Modification of natural graphite using pitch through dynamical melt-carbonization
炭黑表面能与甲苯抽出物透光率的关系
炭黑表面能与甲苯抽出物透光率的关系路 明,张红霞,和富金,李 明,张 超,衣黎明(怡维怡橡胶研究院有限公司,山东青岛 266045)摘要:选取具有相同比表面积、不同甲苯抽出物透光率的炭黑N134,采用反相色谱测试其表面能,考察炭黑表面能与甲苯抽出物透光率的关系。
结果表明:当甲苯抽出物透光率低时,炭黑N134晶体边缘的高能位点被不完全燃烧的原料油或者烃类物质占据,炭黑N134的表面能色散分量低;当甲苯抽出物透光率为77%时,炭黑N134的表面能色散分量为233.6 mJ·m-2,甚至比甲苯抽出物透过率为92%的炭黑N234低约24%;当甲苯抽出物透光率高于82%时,随着甲苯抽出物透光率的提高,炭黑N134的表面能色散分量呈线性提高;当甲苯透光率为99%时,炭黑N134的表面能色散分量达到511.0 mJ·m-2。
炭黑生产企业可通过控制工艺和原材料提高炭黑纯净度,以提高炭黑质量。
关键词:炭黑;表面能;色散分量;甲苯抽出物;透光率;正烷烃;吸附自由能;反相色谱中图分类号:TQ330.38+1;O657.7 文章编号:1000-890X(2020)09-0709-04文献标志码:A DOI:10.12136/j.issn.1000-890X.2020.09.0709炭黑是轮胎行业应用最为广泛的补强填料,是一种利用油类或者天然气等碳氢化合物裂解和不完全燃烧而生成的黑色粉末状物质[1]。
目前轮胎行业应用最为广泛的是炉法炭黑。
在炉法炭黑的生产过程中,煤气和空气首先混合燃烧以形成火焰,然后原料油喷入火焰,接着喷入冷水使生成的炭黑烟气急冷[2]。
炭黑的微观结构、粒子形态和表面性能都极为特殊,表征炭黑的常规参数主要有比表面积、吸油值、着色强度、加热减量、灰分含量、甲苯抽出物透光率等。
甲苯抽出物透光率主要与炭黑纯净度有关,不完全燃烧的原料油或者烃类物质沉积在炭黑表面越多,甲苯抽出物透光率越低。
除常规参数外,填料的表面能已经成为公认的影响填料补强性能的参数。
芳纶纸涂层氦渗透性译文
芳纶纸涂层氦渗透性(机械工程系,Monika Bubacz,新奥尔良大学,新奥尔良,洛杉矶70148,USA)摘要:低温储罐材料的技术和设计仍处于发展阶段。
新的设计理念要求的复合结构不仅承载机械负荷,还要具有密封作用。
本文的目的是定义一个低温储罐的设计概念和发展阻隔层与浸渍芳纶纸,以防止气体通过渗透的复合夹芯墙板渗出。
涂以不同的树脂体系的一些芳族聚酰胺纤维纸测试氦渗透性。
渗透动力学研究表明:同时运行至少两个质量传输机制时,扩散和水动力流过微多孔介质以非定常渗透性的长周期确定[1]。
尽管在实验室制造的样品的一些技术还不完善,但达到了透气性低的水平,这满足了标准规定。
可用于控制质量的渗透性和不稳定周期动力学这两个的稳定的水平。
关键词:芳纶纤维,蜂窝,树脂,渗透性1引言与纤维增强塑料提供的特定的强度和刚度的优点相比,金属已经被确定为重复使用的空间运输系统候选者。
能够满足在恶劣的环境中飞行要求的低温储罐材料和技术设计,仍处于开发阶段。
基于机械性能,安全壳性能(长期和短期),和制造方面的考虑,一些碳纤维和芳纶纤维增强塑料是很好的选择[1]。
用于低温燃料箱终身耐久性要求意味着材料必须安全地可承受外部压力,外部结构载荷,抗渗漏,以及能够工作在极宽的温度围。
气体泄漏的速率由材料的制造方法,机械负载到水箱的功能,必须运行的材料部损伤状态的决定。
低温储罐的常规概念的温度包括金属衬垫,主要起密封功能,衬垫里是封闭在一个承载主要复合结构的机械载荷[2]。
然而,实验表明,金属衬垫里的焊接接头于恶劣的环境和复合结构也必须可靠的,有效的满足气密性的功能。
通常情况下,复合材料具有套的微裂纹而不是可渗透液体但可渗透气体的小分子,如氢或氦。
本研究的目的是相对于所述气体从根本上降低复合材料的磁导率。
到目前为止,IM7/977-2(石墨- 环氧)的表面层和芳纶(芳香族聚酰胺)的蜂窝体被选为最有前途的可靠的材料,以及聚合物薄膜层之间引入在复合以形成一交错的或混杂复合材料,和降低渗透性,膜层的厚度,数量和位置上的层压板的机械性能的影响进行了研究[3]。
高炉炼铁专业英语
4 冶金过程物理化学4.1 冶金过程热力学冶金过程热力学thermodynamics of metallurgical processes 统计热力学statistical thermodynamics不可逆过程热力学thermodynamics of irreversible processes 化学热力学chemical thernodynamics表面热力学surface thermodynamics合金热力学thermodynamics of alloys冶金热力学数据库thermodynamics databank in metallurgy 系system单元系single-componentsystem多元系multicomponent system均相系统homogeneous system广度性质extensive property强度性质intensive property过程process等温过程isothermal process等压过程isobaric process等容过程isochoric process绝热过程adiabatic process可逆过程reversible process不可逆过程irreversible process自发过程spontaneous process自理过程physical process化学过程chemical process冶金过程metallurgical process化学反应chemical reaction化合反应combination reaction分解反应decomposition reaction置换反应displacement reaction可逆反应reversible reaction不可逆反应irreversible reaction电化学反应electrochemical reaction多相反应multiphase reaction固态反应solid state reaction气一金(属)反应gas-metal reaction渣一金(属)反应slag-metal reaction平衡equilibrium化学平衡chemical equilibrium相平衡phase equilibrium热力学平衡thermodynamic equilibrium亚稳平衡metastable equilibrium热力学函数thermodynamic function偏摩尔量partial molar quantity总摩尔量integral molar quantity标准态standard state焓enthalpy生成焓enthalpy of formation反应焓enthalpy of reaction熵entropy吉布斯能Gibbs energy生成吉布斯能Gibbs energy of formation 反应吉布斯能Gibbs energy of reaction溶解吉布斯能Gibbs energy of solution吉布斯能函数Gibbs energy function化学位chemical potential热化学thermochemistry热效应heat effect热容heat capacity熔化热heat of fusion汽化热heat of vaporization升华热heat of sublimation相变热heat of phase transformation放热反应exothermic reaction吸热反应endothermic reaction赫斯定律Hess’s law相律phase rule相图phase diagram一元相图single-component phase diagram 二元相图binary-component phase diagram 三元相图ternary-component phase diagram 液相线liquidus固相线solidus共晶点eutectic point杠杆规则lever rule溶液solution溶质solute溶剂solvent固溶体solid solution溶液浓度concentration of solution摩尔分数mole fraction冶金熔体metallurgical melt金属熔体metal melt(炉)渣,熔渣slag熔盐molten salt, fused salt理想溶液ideal solution真实溶液real solution正规溶液regular solution活度activity活度系数activity coefficient拉乌尔定律Raoult’s law亨利定律Henry’s law纯物质标准态pure substance standard质量1%溶液标准(态)1 mass% solution standard无限稀溶液参考态reference state of infinityly dilute solution相互作用系数interaction coefficient化学反应等温式chemical reaction isotherm吉布斯~亥姆霍兹方程Gibbs-Helmholtz equation质量作用定律law of mass action平衡常数equilibrium constant平衡值equilibrium value直接还原direct reduction间接还原indirect reduction金属热还原metallothermic reduction选择性氧化selective oxidation渣碱度basicity of slag光学破度optical basicity酸性氧化物acid oxide碱性氧化物basicoxide两性氧化物amphoteric泡沫渣foaming slag熔渣的分子理论molecular theory of slag熔渣的离子理论ionization theory of slag脱氧平衡deoxidation equilibrium脱氧常数deoxidation constant熔渣脱硫desulfurization by slag气态脱硫desulfurization in the gaseous state硫分配比sulfur partition ratio硫化物容量sulfide capacity氧化脱磷dephosphorization under oxidizing atmosphere磷分配比碳一氧平衡carbon-oxygen equilibrium真空脱碳vacuum decarburization去气degassing去除非金属夹杂(物)elimination of nonmetallic inclusion非金属夹杂(物)变形form modification of nonmetallic inclusion 脱硅desiliconization脱锰demanganization分配平衡distribution law化学气相沉积chemical vapor deposition(CVD)4.2 冶金过程动力学微观动力学microkinetics化学动力学chemical kinetics反应途径reaction path反应机理reaction mechanism基元反应elementary reaction平行反应parallel链反应chain reaction总反应overall reaction反应速率reaction rate反应速率常数reaction rate constant反应级数reaction order零级反应zero order reaction一级反应first order reaction二级反应second order reactionn级反应nth order reaction碰撞理论collision theory活化能activation energy表现活化能apparent activation energy阿伦尼乌斯方程Arrhenius equation半衰期half-life宏观动力学macrokinetics冶金过程动力学kinetics of metallurgical process传输现象transport phenomena传质mass transfer传热heat transfer动量传输momentum transfer层流laminar flow湍流turbulent flow气泡gas bubble鼓泡bubbling射流jet液滴liquid droplet粘度viscosity边界层boundary layer流率flow rate通量flux扩散diffusion菲克第一扩散定律Fick’s 1st law of diffusion菲克第一扩散定律Fick’s 2nd law of diffusion扩散系数diffusion coefficient传质系数mass transfer coefficient热传导heat conduction热对流heat convection自然对流natural convection强制对流forced convection热辐射heat radiation导热率thermal conductivity传热系数heat transfer coefficient体内浓度bulk concentration未反应核模型unreacted core model扩散控制反应diffusion-controlled reaction化学控制反应chenical-controlled reaction混合控制反应mixed-controlled reaction相似原理priciple of similarity雷诺数Reynolds number固定床fiexed bed填充床packed bed移动床moving bed流态化床fluidized bed混合时间mixing time停留时间residence time, retention time催化catalysis催化剂catalyst表面能surface energy表面张力surface tension界面能interfacial energy界面张力interfacial tension润湿wetting表面活性物质surface-active substance吸收absorption吸附absorption4.3 冶金电化学冶金电化学metallurgical electrochemistry熔盐电化学electrochemistry of fused salts固态离子学solid state ionics电解质溶液electrolyte solution阳离子cation阴离子anion电导conductance电导率conductivity电阻resistance电极electrode阴极cathode阳极anode电镀electroplating固体电解质solid electrolyte稳定的氧化锆stablized zirconia氧传感器oxygen sensor硅传感器silicon sensor定氧测头oxygen probe定硅测头silicon probe4.4 冶金物理化学研究方法冶金物理化学研究方法research methods in metallurgical physical chemistry热电偶thermocouple量热计calorimeter热太平thermobalance热分析thermal analysis差热分析differential thermal analysis,DTA热重法thermogravimetry分子筛molecular sieve5 钢铁冶金5.1 炼焦炼焦coking高温炭化high temperature carbonization塑性成焦机理plastic mechanism of coke formation中间相成焦机理mesophase mechanism of coke formation选煤coal preparation, coal washing配煤coal blending配煤试验coal blending test炼焦煤coking coal气煤gas coal肥煤fat coal瘦煤lean coal焦炉coke oven焦化室oven chamber焦饼coke cake结焦时间coking time周转时间cycle time装煤coal charging捣固装煤stamp charging推焦coke pushing焦炭熄火coke quenching干法熄焦dry quenching of coke焦台coke wharf装煤车larry car推焦机pushing machine拦焦机coke guide熄焦车quenching car焦炉焖炉banking for coke oven焦炭coke冶金焦metallurgical coke铸造焦foundry coke焦炭工业分析proximate analysis of coke焦炭元素分析ultimate analysis of coke焦炭落下指数shatter index of coke焦炭转鼓指数drum index of coke焦炭热强度hot strength of coke焦炭反应性coke reactivity焦炭反应后强度post-reaction strength of coke 焦炭显微强度microstrength of coke焦炉煤气coke oven gas发热值calorific value煤焦油coal tar粗苯crude benzol苯benzene甲苯toluene二甲苯xylene苯并呋喃-茚树脂coumarone-indene resin精萘refined naphthalene精蒽refined anthracene煤[焦油]沥青coal tar pitch沥青焦pitch coke针状焦needle coke型焦formcoke5.2 耐火材料耐火材料refractory materials耐火粘土fireclay高岭土kaolin硬质粘土flint clay轻质粘土soft clay陶土pot clay蒙脱石montmorillonite叶蜡石pyrophyllite膨润土bentonite鳞石英tridymite方石英cristobalite砂岩sandstone耐火石firestone莫来石mullite氧化铝alumina烧结氧化铝sintered alumina电熔氧化铝fused alumina刚玉corundum红柱石andalusite蓝晶石kyanite,cyanite硅线石sillimanite橄榄石olivine方镁石periclase镁砂magnesia合成镁砂synthetic sintered magnesia电熔镁砂fused magnesia烧结白云石砂sintered dolomite clinker合成镁铬砂synthetic magnesia chromite clinker尖晶石spinel镁铬尖晶石magnesia chrome spinel,magnesiochromite 硅藻土diatomaceous earth, infusorial earth蛭石vermiculite珍珠岩perlite碳化硅silicon carbide氮化硅silicon nitride氮化硼boron nitride粘土熟料chamotte熟料grog轻烧light burning,soft burning死烧dead burning,hard burning成型模注shaping moulding机压成型mechanical pressing等静压成型isostatic pressing摩擦压砖机friction press液压压砖机hydraulic press捣打成型ramming process熔铸成型fusion cast process砖坯强度green strength,dry strength隧道窑tunnel kiln回转窑rotary kiln倒焰窑down draught kiln耐火砖refractory brick标准型耐火砖standard size refractory brick泡砂石quartzite sandstone酸性耐火材料acid refractory [material]硅质耐火材料siliceous refractory [material]硅砖silica brick,dinas brick熔融石英制品fused quartz product硅酸铝质耐火材料aluminosillicate refractory半硅砖semisilica brick粘土砖fireclay brick,chamotte brick石墨粘土砖graphite clay brick高铝砖high alumina brick硅线石砖sillimanite brick莫来石砖mullite brick刚玉砖corundum brick铝铬砖alumina chrome brick熔铸砖fused cast brick碱性耐火材料basic refractory [material]镁质耐火材料magnesia refractory [material]镁砖magnesia brick镁铝砖magnesia alumina brick镁铬砖magnesia chrome brick镁炭砖magnesia carbon brick中性耐火材料neutral refractory [material]复合砖composite brick铝炭砖alumina carbon brick铝镁炭转alumina magnesia brick锆炭砖zirconia graphite brick镁钙炭砖magnesia clacia carbon brick长水口long nozzle浸入式水口immersion nozzle,submerged nozzle 定径水口metering nozzle氧化铝-碳化硅-炭砖Al2O3-SiC-C brick透气砖gas permeable brick,porous brick滑动水口slide gate nozzle水口砖nozzle brick塞头砖stopper绝热耐火材料insulating refractory轻质耐火材料light weight refractory袖砖sleeve brick格子砖checker brick,chequer brick陶瓷纤维ceramic fiber耐火纤维refractory fiber耐火浇注料refractory castable耐火混凝土refractory concrete荷重耐火性refractoriness under load抗渣性slagging resistance耐磨损性abrasion resistance5.3 碳素材料[含]碳[元]素材料carbon materials无定形碳amorphous carbon金刚石diamond炭相[学]carbon micrography炭黑carbon black石油沥青petroleum pitch石油焦炭petroleum coke石墨化graphitization石墨化电阻炉electric resistance furnace for graphitization 石墨纯净化处理purification treatment of graphite炭砖carbon brick炭块carbon block碳化硅基炭块SiC-based carbon block炭电极carbon electrode连续自焙电极Soderberg electrode石墨电极graphite electrode超高功率石墨电极ultra-high power graphite electrode石墨电极接头graphite electrode nipple石墨电极接头孔graphite electrode socket plug电极糊electrode paste石墨坩埚graphite crucible石墨电阻棒graphite rod resistor炭刷carbon brush高纯石墨high purity graphite5.4 铁合金铁合金ferroalloy硅铁ferrosilicon硅钙calcium silicon金属硅silicon metal锰铁ferromangnanese低碳锰铁low carbon ferromanganese硅锰silicomanganese金属锰manganese metal铬铁ferrochromium低碳铬铁low carbon ferrochromium微碳铬铁extra low carbon ferrochromium硅铬silicochromium金属铬chromium metal钨铁ferrotunsten钼铁ferromolybdenum钛铁ferrotitanium硼铁ferroboron铌铁ferroniobium磷铁ferrophosphorus镍铁ferronickel锆铁ferrozirconium硅锆silicozirconium稀土硅铁rare earth ferrosilicon稀土镁硅铁rare earth ferrosilicomagnesium成核剂nucleater孕育剂incubater,inoculant球化剂nodulizer蠕化剂vermiculizer中间铁合金master alloy复合铁合金complex ferroalloy电碳热法electro-carbothermic process电硅热法electro-silicothermic process铝热法aluminothermic process,thermit process电铝热法electro-aluminothermic process开弧炉open arc furnace埋弧炉submerged arc furnace半封闭炉semiclosed furnace封闭炉closed furnace矮烟罩电炉electric furnace with low hood矮炉身电炉low-shaft electric furnace5.5 烧结与球团人造块矿ore agglomerates烧结矿sinter压块矿briquette球团[矿] pellet针铁矿goethite自熔性铁矿self-fluxed iron ore复合铁矿complex iron ore块矿lump ore粉矿ore fines矿石混匀ore blending配矿ore proportioning矿石整粒ore size grading返矿return fines储矿场ore stockyard矿石堆料机ore stocker匀矿取料机ore reclaimer熔剂flux消石灰slaked lime活性石灰quickened lime有机粘结剂organic binder烧结混合料sinter mixture烧结铺底料hearth layer for sinter烧结sintering烧结热前沿heat front in sintering烧结火焰前沿flame front in sintering渣相粘结slag bonding扩散粘结diffusion bonding带式烧结机Dwight-Lloyd sintering machine环式烧结机circular travelling sintering machine烧结梭式布料机shuttle conveyer belt烧结点火料sintering ignition furnace烧结盘sintering pan烧结锅sintering pot烧结冷却机sinter cooler带式冷却机straight-line cooler环式冷却机circular cooler,annular cooler生球green pellet,ball生球长大聚合机理ball growth by coalescence生球长大成层机理ball growth by layering生球长大同化机理ball growth by assimilation精矿成球指数balling index for iron ore concentrates 生球转鼓强度drum strength of green pellet生球落下强度shatter strength of green pellet生球抗压强度compression strength of green pellet 生球爆裂温度cracking temperature of green pellet 圆筒造球机balling drum圆盘造球机balling disc竖炉陪烧球团shaft furnace for pellet firing带式机陪烧球团traveling grate for pellet firing链算机-回转窑陪烧球团grate-kiln for pellet firing 环式机陪烧球团circular gates for pellet firing冷固结球团cold bound pellet维式体wustite铁橄榄石fayalite铁尖晶石hercynite铁黄长石ferrogehlenite铁酸半钙calcium diferrite铁酸钙calcium ferrite铁酸二钙dicalcium ferrite锰铁橄榄石knebelite钙铁橄榄石kirschsteinite钙铁辉石hedenbergite钙铁榴石andradite钙长石anorthite钙镁橄榄石monticellite钙钛矿perovskite硅灰石wollastonite硅酸二钙dicalcium silicate硅酸三钙tricalcium silicate镁橄榄石forsterite镁黄长石akermanite镁蔷薇辉石manganolite钙铝黄长石gehlenite钛辉石titanaugite枪晶石cuspidine预还原球团pre-reduced pellet金属化球团metallized pellet转鼓试验drum test,tumbler test落下试验shatter test5.6 高炉炼铁炼铁iron making高炉炼铁[法] blast furnace process高炉blast furnace鼓风炉blast furnace炉料charge, burden矿料ore charge焦料coke charge炉料提升charge hoisting小车上料charge hoisting by skip吊罐上料charge hoisting by bucket皮带上料charge hoisting by belt conveyer装料charging装料顺序charging sequence储料漏斗hopper双料钟式装料two-bells system charging无料钟装料bell-less charging布料器distributor炉内料线stock line in the furnace探料尺gauge rod利用系数utilization coefficient冶炼强度combustion intensity鼓风blast风压blast pressure风温blast temperature鼓风量blast volume鼓风湿度blast humidity全风量操作full blast慢风under blowing休风delay喷吹燃料fuel injection喷煤coal injection喷油oil injection富氧鼓风oxygen enriched blast,oxygen enrichment 置换比replacement ratio喷射器injector热补偿thermal compensation焦比coke ratio,coke rate燃料比fuel ratio,fuel rate氧化带oxidizing zone风口循环区raceway蒸汽鼓风humidified blast混合喷吹mixed injection脱湿鼓风dehumidified blast炉内压差pressure drop in furnace煤气分布gas distribution煤气利用率gas utilization rate炉况furnace condition顺行smooth running焦炭负荷coke load,ore to coke ratio软熔带cohesive zone,softening zone渣比slag to iron ratio,slag ratio上部[炉料]调节burden conditioning下部[鼓风]调节blast conditioning高炉作业率operation rate of blast furnace 休风率delay ratio高炉寿命blast furnace campaign悬料hanging崩料slip沟流channeling结瘤scaffolding炉缸冻结hearth freeze-up开炉blow on停炉blow off积铁salamander炉型profile,furnace lines炉喉throat炉身shaft,stack炉腰belly炉腹bosh炉缸hearth炉底bottom炉腹角bosh angle炉身角stack angle有效容积effective volume工作容积working bolume铁口iron notch, slag notch渣口cinder notch, slag notch风口tuyere窥视孔peep hole风口水套tuyere cooler渣口水套slag notch cooler风口弯头tuyere stock热风围管bustle pipe堵渣机stopper泥炮mud gun,clay gun开铁口机iron notch drill铁水hot metal铁[水]罐iron ladle鱼雷车torpedo car主铁沟sow出铁沟casting house铁沟iron runner渣沟slag runner渣罐cinder ladle, slag ladle撇渣器skimmer冷却水箱cooling plate冷却壁cooling stave汽化冷却vaporization cooling热风炉hot blast stove燃烧室combustion chamber燃烧器burner热风阀hot blast valve烟道阀chimney valve冷风阀cold blast valve助燃风机burner blower切断阀burner shut-off valve旁通阀by-pass valve混风阀mixer selector valve送风期on blast of stove,on blast燃烧期on gas of stove, on gas换炉stove changing放散阀blow off valve内燃式热风炉Cowper stove外燃式燃烧炉outside combustion stove 顶燃式热风炉top combustion stove炉顶放散阀bleeding valve放散管bleeder上升管gas uptake放风阀snorting valve均压阀equalizing valve高压调节阀septum valve炉顶高压elevated top pressure铸铁机pig-casting machine铸铁模pig mold冲天炉cupola水渣granulating slag水渣池granulating pit渣场slag disposal pit高炉煤气top gas,blast furnace gas高炉煤气回收topgas recovery,TGR非焦炭炼铁non-coke iron making直接还原炼铁[法]direct reduction iron making直接还原铁directly reduced iron,DRI竖炉直接炼铁direct reduction in shaft furnace流态化炼铁fluidized-bed iron making转底炉炼铁rotary hearth iron making米德雷克斯直接炼铁[法]Midrex processHYL直接炼铁[法] HYL process克虏伯回转窑炼铁[法] Krupp rotary kiln iron-making 熔态还原smelting reduction铁溶法iron-bath process科雷克斯法COREX process生铁pig iron海绵铁sponge iron镜铁spiegel iron清铁法H-rion process。
