120°,且它的半径是18cm,则此扇形的弧长是________cm13. (1分) (2019七下·海拉尔期末) 如图是某班48名同学在一次数学测试中的分数频数分布直方图(分数只取整数),图中从左到右的小长方形的高度比为1:3:6:4:2,由图可知其分数在70.5~80.5范围内的人数是________人.14. (1分)(2018·徐汇模拟) 计算: =________.15. (1分)(2019·淄川模拟) 如图,已知点是的直径上的一点,过点作弦,使.若的度数为40°,则的度数是________.16. (1分)(2019·北部湾模拟) 如图,正方形OABC的边长为6,A,C分别位于x轴、y轴上,点P在AB 上,CP交OB于点Q,函数y= 的图象经过点Q,若S△BPQ=S△OQC ,则k的值为________ 。
河南省洛阳市中考数学二模试卷
河南省洛阳市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题) (共12题;共24分)1. (2分)的平方根是()A . 2B . ±2C .D . ±2. (2分) (2020八下·贵港期末) 如图,在中,,则的度数为()A .B .C .D .3. (2分)如图,由几个小正方体组成的立体图形的左视图是A .B .C .D .4. (2分)(2016·梧州) 分解因式:2x2﹣2=()A . 2(x2﹣1)B . 2(x2+1)C . 2(x﹣1)2D . 2(x+1)(x﹣1)5. (2分)(2016·荆州) 如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是()A . 2B .C .D .6. (2分)(2019·沾化模拟) 已知点A(x1 , y1),(x2 , y2)是反比例函数y= 图象上的点,若x1>0>x2 ,则一定成立的是()A . y1>y2>0B . y1>0>y2C . 0>y1>y2D . y2>0>y17. (2分) (2017九上·宝坻月考) 下列条件是随机事件的是()A . 通常加热到100℃时,水沸腾B . 在只装有黑球和白球的袋子里,摸出红球C . 购买一张彩票,中奖D . 太阳从东方升起8. (2分)下列各命题的逆命题是真命题的是().A . 对顶角相等B . 等边三角形是锐角三角形C . 如果两个数同号,那么它们的积是正数D . 如果两个数都是负数,那么它们的和为负数9. (2分) (2020七下·云南月考) 如图,点的坐标分别为、,将沿轴向右平移,得到三角形,已知,则点的坐标为()A .B .C .D .10. (2分)抛物线的顶点坐标是()A . (2,0)B . (-2,0)C . (0,2)D . (0,-2)11. (2分)(2017·河南模拟) 已知正比例函数y=ax(a≠0)与反比例函数y= (k≠0)图象的一个交点坐标为(﹣1,﹣1),则另一个交点坐标是()A . (1,﹣1)B . (1,1)C . (﹣1,1)D . (0,1)12. (2分) (2019七上·泉州月考) 如图是一根起点为1的数轴,现有同学将它弯折,弯折后虚线上第一行的数是1,第二行的数是13,第三行的数是43,…,依此规律,第五行的数是()A . 183B . 157C . 133D . 91二、填空题 (共5题;共5分)13. (1分) (2019七下·南浔期末) 某班40名学生在一次2019年阶段检测中,数学成绩在90~100分这个分数段的频率为0.2,则该班数学成绩在90~100分的学生为________人.14. (1分)(2020·阿城模拟) 疫情期间,某小区卡点有6名志愿者,其中4名女志愿者,2名男志愿者,若随机抽取2人为组长,恰好抽到2名男志愿者的概率为________.15. (1分)已知关于x的一元二次方程有两个相等的实数根,则k的值是________.16. (1分)用一张半径为9 cm、圆心角为120°的扇形纸片,做成一个圆锥形冰淇淋的侧面(不计接缝),那么这个圆锥形冰淇淋的底面半径是________ cm.17. (1分)(2017·薛城模拟) 如图,在等边△ABC中,AB=4,点P是BC边上的动点,点P关于直线AB,AC 的对称点分别为M,N,则线段MN长的取值范围是________.三、解答题 (共8题;共74分)18. (5分)(2020·南宁模拟) 解分式方程:19. (10分)(2018·福清模拟) 如图,在矩形ABCD中,E、F分别是边AB、CD的中点,连接AF,CE.(1)求证:△BEC≌△DFA;(2)求证:四边形AECF是平行四边形.20. (10分)(2020·新昌模拟) 某电工想换房间的灯泡,已知灯泡到地面的距离为2.65m,现有一架家用可调节式脚踏人字梯,其中踏板、地面都是水平的.梯子的侧面简化结构如图所示,左右支撑架长度相等,BD=1m。
河南省洛阳市数学中考二模试卷
河南省洛阳市数学中考二模试卷姓名:________ 班级:________ 成绩:________一、单选题 (共8题;共16分)1. (2分) (2019七上·徐汇月考) 下列运算结果正确的是()A .B .C .D .2. (2分) (2019七上·黄岩期末) 一张长为a,宽为b的长方形纸片(a>3b),分成两个正方形和一个长方形三部分(如图①).现将左边两部分图形对折,使EF与GH重合,折痕为AB(如图②),再将右边两部分图形对折,使MN与PQ重合,折痕为CD(如图③),则图④中长方形ABCD的周长为()A . 4bB . 2(a﹣b)C . 2aD . a+b3. (2分)连接海口、文昌两市的跨海大桥,近日获国家发改委批准建设,该桥估计总投资1 460 000 000。
数据1 460 000 000用科学记数法表示应是()A . 146×107B . 1.46×109C . 1.46×1010D . 0.146×10104. (2分) (2020九下·牡丹开学考) 商店货架上摆放着某品牌方便面,它们的三视图如图,则货架上的方便面至少有()A . 7盒B . 8盒C . 9盒D . 10盒5. (2分) (2020七下·阳东期末) 不等式组的整数解的个数是()A .B .C .D .6. (2分)(2017·新泰模拟) 如图,在Rt△ABC中,∠A=30°,BC=2 ,以直角边AC为直径作⊙O交AB 于点D,则图中阴影部分的面积是()A . ﹣B . ﹣C . ﹣D . ﹣7. (2分)(2012·玉林) 市农科所收集统计了甲、乙两种甜玉米各10块试验田的亩产量后,得到方差分别是=0.002、=0.01,则()A . 甲比乙的亩产量稳定B . 乙比甲的亩产量稳定C . 甲、乙的亩产量稳定性相同D . 无法确定哪一种的亩产量更稳定8. (2分)(2018·河北模拟) 如图,△ABC中,D,E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A . 4:2:1B . 5:3:1C . 25:12:5D . 51:24:10二、填空题 (共6题;共6分)9. (1分) (2019七上·施秉月考) 倒数和绝对值都等于本身的数是________.10. (1分)(2017·临沭模拟) 分解因式:m2n﹣2mn+n=________.11. (1分) (2017九下·丹阳期中) 函数中,自变量x的取值范围是________。
2022年河南省洛阳市中考数学二模试题及答案解析
2022年河南省洛阳市中考数学二模试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 一个数的相反数是−2,则这个数是( )A. 2B. 2或−2C. −2D. 122. 随着微电子制造技术的不断进步,电子元件的尺寸大幅度缩小,在芯片上某种电子元件大约只占0.00000065mm2,将0.00000065用科学记数法表示为( )A. 6.5×10−6B. 6.5×10−7C. 65×10−8D. 0.65×10−73. 如图是由一些完全相同的小正方体搭成的几何体的左视图和俯视图,搭成这个几何体所用的小正方体的个数至少是( )A. 3个B. 4个C. 5个D. 6个4. 下列运算正确的是( )A. a2⋅a3=a5B. (−3x)2=6x2C. (x−y)2=x2−y2D. −6(m−1)=−6m−65. 如图,直线a//b,AC⊥AB,AC交直线b于点C,∠1=60°,则∠2的度数是( )A. 50°B. 45°C. 35°D. 30°6. 某中学举行“读书节”活动,对七年级(1)班48位学生所阅读书籍数量情况进行统计,统计结果如上表所示,这组数据的中位数和众数分别是( )阅读书籍数量(单位:1233以上本)人数(单位:人)1518105A. 1,2B. 2,2C. 3,2D. 2,17. 已知关于x的一元二次方程mx2−4x+2=0有两个实数根,则m的取值范围是( )A. m≤2B. m<2且m≠0C. m≠0D. m≤2且m≠08. 如图,Rt△ABC中,∠C=90°,∠A=30°,BC=√3,作∠ABC的平分线BE交CA于点F,以点B为圆心,以BF为长度作弧,交BA于点G,则阴影部分的面积为( )A. 2√3−π3B. √3−π6C. 2√3−π6D. √3−π39. 如图,▱ABCD的顶点B,C在坐标轴上,点A的坐标为(−1,2√3).将▱ABCD沿x轴向右平移得到▱A′B′C′D′,使点A′落在函数y=4√3x的图象上,若线段BC扫过的面积为9,则点B′的坐标为( )A. (2√3,3)B. (3,3)C. (2√2,2√2)D. (3,2√3)10. 如图,在平面直角坐标系中,直线l为正比例函数y=x的图象,点A1的坐标为(1,0),过点A1作x轴的垂线交直线l于点D1,以A1D1为边作正方形A1B1C1D1;过点C1作直线l的垂线,垂足为A 2,交x 轴于点B 2,以A 2B 2为边作正方形A 2B 2C 2D 2;过点C 2作x 轴的垂线,垂足为A 3,交直线l 于点D 3,以A 3D 3为边作正方形A 3B 3C 3D 3,…,按此规律操作下所得到的正方形A n B n C n D n 的面积是( )A. (92)nB. (92)n−1C. (32)nD. (32)n−1二、填空题(本大题共5小题,共15.0分)11. 不等式2x −3<4x 的最小整数解是______.12. 已知点A(−12,m),点B(2,n)在直线y =3x +b 上,则m 与n 的大小关系是m ______n(填“>”“<”或“=”).13. 一只不透明的袋子中装有1个黄球,现放进若干个红球,它们与黄球除颜色外都相同,搅匀后从中一次摸出两个球,使得摸出一个红球和一个黄球的概率等于摸出两红球的概率,则放入的红球个数为______.14. 如图,在△ABC 中,AC =BC ,矩形DEFG 的顶点D 、E 在AB 上,点F 、G 分别在BC 、AC上,若CF =4,BF =3,且DE =2EF ,则EF 的长为______ .15. 如图,正方形ABCD 中,AB =6,点E 为对角线AC 上的动点,以DE 为边作正方形DEFG ,点H 是CD 上一点,且DH =23CD ,连接GH ,则GH 的最小值为______.三、解答题(本大题共8小题,共75.0分。
河南省洛阳市中考数学二模试卷
河南省洛阳市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共12题;共24分)1. (2分)下列运算结果不一定为负数的是()A . 异号两数相乘B . 异号两数相除C . 异号两数相加D . 奇数个负因数的乘积2. (2分) (2018九上·襄汾期中) 在△ABC中,若∠A、∠B满足|cosA﹣ |+(sinB﹣)2=0,则∠C=()A . 45°B . 60°C . 75°D . 105°3. (2分)在一些美术字中,有的汉字是轴对称图形.下面4个汉字中,可以看作是轴对称图形的是()A .B .C .D .4. (2分)(2019·湘潭) 今年某市参加初中学业水平考试的九年级学生人数约24000人,24000用科学记数法表示为()A .B .C .D .5. (2分)桌面上放着1个长方体和1个圆柱体,按如图所示的方式摆放在一起,其左视图是()A .B .C .D .6. (2分)(2020·镇平模拟) 已知a,b为两个连续的整数,且,则()A . 1B . 2C . 6D . 97. (2分)(2017·路南模拟) 化简 + 的结果是()A . n﹣mB . m﹣nC . m+nD . ﹣m﹣n8. (2分) (2016九上·黑龙江月考) 三角形的两边分别2和6,第三边是方程x2-10x+21=0的解,则三角形周长为()A . 11B . 15C . 11或15D . 不能确定9. (2分)已知数轴上A、B表示的数互为相反数,并且两点间的距离是8,点A在点B的左边,则点A、B表示的数分别是()A . ﹣4,4B . 4,﹣4C . 8,﹣8D . ﹣8,810. (2分)(2020·龙泉驿模拟) 关于反比例函数,下列说法正确的是()A . 图象过(1,2)点B . 图象在第一、三象限C . 当x>0时,y随x的增大而减小D . 当x<0时,y随x的增大而增大11. (2分) (2020七下·南山期中) 如图,把一张长方形纸片ABCD沿EF折叠后,点A落在CD边上的点处,点B落在点处,若则图中的度数为()A . 40°B . 45°C . 50°D . 60°12. (2分)(2018·深圳模拟) ,函数与在同一直角坐标系中的大致图象可能是()A .B .C .D .二、填空题 (共6题;共16分)13. (2分) (2017八上·江阴开学考) x5•x2•x=________,( xy2)2=________.14. (1分) (2020八上·常德期末) 计算 =________.15. (1分)初一(2)班共有学生44人,其中男生有30人,女生14人,若在此班上任意找一名学生,找到男生的可能性比找到女生的可能性________(填“大”或“小”).16. (1分)(2016·荆州) 若点M(k﹣1,k+1)关于y轴的对称点在第四象限内,则一次函数y=(k﹣1)x+k 的图象不经过第________象限.17. (1分) (2020八下·永春月考) 如图,在正方形ABCD中,O是对角线AC与BD的交点,M是BC边上的动点(点M不与点B , C重合),过点C作CN⊥DM交AB于点N ,连结OM、ON , MN .