浅谈锂离子电池石墨负极材料的改性研究进展
112AUTO TIMENEW ENERGY AUTOMOBILE | 新能源汽车现代化社会,各种人工智能技术、大数据平台或者是电力能源的全面发展,都在不断的提高各行业内部运行设备所需要的电能,而对于目前使用广泛的电力能源储存设备锂离子电池,怎样在保障自身效益扩大的同时,满足不同消费群体的需求,还需要作出全面改革,例如:如何扩充储锂容量、提高倍率性能及循环稳定性等,而对锂离子电池关键构件进行分析,起到核心作用的就是石墨负极材料。
对此,石墨负极材料的性能,对锂离子电池后期发展和使用效益有着决定性作用。
再加上石墨导电效率优良,还具备良好的锂离子嵌入、脱出性能,多种优势条件也最终使得石墨变成锂离子电池体系当中使用率为最高、商业化程度为最广泛的负极材料。
但是由于受石墨微观结构客观因素影响,造成石墨理论储锂容量只能达到372mA.h/g,从而出现了电解液兼容性较差、体积膨胀率过高等问题,最终严重影响到了电极能量的密度以及循环稳定性。
对此,意识到问题的严重性,若是要想让实现石墨负极材料性能综合性提升,目前已有诸多国内外重量级研究人员投入到对石墨负极材料改性研究工作当中,也做到了多角度、多层面的研究分析,同时也取得了一定的成果。
1 锂离子电池的电化学机理及石墨嵌锂机制作为一种正常锂离子浓差电池,锂离子电池可分为正极、负极、隔膜、电解液等。
设置石墨负极、LiCoO 2正极,然后综合以上因素,研究锂离子电池的工作机制,可以看出,在对其进行充电期间,清晰看到锂离子在正极LiCoO 2晶格中顺利脱出,而后锂离子循序渐进扩散到电解液中,并在最后穿过隔膜而进入到石墨负极层。
整个过程中,为充分保障电荷之间平衡度,会有同等数量的电子在正极中释放出来,并从外电流路流到石墨负极中,此时会构建出一个回路整体[1]。
而在放电过程中,负极石墨层间的锂离子又开始慢慢脱出,再经电解液,最后返回并嵌入到LiCoO 2晶格中,此时电子会经外电流路传输到正极,这样就可以实现以此充电、放电循环。
历史上最全的“冶金专业英语词汇”(涵盖采矿、地质、选矿、冶炼、炼焦、物理化学)
冶金英语词汇 (1)1 总论采矿mining地下采矿underground mining露天采矿open cut mining, open pit mining, s urface mining采矿工程mining engineering选矿(学)mineral dressing, ore beneficiatio n, mineral processing矿物工程mineral engineering冶金(学)metallurgy过程冶金(学)process metallurgy提取冶金(学)extractive metallurgy化学冶金(学)chemical metallurgy物理冶金(学)physical metallurgy金属学Metallkunde冶金过程物理化学physical chemistry of proce ss metallurgy冶金反应工程学metallurgical reaction engine ering冶金工程metallurgical engineering钢铁冶金(学)ferrous metallurgy, metallurgy of iron and steel有色冶金(学)nonferrous metallurgy真空冶金(学)vacuum metallurgy等离子冶金(学)plasma metallurgy微生物冶金(学)microbial metallurgy喷射冶金(学)injection metallurgy钢包冶金(学)ladle metallurgy二次冶金(学)secondary metallurgy机械冶金(学)mechanical metallurgy焊接冶金(学)welding metallurgy粉末冶金(学)powder metallurgy铸造学foundry火法冶金(学)pyrometallurgy湿法冶金(学)hydrometallurgy电冶金(学)electrometallurgy氯冶金(学)chlorine metallurgy矿物资源综合利用engineering of comprehensiv e utilization of mineralresources中国金属学会The Chinese Society for Metals 中国有色金属学会The Nonferrous Metals Socie ty of China2 采矿采矿工艺mining technology有用矿物valuable mineral冶金矿产原料metallurgical mineral raw mater ials矿床mineral deposit特殊采矿specialized mining海洋采矿oceanic mining, marine mining矿田mine field矿山mine露天矿山surface mine地下矿山underground mine矿井shaft矿床勘探mineral deposit exploration矿山可行性研究mine feasibility study矿山规模mine capacity矿山生产能力mine production capacity矿山年产量annual mine output矿山服务年限mine life矿山基本建设mine construction矿山建设期限mine construction period矿山达产arrival at mine full capacity开采强度mining intensity矿石回收率ore recovery ratio矿石损失率ore loss ratio工业矿石industrial ore采出矿石extracted ore矿体orebody矿脉vein海洋矿产资源oceanic mineral resources矿石ore矿石品位ore grade岩石力学rock mechanics岩体力学rock mass mechanics3 选矿选矿厂concentrator, mineral processing plan t工艺矿物学process mineralogy开路open circuit闭路closed circuit流程flowsheet方框流程block flowsheet产率yield回收率recovery矿物mineral粒度particle size粗颗粒coarse particle细颗粒fine particle超微颗粒ultrafine particle粗粒级coarse fraction细粒级fine fraction网目mesh原矿run of mine, crude精矿concentrate粗精矿rough concentrate混合精矿bulk concentrate最终精矿final concentrate尾矿tailings粉碎comminution破碎crushing磨碎grinding团聚agglomeration筛分screening, sieving分级classification富集concentration分选separation手选hand sorting重选gravity separation, gr avity concentrati on磁选magnetic separation电选electrostatic separation浮选flotation化学选矿chemical mineral processing自然铜native copper铝土矿bauxite冰晶石cryolite磁铁矿magnetite赤铁矿hematite假象赤铁矿martite钒钛磁铁矿vanadium titano-magnetite铁燧石taconite褐铁矿limonite菱铁矿siderite镜铁矿specularite硬锰矿psilomelane软锰矿pyrolusite铬铁矿chromite 黄铁矿pyrite钛铁矿ilmennite金红石rutile萤石fluorite高岭石kaolinite菱镁矿magnesite重晶石barite石墨graphite石英quartz方解石calcite石灰石limestone白云石dolomite云母mica石膏gypsum硼砂borax石棉asbestos蛇纹石serpentine阶段破碎stage crushing粗碎primary crushing中碎secondary crushing细碎fine crushing对辊破碎机roll crusher粉磨机pulverizer震动筛vibrating screen筛网screen cloth筛孔screen opening筛上料oversize筛下料undersize粗磨coarse grinding细磨fine grinding球磨机ball mill衬板liner分级机classifier自由沉降free setting沉积sedimentation石灰lime松油pine oil硫化钠sodium sulfide硅酸钠(水玻璃)sodium silicate, water glass 过滤filtration过滤机filter给矿,给料feeding给矿机feeder在线分析仪on line analyzer在线粒度分析仪on line size analyzer超声粒度计ultrasonic particle sizer, supers onic particle sizer4 冶金过程物理化学4.1 冶金过程热力学冶金过程热力学thermodynamics of metallurgic al processes统计热力学statistical thermodynamics不可逆过程热力学thermodynamics of irreversi ble processes化学热力学chemical thernodynamics表面热力学surface thermodynamics合金热力学thermodynamics of alloys冶金热力学数据库thermodynamics databank in metallurgy系system单元系single-componentsystem多元系multicomponent system均相系统homogeneous system广度性质extensive property强度性质intensive property过程process等温过程isothermal process等压过程isobaric process等容过程isochoric process绝热过程adiabatic process可逆过程reversible process不可逆过程irreversible process自发过程spontaneous process自理过程physical process化学过程chemical process冶金过程metallurgical process化学反应chemical reaction化合反应combination reaction分解反应decomposition reaction置换反应displacement reaction可逆反应reversible reaction不可逆反应irreversible reaction电化学反应electrochemical reaction多相反应multiphase reaction固态反应solid state reaction气一金(属)反应gas-metal reaction渣一金(属)反应slag-metal reaction 平衡equilibrium化学平衡chemical equilibrium相平衡phase equilibrium热力学平衡thermodynamic equilibrium亚稳平衡metastable equilibrium热力学函数thermodynamic function偏摩尔量partial molar quantity总摩尔量integral molar quantity标准态standard state焓enthalpy生成焓enthalpy of formation反应焓enthalpy of reaction熵entropy吉布斯能Gibbs energy生成吉布斯能Gibbs energy of formation 反应吉布斯能Gibbs energy of reaction溶解吉布斯能Gibbs energy of solution吉布斯能函数Gibbs energy function化学位chemical potential热化学thermochemistry热效应heat effect热容heat capacity熔化热heat of fusion汽化热heat of vaporization升华热heat of sublimation相变热heat of phase transformation放热反应exothermic reaction吸热反应endothermic reaction赫斯定律Hess’s law相律phase rule相图phase diagram一元相图single-component phase diagram 二元相图binary-component phase diagram 三元相图ternary-component phase diagram 液相线liquidus固相线solidus共晶点eutectic point杠杆规则lever rule溶液solution溶质solute溶剂solvent固溶体solid solution溶液浓度concentration of solution摩尔分数mole fraction冶金熔体metallurgical melt金属熔体metal melt(炉)渣,熔渣slag熔盐molten salt, fused salt理想溶液ideal solution真实溶液real solution正规溶液regular solution活度activity活度系数activity coefficient拉乌尔定律Raoult’s law亨利定律Henry’s law纯物质标准态pure substance standard质量1%溶液标准(态)1 mass% solution standa rd无限稀溶液参考态reference state of infinity ly dilute solution相互作用系数interaction coefficient化学反应等温式chemical reaction isotherm 吉布斯~亥姆霍兹方程Gibbs-Helmholtz equatio n质量作用定律law of mass action平衡常数equilibrium constant平衡值equilibrium value直接还原direct reduction间接还原indirect reduction金属热还原metallothermic reduction选择性氧化selective oxidation渣碱度basicity of slag光学破度optical basicity酸性氧化物acid oxide碱性氧化物basicoxide两性氧化物amphoteric泡沫渣foaming slag熔渣的分子理论molecular theory of slag熔渣的离子理论ionization theory of slag脱氧平衡deoxidation equilibrium脱氧常数deoxidation constant熔渣脱硫desulfurization by slag气态脱硫desulfurization in the gaseous stat e硫分配比sulfur partition ratio硫化物容量sulfide capacity氧化脱磷dephosphorization under oxidizing a tmosphere磷分配比碳一氧平衡carbon-oxygen equilibrium真空脱碳vacuum decarburization去气degassing去除非金属夹杂(物)elimination of nonmetalli c inclusion非金属夹杂(物)变形form modification of nonm etallic inclusion脱硅desiliconization脱锰demanganization分配平衡distribution law化学气相沉积chemical vapor deposition(CVD) 4.2 冶金过程动力学微观动力学microkinetics化学动力学chemical kinetics反应途径reaction path反应机理reaction mechanism基元反应elementary reaction平行反应parallel链反应chain reaction总反应overall reaction反应速率reaction rate反应速率常数reaction rate constant反应级数reaction order零级反应zero order reaction一级反应first order reaction二级反应second order reactionn级反应nth order reaction碰撞理论collision theory活化能activation energy表现活化能apparent activation energy阿伦尼乌斯方程Arrhenius equation半衰期half-life宏观动力学macrokinetics冶金过程动力学kinetics of metallurgical pro cess传输现象transport phenomena传质mass transfer传热heat transfer动量传输momentum transfer层流laminar flow湍流turbulent flow气泡gas bubble鼓泡bubbling射流jet液滴liquid droplet粘度viscosity边界层boundary layer流率flow rate通量flux扩散diffusion菲克第一扩散定律Fick’s 1st law of diffusio n菲克第一扩散定律Fick’s 2nd law of diffusio n扩散系数diffusion coefficient传质系数mass transfer coefficient热传导heat conduction热对流heat convection自然对流natural convection强制对流forced convection热辐射heat radiation导热率thermal conductivity传热系数heat transfer coefficient体内浓度bulk concentration未反应核模型unreacted core model扩散控制反应diffusion-controlled reaction 化学控制反应chenical-controlled reaction 混合控制反应mixed-controlled reaction相似原理priciple of similarity雷诺数Reynolds number固定床fiexed bed填充床packed bed移动床moving bed流态化床fluidized bed混合时间mixing time停留时间residence time, retention time催化catalysis催化剂catalyst表面能surface energy表面张力surface tension界面能interfacial energy界面张力interfacial tension润湿wetting表面活性物质surface-active substance吸收absorption吸附absorption4.3 冶金电化学冶金电化学metallurgical electrochemistry 熔盐电化学electrochemistry of fused salts 固态离子学solid state ionics电解质溶液electrolyte solution阳离子cation阴离子anion电导conductance电导率conductivity电阻resistance电极electrode阴极cathode阳极anode电镀electroplating固体电解质solid electrolyte稳定的氧化锆stablized zirconia氧传感器oxygen sensor硅传感器silicon sensor定氧测头oxygen probe定硅测头silicon probe4.4 冶金物理化学研究方法冶金物理化学研究方法research methods in met allurgical physicalchemistry热电偶thermocouple量热计calorimeter热太平thermobalance热分析thermal analysis差热分析differential thermal analysis,DTA 热重法thermogravimetry分子筛molecular sieve5 钢铁冶金5.1 炼焦炼焦coking高温炭化high temperature carbonization塑性成焦机理plastic mechanism of coke forma tion中间相成焦机理mesophase mechanism of coke f ormation选煤coal preparation, coal washing配煤coal blending配煤试验coal blending test炼焦煤coking coal气煤gas coal肥煤fat coal瘦煤lean coal焦炉coke oven焦化室oven chamber焦饼coke cake结焦时间coking time周转时间cycle time装煤coal charging捣固装煤stamp charging推焦coke pushing焦炭熄火coke quenching干法熄焦dry quenching of coke焦台coke wharf装煤车larry car推焦机pushing machine拦焦机coke guide熄焦车quenching car焦炉焖炉banking for coke oven焦炭coke冶金焦metallurgical coke铸造焦foundry coke焦炭工业分析proximate analysis of coke焦炭元素分析ultimate analysis of coke焦炭落下指数shatter index of coke焦炭转鼓指数drum index of coke焦炭热强度hot strength of coke焦炭反应性coke reactivity焦炭反应后强度post-reaction strength of cok e焦炭显微强度microstrength of coke焦炉煤气coke oven gas发热值calorific value煤焦油coal tar粗苯crude benzol苯benzene甲苯toluene二甲苯xylene苯并呋喃-茚树脂 coumarone-indene resin精萘refined naphthalene精蒽refined anthracene煤[焦油]沥青 coal tar pitch沥青焦pitch coke针状焦needle coke型焦formcoke5.2 耐火材料耐火材料refractory materials耐火粘土fireclay高岭土kaolin硬质粘土flint clay轻质粘土soft clay陶土pot clay蒙脱石montmorillonite叶蜡石pyrophyllite膨润土bentonite鳞石英tridymite方石英cristobalite砂岩sandstone耐火石firestone莫来石mullite氧化铝alumina烧结氧化铝sintered alumina电熔氧化铝fused alumina刚玉corundum红柱石andalusite蓝晶石kyanite,cyanite硅线石sillimanite橄榄石olivine方镁石periclase镁砂magnesia合成镁砂synthetic sintered magnesia电熔镁砂fused magnesia烧结白云石砂sintered dolomite clinker合成镁铬砂synthetic magnesia chromite clink er尖晶石spinel镁铬尖晶石magnesia chrome spinel,magnesioch romite硅藻土diatomaceous earth, infusorial earth 蛭石vermiculite珍珠岩perlite碳化硅silicon carbide氮化硅silicon nitride氮化硼boron nitride粘土熟料chamotte熟料grog轻烧light burning,soft burning死烧dead burning,hard burning成型模注shaping moulding机压成型mechanical pressing等静压成型isostatic pressing摩擦压砖机friction press液压压砖机hydraulic press捣打成型ramming process熔铸成型fusion cast process砖坯强度green strength,dry strength隧道窑tunnel kiln回转窑rotary kiln倒焰窑down draught kiln耐火砖refractory brick标准型耐火砖standard size refractory brick 泡砂石quartzite sandstone酸性耐火材料acid refractory [material]硅质耐火材料siliceous refractory [material] 硅砖silica brick,dinas brick熔融石英制品fused quartz product硅酸铝质耐火材料aluminosillicate refractory 半硅砖semisilica brick粘土砖fireclay brick,chamotte brick石墨粘土砖graphite clay brick高铝砖high alumina brick硅线石砖sillimanite brick莫来石砖mullite brick刚玉砖corundum brick铝铬砖alumina chrome brick熔铸砖fused cast brick碱性耐火材料basic refractory [material]镁质耐火材料magnesia refractory [material] 镁砖magnesia brick镁铝砖magnesia alumina brick镁铬砖magnesia chrome brick镁炭砖magnesia carbon brick中性耐火材料neutral refractory [material] 复合砖composite brick铝炭砖alumina carbon brick铝镁炭转alumina magnesia brick锆炭砖zirconia graphite brick镁钙炭砖magnesia clacia carbon brick长水口long nozzle浸入式水口immersion nozzle,submerged nozzle 定径水口metering nozzle氧化铝-碳化硅-炭砖 Al2O3-SiC-C brick透气砖gas permeable brick,porous brick滑动水口slide gate nozzle 水口砖nozzle brick塞头砖stopper绝热耐火材料insulating refractory轻质耐火材料light weight refractory袖砖sleeve brick格子砖checker brick,chequer brick陶瓷纤维ceramic fiber耐火纤维refractory fiber耐火浇注料refractory castable耐火混凝土refractory concrete荷重耐火性refractoriness under load抗渣性slagging resistance耐磨损性abrasion resistance5.3 碳素材料[含]碳[元]素材料 carbon materials无定形碳amorphous carbon金刚石diamond炭相[学]carbon micrography炭黑carbon black石油沥青petroleum pitch石油焦炭petroleum coke石墨化graphitization石墨化电阻炉electric resistance furnace for graphitization石墨纯净化处理purification treatment of gra phite炭砖carbon brick炭块carbon block碳化硅基炭块SiC-based carbon block炭电极carbon electrode连续自焙电极Soderberg electrode石墨电极graphite electrode超高功率石墨电极ultra-high power graphite e lectrode石墨电极接头graphite electrode nipple石墨电极接头孔graphite electrode socket plu g电极糊electrode paste石墨坩埚graphite crucible石墨电阻棒graphite rod resistor炭刷carbon brush高纯石墨high purity graphite5.4 铁合金铁合金ferroalloy硅铁ferrosilicon硅钙calcium silicon金属硅silicon metal锰铁ferromangnanese低碳锰铁low carbon ferromanganese硅锰silicomanganese金属锰manganese metal铬铁ferrochromium低碳铬铁low carbon ferrochromium微碳铬铁extra low carbon ferrochromium硅铬silicochromium金属铬chromium metal钨铁ferrotunsten钼铁ferromolybdenum钛铁ferrotitanium硼铁ferroboron铌铁ferroniobium磷铁ferrophosphorus镍铁ferronickel锆铁ferrozirconium硅锆silicozirconium稀土硅铁rare earth ferrosilicon稀土镁硅铁rare earth ferrosilicomagnesium 成核剂nucleater孕育剂incubater,inoculant球化剂nodulizer蠕化剂vermiculizer中间铁合金master alloy复合铁合金complex ferroalloy电碳热法electro-carbothermic process电硅热法electro-silicothermic process铝热法aluminothermic process,thermit proces s电铝热法electro-aluminothermic process开弧炉open arc furnace埋弧炉submerged arc furnace半封闭炉semiclosed furnace封闭炉closed furnace矮烟罩电炉electric furnace with low hood 矮炉身电炉low-shaft electric furnace5.5 烧结与球团人造块矿ore agglomerates 烧结矿sinter压块矿briquette球团[矿] pellet针铁矿goethite自熔性铁矿self-fluxed iron ore复合铁矿complex iron ore块矿lump ore粉矿ore fines矿石混匀ore blending配矿ore proportioning矿石整粒ore size grading返矿return fines储矿场ore stockyard矿石堆料机ore stocker匀矿取料机ore reclaimer熔剂flux消石灰slaked lime活性石灰quickened lime有机粘结剂organic binder烧结混合料sinter mixture烧结铺底料hearth layer for sinter烧结sintering烧结热前沿heat front in sintering烧结火焰前沿flame front in sintering渣相粘结slag bonding扩散粘结diffusion bonding带式烧结机Dwight-Lloyd sintering machine环式烧结机circular travelling sintering mac hine烧结梭式布料机shuttle conveyer belt烧结点火料sintering ignition furnace烧结盘sintering pan烧结锅sintering pot烧结冷却机sinter cooler带式冷却机straight-line cooler环式冷却机circular cooler,annular cooler生球green pellet,ball生球长大聚合机理ball growth by coalescence 生球长大成层机理ball growth by layering生球长大同化机理ball growth by assimilation 精矿成球指数balling index for iron ore conc entrates生球转鼓强度drum strength of green pellet 生球落下强度shatter strength of green pellet生球抗压强度compression strength of green p ellet生球爆裂温度cracking temperature of green p ellet圆筒造球机balling drum圆盘造球机balling disc竖炉陪烧球团shaft furnace for pellet firing 带式机陪烧球团traveling grate for pellet fi ring链算机-回转窑陪烧球团grate-kiln for pellet firing环式机陪烧球团circular gates for pellet fir ing冷固结球团cold bound pellet维式体wustite铁橄榄石fayalite铁尖晶石hercynite铁黄长石ferrogehlenite铁酸半钙calcium diferrite铁酸钙calcium ferrite铁酸二钙dicalcium ferrite锰铁橄榄石knebelite钙铁橄榄石kirschsteinite钙铁辉石hedenbergite钙铁榴石andradite钙长石anorthite钙镁橄榄石monticellite钙钛矿perovskite硅灰石wollastonite硅酸二钙dicalcium silicate硅酸三钙tricalcium silicate镁橄榄石forsterite镁黄长石akermanite镁蔷薇辉石manganolite钙铝黄长石gehlenite钛辉石titanaugite枪晶石cuspidine预还原球团pre-reduced pellet金属化球团metallized pellet转鼓试验drum test,tumbler test落下试验shatter test5.6 高炉炼铁炼铁iron making 高炉炼铁[法] blast furnace process高炉blast furnace鼓风炉blast furnace炉料charge, burden矿料ore charge焦料coke charge炉料提升charge hoisting小车上料charge hoisting by skip吊罐上料charge hoisting by bucket皮带上料charge hoisting by belt conveyer 装料charging装料顺序charging sequence储料漏斗hopper双料钟式装料two-bells system charging无料钟装料bell-less charging布料器distributor炉内料线stock line in the furnace探料尺gauge rod利用系数utilization coefficient冶炼强度combustion intensity鼓风blast风压blast pressure风温blast temperature鼓风量blast volume鼓风湿度blast humidity全风量操作full blast慢风under blowing休风delay喷吹燃料fuel injection喷煤coal injection喷油oil injection富氧鼓风oxygen enriched blast,oxygen enrich ment置换比replacement ratio喷射器injector热补偿thermal compensation焦比coke ratio,coke rate燃料比fuel ratio,fuel rate氧化带oxidizing zone风口循环区raceway蒸汽鼓风humidified blast混合喷吹mixed injection脱湿鼓风dehumidified blast炉内压差pressure drop in furnace煤气分布gas distribution煤气利用率gas utilization rate炉况furnace condition顺行smooth running焦炭负荷coke load,ore to coke ratio软熔带cohesive zone,softening zone渣比slag to iron ratio,slag ratio上部[炉料]调节burden conditioning下部[鼓风]调节blast conditioning高炉作业率operation rate of blast furnace 休风率delay ratio高炉寿命blast furnace campaign悬料hanging崩料slip沟流channeling结瘤scaffolding炉缸冻结hearth freeze-up开炉blow on停炉blow off积铁salamander炉型profile,furnace lines炉喉throat炉身shaft,stack炉腰belly炉腹bosh炉缸hearth炉底 bottom炉腹角bosh angle炉身角stack angle有效容积effective volume工作容积working bolume铁口iron notch, slag notch渣口cinder notch, slag notch风口tuyere窥视孔peep hole风口水套tuyere cooler渣口水套slag notch cooler风口弯头tuyere stock热风围管bustle pipe堵渣机stopper泥炮mud gun,clay gun开铁口机iron notch drill铁水hot metal铁[水]罐iron ladle 鱼雷车torpedo car主铁沟sow出铁沟casting house铁沟iron runner渣沟slag runner渣罐cinder ladle, slag ladle撇渣器skimmer冷却水箱cooling plate冷却壁cooling stave汽化冷却vaporization cooling热风炉hot blast stove燃烧室combustion chamber燃烧器burner热风阀hot blast valve烟道阀chimney valve冷风阀cold blast valve助燃风机burner blower切断阀burner shut-off valve旁通阀by-pass valve混风阀mixer selector valve送风期on blast of stove,on blast燃烧期on gas of stove, on gas换炉stove changing放散阀blow off valve内燃式热风炉Cowper stove外燃式燃烧炉outside combustion stove顶燃式热风炉top combustion stove炉顶放散阀bleeding valve放散管bleeder上升管gas uptake放风阀snorting valve均压阀equalizing valve高压调节阀septum valve炉顶高压elevated top pressure铸铁机pig-casting machine铸铁模pig mold冲天炉cupola水渣granulating slag水渣池granulating pit渣场slag disposal pit高炉煤气top gas,blast furnace gas高炉煤气回收topgas recovery,TGR非焦炭炼铁non-coke iron making直接还原炼铁[法]direct reduction iron making直接还原铁directly reduced iron,DRI竖炉直接炼铁direct reduction in shaft furna ce流态化炼铁fluidized-bed iron making转底炉炼铁rotary hearth iron making米德雷克斯直接炼铁[法]Midrex processHYL直接炼铁[法] HYL process克虏伯回转窑炼铁[法] Krupp rotary kiln iron -making熔态还原smelting reduction铁溶法iron-bath process科雷克斯法COREX process生铁pig iron海绵铁sponge iron镜铁spiegel iron清铁法H-rion process5.7 炼钢钢steel炼钢steelmaking钢水liquid steel,molten steel钢semisteel沸腾钢rimming steel,rimmed steel镇静钢killed steel半镇静钢semikilled steel压盖沸腾钢capped steel坩埚炼钢法crucible steelmaking双联炼钢法duplex steelmaking process连续炼钢法continuous steelmaking process 直接炼钢法direct steelmaking process混铁炉hot metal machine装料机charging machine装料期charging machine加热期heating period熔化期melting period造渣期slag forming period精炼期refining period熔清melting down脱氧deoxidation预脱氧preliminary dexidation还原渣reducing slag酸性渣acid slag碱性渣basic slag脱碳decarburization 增碳recarburization脱磷dephosphorization回磷rephosphorization脱硫desulfurization回硫resulfurization脱氮denitrogenation过氧化overoxidation出钢tapping冶炼时间duration of heat出钢样tapping sample浇铸样casting sample不合格炉次off heat熔炼损耗melting loss铁损iron loss废钢scrap废钢打包baling of scrap造渣材料slag making materials添加剂addition reagent脱氧剂deoxidizer脱硫剂desulfurizer冷却剂coolant回炉渣return slag喷枪lance浸入式喷枪submerged lance钢包ladle出钢口top hole出钢槽pouring lining炉顶furnace roof炉衬furnace lining炉衬侵蚀lining erosion渣线slag line炉衬寿命lining life分区砌砖zoned lining补炉fettling热修hot repair喷补gunning火焰喷补flame gunning转炉converter底吹转炉bottom-blown converter酸性空气底吹转炉air bottom-blown acid conve rter碱性空气底吹转炉air bottom-blown basic conv erter侧吹转炉side-blown converter卡尔多转炉Kaldo converter氧气炼铁oxygen steelmaking氧气顶吹转炉top-blown oxygen converter,LI c onverter氧气底吹转炉bottom-blown oxygen converter q uiet basic oxygenfurnace,QBOF顶底复吹转炉top and bottom combined blown c onverter喷石灰粉顶吹氧气转炉法oxygen lime process 底吹煤氧的复合吹炼法Klockner-Maxhutte steel making process,KMS住友复合吹炼法Sumitomo top and bottom blowi ng process,STBLBE复吹法lance bubbling equilibrium process, LBE顶枪喷煤粉炼钢法Arved lance carbon injectio n process,ALCI蒂森复合吹炼法Thyssen Blassen Metallurgical process,TBM面吹surface blow软吹soft blow硬吹hard blow补吹reblow过吹overblow后吹after blow目标碳aim carbon终点碳end point carbon高拉碳操作catch carbon practice增碳操作recarburization practice单渣操作single-slag operation双渣操作double-slag operation渣乳化slag emulsion二次燃烧postcombustion吹氧时间oxygen blow duration吹炼终点blow end point倒炉turning down喷渣slopping喷溅spitting静态控制static control动态控制dynamic control氧枪oxygen lance氧枪喷孔nozzle of oxygen lance多孔喷枪multi-nozzle lance 转炉炉体converter body炉帽upper cone炉口mouth,lip ring装料大面impact pad活动炉底removable bottom顶吹氧枪top blow oxygen lance副枪sublance多孔砖nozzle brick单环缝喷嘴single annular tuyere双环缝喷嘴double annular tuyere挡渣器slag stopper挡渣塞floating plug电磁测渣器electromagnetic slag detector废气控制系统off gas control system,OGCS平炉open-hearth furnace平炉炼钢open-hearth steelmaking冷装法cold charge practice热装法hot charge practice碳沸腾carbon boil石灰沸腾lime boil炉底沸腾bottom boil再沸腾reboil有效炉底面积effective hearth area酸性平炉acid open-hearth furnace碱性平炉basic open-hearth furnace固定式平炉stationary open-hearth furnace 倾动式平炉tilting open-hearth furnace双床平炉twin-hearth furnace顶吹氧气平炉open-hearth furnace with roof o xygen lance蓄热室regenerator沉渣室slag pocket电炉炼钢electric steelmaking电弧炉electric arc furnace超高功率电弧炉ultra-high power electric arc furnace直流电弧炉direct current electric arc furna ce双电极直流电弧炉double electrode direct cur rent arc furnace竖窑式电弧炉shaft arc furnace电阻炉electric resistance furnace工频感应炉line frequency induction furnace 中频感应炉medium frequency induction furnace高频感应炉high frequency induction furnace 电渣重熔electroslag remelting,ESR电渣熔铸electroslag casting,ESC电渣浇注Bohler electroslag tapping,BEST真空电弧炉重熔vacuum arc remelting,VAR真空感应炉熔炼vacuum induction melting,VIM 电子束炉重熔electron beam remelting,EBR等离子炉重炼plasma-arc remelting,PAR水冷模电弧熔炼cold-mold arc melting等离子感应炉熔炼plasma induction melting,PI M等离子连续铸锭plasma progressive casting,PP C等离子凝壳铸造plasma skull casting,PSC能量优化炼钢炉energy optimizing furnace,EOF 氧燃喷嘴oxygen-fuel burner氧煤助熔accelerated melting by coal-oxygen burner氧化期oxidation period还原期reduction period长弧泡沫渣操作弧长控制 long arc foaming sla g operation白渣white slag电石渣carbide slag煤氧喷吹coal-oxygen injection炉壁热点hot spots on the furnace wall偏弧arc bias透气塞porous plug出钢到出钢时间tap-to-tap time虹吸出钢siphon tapping偏心炉底出钢eccentric bottom tapping,EBT中心炉底出钢centric bottom tapping,CBT侧面炉底出钢side bottom tapping,SBT滑动水口出钢slide fate tapping5.8 精炼、浇铸及缺陷铁水预处理hot metal pretreatment机械搅拌铁水脱硫法KR process torpedo desulf urization鱼雷车铁水脱磷torpedo dephosphorization二次精炼secondary refining钢包精炼ladle refining合成渣synthetic slag微合金化microalloying 成分微调trimming钢洁净度steel cleanness钢包炉ladle furnace,LF直流钢包炉DC ladle furnace真空钢包炉LF-vacuum真空脱气vacuum degassing真空电弧脱气vacuum arc degassing,VAD真空脱气炉vacuum degassing furnace,VDF真空精炼vacuum refining钢流脱气stream degassing提升式真空脱气法 Dortmund Horder vacuum deg assing process,DH循环式真空脱气法 Ruhstahl-Hausen vacuum deg assing process,RH真空浇铸vacuum casting吹氧RH操作RH-oxygen blowing,RH-OB川崎顶吹氧RH操作 RH-Kawasaki top blowing,RH -KTB喷粉RH操作RH-poowder blowing,TH-PB喷粉法powder injection process喷粉精炼injection refining蒂森钢包喷粉法Thyssen Niederhein process,TN 瑞典喷粉法Scandinavian Lancer process,SL君津真空喷粉法vacuum Kimitsu injection proc ess密封吹氩合金成分调整法composition adjustmen t by sealed argonbubbling,CAS吹氧提温CAS法CAS-OB process脉冲搅拌法pulsating mixing process,PM电弧加热电磁搅拌钢包精炼法ASEA-SKF process 真空吹氧脱碳法vacuum oxygen decarburization process ,VOD氩氧脱碳法argon-oxygen decarburization proc ess,AOD蒸汽氧精炼法Creusot-Loire Uddelholm process, CLU无渣精炼slag free refining摇包法shaking ladle process铝弹脱氧法aluminium bullet shooting,ABS钢锭ingot铸锭ingot casting坑铸pit casting车铸car casting钢锭模ingot mold保温帽hot top下铸bottom casting上铸top casting补浇back pour,back feeding浇注速度pouring speed脱模ingot stripping发热渣exoslag防再氧化操作reoxidation protection连续浇注continuous casting连铸机continuous caster,CC,continuous casti ng machine,CCM弧形连铸机bow-type continuous caster立弯式连铸机vertical-bending caster立式连铸机vertical caster水平连铸机horizontal caster小方坯连铸机billet caster大方坯连铸机bloom caster板坯连铸机slab caster薄板坯连铸机thin-slab casting薄带连铸机strip caster近终型浇铸near-net-shape casting单辊式连铸机single-roll caster单带式连铸机single-belt caster双带式连铸机twin-belt caster倾斜带式连铸机inclined conveyer type caster [连铸]流strand铸流间距strand distance注流对中控制stream centering control钢包回转台ladle turret中间包tundish回转式中间包swiveling tundish倾动式中间包tiltable tundish中间包挡墙weir and dam in tundish引锭杆dummy bar刚性引锭杆rigid dummy bar挠性引锭杆flexible dummy bar结晶器mold直型结晶器straight mold弧形结晶器curved mold组合式结晶器composite mold多级结晶器multi-stage mold调宽结晶器adjustable mold结晶器振动mold oscillation 结晶器内钢液顶面meniscus,steel level钢液面控制技术steel level control technique 保护渣casting powder,mold powder凝壳shell液芯liquid core空气隙air gap一次冷却区peimary cooling zone二次冷却区secondary cooling zone极限冷却速度critical cooling rate浇铸半径casting radius渗漏bleeding拉坯速度casting speed拉漏breaking out振动波纹oscillation mark水口堵塞nozzle clogging气水喷雾冷却air mist spray cooling分离环separating ring拉辊withdrawal roll立式导辊vertical guide roll弯曲辊bending roll夹辊pinch roll矫直辊straightening roll驱动辊driving roll导向辊装置roller apron切割定尺装置cut-to-length device钢流保护浇注shielded casting practice多点矫直multipoint straightening电磁搅拌electromagnetic stirring,EMS浇注周期casting cycle多炉连浇sequence casting事故溢流槽emergercy launder菜花头cauliflower top钢锭缩头piped top表面缺陷surface defect内部缺陷internal defect缩孔shrinkage cavity中心缩孔center line shrinkage气孔blowhole表面气孔surface blowhole皮下气孔subskin blowhole针孔pinhole铸疤feather冷隔cold shut炼钢缺陷lamination。
铸造名词术语中英对照