下列五个结论:①△CNB≌△DMC;②ON=OM;③ON⊥OM;④若AB=2,则S△OMN的最小值是1;⑤AN2+CM2=MN2 .其中符合题意结论是________;(只填序号)18. (10分) (2020八下·长沙期中) 在四边形中,已知,,,且于点C.试求:(1) AC的长;(2)的度数.三、解答题 (共7题;共40分)19. (5分)请阅读求绝对值不等式|x|<3和|x|>3的解集的过程:因为|x|<3,从如图1所示的数轴上看:大于﹣3而小于3的数的绝对值是小于3的,所以|x|<3的解集是﹣3<x<3;因为|x|>3,从如图2所示的数轴上看:小大于﹣3的数和大于3的数的绝对值是大于3的,所以|x|>3的解集是x<﹣3或x>3.解答下面的问题:(1)不等式|x|<a(a>0)的解集为多少?;不等式|x|>a(a>0)的解集为多少?(2)解不等式|x﹣5|<3;(3)解不等式|x﹣3|>5.20. (10分)(2020·北京模拟) 为了解某区初二年级数学学科期末质量监控情况,进行了抽样调查,过程如下,请将有关问题补充完整.收集数据:随机抽取甲乙两所学校的20名学生的数学成绩进行分析:甲9189778671319793729181928585958888904491乙8493666976877782858890886788919668975988整理、描述数据:(1)按如下数据段整理、描述这两组数据(2)两组数据的平均数、中位数、众数、方差如下表:a经统计,表格中m的值是________.得出结论:b若甲学校有400名初二学生,估计这次考试成绩80分以上人数为________.c可以推断出________学校学生的数学水平较高,理由为:①________;②________.(至少从两个不同的角度说明推断的合理性)21. (5分) (2017九上·官渡期末) 如图,AB与⊙O相切于点B,AO及AO的延长线分别交⊙O于D、C两点,若∠A=40°,求∠C的度数.22. (5分)(2018·霍邱模拟) 如图,某次中俄“海上联合”反潜演习中,我军舰A测得潜艇C的俯角为30°.位于军舰A正上方1000米的反潜直升机B侧得潜艇C的俯角为68°.试根据以上数据求出潜艇C离开海平面的下潜深度.(结果保留整数.参考数据:sin68°≈0.9,cos68°≈0.4,tan68°≈2.5,≈1.7)23. (5分) (2011七下·河南竞赛) 一玩具工厂用于生产的全部劳力为450个工时,原料为400个单位。
河南省洛阳市中考数学二模考试试卷
河南省洛阳市中考数学二模考试试卷姓名:________ 班级:________ 成绩:________一、选择题 (共10题;共20分)1. (2分) (2020九上·德城期末) 一元二次方程的解是()A . = =1B . = =-1C . =1, =﹣1D . =1, =02. (2分)如图,在8×4的矩形网格中,每格小正方形的边长都是1,若△ABC的三个顶点在图中相应的格点上,则tan∠ACB的值为()A . 1B .C .D .3. (2分) (2020九上·昭平期末) 下列各点在反比例函数y=- 图象上的是()A . (3,2)B . (2,3)C . (-3,-2)D . (- ,2 )4. (2分) (2019九上·余杭期中) 如图,点A , B , C在上,若,则的度数是()A .B .C .D .5. (2分) (2018九上·朝阳期中) 二次函数y=(x+2)2+3的图象的顶点坐标是()A . (﹣2,3)B . (2,3)C . (﹣2,﹣3)D . (2,﹣3)6. (2分)如图,A为反比例函数y= 图象上的一点,AB⊥y轴于B,点P在x轴上,S△ABP=2,则这个反比例函数的表达式为()A . y=B . y=﹣C . y=D . y=﹣7. (2分) (2020九上·赣榆期末) 九江某快递公司随着网络的发展,业务增长迅速,完成快递件数从六月份的10万件增长到八月份的12.1万件.假定每月增长率相同,设为x.则可列方程为()A .B .C .D .8. (2分) (2016九上·大石桥期中) 某同学在用描点法画二次函数y=ax2+bx+c的图象时,列出下面的表格:x…﹣5﹣4﹣3﹣2﹣1…y…﹣7.5﹣2.50.5 1.50.5…根据表格提供的信息,下列说法错误的是()A . 该抛物线的对称轴是直线x=﹣2B . 该抛物线与y轴的交点坐标为(0,﹣2.5)C . b2﹣4ac=0D . 若点A(0.5,y1)是该抛物线上一点.则y1<﹣2.59. (2分) (2018九上·大冶期末) 如图,⊙O的直径CD=12cm,AB是⊙O的弦,AB⊥CD,垂足为E,OE:OC =1:3,则AB的长为()A . 2 cmB . 4 cmC . 6 cmD . 8 cm10. (2分) (2016九上·黔西南期中) 如图所示,二次函数y=ax2+bx+c的图象中,王刚同学观察得出了下面四条信息:(1)b2﹣4ac>0;(2)c>1;(3)2a﹣b<0;(4)a+b+c<0,其中错误的有()A . 1个B . 2个C . 3个D . 4个二、填空题 (共4题;共4分)11. (1分)已知关于x的一元二次方程有一个根为0.请你写出一个符合条件的一元二次方程是________.12. (1分)(2017·河西模拟) 写出一个反比例函数,使它的图像经过第二、四象限,它是________.13. (1分) (2018九上·宝应月考) 如图,抛物线y=ax2+bx+c交x轴于(﹣1,0)、(3,0)两点,以下四个结论正确的是(用序号表示)________.( 1 )图象的对称轴是直线x=1(2)当x>1时,y随x的增大而减小(3)一元二次方程ax2+bx+c=0的两个根是﹣1和3(4)当﹣1<x<3时,y<0.14. (1分) (2019九上·保山期中) 如图,点A,B,C是⊙O上的点,OA=AB,则∠C的度数为________.三、计算题 (共2题;共15分)15. (10分)(2020·北京模拟) 计算:16. (5分)四、综合题 (共12题;共81分)17. (5分)(2017·玄武模拟) 如图,小明在热气球A上看到正前方横跨河流两岸的大桥BC,并测得B,C 两点的俯角分别为60°和35°,已知大桥BC的长度为100m,且与地面在同一水平面上.求热气球离地面的高度.(结果保留整数,参考数据:sin35°≈ ,cos35°≈ ,tan35°≈ ,≈1.7)18. (10分)已知抛物线y=﹣x2+ax+b经过点A(1,0),B(0,﹣4).(1)求此抛物线的解析式;(2)当x取何值时,y随x的增大而增大?(3)若抛物线与x轴的另一个交点为C,求△ABC的面积.19. (10分)(2019·驻马店模拟) 如图,已知一次函数的图象与反比例函数的图象相交于点,与轴相交于点 .(1)求一次函数和反比例函数的解析式;(2)点是线段上一动点,过点作直线轴交反比例函数的图象于点,连接,若的面积为,求的最大值.20. (10分)(2012·盐城) 如图所示,AC⊥AB,AB=2 ,AC=2,点D是以AB为直径的半圆O上一动点,DE⊥CD交直线AB于点E,设∠DAB=α(0°<α<90°).(1)当α=18°时,求的长;(2)当α=30°时,求线段BE的长;(3)若要使点E在线段BA的延长线上,则α的取值范围是________(直接写出答案)21. (1分)如图,AB是⊙O的直径,且经过弦CD的中点H,过CD延长线上一点E作⊙O的切线,切点为F.若∠ACF=65°,则∠E=________.22. (1分)(2017·松江模拟) 已知抛物线y=ax2+bx+c过(﹣1,1)和(5,1)两点,那么该抛物线的对称轴是直线________.23. (1分)已知关于的方程,若有一个根为0,则 =________,这时方程的另一个根是________;若两根之和为-,则 =________,这时方程的两个根为________.24. (2分)(2017·邗江模拟) 如图坐标系中,O(0,0),A(6,6 ),B(12,0),将△OAB沿直线线CD折叠,使点A恰好落在线段OB上的点E处,若OE= ,则CE:DE的值是________.25. (1分) (2018九上·下城期末) 已知P为⊙O外的一点,P到⊙O上的点的最大距离为6,最小距离为2.若AB为⊙O内一条长为1的弦,则点P到AB的距离的最大值为________,最小值为________.26. (15分)(2019·金华) 如图,在平面直角坐标系中,正方形OABC的边长为4,边OA,OC分别在x轴,y 轴的正半轴上,把正方形OABC的内部及边上,横,纵坐标均为整数的点称为好点,点P为抛物线y=-(x-m)2+m+2的顶点。
河南省洛阳市2023届九年级中考二模数学试卷(含解析)
2023年河南省洛阳市中考数学二模试卷一、选择题(本大题共10小题,共30.0分。
在每小题列出的选项中,选出符合题目的一项)1. 下列4个数中,最小的数是( )A. ―(―2)B. |―2|C. (―2)0D. (―2)―12. 据报道,在中国科研团队在联合攻关下,成功构建76个光子的量子计算原型机“九章”.实验显示,当求解5000万个样本的高斯玻色取样时,“九章”仅需200秒.从运算等效来看,“九章”的计算用时仅为“悬铃木”用时的百亿分之一.“百亿分之一”用科学记数法可以表示为( )A. 1×10―9B. 1×10―10C. 1×10―11D. 1×10―123.如图是由5个同样大小的小正方体摆成的几何体,现将第6个小正方体摆放在①、②、③某个位置,下面说法有误的是( )A. 放在①前面主视图不改变B. 放在②前面俯视图不改变C. 放在③前面主视图不改变D. 放在①左面左视图不改变4. 下列计算正确的是( )A. a3⋅a2=a6B. y2+y2=2y4C. (ab2)2=ab4D. x8 ÷x2=x65. 下列说法正确的是( )A. “打开电视机,正在播放《新闻联播》”是必然事件B. 天气预报“明天降水概率50%,是指明天有一半的时间会下雨”C. 甲、乙两人在相同的条件下各跳远8次,他们成绩的平均数相同,方差分别是S2=0.32,甲S2乙=0.41,则甲的成绩更稳定D. 了解一批冰箱的使用寿命,采用普查的方式6. 如图,在平行四边形ABCD上,尺规作图:以点A为圆心,AB的长为半径画弧交AD于点F.BF的长为半径画弧交于点P,作射线AP交BC于点E,连接EF.分别以点B,F为圆心,以大于12若BF=12,AB=10,则AE的长为( )A. 18B. 17C. 16D. 147. 若关于x的一元二次方程(m―1)x2―2x+1=0有实数根,则m的值可以是( )A. 4B. 3C. 2D. 18. 如图是显示汽车油箱内油量的装置模拟示意图,电压U一定时,油箱中浮子随油面下降而落下,带动滑杆使滑动变阻器滑片向上移动,从而改变电路中的电流,电流表的示数对应油量体积,把电流表刻度改为相应油量体积数,由此知道油箱里剩余油量.在不考虑其他因素的条件下,油箱中油的体积V与电路中总电阻R总(R总=R+R0)是反比例关系,电流I与R总也是反比例关系,则I与V的函数关系是( )A. 正比例函数B. 反比例函数C. 二次函数D. 以上答案都不对9.如图,在△ABC中,顶点A在x轴的负半轴上,B(0,2),C(5,2),AB=BC,将△ABC绕点A逆时针旋转,每秒旋转90°,则第2023秒旋转结束时,点B的坐标为( )A. (―2,―2)B. (1,―1)C. (―3,1)D. (0,2)10. 如图(1),在Rt△ABC中,∠A=90°,点P从点A出发,沿三角形的边以1cm/s的速度逆时针运动一周,图(2)是点P运动时,线段AP的长度y(cm)随运动时间x(s)变化的关系图象,则图(2)中P点的坐标是( )A. (13,3)B. (13,4)C. (13,4.8)D. (13,5)二、填空题(本大题共5小题,共15.0分)11. 写出一个y关于x的函数解析式,使其经过点(2,0):______ .12. 若方程组2x―y=3―x+2y=m―1的解x,y满足x+y>5,则m的取值范围为______.13. 学校组织秋游,安排给九年级3辆车,小明和小慧都可以从这3辆车中任选一辆搭乘.则小明和小慧同车的概率为______.14.如图,在Rt△ABC中,∠ACB=90°,BC=1,AC=3,以点C为圆心,BC为半径作圆弧交AC于点D,交AB于点E.则阴影部分的面积为______ .15. 如图,矩形ABCD的边AD长为4,将△ADC沿对角线AC翻折得到△AD′C,CD′与AB交于点E,再以CD′为折痕,将△BCE进行翻折,得到△B′CE.若两次折叠后,点B′恰好落在△ADC的边上,则AB的长为______.三、解答题(本大题共8小题,共75.0分。
河南省洛阳市中考数学二模试卷
河南省洛阳市中考数学二模试卷姓名:________ 班级:________ 成绩:________一、选择题 (共6题;共12分)1. (2分)-的相反数是()A . 2016B . -2016C .D . -2. (2分) (2016九上·思茅期中) 下列运算正确的是()A . (a3)2=a5B . a3+a2=a5C . (a3﹣a)÷a=a2D . a3÷a3=13. (2分)如图是小强用八块相同的小立方块搭建的一个积木,他从左面看到的形状图是()A .B .C .D .4. (2分)在平面直角坐标系中,点(﹣2,﹣2m+3)在第三象限,则m的取值范围是()A .B .C .D .5. (2分)(2017·广东模拟) 如图,已知矩形ABCD中,R是边CD的中点,P是边BC上一动点,E、F分别是AP、RP的中点,设BP的长为x,EF的长为y,当P在BC上从B向C移动时,y与x的大致图象是()A .B .C .D .6. (2分) (2019八下·瑞安期末) 欧几里得是古希腊数学家,所著的《几何原本》闻名于世.在《几何原本》中,形如x2+ax=b2的方程的图解法是:如图,以和b为直角边作Rt△ABC,再在斜边上截取BD=,则图中哪条线段的长是方程x2+ax=b2的解?