1.基本术语1.1.铸造 foundry, founding, casting1.2.铸造工艺 foundry technology1.3.铸件 casting1.4.砂型铸造 sand casting process1.5.特种铸造 special castingprocess2.合金性能2.1.流动性 fluidity2.2.充型能力 mold-filling capacity2.3.吸气 gas absorption2.4.过冷 undercooling, supercooling2.5.过冷度 degree of undercooling2.6.成核 nucleation2.7.自发成核(均质成核) homogeneousnucleation2.8.非自发成核(非均质成核)heterogeneous nucleation2.9.凝固温度范围 solidification range 2.10.定向凝固(顺序凝固) directionalsolidification2.11.液态收缩(液体收缩) liquidcontraction2.12.凝固收缩 solidificationcontraction2.13.固态收缩(固体收缩) solidcontraction2.14.凝固时间 solidification time2.15.自由收缩 free contraction2.16.受阻收缩 hindered contraction2.17.铸件线收缩率 shrinkage2.18.收缩应力 contraction stress2.19.热应力 thermal stress2.20.相变应力 transformationstress, phase change stress 2.21.铸造应力 casting stress2.22.残留应力(残余应力) residualstress3.铸造用材料3.1.金属原材料3.1.1.金属原材料 metallic rawmaterial3.1.2.生铁 pig iron3.1.3.铁合金 ferro-alloy3.1.4.回炉料 foundry returns3.1.5.中间合金 master alloy3.2.燃料3.2.1.铸造焦炭 foundry coke3.2.2.冶金焦炭 metallurgical coke3.2.3.固定碳 fixed carbon3.3.熔剂3.3.1.熔剂 flux3.3.2.除气熔剂(除气剂) degassingflux3.3.3.覆盖熔剂(覆盖剂) coveringflux3.3.4.精炼熔剂(精炼剂) refiningflux3.3.5.耐火材料3.3.6.耐火度(耐火性) refractoriness 3.3.7.耐火砖 firebrick3.3.8.耐火粘土 fireclay3.3.9.硅砖 silica brick3.3.10.镁砂 grain magnesite3.4.造型材料3.4.1.造型材料 molding material3.4.2.砂 sand3.4.3.水洗砂 washed-out sand3.4.4.硅砂 silica sand3.4.5.天然砂 natural sand3.4.6.人工砂 artificial sand3.4.7.天然粘土砂 naturallyclay-bonded sand3.4.8.橄榄石砂 olivine sand3.4.9.铬铁矿砂 chromite sand3.4.10.锆砂 zircon sand3.4.11.炭粒砂 carbon sand3.4.12.精硅砂 sharp sand3.4.13.红砂 red sand3.4.14.熟料砂 chamotte sand3.4.15.粘结剂 binder3.4.16.粘土 clay3.4.17.无机粘结剂 inorganic binder 3.4.18.有机粘结剂 organic binder 3.4.19.高岭土 kaolin3.4.20.膨润土 bentonite3.4.21.钠基膨润土 sodium bentonite 3.4.22.钙基膨润土 calciumbentonite3.4.23.活化膨润土 activatedbentonite3.4.24.干性油 drying oil3.4.25.自硬粘结剂(冷硬粘结剂) nobake binder3.4.26.热固树脂粘结剂thermosetting resin binder3.4.27.油类粘结剂 oil basedbinder3.4.28.水玻璃粘结剂 water glassbinder, sodium silicatebinder3.4.29.纸浆废液 lignin liquor3.4.30.合脂粘结剂 synthetic fatbinder 3.4.31.水玻璃模数 sodium silicatemodulus3.5.辅助材料3.5.1.附加物 additives3.5.2.发热剂 exothermic mixture3.5.3.分型剂(脱模剂) parting agent,stripping agent3.5.4.固化剂(硬化剂)hardener3.5.5.悬浮剂suspending agent3.5.6.涂料 coating3.5.7.砂处理3.5.8.型砂制备(砂处理) sandpreparation3.5.9.混砂 sand mulling, sandmixing3.5.10.型砂(造型混合料) moldingsand3.5.11.芯砂(造芯混合料) coresand3.5.12.合成砂 synthetic sand3.5.13.自硬砂 self-hardening sand 3.5.14.水玻璃砂 sodiumsilicate-bonded sand3.5.15.覆膜砂 precoated sand3.5.16.烂砂泥(麻泥) loam3.5.17.调匀砂 temper sand3.5.18.面砂 facing sand3.5.19.背砂(填充砂) backing sand 3.5.20.单一砂 unit sand3.5.21.含泥量 clay content3.5.22.含水量 moisture content3.5.23.旧砂 floor sand3.5.24.枯砂(焦砂) burnt sand3.5.25.废砂 waste sand3.5.26.热砂 hot sand3.5.27.松砂 aeration ,sand-cutting3.5.28.筛分(筛析) screen analysis 3.5.29.旧砂处理 sandreconditioning3.5.30.旧砂再生 sand reclamation 3.5.31.沉降分选 elutriation,decantation3.5.32.型砂性能及试验3.5.33.型砂试验 sand testing3.5.34.透气性 permeability3.5.35.流动性 flowability3.5.36.型砂强度 sand strength 3.5.37.湿强度 green strength3.5.38.干强度 dry strength3.5.39.耐用性(复用性) durability 3.5.40.砂型(芯)硬度 moldhardness3.5.41.热变形 hot deformation3.5.42.残留强度 retainedstrength3.5.43.热强度 hot strength3.5.44.韧性 toughness3.5.45.发气率(发气速度) gasevolution rate3.5.46.发气性(发气量) gasevolution3.5.47.吸湿性 moistureabsorption3.5.48.落砂性 knock-outcapability3.5.49.潰散性 collapsibility3.5.50.胶质价 colloid index3.5.51.破碎指数 shatter index3.5.52.砂处理设备3.5.53.热气流烘砂装置 hotpneumatic tube drier3.5.54.混砂机 sand muller, sandmixer3.5.55.松砂机 aerator, sandcutter3.5.56.冷却提升机 cooling elevator,coolevator3.5.57.筛砂机 riddle3.5.58.磁力滚筒 magneticseparator3.5.59.旧砂再生设备 sandreclamation3.5.60.气力输送装置 pneumatictube conveyor4.铸造合金4.1.铸铁4.1.1.铸铁 cast iron4.1.2.铸铁石墨形态 morphology ofgraphite in cast iron4.1.3.灰铸铁(灰口铸铁) gray castiron4.1.4.白口铸铁 white cast iron4.1.5.麻口铸铁 mottled cast iron4.1.6.共晶度 degree of saturation 4.1.7.碳当量 carbon equivalent4.1.8.片状石墨 flake graphite4.1.9.初生石墨 primary graphite4.1.10.孕育铸铁 inoculated castiron4.1.11.球墨铸铁 spheroidalgraphite cast iron, nodulargraphite iron, ductile iron4.1.12.球状石墨 spheroidalgraphite, nodular graphite4.1.13.可锻铸铁 malleable castiron4.1.14.黑心可锻铸铁 black heartmalleable cast iron4.1.15.珠光体可锻铸铁 pearliticmalleable cast iron4.1.16.铁素体可锻铸铁 ferriticmalleable cast iron4.1.17.白心可锻铸铁 white heartmalleable cast iron4.1.18.团絮石墨 tempered graphite 4.1.19.冷硬铸铁(激冷铸铁) chillediron4.1.20.耐磨铸铁 wear resistingcast iron4.1.21.耐热铸铁 heat resistingcast iron4.1.22.耐酸铸铁 acid resistingcast iron4.1.23.高硅铸铁 high silicon castiron4.1.24.蠕墨铸铁 vermicular castiron, compacted graphite castiron4.1.25.蠕虫状石墨 vermiculargraphite4.1.26.合金铸铁 alloy cast iron4.2.铸钢4.2.1.铸钢 cast steel4.2.2.炭素铸钢 carbon cast iron4.2.3.低合金铸钢 low alloy caststeel4.2.4.高锰钢 high manganese steel4.2.5.铁素体钢 ferritic steel4.2.6.铸造非铁合金4.2.7.青铜 bronze4.2.8.铅青铜 lead bronze4.2.9.铝青铜 aluminum bronze4.2.10.黄铜 brass4.2.11.铝铜合金 aluminum-copperalloy4.2.12.铝镁合金 aluminum-magnesiumalloy4.2.13.铝硅合金 aluminum-siliconalloy4.2.14.镁合金 magnesium alloy4.2.15.轴承合金(减摩合金) bearingmetal, antifrictional metal4.2.16.巴氏合金 babbitt alloy4.2.17.钛合金 titanium alloy5.熔炼工艺及设备5.1.熔炼基本术语5.1.1.熔化(熔炼) melting5.1.2.重熔 remelting5.1.3.炉料 charge5.1.4.熔化率 melting rate5.1.5.炉料计算 charge calculation5.1.6.双联熔炼 duplexing5.1.7.元素烧损(元素烧损率) meltinglosses of various chemicalelements5.1.8.熔炼损耗(烧损) total meltingloss5.1.9.还原气氛 reducing atmosphere5.1.10.氧化气氛 oxidizingatmosphere5.1.11.惰性气体 inert gas5.1.12.碱度(碱性指数) index ofbasicity5.1.13.碱性渣 basic slag5.1.14.酸性渣 acid slag5.1.15.精炼 refining5.1.16.遗传性 heredity5.1.17.铸铁熔炼5.1.18.风口比 tuyere ratio5.1.19.有效高度 effective height5.1.20.送风强度 blast intensity5.1.21.预热送风 hot blast5.1.22.底焦 coke bed5.1.23.层焦 coke split5.1.24.隔焦(结力焦) buffer cokecharge5.1.25.炉衬 furnace lining5.1.26.碱性炉衬 basic lining5.1.27.酸性炉衬 acid lining5.1.28.棚料 bridging5.1.29.熔池 bath5.1.30.吸碳 carbon pick-up5.1.31.铁焦比(焦比) iron-cokeratio5.1.32.出渣 deslagging5.1.33.打炉 cupola drop5.2.铸钢5.2.1.氧化熔炼法 oxidizing melting5.2.2.不氧化熔炼法 dead melting5.2.3.真空熔炼 vacuum refining5.2.4.电渣熔炼 electro-slag melting5.2.5.熔渣 slag5.2.6.沉渣 sludge5.2.7.浮渣 dross, cinder5.2.8.氧化期(沸腾期) oxidizing stage,boil5.2.9.还原期 deoxidizing stage,blocking stage5.2.10.还原渣 reducing slag 5.2.11.氧化渣 oxidizing slag5.2.12.白渣 white slag5.2.13.脱氧 deoxidation5.2.14.扒渣 slagging- off5.2.15.脱碳 decarburization5.2.16.脱硫 desulphurization5.2.17.脱磷 dephosphorization5.2.18.增碳 recarburizing5.2.19.脱氧剂 deoxidizer5.2.20.非铁金属熔炼5.2.21.挥发损耗 volatilizinglosses5.2.22.静置 stewing, holding5.2.23.吹氮 nitrogen flushing5.3.熔炼设备5.3.1.冲天炉 cupola5.3.2.水冷冲天炉 water-cooled cupola 5.3.3.热风冲天炉 hot-blast cupola5.3.4.湿法除尘器 wet cap5.3.5.炉缸 cupola well5.3.6.前炉 forehearth5.3.7.冲天炉加料机 cupola chargingmachine5.3.8.爬式加料机 skip hoist5.3.9.电磁配铁称 electro-magneticweighing balancer5.3.10.电磁盘 electromagneticchuck5.3.11.电弧炉(直接电弧炉) arcfurnace, direct arc furnace5.3.12.感应电炉 electric inductionfurnace5.3.13.电渣炉 electroslag furnace 5.3.14.电磁搅拌electromagneticagitation5.3.15.浇包 ladle5.3.16.摇包 shaking ladle5.3.17.底注包 bottom pouringladle5.3.18.保温炉holding furnace5.3.19.坩埚炉crucible furnace5.3.20.熔融金属处理5.3.21.孕育 inoculation5.3.22.多孔塞法 porous plugprocess5.3.23.变质 modification5.3.24.墨化剂 graphitizer5.3.25.过热 superheating5.3.26.石墨球化处理 nodularizingtreatment of graphite5.3.27.碳当量仪eutectometer5.3.28.三角试块 wedge test-piece 5.3.29.真空除气vacuum degassing 5.4.浇注5.4.1.浇注 pouring5.4.2.保护气氛浇注 pouring undercontrolled atmosphere5.4.3.浇注速度 pouring rate5.4.4.浇注温度 pouring temperature 5.4.5.浇注时间 pouring time5.4.6.浇注位置 pouring position5.4.7.型内孕育 inmold inoculation5.4.8.压铁 weight5.4.9.捣冒口 churning, pumping5.4.10.点冒口(补注) teeming5.4.11.浸入式高温计 immersionpyremeter5.4.12.补炉 patching5.4.13.炉龄(炉衬寿命) campaign6.工艺设计及工艺装备6.1.工艺设计6.1.1.铸造工艺设计 mold design6.1.2.铸造工艺装备设计 foundry toolsdesign6.1.3.铸造工艺图 foundry moldingdrawing6.1.4.铸件图(毛坯图) drawing ofrough casting6.1.5.起模斜度(拔模斜度) patterndraft6.1.6.收缩余量shrinkage allowance6.1.7.工艺补正量 molding allowance 6.1.8.加工余量 machining allowance6.1.9.吃砂量 mold thickness6.1.10.补贴 pad6.1.11.分型负数 joint allowance6.1.12.铸件尺寸公差 dimensionaltolerance of casting6.1.13.铸件重量公差 weightallowance of casting6.1.14.铸件加工基准面 referenceface for machining of casting 6.1.15.铸件表面粗糙度 surfaceroughness of casting6.2.浇冒口系统6.2.1.浇注系统(浇口) gating system,running system6.2.2.封闭式浇注系统 choked runningsystem, pressurized gatingsystem6.2.3.半封闭式浇注系统 enlargedrunner system6.2.4.开放式浇注系统 unchokedrunning system,non-pressurized gating system6.2.5.浇口盆(外浇口) pouring basin6.2.6.浇口杯 pouring cup6.2.7.浇口塞 blanking-off plug6.2.8.直浇道 sprue6.2.9.直浇道窝 sprue base6.2.10.横浇道 runner6.2.11.筛网芯(滤网芯) strainercore6.2.12.内浇道 ingate6.2.13.离心集渣浇注系统 whirl gate,dirt trap system6.2.14.顶注式浇注系统 top gatingsystem6.2.15.底注式浇注系统 bottomgating system6.2.16.阶梯式浇注系统 step gatingsystem6.2.17.雨淋浇口 shower gate6.2.18.缝隙浇口 slot gate6.2.19.压边浇口 lip runner, kissrunner6.2.20.牛角式浇口 horn gate6.2.21.热节 hot spot6.2.22.冒口 riser, feeder heed6.2.23.冒口效率 riser efficiency6.2.24.明冒口 open riser6.2.25.暗冒口 blind riser6.2.26.侧冒口(边冒口) side riser 6.2.27.压力冒口 pressure riser6.2.28.大气压力冒口 atmosphericriser6.2.29.发气压力冒口(气弹冒口)gas-delivered pressure riser6.2.30.透气砂芯 pencil core6.2.31.冒口颈 riser neck 6.2.32.冒口根 riser pad6.2.33.保温冒口套 heat insulatingfeeder sleeve6.2.34.发热冒口套 exothermic feedersleeve6.2.35.补缩距离 feeding distance,feeding zone6.2.36.易割冒口 knock-off head6.2.37.易割片(易割芯片) washburncore6.2.38.模样6.2.39.铸造工艺装备 foundry toolsand equipment6.2.40.模样(铸模,模) pattern6.2.41.母模 master pattern6.2.42.金属模 metal pattern6.2.43.骨架模 skeleton pattern6.2.44.石膏模 plaster pattern6.2.45.塑料模 plastic pattern6.2.46.整体模 one-piece pattern6.2.47.分开模 parted pattern,split pattern6.2.48.活块 loose piece6.2.49.模板 pattern plate6.2.50.模底板 pattern mountingplate6.2.51.单面模板 single facepattern plate6.2.52.双面模板 match plate6.2.53.放样(伸图) hot dimensionaldrawing6.2.54.缩尺(模样工缩尺) shrinkagerule, pattern-maker’s rule6.3.芯盒6.3.1.芯盒 core box6.3.2.脱落式芯盒 troughed core box 6.3.3.下芯量具 core setting scale6.3.4.下芯夹具 core jig6.3.5.烘芯板 core drying plate6.3.6.砂箱6.3.7.砂箱 flask, molding box6.3.8.箱带(箱挡) flask bar, crossbar6.3.9.脱箱 snap flask6.3.10.套箱 mold jacket6.3.11.套销 hollow pin, stubpin7.造型及造芯7.1.造型7.1.1.造型 molding7.1.2.型腔 mold cavity7.1.3.铸型(型) mold7.1.4.砂型 sand mold7.1.5.上型(上箱) cope, top part 7.1.6.下型(下箱) drag, bottom part 7.1.7.手工造型 hand molding7.1.8.机器造型 machine molding7.1.9.自动化造型 automatic molding 7.1.10.分型面 mold joint7.1.11.有箱造型 flask molding7.1.12.两箱造型 two-part molding 7.1.13.三箱造型 three-partmolding7.1.14.不平分型面 stepped joint7.1.15.无箱造型 flaskless molding 7.1.16.脱箱造型 removable flaskmolding7.1.17.地坑造型 pit molding7.1.18.刮板造型 sweep molding 7.1.19.抛砂造型 impeller ramming,sand slinging molding7.1.20.组芯造型 core assemblymolding7.1.21.假箱造型 oddside molding7.1.22.微震压实造型 vibratorysqueezing molding7.1.23.高压造型 high pressuremolding7.1.24.湿砂型(湿型,潮型) greensand mold7.1.25.砂型烘干 mold drying7.1.26.干砂型(干型)dry sand mold 7.1.27.表面烘干型 skin dried mold 7.1.28.烂砂泥型 loam mold7.1.29.砂床 bed7.1.30.过渡角 transition angle7.1.31.吊砂 cod7.1.32.砂钩 lifter7.1.33.负压造型(真空密封造型)vacuum molding7.1.34.流态砂造型 fluid sandmolding7.1.35.漏模 pattern stripping7.1.36.填砂 mold-filling7.1.37.紧实(紧砂,舂砂) ramming 7.1.38.震实 jolt ramming7.1.39.压实 squeezing ramming7.1.40.紧实度 degree of ramming 7.1.41.二氧化碳法造型 CO2process 7.1.42.自硬砂造型 self-hardeningsand molding7.1.43.塞砂 tucking7.1.44.刮砂 strike-off7.1.45.造型生产线 molding line7.1.46.刷水 swabbing7.1.47.敲模 rapping7.1.48.起模(拔模) stripping7.1.49.扎出气孔 venting7.1.50.排气道 venting channel7.1.51.修型 patching7.1.52.冷铁 densener, chill7.1.53.外冷铁 surface densener7.1.54.内冷铁 internal densener7.1.55.验型(验箱) trial closing 7.1.56.合型(合箱,组型) moldassembling, closing7.2.造芯7.2.1.造芯(制芯) core making7.2.2.芯(芯子) core7.2.3.芯骨 core rod, core scab7.2.4.油砂芯 oil sand core7.2.5.预制芯 embeded core, ram upcore7.2.6.芯头 core print7.2.7.芯座 core print7.2.8.芯头斜度 core print taper7.2.9.芯头间隙 core print clearance 7.2.10.壳芯 shell core7.2.11.烘芯 core baking7.2.12.通气蜡线 vent wax7.2.13.冷芯盒法 cold box process 7.2.14.热芯盒法 hot box process7.2.15.芯撑 chaplet7.2.16.造型工具7.2.17.造型工具 hand tools ofmolding7.2.18.压勺 heart and spoon7.2.19.提沟 cleaner 7.2.20.双头铜勺(秋叶) double endedradius sleeker7.2.21.镘刀 trowel7.2.22.造型及造芯设备7.2.23.造型机 molding machine7.2.24.压实造型机 squeezingmolding machine7.2.25.震击台 bumper7.2.26.振动台 vibrating table7.2.27.微震压实造型机 vibratorysqueezer7.2.28.震实造型机 jolt moldingmachine7.2.29.高压造型机 high pressuremolding machine7.2.30.射压造型机 shooting andsqueezing molding machine7.2.31.多触头造型机 equalizingpiston squeezer7.2.32.抛砂机 sand slinger7.2.33.起模机 drawing machine7.2.34.射砂机 core shooter7.2.35.挤芯机 core extruder7.2.36.铸型输送机 mold conveyor8.铸件落砂及清理8.1.落砂及清理8.1.1.落砂 shake-out, knock-out8.1.2.除芯 decoring8.1.3.噴砂清理 sand blasting8.1.4.抛丸清理 shot blasting8.1.5.水力清砂 hydraulic cleaning8.1.6.水砂清砂 hydraulic blast8.1.7.清理 cleaning, fettling8.1.8.清砂 cleaning8.1.9.火焰表面清理 scarfing8.1.10.清铲 chipping8.1.11.化学清砂 chemical cleaning 8.1.12.精整 dressing and finishing 8.1.13.落砂机 knock-out machine8.1.14.抛丸清理机 shot blastmachine8.1.15.清理滚筒 tumbling barrel8.1.16.抛丸落砂清理设备 shotblast reclaiming equipment8.1.17.悬挂式磨轮 swing framegrinder8.1.18.修补及矫正8.1.19.矫正 coining, straightening 8.1.20.焊补 repair welding8.1.21.渗补 impregnation8.1.22.特种铸造8.1.23.金属型铸造8.1.24.金属型铸造 permanent moldcasting, gravity die casting8.1.25.金属型 metal mold8.1.26.金属芯 metal core8.1.27.覆砂金属型 sand-lined metalmold8.1.28.排气塞 venting plug8.1.29.排气槽 air vent8.1.30.龟裂 heat checking8.1.31.金属型铸造机 gravity diecasting machine9.压力铸造9.1.压力铸造(压铸) die casting,pressure die casting9.2.压铸型 die-casting die, die9.3.动型 moving die, ejector diehalf9.4.定型 fixed die, cover die half 9.5.合型力 clamping force , dielocking force9.6.压室 pressure chamber9.7.鹅颈管 gooseneck9.8.分流器 spreader, sprue spreader 9.9.顶杆 ejector pin9.10.溢流槽 overflow well9.11.压射冲头(压室) injectionpiston, plunger9.12.压射比压 injection pressure9.13.压射速度 injection speed9.14.保压时间 dwell time9.15.真空压铸 evacuated diecasting, vacuum die casting9.16.充氧压铸 pore-free die casting 9.17.双冲头压铸(精速密压铸)acurad(accurate) die casting9.18.压铸机 die casting machine9.19.冷室压铸机 cold chamber diecasting machine9.20.热室压铸机 hot chamber diecasting machine9.21.镶铸法 insert process9.22.离心铸造9.23.离心铸造 true centrifugalcasting9.24.半离心铸造 semi-centrifugalcasting9.25.离心浇注 centrifugal pressurecasting, centrifuge casting9.26.双金属离心铸造 bimetalcentrifugal casting9.27.离心铸造机 centrifugal castingmachine10.熔模铸造10.1.失模铸造 lost patterncasting10.2.熔模铸造(失蜡铸造) fusiblepattern molding, lost-waxmolding10.3.压制熔模 fusible patterninjection10.4.压型 pattern die10.5.熔模 fusible pattern10.6.盐模salt pattern10.7.蜡模 wax-pattern10.8.模组 pattern assembly10.9.熔模涂料(浆料) slurry10.10.面层涂料 investment precoat 10.11.撒砂 stuccoing10.12.脱蜡 dewaxing10.13.熔烧 sintering10.14.壳型铸造10.15.壳型铸造 shell molding10.16.结壳时间 investing time10.17.结壳温度 investing temperature 10.18.硬化温度 curing temperature 10.19.硬化时间 curing time10.20.其它铸造方法10.21.陶瓷型铸造 ceramic molding 10.22.陶瓷型浆料 ceramic slurry10.23.灌浆 paste pouring10.24.喷烧 torch firing10.25.低压铸造 low-pressure diecasting10.26.充型压力 mold fillingpressure10.27.保压压力 dwell pressure10.28.升液管 stalk10.29.真空吸铸 suction casting 10.30.差压铸造(反压铸造)counter-pressure casting10.31.实型铸造 full mold process,cavityless casting10.32.泡沫塑料模 styrofoam pattern 10.33.磁型铸造(磁丸铸造) magneticshot molding process10.34.凝壳铸造 slush casting10.35.石膏型铸造 plaster molding10.36.连续铸造 continuous casting11.铸件质量及铸件缺陷11.1.铸件质量基本术语11.1.1.铸件检验 inspection ofcasting11.1.2.铸件质量分析 qualityanalysis of casting11.1.3.铸件外观质量 visual qualityof casting11.1.4.铸件内在质量 internalquality of casting11.1.5.铸件使用性能 serviceability of casting11.1.6.单铸试块 separated testbar of casting11.1.7.附铸试块 test lug11.1.8.缺陷铸件 defective casting 11.1.9.废品 reject11.1.10.无损检验(无损探伤)nondestructive inspection11.1.11.破坏性试验 destructivetesting11.1.12.多肉类缺陷11.1.13.飞翅(飞边) joint flash11.1.14.毛刺 veining11.1.15.抬型(抬箱) cope raise ,raised mold11.1.16.胀箱 swell11.1.17.冲砂 erosion, cut, wash 11.1.18.掉砂 drop, crush11.1.19.外渗物(外渗豆) sweat11.2.孔洞类缺陷11.2.1.气孔 blow hole11.2.2.针孔 pinhole11.2.3.缩孔 shrinkage11.2.4.缩松 dispersed shrinkage 11.2.5.疏松(显微缩松) porositymicroshrinkage11.2.6.裂纹、冷隔类缺陷11.2.7.冷裂 cold cracking11.2.8.热裂 hot tearing11.2.9.热处理裂纹 heat treatmentcrack11.2.10.白点(发裂) flake11.2.11.冷隔 cold shut, cold lap 11.2.12.浇注断流 interrupted pour 11.2.13.表面缺陷11.2.14.鼠尾 rat-tail11.2.15.沟漕 buckle11.2.16.夹砂结疤(夹砂) scab11.2.17.机械粘砂(渗透粘砂) metalpenetration11.2.18.化学粘砂(烧结粘砂)burn-on 11.2.19.表面粗糙 rough surface11.2.20.皱皮 elephant skin11.2.21.缩陷 depression11.2.22.残缺类缺陷11.2.23.浇不到 misrun11.2.24.未浇满 poured short11.2.25.跑火 run-out, bleeding 11.2.26.型漏(漏箱)run-out, bleeding 11.2.27.损伤(机械损伤)damage11.2.28.形状及重量差错类缺陷11.2.29.拉长 exaggeration ofdimension11.2.30.超重 over-weight11.2.31.变形 distortion, warping 11.2.32.错型(错箱) shift11.2.33.错芯 core shift11.2.34.偏芯(漂芯) core raised,corelift11.3.夹杂类缺陷11.3.1.夹杂物 inclusion11.3.2.冷豆 cold shot11.3.3.内渗物(内渗豆) internalsweat11.3.4.渣气孔 scum, slag-blow hole 11.3.5.砂眼 sand inclusion11.3.6.性能、成分、组织不合格11.3.7.亮皮 pearlite layer11.3.8.菜花头 cauli-flowering11.3.9.石墨飘浮 carbon floatation 11.3.10.石墨集结 kish graphite spot 11.3.11.组织粗大 open grainstructure11.3.12.偏析 segregation11.3.13.硬点 hard spot11.3.14.反白口 inverse chill11.3.15.球化不良 under-nodularizing 11.3.16.球化衰退 degradatedspheroidisation11.3.17.脱碳 decarburization。