答:是()A . ACB . ADC . ABD . BC二、填空题 (共6题;共7分)7. (2分)已知有两个三角形相似,一个边长分别为2,3,4,另一个的对应边长分别为x,y,12,则x=________,y=________.8. (1分) (2020九下·西安月考) cos30°+ sin45°=________9. (1分)(2016·扬州) 2015年9月3日在北京举行的中国人民抗日战争暨世界反法西斯战争胜利70周年阅兵活动中,12000名将士接受了党和人民的检阅,将12000用科学记数法表示为________.10. (1分)(2019·天台模拟) 如图,在平面直角坐标系中,△ABC的顶点在坐标轴上,A,B,C三点的坐标分别为 (0,2),(1,0),(0,-0.5),D为线段AB上-个动点(不与点A,B重合),过B,D,0三点的圆与直线BC 交于点E,当△OED面积取得最小值时,ED的长为________.11. (1分)甲、乙两工程队分别同时开挖两条600米长的管道,所挖管道长度y(米)与挖掘时间x(天)之间的关系如图所示,则下列说法中:①甲队每天挖100米;②乙队开挖两天后,每天挖50米;③甲队比乙队提前3天完成任务;④当x=2或6时,甲乙两队所挖管道长度都相差100米.正确的有________ .(在横线上填写正确的序号)12. (1分) (2017八下·广州期中) 如图,矩形ABCD中,AB=15cm,点E在AD上,AE=9cm,连接EC,将矩形ABCD沿BE翻折,点A恰好落在EC上的点A′处,则BC=________cm.三、解答题 (共12题;共101分)13. (5分)三角形的两边长分别为3和6,第三边的长是方程x2-6x+8=0的一个根,求这个三角形的周长.14. (5分)已知:如图,过圆O外一点B作圆O的切线BM,M为切点,BO交圆O于点A,过点A作BO的垂线,交BM于点P,BO=3,圆O的半径为1.求:MP的长.15. (5分)先化简,再求值:÷(1+ ),其中a= .16. (5分) (2018八上·揭西期末) “中国制造”是世界上认知度最高的标签之一,因此,我县越来越多的群众选择购买国产空调,已知购买1台A型号的空调比1台B型号的空调少200元,购买2台A型号的空调与3台B型号的空调共需11200元,求A、B两种型号的空调的购买价各是多少元?17. (8分) (2019九上·新密期末) 在创客教育理念的指引下,国内很多学校都纷纷建立创客实践室及创客空间,致力于从小培养孩子的创新精神和创造能力,郑州市某校开设了“3D”打印、数学编程、智能机器人、陶艺制作”四门创客课程,为了解学生对这四门创客课程的喜爱情况,数学兴趣小组对全校学生进行了随机问卷调查(问卷调查表如表所示),将调查结果整理后绘制成图1、图2两幅均不完整的统计图表.最受欢理的创客课程词查问卷你好!这是一份关于你喜欢的创客深程问卷调查表,请你在表格中选择一个(只能选择一个)你最喜欢的课程选项在其后空格内打“√“,非常感谢你的合作.请根据图表中提供的值息回答下列问题:(1)统计表中的a=________,b=________;(2)“D”对应扇形的圆心角为________;(3)根据调查结果,请你估计该校2000名学生中最喜欢“数学编程”创客课程的人数.18. (6分) (2018八下·桂平期末) 如图,点B、C分别在直线y=2x和y=kx上,点A、D是x轴上的两点,且四边形ABCD是正方形.(1)若正方形ABCD的边长为2,则点B、C的坐标分别为________.(2)若正方形ABCD的边长为a,求k的值.19. (10分)(2017·济宁模拟) 一个不透明的口袋里装有分别标有汉字“幸”、“福”、“济”、“宁”的四个小球,除汉字不同之外,小球没有任何区别,每次摸球前先搅拌均匀再摸球.(1)若从中任取一个球,球上的汉字刚好是“福”的概率为多少?(2)小颖从中任取一球,记下汉字后放回袋中,然后再从中任取一球,求小颖取出的两个球上汉字恰能组成“幸福”或“济宁”的概率.20. (5分)如图1,图2,分别是吊车在吊一物品时的实物图与示意图,已知吊车底盘CD的高度为2米,支架BC的长为4米,且与地面成30°角,吊绳AB与支架BC的夹角为80°,吊臂AC与地面成70°角,求吊车的吊臂顶端A点距地面的高度是多少米?(精确到0.1米)(参考数据:sin10°=cos80°=0.17,c os10°=sin80°=0.98,sin20°=cos70°=0.34,tan70°=2.75,sin70°=0.94)21. (10分)(2018·深圳模拟) 如图,在平面直角坐标系中,坐标原点O是菱形ABCD的对称中心.边AB 与x轴平行,点B(1,-2),反比例函数(k≠0)的图象经过A,C两点.(1)求点C的坐标及反比例函数的解析式.(2)直线BC与反比例函数图象的另一交点为E,求以O,C,E为顶点的三角形的面积.22. (15分)(2020·石城模拟) 反比例函数y= (x>0) 的图像经过矩形ABCD的顶点A、C,AC的垂直平分线分别交AB、CD于点P、Q;己知点B坐标为(1,2),矩形ABCD的面积为8。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
河南省洛阳市中考数学二模试卷Modified by JACK on the afternoon of December 26, 20202018年河南省洛阳市中考数学二模试卷一、选择题(本大题共10小题,每小题3分,共30分,下列各小题均有四个答案,其中只有一个是正确的)1.(3分)|﹣|的相反数是()A.B.﹣C.3 D.﹣32.(3分)某种埃博拉病毒(EBV)长左右.将用科学记数法表示应为()A.×10﹣6B.×10﹣7C.×10﹣8D.×10﹣9 3.(3分)如图所示的几何体的俯视图是()A.B.C.D.4.(3分)下列计算结果正确的是()A.(﹣a3)2=a9B.a2a3=a6C.(﹣)﹣1﹣22=﹣2 D.(cos30°﹣)0=15.(3分)2018年3月份,我市某周空气质量报告中PM10污染指数的数据是:131,135,131,133,130,133,131,则下列关于这列数据表述正确的是()A.众数是130 B.中位数是131 C.平均数是133 D.方差是186.(3分)已知关于x的一元二次方程x2+x﹣2=0有两个不相等的实数根,则k的取值范围是()A.k>﹣7 B.k≥﹣7 C.k≥0 D.k≥17.(3分)如图,在?ABCD中,AM,CN分别是∠BAD和∠BCD的平分线,添加一个条件,仍无法判断四边形AMCN为菱形的是()A.AM=AN B.MN⊥ACC.MN是∠AMC的平分线D.∠BAD=120°8.(3分)一个不透明的袋子中装有四个小球,它们除了分别标有的数字1,2,3,6不同外,其他完全相同,任意从袋子中摸出一球后不放回,再任意摸出一球,则两次摸出的球所标数字之积为6的概率是()A.B.C.D.9.(3分)如图,△ABC的三个顶点都在方格纸的格点上,其中点A的坐标是(﹣1,0).现将△ABC绕点A顺时针旋转90°,则旋转后点C的坐标是()A.(2,1)B.(1,2)C.(﹣2,﹣1)D.(﹣1,﹣2)10.(3分)如图,在Rt△ABC中,∠BAC=90°,且AB=3,BC=5,⊙A与BC相切于点D,交AB于点E,交AC于点F,则图中阴影部分的面积为()A.12﹣πB.12﹣πC.6﹣πD.6﹣π二、填空题(每小题3分,共15分)11.