石墨烯包覆天然球形石墨作为锂离子电池的负极材料,是否需要乙炔黑导电剂?(英文)
物 理 化 学 学 报Acta Phys. -Chim. Sin. 2022, 38 (2), 2012062 (1 of 9)Received: December 22, 2020; Revised: February 1, 2021; Accepted: February 3, 2021; Published online: February 22, 2021. *Corresponding author. Email: songhh@. †These authors contributed equally to this work.The project was supported by the National Natural Science Foundation of China (U1610252, 51911530126). 国家自然科学基金(U1610252, 51911530126)资助项目© Editorial office of Acta Physico-Chimica Sinica[Article] doi: 10.3866/PKU.WHXB202012062 Is there a Demand of Conducting Agent of Acetylene Black for Graphene- Wrapped Natural Spherical Graphite as Anode Material for Lithium-Ion Batteries?Xuewei Liu 1,2,†, Ying Niu 2,†, Ruixiong Cao 1,2, Xiaohong Chen 1,2, Hongyan Shang 3, Huaihe Song 1,2,*1 Changzhou Institute of Advanced Materials, Beijing University of Chemical Technology, Changzhou 213164,Jiangsu Province, China.2 State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Electrochemical Process and Technology forMaterials, Beijing University of Chemical Technology, Beijing 100029, China.3 College of Science, China University of Petroleum, Qingdao 266580, Shandong Province, China.Abstract: Graphene-wrapped natural spherical graphite (G/SG) composites were prepared using the encapsulation–carbonization approach. The morphology and structure of the composites were characterized by scanning electron microscopy and X-ray diffraction analysis. The electrochemical performance of the composites with different graphene contents as anode materials for lithium-ion batteries was investigated by various electrochemical techniques. In the absence of acetylene black (AB), the G/SG composites were found to exhibit high specific capacity with high first-cycle coulombic efficiency, good cycling stability, and high rate performance. Compared with the natural spherical graphite (SG) electrode, the G/SG composite electrode with 1% graphene exhibited higher reversiblecapacity after 50 cycles; this capacity performance was equal to that of the SG + 10%AB electrode. Moreover, when the addition of 2.5% graphene, the composite electrode exhibited higher initial charge capacity and reversible capacity during 50 cycles than the SG+10%AB electrode. The significant improvement of the electrochemical performance of the G/SG composite electrodes could be attributed to graphene wrapping. The graphene shell enhances the structural integrity of the natural SG particles during the lithiation and delithiation processes, further improving the cycling stability of the composites. Moreover, the bridging of adjacent SG particles allows the formation of a highly conductive network for electron transfer among SG particles. Graphene in the composites serves as not only an active material but also a conductive agent and promotes the improvement of electrochemical performance. When 5%AB was added, the reversible capacity of the 5%G/SG electrodes significantly increased from 381.1 to 404.5 mAh·g −1 after 50 cycles at a rate of 50 mA·g −1 and from 82.5 to 101.9 mAh·g −1 at 1 A·g −1, suggesting that AB addition improves the performance of the G/SG composite electrodes. AB particles connect to G/SG particles through point contact type and fill the gaps between G/SG. A more effective conductive network is synergistically formed via graphene-AB connection. Although graphene wrapping and AB addition improve the performance of natural graphite electrodes, such as through increase in electrical conductivity and enhancement of Li-storage performance, including improvement of reversible capacity, rate performance, and cycling stability, electrode density typically decreases with graphene or AB addition, which should consider the balance between the gravimetric and volumetric capacities of graphite anode materials in practical applications. These results have great significance for expanding the commercial application scope of natural graphite. Our work provides new understanding and insight into the electrochemical behavior of natural SG electrodes in lithium-ion batteries and is helpful for the fabrication of high-performance anode materials.. All Rights Reserved.Key Words:Graphene; Graphene-wrapped; Natural spherical graphite; Lithium-ion battery; Anode material;Conductive agent; Acetylene black石墨烯包覆天然球形石墨作为锂离子电池的负极材料,是否需要乙炔黑导电剂?刘学伟1,2,†,牛莹2,†,曹瑞雄1,2,陈晓红1,2,商红岩3,宋怀河1,2,*1北京化工大学,常州先进材料研究院,江苏 常州 2131642北京化工大学化工资源有效利用国家重点实验室,材料电化学过程与技术北京市重点实验室,北京 1000293中国石油大学理学院,山东 青岛 266580摘要:我们通过包覆炭化的方法制备得到了石墨烯包覆的天然球形石墨(G/SG)材料,并使用扫描电子显微镜、X射线衍射仪以及多种电化学测试手段考察了不同石墨烯含量的复合材料的形貌结构及电化学性能。
锂离子电池基础科学问题(Ⅷ)——负极材料
万方数据万方数据万方数据万方数据万方数据万方数据万方数据万方数据锂离子电池基础科学问题(Ⅷ)——负极材料作者:罗飞, 褚赓, 黄杰, 孙洋, 李泓, LUO Fei, CHU Geng, HUANG Jie, SUN Yang, LI Hong作者单位:中国科学院物理研究所,北京,100190刊名:储能科学与技术英文刊名:Energy Storage Science and Technology年,卷(期):2014,3(2)1.Armand M;Murphy D;Broadhead J Materials for Advanced Batteries 19802.Garreau M;Thevenin J;Fekir M On the processes responsible for the degradation of the aluminum lithium electrode used as anode material in lithium aprotic electrolyte batteries 1983(3-4)3.Yazami R;Touzain P A reversible graphite-lithium negative electrode for electrochemical generators 1983(3)4.Tarascon J MorSe6:A new solid-state electrode for secondary lithium batteries 1985(9)5.Scrosati B Non aqueous lithium cells 1981(11)6.Abraham K Ambient temperature secondary lithium batteries using LiA1 lithium insertion anodes 19877.Hrold A Recherches sur les composes d'insertion du graphite 1955(7-8)8.Dey A;Sullivan B The electrochemical decomposition of propylene carbonate on graphite 1970(2)9.SONY Non-aqueous electrolyte secondary cell 198910.Nagaura T;Tozawa K Lithium ion rechargeable battery 199011.Endo M;Kim C;Nishimura K Recent development of carbon materials for Li ion batteries 2000(2)12.Mabuchi A A survey on the carbon anode materials for rechargeable lithiumbatteries 199413.Yamaura J;Ozaki Y;Morita A High voltage,rechargeable lithium batteries using newly-developed carbon for negative electrode material 1993(1)14.Tarascon J M;Armand M Issues and challenges facing rechargeable lithium battefies 2001(6861)15.Van S W;gcrosati B Advances in Lithium-Ion Batteries 200216.Kang B;Ceder G Battery materials for ultrafast charging and diseharging 2009(7235)17.Armand M;Tarascon J M Building better batteries 2008(7179)18.Jansen A;Kahaian A;Kepler K Development of a high-power lithium-ion battery 199919.Smith K;Wang C Y Power and thermal characterization of a lithium-ion battery pack for hybrid-electric vehicles 2006(1)20.Zhang X;Ross P;Kostecki R Diagnostic characterization of high power lithium-ion batteries for use in hybrid electric vehicles 2001(5)21.Zhou H H;Ci L C;Liu C Y Progress in studies of the electrode materials for Li ion batteries 1998(1)22.Hao R R;Fang X Y;Niu S C Chemistry of the Elements (Ⅲ) 199823.Ohzuku T;Ueda A;Yamamoto N Zero-strain insertion material of Li(Li1/3Ti5/3)O4 for rechargeable lithium cells 1995(5)24.Woo K C;Mertwoy H;Fischer J Experimental phase diagram of lithium-intercalated graphite 1983(12)25.Dahn J Phase diagram of LixC6 1991(17)26.Nalamova V;Guerard D;Lelaurain M X-ray investigation of highly saturated Li-graphite intercalation compound 1995(2)27.Feng Z Z;Song S Q Preparation and application of mesophase pitch 201328.Honda H;Yamada Y Meso-carbon microbeads 197329.Xu B;Chen E Intermediate development phase carbon microbeads (MCMB),properties and applications 1996(3)30.Niu Y J;Zhang H G;ZhouA M Non-Ferrous Progress:1996-2005 200731.Choi W C;Byun D;Lee J K Electrochemical characteristics of silver-and nickel-coated synthetic graphite preparedby a gas suspension spray coating method for the anode of lithium secondary batteries 2004(2)32.Lee H Y;Baek J K;Lee S M Effect of earbon coating on elevated temperature performance of graphite as lithium-ion battery anode material 2004(1)33.Tanaka H;Osawa T;Moriyoshi Y Improvement of the anode performance of graphite particles through surface modification in RF thermal plasma 2004(1)34.Guoping W;Bolan Z;Min Y A modified graphite anode with high initial efficiency and excellent cycle life expectation 2005(9)35.Lee J H;Lee S;Paik U Aqueous processing of natural graphite particulates for lithium-ion battery anodes andtheir electrochemical performance 2005(1)36.Yamauchi Y;Hino T;Ohzeki K Gas desorption behavior of graphite anodes used for lithium ion secondary batteries 2005(6)37.Zhao X;Hayner C M;Kung M C In-plane vacancy-enabled high-power Si-graphene composite electrode for lithium-ion batteries 2011(6)38.王广驹世界石墨生产,消费及国际贸易 2006(1)39.Jonker G H Magnetic compounds with perovskite structure Ⅳ conducting and non-conducting compounds 195640.Murphy D;Cava R;Zahurak S Ternary LixTiO2 phases from insertion reactions 198341.Ferg E;Gummow R;De K A Spinel anodes for lithium-ion batteries 1994(11)42.Robertson A;Trevino L;Tukamoto H New inorganic spinel oxides for use as negative electrode materials in future lithium-ion batteries 199943.Peramunage D;Abraham K Preparation of micron-sized Li4Ti5O12 and its electrochemistry in polyacrylonitrile electrolyte-based lithium cells 1998(8)44.Julien C;Massot M;Zaghib K Structural studies of Li4/3Me5/3O4 (Me=Ti,Mn) electrode materials:Local structure and electrochemical aspects 2004(1)45.Scharner S;Weppner W;Schmid B E Evidence of two-phase formation upon lithium insertion into the Li1.33Ti1.67O4 spinel 1999(3)46.Zaghib K;Simoneau M;Armand M Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries 199947.Pecharroman C;Amarilla J Thermal evolution of infrared vibrational properties of Li4/3Ti5/3O4 measured by specular reflectance 2000(18)48.Guerfi A;Charest P;Kinoshita K Nano electronically conductive titanium-spinel as lithium ion storage negative electrode 2004(1)49.Gao L;Qiu W;Zhao H L Lithiated titanium complex oxide as negative electrode 2005(1)50.Bach S;Pereira R J;Baffier N Electrochemical properties of sol-gel Li4/3Ti5/3O4 199951.Kavan L;Grtzel M Facile synthesis of nanocrystalline Li4Ti5O12 (spinel) exhibiting fast Li insertion 2002(2)52.Hao Y;Lai Q Y;Liu D Synthesis by citric acid sol-gel method and electrochemical properties of Li4Ti5O12 anode material for lithium-ion battery 2005(2-3)53.王虹微波法制备钛酸锂的方法 200854.白莹一种用于锂二次电池负极材料尖晶石钛酸锂的制各方法 200655.Li J;Tang Z;Zhang Z Controllable formation and electrochemical properties of one-dimensional nanostructured spinel Li4Ti5O12 2005(9)56.杨立一种应用于锂离子电池的钛酸锂负极材料的制备方法中国 200857.Huang S;Wen Z;Zhu X Effects of dopant on the electrochemical performance of Li4Ti5O12 as electrode material for lithium ion batteries 2007(1)58.Tian B;Xiang H;Zhang L Niobium doped lithium titanate as a high rate anode material for Li-ion batteries2010(19)59.Huang Y;Qi Y;Jia D Synthesis and electrochemical properties of spinel Li4Ti5Ol2-xClx anode materials forlithium-ion batteries 2012(5)60.Venkateswarlu M;Chen C;Do J Electrochemical properties of nano-sized Li4Ti5O12 powders synthesized by a sol-gel process and characterized by X-ray absorption spectroscopy 2005(1)61.Cai R;Yu X;Liu X Li4Ti5O12/Sn composite anodes for lithium-ion batteries:Synthesis and electrochemical performance 2010(24)62.Yuan T;Yu X;Cai R Synthesis of pristine and carbon-coated Li4Ti5O12 and their low-temperature electrochemical performance 2010(15)63.Hu X;Lin Z;Yang K Effects of carbon source and carbon content on electrochemical performances of Li4Ti5O12/C prepared by one-step solid-state reaction 2011(14)64.Martha S K;Haik O;Borgel V Li4Ti5O12/LiMnPO4 lithium-ion battery systems for load leveling application 2011(7)65.Huang K L;Wang Z X;Liu S Q Lithium-Ion Battery Technology and Key Principles 200866.Xu K;Wang X Y;Xiao L X Lithium Ion Battery 200267.Wang Q;Li H;Chen L Novel spherical microporous carbon as anode material for Li-ion batteries 200268.Li H;Wang Q;Shi L Nanosized SnSb alloy pinning on hard non-graphitic carbon spherules as anode materials for aLi ion battery 2002(1)69.Hu J;Li H;Huang X Influence of micropore structure on Li-storage capacity in hard carbon spherules 2005(11)70.Fey G T K;Chen C L High-capacity carbons for lithium-ion batteries prepared from rice husk 200171.Yin G P;Zhou D R;Xia B J Preparation of phosphorus-doped carbon and its performance Lithium intercalation2000(4)72.Schnfelder H H;Kitoh K;Nemoto H Nanostructure criteria for lithium intercalation in non-doped and phosphorus-doped hard carbons 1997(2)73.Buiel E;Dahn J Li-insertion in hard carbon anode materials for Li-ionbatteries 1999(1)74.Rosamaria F;Ulrich V S;Dahn J R Studies of lithium intercalation into carbons using nonaqueous electrochemical-cells 1990(7)75.Stevens D;Dahn J The mechanisms of lithium and sodium insertion in carbon materials 2001(8)76.Bonino F;Brutti S;Piana M Structural and electrochemical studies of a hexaphenylbenzene pyrolysed soft carbon as anode material in lithium batteries 2006(17)77.Guo M;Wang J C;Wu L B Study of carbon nanofibers as negative materials for Li-ion batteries 2004(5)78.Sato Y;Kikuchi Y;Kawai T Characteristics of coke carbon modified with mesophase-pitch as a negative electrodefor lithium ion batteries 199979.Yoshio M;Tsumura T;Dimov N Electrochemical behaviors of silicon based anode material 2005(1)i S C Solid lithium-silicon electrode 197681.Sharma R A;Seefurth R N Thermodynamic properties of the lithium-silicon system 1976(12)82.Seefurth R N;Sharma R A Investigation of lithium utilization from a lithium-silicon electrode 1977(8)83.Seefurth R N;Sharma R A Dependence of lithium-silicon electrode potential and lithium utilization on reference electrode location 1980(5)84.Wen C J;Huggins R A Chemical diffusion in intermediate phases in the lithium-silicon system 1981(3)85.Boukamp B A;Lesh G C;Huggins R A All-solid lithium electrodes with mixed-conductor matrix 1981(4)86.Weydanz W J;Wohlfahrt M M;Huggins R A A room temperature study of the binary lithium-silicon and the ternary lithium-chromium-silicon system for use in rechargeable lithium batteries 199987.Gao B;Sinha S;Fleming L Alloy formation in nanostructured silicon 2001(11)88.Li H;Huang X J;Chen L Q A high capacity nano-Si composite anode material for lithium rechargeable batteries 1999(11)89.Li H;Huang X J;Chen L Q The crystal structural evolution of nano-Si anode caused by lithium insertion and extraction at room temperature 2000(1-4)90.Limthongkul P;Jang Y I;Dudney N J Electrochemically-driven solid-state amorphization in lithium-silicon alloys and implications for lithium storage 2003(4)91.Hatchard T D;Dahn J R In situ XRD and electrochemical study of the reaction of lithium with amorphous silicon 2004(6)92.Key B;Bhattacharyya R;Grey C P Real-time NMR investigations of structural changes in silicon electrodes for lithium-ion batteries 2009(26)93.Key B;Morcrette M;Grey C P Pair distribution function analysis and solid State NMR studies of silicon electrodes for lithium ion batteries:Understanding the (De) lithiation mechanisms 2011(3)94.Beaulieu L Y;Hatchard T D;Bonakdarpour A Reaction of Li with alloy thin films studied by in situ AFM 2003(11)95.Baggetto L;Danilov D;Notten P H L Honeycomb-structured silicon:Remarkable morphological changes induced by electrochemical (De)lithiation 2011(13)96.Lee S W;Mcdowell M T;Choi J W Anomalous shape changes of silicon nanopillars by electrochemical lithiation2011(7)97.Lee S W;Mcdowell M T;Berla L A Fracture of crystalline silicon nanopillars during electrochemical lithium insertion 2012(11)98.He Y;Yu X Q;Wang Y H Alumina-coated patterned amorphous silicon as the anode for a lithium-ion battery with high coulombic effficiency 2011(42)99.He Y;Wang Y H;Yu X Q Si-Cu thin film electrode with kirkendall voids structure for lithium-ion batteries2012(12)100.He Y;Yu X Q;Li G Shape evolution of patterned amorphous and polycrystalline silicon microarray thin film electrodes caused by lithium insertion and extraction 2012101.Wang Y;He Y;Xiao R Investigation of crack patterns and cyclic performance of Ti-Si nanocomposite thin film anodes for lithium ion batteries 2012102.Notten P H L;Roozeboom F;Niessen R A H3-D integrated all-solid-state rechargeable batteries 2007(24)103.Baggetto L;Oudenhoven J F M;Van D T On the electrochemistry of an anode stack for all-solid-state 3D-integrated batteries 2009(1)104.Chan C K;Ruffo R;Hong S S Surface chemistry and morphology of the solid electrolyte interphase on silicon nanowire lithium-ion battery anodes 2009(2)105.Zheng J Y;Zheng H;Wang R An investigation on the sold electrolyte interphase of silicon anode for Li-ion batteries through force curve method 2013(6)106.Zhang X W;Patil P K;Wang C S Electrochemical performance of lithium ion battery,nano-silicon-based,disordered carbon composite anodes with different microstructures 2004(2)107.Chan C K;Ruffo R;Hong S S Structural and electrochemical study of the reaction of lithium with silicon nanowires 2009(1)108.Cui L F;Ruffo R;Chan C K Crystalline-amorphous core-shell silicon nanowires for high capacity and high current battery electrodes 2009(1)109.Mcdowell M T;Lee S W;Ryu I Novel size and surface oxide effects in silicon nanowires as lithium battery anodes 2011(9)110.Ryu I;Choi J W;Cui Y Size-dependent fracture of Si nanowire battery anodes 2011(9)111.Xu W L;Vegunta S S S;Flake J C Surface-modified silicon nanowire anodes for lithium-ion batteries 2011(20) 112.Yue L;Wang S Q;Zhao X Y Nano-silicon composites using poly (3,4-ethylenedioxythiophene):Poly (styrenesulfonate) as elastic polymer matrix and carbon source for lithium-ion battery anode 2012(3)113.Zang J L;Zhao Y P Silicon nanowire reinforced by single-walled carbon nanotube and its applications to anti-pulverization electrode in lithium ion battery 2012(1)114.Yoshio M;Wang H Y;Fukuda K Carbon-coated Si as a lithium-ion battery anode material 2002(12)115.Qu J;Li H Q;henry J J Self-aligned Cu-Si core-shell nanowire array as a high-performance anode for Li-ion batteries 2012116.Jia H P;Gao P F;Yang J Novel three-dimensional mesoporous silicon for high power lithium-ion battery anode material 2011(6)117.Yao Y;Mcdowell M T;Ryu I Interconnected silicon hollow nanospheres for lithium-ion battery anodes with long cycle life 2011(7)118.Fu K;Yildiz O;Bhanushali H Aligned carbon nanotube-silicon sheets:A novel nano-architecture for flexiblelithium ion battery electrodes 2013(36)119.Min J H;Bae Y S;Kim J Y Self-organized artificial SEI for improving the cycling ability of silicon-basedbattery anode materials 2013(4)120.Choi N S;Yew K H;Lww K Y Effect of fluoroethylene carbonate additive on interfacial properties of silicon thin-film electrode 2006(2)121.Chakrapani V;Rusli F;Filler M A Quaternary ammonium ionic liquid electrolyte for a silicon nanowire-based lithium ion battery 2011(44)122.Etacheri V;Haik O;Goffer Y Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes 2011(1)123.Buddie M C High performance silicon nanoparticle anode in fluoroethylene carbonate-based electrolyte for Li-ion batteries 2012(58)124.Profatilova I A;Stock C;Schmitz A Enhanced thermal stability of a lithiated nano-silicon electrode by fluoroethylene carbonate and vinylene carbonate 2013125.Leung K;Rempe S B;Foster M E Modeling electrochemical decomposition of fluoroethylene carbonate on silicon anode surfaces in lithium ion batteries 2014(3)126.Kovalenko I;Zdyrko B;Magasinski A A major constituent of brown algae for use in high-capacity Li-ion batteries 2011(6052)127.Ryou M H;Kim J;Lee I Mussel-inspired adhesive binders for high-performance silicon nanoparticle anodes in lithium-ion batteries 2012(11)128.Li J;Lewis R;Dahn J Sodium carboxymethyl cellulose a potential binder for Si negative electrodes for Li-ion batteries 2007(2)129.Bridel J S;Azais T;Morcrette M Key parameters governing the reversibility of Si/carbon/CMC electrodes for Li-ion batteries 2009(3)130.Mazouzi D;Lestriez B;Roue L Silicon composite electrode with high capacity and long cycle life 2009(11)131.Guo J C;Wang C S A polymer scaffold binder structure for high capacity silicon anode of lithium-ion battery 2010(9)132.Liu W R;Yang M H;Wu H C Enhanced cycle life of Si anode for Li-ion batteries by using modified elastomeric binder 2005(2)133.Park H K;Kong B S;Oh E S Effect of high adhesive polyvinyl alcohol binder on the anodes of lithium ionbatteries 2011(10)134.Magasinski A;Zdyrko B;Kovalenko I Toward efficient binders for Li-ion battery Si-based anodes:Polyacrylic acid 2010(11)135.Yun J B;Soo K J;Tae L K Aphoto-cross-linkable polymeric binder for silicon anodes in lithium ion batteries 2013(31)136.Han Z J;Yabuuchi N;Hashimoto S Cross-linked poly (acrylic acid) with polycarbodiimide as advanced binder for Si/graphite composite negative electrodes in Li-ion batteries 2013(2)137.Koo B;Kim H;Cho Y A highly cross-linked polymeric binder for high-performance silicon negative electrodes in lithium ion batteries 2012(35)138.Bae J;Cha S H;Park J A new polymeric binder for silicon-carbon nanotube composites in lithium ion battery 2013(7)139.Yim C H;Abu L Y;Courtel F M High capacity silicon/graphite composite as anode for lithium-ion batteries using low content amorphous silicon and compatible binders 2013(28)140.Erk C;Brezesinski T;Sommer H Toward silicon anodes for next-generation lithium ion batteries:A comparative performance study of various polymer binders and silicon nanopowders 2013(15)141.Kim J S;Choi W;Cho K Y Effect of polyimide binder on electrochemical characteristics of surface-modified silicon anode for lithium ion batteries 2013142.Li J;Christensen L;Obrovac M Effect of heat treatment on Si electrodes using polyvinylidene fluoride binder 2008(3)143.Kim Y L;Sun Y K;Lee S M Enhanced electrochemical performance of silicon-based anode material by using current collector with modified surface morphology 2008(13)144.Guo J C;Sun A;Wang C S A porous silicon-carbon anode with high overall capacity on carbon fiber current collector 2010(7)145.Choi J Y;Lee D J;Lee Y M Silicon nanofibrils on a flexible current collector for bendable lithium-ion battery anodes 2013(17)146.Hang T;Nara H;Yokoshima T Silicon composite thick film electrodeposited on a nickel micro-nanocones hierarchical structured current collector for lithium batteries 2013147.Luais E;Sakai J;Desploban S Thin and flexible silicon anode based on integrated macroporous silicon film onto electrodeposited copper current collector 2013148.Tang X X;Liu W;Ye B Y Preparation of current collector with blind holes and enhanced cycle performance of silicon-based anode 2013(6)149.Kim H;Han B;Choo J Three-dimensional porous silicon particles for use in high-performance lithium secondary batteries 2008(52)150.Bang B M;Kim H;Song H K Scalable approach to multi-dimensional bulk Si anodes via metal-assisted chemical etching 2011(12)151.Kasavajjula U;Wang C;Appleby A J Nano-and bulk-silicon-based insertion anodes for lithium-ion secondary cells 2007(2)152.Magasinski A;Dixon P;Hertzberg B High-performance lithium-ion anodes using a hierarchical bottom-up approach 2010(4)153.Liu G;Xun S;Vukmirovic N Polymers with tailored electronic structure for high capacity lithium battery electrodes 2011(40)154.Chan C K;Peng H;Liu G High-performance lithium battery anodes using silicon nanowires 2007(1)155.Idota Y;Kubota T;Matsufiti A Tin-based amorphous oxide:A high-capacity lithium-ion-storage material 1997(5317)156.Courtney I A;Dahn J Key factors controlling the reversibility of the reaction of lithium with SnO2 and Sn2BPO6 glass 1997(9)157.Li H;Huang X J;Chen L Q Direct imaging of the passivating film and microstructure of nanometer-scale SnO anodes in lithium rechargeable batteries 1998(6)158.Liu W;Huang X J;Wang Z Studies of stannic oxide as an anode material for lithium-ion batteries 1998(1)159.Li H;Wang Z;Chen L Research on advanced materials for Li-ion batteries 2009(45)160.David M New materials extend Li-ion performance 2006(5)161.Ogisu K R&D activities & results for sony batteries 2005162.索尼公司索尼成功开发3.5 A·h高容量锂离子电池"Nexelion" 2011163.Dahn J;Mar R;Abouzeid A Combinatorial study of Sn1-xCox (0《x《 0.6) and (Sn0 55Co0 45)1-yCy (0《 y《 0 5)alloy negative electrode materials for Li-ion battaries 2006(2)164.Todd A;Mar R;Dahn J Tin-transition metal-carbon systems for lithium-ion battery negative electrodes 2007(6) 165.Ferguson P;Martine M;Dunlap R Structural and electrochemical studies of (SnxCo1-x)60C40 alloys prepared by mechanical attriting 2009(19)166.Ferguson P;Rajora M;Dunlap R(Sn0.5Co0 5)1-yCy alloy negative electrode materials prepared by mechanical attriting 2009(3)167.Ferguson P;ToddA;Dahn J Comparison of mechanically alloyed and sputtered tin-cobalt-carbon as an anode material for lithium-ion batteries 2008(1)168.Hassoun J;Mulas G;Panero S Ternary Sn-Co-C Li-ion battery electrode material prepared by high energy ball milling 2007(8)vela P;Nacimiento F;Ortiz G F Sn-Co-C composites obtained from resorcinol-formaldehyde gel as anodes in lithium-ion batteries 2010(1)170.Liu B;Abouimrane A;Ren Y New anode material based on SiO-SnxCoyCz for lithium batteries 2012(24)171.Zhong X C;Jiang F Q;Xin P A Preparation and electrochemical performance of Sn-Co-C composite as anode material for Li-ion batteries 2009(1)172.Yang S;Li Q;Shen D Influence of Fe on electrochemical performance of SnxCoy/C anode materials 2011(2)173.Shaobin Y;Ding S;Qiang L Synthesis and electrochemical properties of Sno.35-0 5xCoo 35-0 5xZnxCo 3o composite 2010(1)174.YangSB;ShenD;WuXG Effects of Cu on structures and electrochemical properties of Sn-Co/C composite 2012(4)175.Cui W;Wang F;Wang J Nanostructural CoSnC anode prepared by CoSnO3 with improved cyclability for high-performance Li-ion batteries 2011(13)176.Li M Y;Liu C L;Shi M R Nanostructure Sn-Co-C composite lithium ion battery electrode with unique stability and high electrochemical performance 2011(8)177.Xin L;Jing Y X;Hai L Z Synthesis and properties of Sn30Co30C40 ternary alloy anode material for lithium ion battery 2013(7)178.Lee S I;Yoon S;Park C M Reaction mechanism and electrochemical characterization of a Sn-Co-C composite anodefor Li-ion batteries 2008(2)179.Fauteux D;Koksbang R Rechargeable lithium battery anodes:Alternatives to metallic lithium 1993(1)180.Rahner D;Machill S;Schlorb H Intercalation materials for lithium rechargeable batteries 