(3分)计算:﹣(﹣2)3=.12.(3分)不等式组的解集为.13.(3分)如图,反比例函数y=﹣的图象与直线y=﹣x的交点为A,B,过点A作y轴的平行线与过点B作x轴的平行线相交于点C,则△ABC的面积为.14.(3分)在一次越野赛中,甲选手匀速跑完全程,乙选手小时后速度为每小时10千米,两选手的行程y(千米)随时间x(小时)变化的图象(全程)如图所示,则乙比甲晚到小时.15.(3分)如图,在Rt△ABC中,∠A=90°,AB=3,AC=4,点M,N分别是边BC,AB上的动点,沿MN所在的直线折叠∠B,使点B的对应点B′始终落在边AC上,若△MB′C为直角三角形,则BM的长为.三、解答题(本大题共8小题,共75分)16.(8分)化简:(),并从﹣1,0,1,2中选择一个合适的数求代数式的值.17.(9分)为了加强学生的安全意识,某校组织了学生参加安全知识竞赛,从中抽取了部分的学生成绩进行统计,绘制统计图如图(不完整).类别分数段A ~B ~C ~D ~E ~请你根据上面的信息,解答下列问题.(1)若A组的频数比B组小24,求频数直方图中的a,b的值;(2)在扇形统计图中,D部分所对的圆心角为n°,求n的值并补全频数直方图;(3)若成绩在80分以上为优秀,全校共有2 000名学生,估计成绩优秀的学生有多少名?18.(9分)如图,AB为⊙O的直径,CD切⊙O于点D,AC⊥CD于点C,交⊙O于点E,连接AD、BD、ED.(1)求证:BD=ED;(2)若CE=3,CD=4,求AB的长.19.(9分)某条道路上通行车辆的限速60千米/时,道路的AB段为监测区,监测点P到AB的距离PH为50米(如图).已知点P在点A的北偏东45°方向上,且在点B的北偏西60°方向上,点B在点A的北偏东75°方向上,那么车辆通过AB段的时间在多少秒以内,可认定为超速(参考数据:≈,≈).20.(9分)如图,在直角坐标系中,矩形OABC的顶点O与坐标原点重合,顶点A,C分别在坐标轴上,顶点B的坐标为(4,2).过点D(0,3)和E(6,0)的直线分别与AB,BC交于点M,N.(1)求直线DE的解析式和点M的坐标;(2)若反比例函数(x>0)的图象经过点M,求该反比例函数的解析式,并通过计算判断点N是否在该函数的图象上;(3)若反比例函数(x>0)的图象与△MNB有公共点,请直接写出m的取值范围.21.(10分)某物流公司承接A、B两种货物运输业务,已知5月份A货物运费单价为50元/吨,B货物运费单价为30元/吨,共收取运费9500元;6月份由于油价上涨,运费单价上涨为:A货物70元/吨,B货物40元/吨;该物流公司6月承接的A种货物和B种数量与5月份相同,6月份共收取运费13000元.(1)该物流公司5月份运输两种货物各多少吨?(2)该物流公司预计7月份运输这两种货物330吨,且A货物的数量不大于B 货物的2倍,在运费单价与6月份相同的情况下,该物流公司7月份最多将收到多少运输费?22.(10分)如图1,菱形ABCD是边长为2,∠BAD=60°,对角线AC、BD 交于点O.(1)操作发现:小芳同学将△CBD绕点O旋转得△CEF,当CF落在AD上时(如图2),连接ED,请直接写出ED与AC的位置关系和数量关系;(2)问题解决:小芳同学继续旋转△CEF(A,C不重合),如图3,连接ED、AC,她认为(1)中的结论仍然成立.你同意吗?说明理由.(3)深入思考:若直线ED与直线AC的交点为H,请直接写出BH的最大值.23.(11分)如图,二次函数y=x2+bx+c的图象交x轴于A、B两点,交y轴于点C,顶点为点P,经过B、C两点的直线为y=﹣x+3.(1)求该二次函数的关系式;(2)Q是直线BC下方抛物线上一动点,△QBC的面积是否有最大值?若有,求出这个最大值和此时Q的坐标;(3)在该抛物线的对称轴上是否存在点M,使以点C、P、M为顶点的三角形是等腰三角形?若存在,请直接写出所有符合条件的点M的坐标;若不存在,请说明理由.2018年河南省洛阳市中考数学二模试卷参考答案与试题解析一、选择题(本大题共10小题,每小题3分,共30分,下列各小题均有四个答案,其中只有一个是正确的)1.【分析】一个负数的绝对值是它的相反数,求一个数的相反数就是在这个数前面添上“﹣”号.【解答】解:∵|﹣|=,∴的相反数是﹣.故选:B.【点评】本题考查了相反数的意义,求一个数的相反数就是在这个数前面添上“﹣”号,不要把相反数的意义与倒数的意义混淆.同时考查了绝对值的性质:一个负数的绝对值是它的相反数.2.【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:=×10﹣7;故选:B.【点评】此题考查了用科学记数法表示较小的数,一般形式为a×10﹣n,其中1≤|a|<10,n为由原数左边起第一个不为零的数字前面的0的个数所决定.3.【分析】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中.【解答】解:从上往下看,易得一个长方形,且其正中有一条纵向实线,故选:B.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.4.【分析】直接利用积的乘方运算法则以及同底数幂的乘除运算法则、负指数幂的性质、零指数幂的性质分别化简得出答案.【解答】解:A、(﹣a3)2=a6,故此选项错误;B、a2a3=a5,故此选项错误;C、(﹣)﹣1﹣22=﹣2﹣4=﹣6,故此选项错误;D、(cos30°﹣)0=1,正确.故选:D.【点评】此题主要考查了积的乘方运算以及同底数幂的乘除运算、负指数幂的性质、零指数幂的性质等知识,正确掌握相关运算法则是解题关键.5.【分析】根据平均数、众数、方差、中位数的定义即可求解.【解答】解:将这组数据重新排列为130、131、131、131、133、133、135,A、这组数据的众数是131,此选项错误;B、这组数据的中位数为131、此选项正确;C、这组数据的平均数为=132,此选项错误;D、这组数据的方差为×[(130﹣132)2+(131﹣132)2×3+(133﹣132)2×2+(135﹣132)2]=,此选项错误;故选:B.【点评】本题为统计题,考查平均数、众数、极差、中位数的意义.平均数是指在一组数据中所有数据之和再除以数据的个数;一组数据中出现次数最多的数据叫做众数;极差是一组数据中最大数据与最小数据的差;中位数是将一组数据从小到大(或从大到小)重新排列后,最中间的那个数(或最中间两个数的平均数),叫做这组数据的中位数.6.【分析】根据二次根号下非负结合根的判别式△=k+7>0,即可得出结论.【解答】解:∵方程x2+x﹣2=0有两个不相等的实数根,∴△=﹣4×1×(﹣2)=k+7>0,k﹣1≥0,解得:k≥1.故选:D.【点评】本题考查了根的判别式以及二次根号下非负,熟练掌握“当△>0时,方程有两个不相等的实数根”是解题的关键.7.【分析】根据平行四边形性质推出∠B=∠D,∠DAB=∠DCB,AB=CD,AD=BC,求出∠BAM=∠DCN,证△ABM≌△CDN,推出AM=CN,BE=DN,求出AN=CM,得出四边形AMCN是平行四边形,再根据菱形的判定判断即可.【解答】解:如图,∵四边形ABCD是平行四边形,∴∠B=∠D,∠DAB=∠DCB,AB=CD,AD=BC,∵AM,CN分别是∠BAD和∠BCD的平分线,∴∠DCN=∠DCB,∠BAM=∠BAD,∴∠BAM=∠DCN,在△ABM和△CDN中,∴△ABM≌△CDN(ASA),∴AM=CN,BM=DN,∵AD=BC,∴AN=CM,∴四边形AMCN是平行四边形,A、∵四边形AMCN是平行四边形,AM=AN,∴平行四边形AMCN是菱形,故本选项错误;B、∵MN⊥AC,四边形AMCN是平行四边形,∴平行四边形AMCN是菱形,故本选项错误;C、∵四边形AMCN是平行四边形,∴AN∥BC,∴∠MNA=∠CMN,∵MN是∠AMC的平分线,∴∠NMA=∠NMC,∴∠MNA=∠MAC,∴∠MAC=∠NMA,∴AM=AN,∵四边形AMCN是平行四边形,∴四边形AMCN是菱形,故本选项错误;D、根据∠BAD=120°和平行四边形AMCN不能推出四边形是菱形,故本选项正确;故选:D.【点评】本题考查了平行四边形的性质和判定、菱形的判定、全等三角形的性质和判定、平行线的性质等知识点;证明三角形全等是解决问题的关键.8.【分析】先列表展示所有可能的结果数为12,再找出两次摸小球上数字之积为6的结果数,然后根据概率的概念计算即可.【解答】解:列表如下:1 2 3 61 (2,1)(3,1)(6,1)2 (1,2)(3,2)(6,2)3 (1,3)(2,3)(6,3)6 (1,6)(2,6)(3,6)所有等可能的情况有12种,其中两次摸出的球所标数字之积为6的有4种结果,所以两次摸出的球所标数字之积为6的概率为=,故选:D.【点评】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.9.【分析】利用网格特点和旋转的性质画出△ABC绕点A顺时针旋转90°后的图形,然后写出旋转后点C的坐标.【解答】解:如图,△ABC绕点A顺时针旋转90°得到△AB′C′,旋转后点C 的坐标为(2,1).【点评】本题考查了坐标与图形变换﹣旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.10.【分析】连接AD,根据勾股定理求出AC,根据三角形的面积公式求出AD,根据三角形面积公式、扇形面积公式计算即可.【解答】解:连接AD,在Rt△ABC中,∠BAC=90°,∴AC==4,∵BC是⊙A的切线,∴AD⊥BC,△ABC的面积=×AB×AC=×BC×AD,解得,AD=,∴阴影部分的面积=×AB×AC﹣=6﹣π,故选:C.【点评】本题考查的是切线的性质、扇形面积的计算,掌握圆的切线垂直于经过切点的半径、扇形面积公式是解题的关键.二、填空题(每小题3分,共15分)11.【分析】直接利用算术平方根的定义以及有理数的乘方运算法则分别化简得出答案.【解答】解:原式=3+8=11.故答案为:11.【点评】此题主要考查了实数运算,正确化简各数是解题关键.12.【分析】利用不等式的性质,先求出两个不等式的解集,再求其公共解.【解答】解:,由①式得x>﹣2;由②式得x≤3,所以不等式组的解为﹣2<x≤3,故答案为﹣2<x≤3.【点评】此题考查解不等式组;求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.13.【分析】如图,连接OC,AC交x轴于K.首先证明OA=OB,S△AOK=S△=|﹣4|=2,推出S△ABC=2S△AOC即可解决问题;OCK【解答】解:如图,连接OC,AC交x轴于K.∵A 、B 关于原点对称, ∴OA=OB ,∵OK ∥BC ,AO=OB , ∴AK=CK ,∴S △AOK =S △OCK =|﹣4|=2, ∴S △ABC =2S △AOC =8. 故答案为8.【点评】主要考查了反比例函数y=(k ≠0)中k 的几何意义,即过双曲线上任意一点引x 轴、y 轴垂线,所得矩形面积为|k |,是经常考查的一个知识点;图象上的点与原点所连的线段、坐标轴、向坐标轴作垂线所围成的直角三角形面积S 的关系即S=|k |.这里体现了数形结合的思想,做此类题一定要正确理解k 的几何意义. 14.【分析】根据题意和函数图象可以求得甲的速度和全程的长,然后根据函数图象可以求得乙在时行驶的路程,从而可以求得乙全程用的时间,从而可以解答本题.【解答】解:由图象可得,甲的速度为:10÷1=10km/h,这次越野赛的全程长是:2×10=20km,设当≤x≤时,y与x的函数解析式为y=kx+b,,得,∴当≤x≤时,y与x的函数解析式为y=4x+6,当x=时,y=12,∴乙跑完全程用的时间为:+(20﹣12)÷10=,∴乙比甲晚到:﹣2=,故答案为:.【点评】本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答.15.【分析】先依据勾股定理求得BC的长,有∠MB′C=90°和∠B′MC=90°种情况,然后再利用锐角三角函数的定义求解即可.【解答】解:由翻折的性质可知:BM=B′M.∵在Rt△ABC中,∠A=90°,AB=3,AC=4,∴依据勾股定理可得到:BC=5.设BM=B′M=x,则MC=5﹣x.当∠B′MC=90°时,=,即=,解得:x=.当∠MB′C=90°时,=,即=,解得:x=.综上所述,MN的长为或.故答案为:或.【点评】本题主要考查的是翻折变换,锐角三角函数的定义,依据锐角三角函数的定义列出关于x的方程是解题的关键.三、解答题(本大题共8小题,共75分)16.【分析】根据分式混合运算顺序和运算法则化简原式,再选取使分式有意义的条件的x的值代入计算可得.【解答】解:原式=[﹣]==,当x=2时,原式=.【点评】本题主要考查分式的化简求值,解题的关键是熟练掌握分式混合运算顺序和运算法则.17.【分析】(1)根据若A组的频数比B组小24,且已知两个组的百分比,据此即可求得总人数,然后根据百分比的意义求得a、b的值;(2)利用360°乘以对应的比例即可求解;(3)利用总人数乘以对应的百分比即可求解.【解答】解:(1)学生总数是24÷(20%﹣8%)=200(人),则a=200×8%=16,b=200×20%=40;(2)n=360×=126°.C组的人数是:200×25%=50.;(3)样本D、E两组的百分数的和为1﹣25%﹣20%﹣8%=47%,∴2000×47%=940(名)答估计成绩优秀的学生有940名.【点评】本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.18.【分析】(1)连接OD、OE,由切线的性质可知OD⊥CD,从而可证明AC∥OD,接下来由平行线的性质、等腰三角形的性质可证明∠EOD=∠DOB;(2)在△CED中依据勾股定理可求得ED的长,从而得到BD的长,接下来证明△ECD∽△BDA,依据相似三角形的性质可求得AB的长.【解答】解:(1)证明:连接OD、OE.∵CD切⊙O于点D,∴OD⊥CD.∵AC⊥CD,∴OD∥AC.∴∠EAO=∠DOB,∠AEO=∠EOD.又∵∠EAO=∠AEO,∴∠EOD=∠DOB.∴BD=ED.(2)∵AC⊥CD,∴∠ACD=90°又∵CE=3,CD=4,∴ED=5.∵BD=ED,∴BD=5.