1996181.Besenhard J;Hess M;Komenda P Dimensionally stable Li-alloy electrodes for secondary batteries 1990182.Maxfield M;Jow T;Gould S Composite electrodes containing conducting polymers and Li alloys 1988(2)183.Winter M;Besenhard J O Electrochemical lithiation of tin and tin-based intermetallics and composites 1999(1) 184.Du C W;Chen Y B;Wu M S Advances in lithium-ion battery anode materials for non-carbon 2000185.Wu Y P;Wan C R Study on materials for lithium-ion batteries tin-based negative 1999(3)186.Kepler K D;Vaughey J T;Thackeray M M LixCu6Sn5(0《x《13):An intermetallic insertion electrode for rechargeable lithium batteries 1999(7)187.Mao O;Dunlap R;Dahn J Mechanically alloyed Sn-Fe(-C) powders as anode materials for Li-ion batteries:Ⅰ.TheSn2Fe-C system 1999(2)rcher D;Beaulieu L;Macneil D In situ X-ray study of the electrochemical reaction of Li with η'-Cu6Sn52000(5)189.Li H;Zhu G;Huang X Synthesis and electrochemical performance of dendrite-like nanosized SnSb alloyprepared by co-precipitation in alcohol solution at low temperature 2000(3)190.Kim H;Kim Y J;Kim D Mechanochemical synthesis and electrochemical characteristics of Mg2Sn as an anode material for Li-ion batteries 2001(1)191.Wang L;Kitamura S;Sonoda T Electroplated Sn-Zn alloy electrode for Li secondary batteries 2003(10)192.Yin J;Wada M;Yoshida S New Ag-Sn alloy anode materials for lithium-ion batteries 2003(8)193.Tamura N;Fujimoto M;Kamino M Mechanical stability of Sn-Co alloy anodes for lithium secondary batteries2004(12)194.Wang L;Kitamura S;Obata K Multilayered Sn-Zn-Cu alloy thin-film as negative electrodes for advanced lithium-ion batteries 2005(2)195.Beauleiu L;Hewitt K;Turner R The electrochemical reaction of Li with amorphous Si-Sn alloys 2003(2)196.Besenhard J;Yang J;Winter M Will advanced lithium-alloy anodes have a chance in lithium-ion batteries 1997(1) 197.Yang J;Winter M;Besenhard J Small particle size multiphase Li-alloy anodes for lithium-ionbatteries 1996(1) 198.Mukaibo H;Sumi T;Yokoshima T Electrodeposited Sn-Ni alloy film as a high capacity anode material for lithium-ion secondary batteries 2003(10)199.Photo F Nonaqueous secondary battery 1995200.Photo F Nonaqueous secondary battery 1995201.Goodenough J;Manthiram A;James A Lithium insertion compounds 1988202.Aydinol M;Kohan A;Ceder G Abinitio calculation of the intercalation voltage of lithium-transition-metal oxide electrodes for rechargeable batteries 1997(2)203.三星SDI株式会社用于非水电解液电池的负极活性材料,其制备方法和非水电解液电池 2005204.Song J H;Park H J;Kim K J Electrochemical characteristics of lithium vanadate,Li1+xVO2,new anode materials for lithium ion batteries 2010(18)205.Chang J J Synthesis and electrochemical:Properties of lithium-ion battery anode material Li1+xVO2 2012206.Armstrong A R;Lyness C;Panchmatia P M The lithium intercalation process in the low-voltage lithium battery anode Li1+xV1-xO2 2011(3)207.Chen H;Xiang K X;Hu Z L Synthesis and electrochemical performance of new anode materials Li1.1V0 9O2 forlithium ion batteries 2012(5)208.Choi N S;Kim J S;Yin R Z Electrochemical properties of lithium vanadium oxide as an anode material for lithium-ion battery 2009(2)zzari M;Scrosati B A cyclable lithium organic electrolyte cell based on two intercalation electrodes 1980(3) 210.Dipietro B;Patriarco M;Scrosati B On the use of rocking chair configurations for cyelabte lithium organic electrolyte batteries 1982(2)211.Ktakata H O;Meri T;Koshita N Procedures of the symposium onprimary and secondary lithium batteries 1988212.Poizot P;Laurelle S;Grugeon S Nano-sized ttansition-metal oxides as negative-electrode materials for lithium-ion batteries 2000(6803)213.Debart A;Dupont L;Poizot P A transmission electron microscopy study of the reactivity mechanism of tailor-made CuO particles toward lithium 2001(11)214.Dedryvere R;Laruelle S;Grugeon S Contribution of X-ray photoelectron spectroscopy to the study of the electrochemical reactivity of CoO toward lithium 2004(6)215.Xin C;Naiqing Z;Kening S3d transition-metal oxides as anode micro/nano-materials for lithium ion batteries 2011(10)216.Li H;Richter G;Maier J Reversible formation and decomposition of LiF clusters using transition metal fluorides as precursors and their application in rechargeable Li batteries 2003(9)217.Badway F;Mansour A;Pereira N Structure and electrochemistry of copper fluoride nanocomposites utilizing mixed conducting matrices 2007(17)218.Dbart A;Dupont L;Patrice R Reactivity of transition metal (Co,Ni,Cu) sulphides versus lithium:The intriguing case of the copper sulphide 2006(6)219.Gillot F;Boyanov S;Dupont L Electrochemical reactivity and design of NiP2 negative electrodes for secondary Li-ion batteries 2005(25)220.Pereira N;Dupont L;Tarascon J Electrochemistry of Cu3N with lithium a complex system with parallel processes 2003(9)221.Zhang W M;Wu X L;Hu J S Carbon coated Fe3O4 nanospindles as a superior anode material for lithium-ion batteries 2008(24)222.Rahman M;Chou S L;Zhong C Spray pyrolyzed NiO-C nanocomposite as an anode material for the lithium-ion battery with enhanced capacity retention 2010(40)223.Wang Y;Zhang H J;Lu L Designed functional systems from peapod-like Co@carbon to Co3O4@carbon nanocomposites 2010(8)224.Zhou G;Wang D W;Li F Graphene-wrapped Fe3O4 anode material with improved reversible capacity and cyclicstability for lithium ion batteries 2010(18)225.Wang Y;Zhang L Simple synthesis of CoO-NiO-C anode materials for lithium-ion batteries and investigation on its electrochemical performance 2012226.Zhang P;Guo Z;Kang S Three-dimensional Li2O-NiO-CoO composite thin-film anode with network structure forlithium-ion batteries 2009(1)227.Zhu X J;Guo Z P;Zhang P Highly porous reticular tin-cobalt oxide composite thin film anodes for lithium ion batteries 2009(44)228.Wang C;Wang D;Wang Q Fabrication and lithium storage performance of three-dimensional porous NiO as anode for lithium-ion battery 2010(21)229.Xia Y;Zhang W;Xiao Z Biotemplated fabrication of hierarchically porous NiO/C composite from lotus pollen grains for lithium-ion batteries 2012(18)230.Yu Y;Chen C H;Shi Y A tin-based amorphous oxide composite with a porous,spherical,multideck-cage morphology as a highly reversible anode material for lithium-ion batteries 2007(7)231.Li F;Zou Q Q;Xia Y Y Co-loaded graphitable carbon hollow spheres as anode materials for lithium-ion battery 2008(2)232.Wu Z S;Ren W;Wen L Graphene anchored with Co3O4 nanoparticles as anode of lithium ion batteries with enhanced reversible capacity and cyclic performance 2010(6)引用本文格式:罗飞.褚赓.黄杰.孙洋.李泓.LUO Fei.CHU Geng.HUANG Jie.SUN Yang.LI Hong锂离子电池基础科学问题(Ⅷ)——负。
材料工程引用格式
参考文献著录要求1.未公开出版的文献和私人信件不能列入参考文献。
2.在文章中的相应位置须按顺序标示参考文献序号。
3.中文期刊参考文献须中英文对照。
4.以单字母方式标识以下各种参考文献类型:专著[M];论文集[C]; 期刊文章[J]; 学位论文[D]; 报告[R]; 标准[S];专利[P]。
各类参考文献条目的编排格式及示例如下:a.专著、论文集、学位论文、报告[序号]主要责任者.文献名[文献类型标识].出版地:出版者, 出版年.起止页码.[1]刘锦云,马淑芳,梁彤祥. 结构材料学[M]. 哈尔滨:哈尔滨工业大学出版社,2008.15-18.[2]吴开明, 李自刚.第二届宝钢学术会议论文集[C].上海: 上海科学技术文献出版社, 2006.[3]郝志江. 稀土Y对TiAl基合金高温抗氧化性能的影响研究[D]. 哈尔滨:哈尔滨工业大学,2006.b.期刊文章[序号]主要责任者.文献名[J].刊名,年,卷(期):起止页码(不能省略).[4] PROTSENKO V S, GORDIIENKO V O, DANILOV F I. Unusually high current efficiency ofnanocrystalline Cr electrodeposition process from trivalent chromium bath [J]. Surface Engineering, 2011, 27(9):690-692.KARAMІŞ M B, YILDІZLІ K. Surface modification of nodular cast iron: a comparative study on graphite elimination [J]. Materials Science and Engineering: A, 2010, 527 (20):5225-5229.[5]韩恩厚,王俭秋,吴欣强,等. 核电高温高压水中不锈钢和镍基合金的腐蚀机制[J].金属学报,2010, 46 (11), 1379-1391.HAN En-hou, WANG Jian-qiu, WU Xin-qiang, et al. Corrosion mechanisms of stainless steel and nickel base alloys in high temperature high pressure water [J]. Acta Metallurgica Sinica, 2010, 46 (11): 1379-1391.c.析出文献[序号]析出文献主要责任者.析出文献题名[A].原文献主要责任者.原文献题名[文献类型标识].出版地:出版者,出版年.析出文献起止页码.(出版地和出版者不能省略)[6] 蒋若蓉, 李文亚, 杨夏炜, 等. 薄板铝合金无针搅拌摩擦焊搭接接头性能研究[A]. 第十八次全国焊接学术会议论文集[C]. 南昌:中国机械工程学会焊接学会, 2013.121-128.[7]CARSTENSEN T C,KUNKEL E,MAGEE C. X-Cor TM advanced sandwich core material[A]. 33rdInternational SAMPE Technical Conference[C]. Seattle,WA: SAMPE , 2001. 452-466.d.专利[序号]专利所有者.专利题名[P].专利国别:专利号,出版日期.[8] 谢建新,黄东男,李静媛,等. 一种空心型材分流模挤压焊合过程数值模拟技术[P] 中国专利:ZL200910088960.7,2010-08-11.注意:1 外国人姓名全部用大写。
la904014z Graphene Oxide as a Matrix for Enzyme Immobilization
DOI:10.1021/la904014z 6083Langmuir 2010,26(9),6083–6085Published on Web 03/18//Langmuir ©2010American Chemical SocietyGraphene Oxide as a Matrix for Enzyme ImmobilizationJiali Zhang,†,§Feng Zhang,‡,§Haijun Yang,†Xuelei Huang,‡Hui Liu,‡Jingyan Zhang,*,‡andShouwu Guo*,††National Key Laboratory of Micro/Nano Fabrication Technology,Research Institute of Micro/Nano Science and Technology,Shanghai Jiao Tong University,Shanghai,200240China,and ‡State Key Laboratory of Bioreactor Engineering,School of Pharmacy,East China University of Science &Technology,Shanghai,200237China.§These authors contributed equally to this work.Received October 16,2009.Revised Manuscript Received January 25,2010Graphene oxide (GO),having a large specific surface area and abundant functional groups,provides an ideal substrate for study enzyme immobilization.We demonstrated that the enzyme immobilization on the GO sheets could take place readily without using any cross-linking reagents and additional surface modification.The atomically flat surface enabled us to observe the immobilized enzyme in the native state directly using atomic force microscopy (AFM).Combining the AFM imaging results of the immobilized enzyme molecules and their catalytic activity,we illustrated that the conformation of the immobilized enzyme is mainly determined by interactions of enzyme molecules with the functional groups of GO.IntroductionGraphene oxide (GO),as a basic material for the preparation of individual graphene sheets in bulk-quantity,has attracted great attention in recent years.1-3In addition,the incredibly large specific surface area (two accessible sides),the abundant oxygen-containing surface functionalities,such as epoxide,hydroxyl,and carboxylic groups,and the high water solubility afford GO sheets great promise for many more applications.1,2For instance,the GO nanosheets modified with polyethylene glycol have been employed as aqueous compatible carriers for water-insoluble drug delivery.4The intrinsic oxygen-containing functional groups were used as initial sites for deposition of metal nanoparticles and organic macromolecules,such as porphyrin,on the GO sheets,which opened up a novel route to multifunctional nanometer-scaled catalytic,magnetic,and optoelectronic materials.5-7How-ever,few studies about the binding of biomacromolecules,such as enzymes,to GO have been reported to date.Since the discovery of the advantageous property of immobi-lized enzymes,the challenges in this area have been to explore new substrate materials with appropriate structures (including the morphology and surface functionality)and compositions to deepen the understanding of enzyme immobilization and thus to improve the catalytic efficiency of the immobilizedenzymes.8-11Recently,along with the development of nano-structured materials,a range of nanomaterials with different sizes and shapes have been utilized as the substrates for enzyme immobilization.12-14It has been demonstrated that the enzymes immobilized on the nanostructured materials have some advan-tages over the bulk solid substrates.8,15However,similar to bulk solid substrates,to efficiently immobilize enzymes on nanostruc-tured material surfaces,in many cases,labored work was required to modify/functionalize the substrate surface.16,17Moreover,for most of the nanostructured materials,it is hard to fully char-acterize their surfaces using conventional surface analytical tools.This limits the deep understanding of enzyme immobilization.Consequently,new nanostructured materials that not only can immobilize the enzyme enthusiastically but also can enable insight into the interactions between enzymes and the substrate are still in need of exploration.GO sheets should be an ideal substrate for the study of enzyme immobilization on nanostructured materials.As aforementioned,the individual GO sheet is enriched with oxygen-containing groups,which makes it possible to immobilize enzymes without any surface modification or any coupling reagents.The atomi-cally flat surface of GO should provide a platform to characterize the immobilized enzyme using conventional surface imaging techniques,such as atomic force microscopy (AFM),and to further study the interactions between enzyme molecules and the GO surface.We describe herein the immobilization of horse-radish peroxidase (HRP)and lysozyme,as model enzymes,on the GO.The enzyme immobilization was characterized in situ with AFM in a liquid cell,and the catalytic activity of the immobilized HRP was assayed using phenol and hydrogen peroxide as catalytic reaction substrates.*To whom correspondence should be addressed.E-mail:swguo@ (S.G.);jyzhang@ (J.Z.).(1)Li,D.;Muller,M.B.;Gilje,S.;Kaner,R.B.;Wallance,G.G.Nature Nanotechnol.2008,3,101–105.(2)Park,S.;Ruoff,R.S.Nature Nanotechnol.2009,4,217–223.(3)Tung,V.C.;Allen,M.J.;Yang,Y.;Kaner,R.B.Nature Nanotechnol.2009,4,25–29.(4)Liu,Z.;Robinson,J.T.;Sun,X.;Dai,H.J.Am.Chem.Soc.2008,130,10876–10877.(5)Lomeda,J.R.;Doyle,C.D.;Kosynkin,D.V.;Hwang,W.;Tour,J.M.J.Am.Chem.Soc.2008,130,16201–16206.(6)Muszynski,R.;Seger,B.;Kamat,P.V.J.Phys.Chem.C 2008,112,5263–5266.(7)Xu,Y.;Liu,Z.;Zhang,X.;Wang,Y.;Tian,J.;Huang,Y.;Ma,Y.;Zhang,X.;Chen,Y.Adv.Mater.2009,21,1275–1278.(8)Bornscheuer,U.T.Angew.Chem.,Int.Ed.2003,42,3336–3337.(9)Betancor,L.;Luckarift,H.R.Trends Biotechnol.2008,26,566–572.(10)Badalo,A.;Gomez,J.L.;Gomez,E.;Bastida,J.;Maximo,M.F.Chemo-sphere 2006,63,626–632.(11)Chen,B.;Pernodet,N.;Rafailovich,M.H.;Bakhtina,A.;Gross,ngmuir 2008,24,13457–13464.(12)Kim,J.;Grate,J.W.;Wang,P.Chem.Eng.Sci.2006,61,1017–1026.(13)Zhi,C.;Bando,Y.;Tang,C.;Golberg,D.J.Am.Chem.Soc.2005,127,17144–17145.(14)Tsang,S.C.;Yu,C.H.;Gao,X.;Tam,K.J.Phys.Chem.B 2006,110,16914–16922.