∵AB为⊙O的直径,∴∠ADB=90°∴∠ACD=∠ADB.∵四边形ABDE内接于⊙O,∠CED=∠B,∴△CDE∽△DAB.∴.∴.∴AB=.【点评】本题主要考查的是切线的性质、相似三角形的性质和判定、平行线的性质,证得OD∥AC、△CDE∽△DAB是解题的关键.19.【分析】由题意知∠CAB=75°、∠CAP=45°、∠PBD=60°,从而得∠PAH=30°、∠PBH=∠ABD﹣∠PBD=45°,分别求出AH==50、PH=BH=50,据此求得AB=50+50,用路程除以速度可得答案.【解答】解:如图,由题意知∠CAB=75°、∠CAP=45°、∠PBD=60°,∴∠PAH=∠CAB﹣∠CAP=30°,∵∠PHA=∠PHB=90°,PH=50,∴AH===50,∵AC∥BD,∴∠ABD=180°﹣∠CAB=105°,∴∠PBH=∠ABD﹣∠PBD=45°,则PH=BH=50,∴AB=AH+BH=50+50,∵60千米/时=米/秒,∴时间t==3+3≈(秒),即车辆通过AB段的时间在秒以内,可认定为超速.【点评】本题主要考查了方向角问题.根据方向角得出解题所需角的度数及三角函数的应用是解题的关键.20.【分析】(1)设直线DE的解析式为y=kx+b,直接把点D,E代入解析式利用待定系数法即可求得直线DE的解析式,先根据矩形的性质求得点M的纵坐标,再代入一次函数解析式求得其横坐标即可;(2)利用点M求得反比例函数的解析式,根据一次函数求得点N的坐标,再代入反比例函数的解析式判断是否成立即可;(3)满足条件的最内的双曲线的m=4,最外的双曲线的m=8,所以可得其取值范围.【解答】解:(1)设直线DE的解析式为y=kx+b,∵点D,E的坐标为(0,3)、(6,0),∴,解得k=﹣,b=3;∴;∵点M在AB边上,B(4,2),而四边形OABC是矩形,∴点M的纵坐标为2;又∵点M在直线上,∴2=;∴x=2;∴M(2,2);(2)∵(x>0)经过点M(2,2),∴m=4;∴;又∵点N在BC边上,B(4,2),∴点N的横坐标为4;∵点N在直线上,∴y=1;∴N(4,1);∵当x=4时,y==1,∴点N在函数的图象上;(3)当反比例函数(x>0)的图象通过点M(2,2),N(4,1)时m的值最小,当反比例函数(x>0)的图象通过点B(4,2)时m的值最大,∴2=,有m的值最小为4,2=,有m的值最大为8,∴4≤m≤8.【点评】此题综合考查了反比例函数与一次函数的性质,此题难度稍大,综合性比较强,注意反比例函数上的点与反比例函数的k值之间的关系,并会根据函数解析式和点的坐标验证某个点是否在函数图象上.21.【分析】(1)设A种货物运输了x吨,设B种货物运输了y吨,根据题意可得到一个关于x的不等式组,解方程组求解即可;(2)运费可以表示为x的函数,根据函数的性质,即可求解.【解答】解:(1)设A种货物运输了x吨,设B种货物运输了y吨,依题意得:,解之得:.答:物流公司月运输A种货物100吨,B种货物150吨.(2)设A种货物为a吨,则B种货物为(330﹣a)吨,依题意得:a≤(330﹣a)×2,解得:a≤220,设获得的利润为W元,则W=70a+40(330﹣a)=30a+13200,根据一次函数的性质,可知W随着a的增大而增大当W取最大值时a=220,即W=19800元.所以该物流公司7月份最多将收到19800元运输费.【点评】本题考查二元一次方程组的应用和一元一次不等式组以及一次函数性质的应用,将现实生活中的事件与数学思想联系起来,读懂题意列出方程组和不等式即可求解.22.【分析】(1)结论:DE⊥AC,AC=DE;(2)结论成立.连接OA、OC.只要证明△AOC∽△DOE,再利用“8字型”证明垂直即可;(2)利用三边关系确定最值问题;【解答】解:(1)如图1中,当CF落在AD上时,DE⊥AC,DE=DF,AC=3DF,∴DE=AC,即AC=DE.(2)如图2中,结论仍然成立.理由:连接OA、OC.∵△ABD,△EFC都是等边三角形,BD=EF,OB=OD,OE=OF,∴AO⊥BD,CO⊥EF,OA=OC,∴∠AOD=∠COE=90°,∴∠AOC=∠DOE,∵==,∴△AOC∽△DOE,∴==,∠OED=∠ACO,延长ED交AC于H,EH交OC于K.∵∠OEK+∠OKE=90°,∠OKE=∠CKH,∴∠CKH+∠KCH=90°,∴∠KHC=90°,∴EH⊥AC.(3)如图3中,如图3中,取AD的中点K,连接BK、KH.∵△ABD是等边三角形,AK=DK,∴BK=×2=,由(2)可知,∠AHD=90°,∴KH=AD=1,∵BK+KH≥BH,∴BH的最大值为+1.【点评】本题考查四边形综合题、旋转变换、等边三角形的性质、相似三角形的判定和性质、三角形的三边关系等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题,学会利用三边关系解决最值问题,属于中考压轴题.23.【分析】(1)先利用一次函数解析式确定B点和C点坐标,然后利用待定系数法求抛物线解析式;(2)作QH∥y轴交BC于H,如图,设Q(x,x2﹣4x+3)(0<x<3),则H (﹣x+3),利用三角形面积公式得到S△QBC=3HQ=﹣x2+x,然后利用二次函数的性质解决问题;(3)先配方得到y=(x﹣2)2﹣1,则P(2,﹣1),抛物线的对称轴为直线x=2,设M(2,t),利用等腰三角形的性质,当PM=PC时,即(t+1)2=22+(﹣1﹣3)2;当PM=MC时,即(t+1)2=22+(t﹣3)2;当CM=PC 时,即22+(t﹣3)2=22+(﹣1﹣3)2;然后分别解关于t的方程即可得到对应的M点坐标.【解答】解:(1)当x=0时,y=﹣x+3=3,则C(0,3),当y=0时,﹣x+3=0,解得x=3,则B(3,0),把B(3,0),C(0,3)代入y=x2+bx+c得,解得,∴抛物线的解析式为y=x2﹣4x+3;(2)作QH∥y轴交BC于H,如图,设Q(x,x2﹣4x+3)(0<x<3),则H(﹣x+3),∴HQ=﹣x+3﹣(x2﹣4x+3)=﹣x2+3x,∴S=3HQ=﹣x2+x=﹣(x﹣)2+,△QBC当x=时,S△QBC的值有最大值,此时Q点的坐标为(,﹣);(3)y=x2﹣4x+3=(x﹣2)2﹣1,则P(2,﹣1),抛物线的对称轴为直线x=2,设M(2,t),当PM=PC时,△PMC为等腰三角形,即(t+1)2=22+(﹣1﹣3)2,解得t1=﹣1+2,t2=﹣1﹣2,此时M点坐标为(2,﹣1+2)或(2,﹣1﹣2);当PM=MC时,△PMC为等腰三角形,即(t+1)2=22+(t﹣3)2,解得t=,此时M点坐标为(2,);当CM=PC时,△PMC为等腰三角形,即22+(t﹣3)2=22+(﹣1﹣3)2,解得t1=﹣1(舍去),t2=7,此时M点坐标为(2,7).综上所述,M点坐标为(2,﹣1+2)或(2,﹣1﹣2)或(2,)或(2,7).【点评】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质和等腰三角形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质;会运用分类讨论的思想解决数学问题.。