(15)Takahashi,H.;Li,B.;Sasaki,T.;Miyazaki,C.;Kajino,T.;Inagaki,S.Chem.Mater.2000,12,3301–3305.(16)Lee,Y.M.;Kwon,O.Y.;Yoon,Y.J.;Ryu,K.Biotechnol.Lett.2006,28,39–43.(17)Lin,Y.;Lu,F.;Tu,Y.;Ren,Z.Nano Lett.2004,4,191–195.Letter Zhang et al.Experimental SectionGO was prepared using natural graphite powder through amodified Hummers method.18,19The as-obtained yellow-brownaqueous suspension of GO was stored at RT on a lab bench,and used for characterizations and enzyme immobilization.Thesamples for Fourier transform infrared(FT-IR)measurementwere prepared by grinding the dried powder of graphene oxidewith KBr together and then compressing the mixture into thinpellets(EQUINOX55,Bruker,Germany).The specimens oftransmission electron microscopy(TEM)(JEM-2010)were pre-pared by placing the aqueous suspension(∼0.02mg/mL)ofgraphene oxide on the carbon-coated copper grids,and blottedafter30s.AFM images of graphene oxide were taken on aMultiMode Nanoscope V scanning probe microscopy system(Veeco).The samples for AFM were prepared by dropping theaqueous suspension(∼0.02mg/mL)of GO on a freshly cleavedmica surface.AFM images of the GO-bound enzymes wereacquired in a liquid cell using tapping mode.To acquire in situAFM images for enzyme immobilization,the liquid cell wascirculated with the fresh enzyme solution during imaging.20Enzyme immobilization was carried out by adding the desiredamount of GO to0.1M phosphate buffer that contained theenzymes to be immobilized.21The mixture was incubated for30min on ice with shaking and then centrifuged.The supernatantwas used to determine the enzyme loading.The immobilized enzy-mes were washed three times with the same buffer to remove physi-cal adsorbed enzymes.The resulting immobilized enzymes werethen subjected to activity assay.A colorimetric assay was employedto evaluate HRP activity.22The initial reaction rates were obtainedvia a linear fit of the curve of the product absorbance at510nmversus the reaction time(Supporting Information Figure S2).23Results and DiscussionThe morphology of as-prepared GO was characterized firstusing AFM(Figure1a).The height of the flat GO sheet is∼1nm(Figure1b),demonstrating a single atomic layer thicknessstructure feature.The thin nanoplate motif of the GO sheetswas also confirmed by TEM(Figure1c).The functional groups (Figure1d)existing on the GO surface were verified by FT-IR spectroscopy(Supporting Information Figure S1).The enzyme immobilization was carried out by incubating the GO(0.5to 1mg/mL aqueous dispersions)with the enzymes in phosphate buffer solution at4°C.We found that HRP can be spontaneously immobilized on GO.Presumably,the amine groups of HRP may form amide bonds with the carboxylic groups of GO;however, without any coupling reagents,this covalent interaction usually happens very slowly.24Therefore,the covalent bonding may not contribute to HRP-GO interaction.To elucidate the contribu-tion of other interactions,the phosphate buffers with pH from4.8 to8.8,were tested.As shown in Figure2,the loading of HRP on the GO decreases with increasing pH.HRP(pI=7.2)has a net positive charge at pH below7.2and a net negative charge at pH above7.2.The GO sheets are negatively charged in the aqueous solution with a pH range from4to11(see Supporting Informa-tion Figure S3).1-3Thus,in the buffer solutions with a pH range from4.8to7.2,the positively charged HRP interacts with the negatively charged GO by electrostatic interaction,while in the buffer solutions from pH7.2to8.8,HRP and GO both are negatively charged,and will repel each other.Therefore,less HRP was loaded.Only an∼30%enzyme loading decrease was observed when the pH of the buffer solutions increased from 4.8to8.8(Figure2),suggesting that other interactions,such as hydrogen bonding between the oxygen-containing functionalities of GO and surface amino acid residues of HRP,may contribute to GO-HRP interaction,too.Owing to the strong electrostatic interactions and hydrogen bonding,the maximum loading of HRP on GO at pH7.0is about100μg/mg of GO,which is much higher than the loadings on many reported materials.25-27To further illustrate the electrostatic interaction between the enzymes and GO,we examined the immobilization of lysozyme,an enzyme with pI=10.3(positively charged at pH7.0).The lysozyme can be spontaneously immobilized on GO,too,with the maximum loading of about700μg/mg of GO at pH7.0.The positively charged surface of lysozyme apparently is favorable for its interaction with GO.The loading difference between HRP and lysozyme indicates that the interactions of substrate-enzymes are determined by the surface charges of the specified enzymes and the substrate.The high enzyme loadings reveal the exceptional potential of GO as a solid substrate for enzyme immobilization. The enzyme immobilization was monitored in situ using AFM. Figure3a and b shows typical AFM images of the GO in a liquid Figure1.(a)Tapping mode AFM image of graphene oxide(GO) on a mica surface,(b)height profile of the AFM image,(c)TEM image of the GO,and(d)schematic model of GO.Figure2.pH influence on HRP loading.Conditions:50μg GO and2μg/mL HRP.(18)Hummers,W.S.;Offerman,R.E.J.Am.Chem.Soc.1958,80,1339–1339.(19)He,H.;Klinowski,J.;Forster,M.;Lerf,A.Chem.Phys.Lett.1998,287,53–56.(20)Guo,S.;Ward,M.D.;Wesson,ngmuir2002,18,4284–4291.(21)Cheng,J.;Ming,Yu,S.;Zuo,P.Water Res.2006,40,283–290.(22)Nicell,J.A.;Wright,H.Enzyme Microb.Technol.1997,21,302–310.(23)Buchanan,I.D.;Nicell,J.A.Biotechnol.Bioeng.1997,54,251–261.(24)Cao,Y.;Kyratzis,I.Bioconjugate Chem.2008,19,1945–1950.(25)Pundir,C.S.;Malik,V.;Bhargava,A.K.;Thakur,M.;Kaliam,V.;Singh, S.;Kuchhal,N.K.J.Plant Biochem.Biotechnol.1999,8,123–126.(26)Azevedo,A.M.;Vojinovic,V.;Cabral,J.M.S.;Gibson,T.D.;Fonseca, L.P.J.Mol.Catal.B:Enzym.2004,28,121–128.(27)G o mez,J.L.;B o dalo,A.;G o mez,E.;Bastida,J.;Hidalgo,A.M.;G o mez, M.Enzyme Microb.Technol.2006,39,1016–1022.6084DOI:10.1021/la904014z Langmuir2010,26(9),6083–6085DOI:10.1021/la904014z6085Langmuir 2010,26(9),6083–6085Zhang et al.Lettercell after being incubated together with HRP in phosphate buffer for 30min.With a lower enzyme loading (HRP/GO =3:500,in weight),the particles (bright spots,presumably the immobilized enzyme molecules)on the GO surface were observed (Figure 3a).The average diameter and height of the particles on the GO surfaceare about 140and 15A,respectively.The dimension size of the immobilized HRP molecule,140Â140Â15A,is roughly con-sistent with the dimension size of free HRP,30Â65Â75A3.28This is the first picture of the native immobilized enzyme.The larger average diameter and shorter height of the immobilized HRP molecules revealed that immobilization induced some conforma-tional changes of the HRP molecules.With a higher enzyme loading (HRP/GO =3:50,in weight),the enzyme molecules tethered densely over all of the GO surface in the AFM image (Figure 3b).The distribution of HRP on the GO surface should be determined by the intrinsic sites of the oxygen functionalities.Except for the carboxylic groups,which are located at the periphery,others,such as hydroxyl and epoxide groups,distributed randomly over the GO surface.19The mole ratio of C/O of the GO used in the work is about 4,and thus,HRP may densely bind on the GO surface.This is in agreement with the AFM image (Figure 3b)where we observed the increased surface coverage with higher enzyme loading.The catalytic property of the HRP immobilized on GO was investigated using phenol as a reducing substrate.We found that the initial catalytic reaction rates of the immobilized HRP were linear to the HRP loading under an excess and constant substrate concentration (Figure 3d),though they are relatively lower than that of free HRP.29This result suggested that the voids presented between the immobilized HRP molecules are enough for the free diffusion of substrate and product into and out of the HRP active sites,though the immobilized enzymes seem crowded on the GO surface (see Figure 3b).Given the single atomic layer feature ofthe GO sheet,the total surface area is about 7.05Â1022A2/g,and assuming the average transverse area of one molecule HRP isabout 3000A2,the HRP molecules cover less than 50%of the surface area of GO even with the higher enzyme loading.The catalytic activities of the HRP immobilized on GO with the lower and higher enzyme loadings were further characterized by turnover number (K cat )and enzyme efficiency (K cat /K m ).K m and K cat values were obtained according to the Lineweaver -Burk equation as described in the Supporting Information (Figure S2).The values of the kinetic parameters K m and K cat are summarized in Table 1.The similar K m values for the GO immobilized HRP with the lower and higher enzyme loadings,and free HRP indicated that they all have a similar affinity to the reducing substrate.However,K cat /K m values of the immobilized HRP are lower than those of free HRP.Noticeably,the comparable K cat /K m values for the HRP immobilized on GO with the higher and lower enzyme loadings confirmed that increasing enzyme loading does not affect the enzyme efficiency.The catalytic reactions of the immobilized HRP (with the higher and lower enzyme loadings)with a bulky reducing substrate,2,4,6-trimethylphenol,exhibited similar activity,further supporting this result.Thus,combined with the AFM imaging results,we believe that the observed lower enzymatic activity for the immobilized HRP is mainly due to the HRP conformational changes induced by its binding to GO.According to the number of oxygen containing groups on the GO surface and the transverse area of one HRP molecule,there should be at least an average of two oxygen containing groups of the GO surface interacting with one HRP molecule (Figure 3c).Multiple interactions between the substrate and the enzyme molecule could change the enzyme conforma-tion.11Thus,to maintain the conformation and catalytic cap-ability of the immobilized enzyme,the distribution,number,and property of the functional groups on the substrate surface must be optimized to match the surface of the enzyme being immobilized.ConclusionIn summary,we have demonstrated that individual GO sheets could be used as substrates to study enzyme immobilization.Pronouncedly,the rich surface functional groups of GO make the immobilization of the enzymes happen quickly through electro-static interaction without using any cross-linking reagents;the unique flat surface of GO made it possible to observe the native immobilized enzyme in situ using AFM.We found that the catalytic performance of the immobilized enzymes is determined by the interaction of enzyme molecules with the surface functional groups of the substrate,but the enzyme specific activity is not influenced by the enzyme loading as far as the substrate surface was not fully covered by the enzyme.Based on the AFM images and enzyme activity assay,we conclude that full retention of the conformation of immobilized enzyme should be the key to improve its catalytic performance.Acknowledgment.This work was supported by the National “973Program”(Nos.2007CB936000and 2010CB933900)and the NSFC of China (Nos.20774029and 20671034).Supporting Information Available:FT-IR spectrum of GO and catalytic data of the immobilized HRP.This material is available free of charge via the Internet at .Figure 3.Tapping mode AFM images of the GO-bound HRPwith (a)lower and (b)higher enzyme loadings acquired in a liquid cell.(c)Schematic model of the GO-bound HRP.(d)Initial reaction rates of GO-bound HRP versus HRP concentration.Table 1sampleK m (mM)K cat (s -1)K cat /K m (mM -1s -1)Free HRP2.27161.7(34.1071.2GO Immobilized HRP (lower loading)1.96(0.2133.6(1.2017.1(1.22GO immobilized HRP (higher loading)1.76(0.1036.6(2.9020.8(0.52(28)Henriksen,A.;Schuller,D.J.;Meno,K.;Smith,A.T.;Gajhede,M.Biochemistry 1998,37,8504–8060.(29)Cooper,V.A.;Nicell,J.A.Water Res.1996,30,954–964.。
冶金专业英语词汇整理
专业英语词汇1 总论采矿mining地下采矿underground mining露天采矿open cut mining, open pit mining, surface mining采矿工程mining engineering选矿(学)mineral dressing, ore beneficiation, mineral processing 矿物工程mineral engineering冶金(学)metallurgy过程冶金(学)process metallurgy提取冶金(学)extractive metallurgy化学冶金(学)chemical metallurgy物理冶金(学)physical metallurgy金属学Metallkunde冶金过程物理化学physical chemistry of process metallurgy冶金反应工程学metallurgical reaction engineering冶金工程metallurgical engineering钢铁冶金(学)ferrous metallurgy, metallurgy of iron and steel有色冶金(学)nonferrous metallurgy真空冶金(学)vacuum metallurgy等离子冶金(学)plasma metallurgy微生物冶金(学)microbial metallurgy喷射冶金(学)injection metallurgy钢包冶金(学)ladle metallurgy二次冶金(学)secondary metallurgy机械冶金(学)mechanical metallurgy焊接冶金(学)welding metallurgy粉末冶金(学)powder metallurgy铸造学foundry火法冶金(学)pyrometallurgy湿法冶金(学)hydrometallurgy电冶金(学)electrometallurgy氯冶金(学)chlorine metallurgy矿物资源综合利用engineering of comprehensive utilization of mineral resources中国金属学会The Chinese Society for Metals中国有色金属学会The Nonferrous Metals Society of China2 采矿采矿工艺mining technology有用矿物valuable mineral冶金矿产原料metallurgical mineral raw materials矿床mineral deposit特殊采矿specialized mining海洋采矿oceanic mining, marine mining矿田mine field矿山mine 露天矿山surface mine地下矿山underground mine矿井shaft矿床勘探mineral deposit exploration矿山可行性研究mine feasibility study矿山规模mine capacity矿山生产能力mine production capacity矿山年产量annual mine output矿山服务年限mine life矿山基本建设mine construction矿山建设期限mine construction period矿山达产arrival at mine full capacity开采强度mining intensity矿石回收率ore recovery ratio矿石损失率ore loss ratio工业矿石industrial ore采出矿石extracted ore矿体orebody矿脉vein海洋矿产资源oceanic mineral resources矿石ore矿石品位ore grade岩石力学rock mechanics岩体力学rock mass mechanics3 选矿选矿厂concentrator, mineral processing plant 工艺矿物学process mineralogy开路open circuit闭路closed circuit流程flowsheet方框流程block flowsheet产率yield回收率recovery矿物mineral粒度particle size粗颗粒coarse particle细颗粒fine particle超微颗粒ultrafine particle粗粒级coarse fraction细粒级fine fraction网目mesh原矿run of mine, crude精矿concentrate粗精矿rough concentrate混合精矿bulk concentrate最终精矿final concentrate尾矿tailings粉碎comminution破碎crushing磨碎grinding团聚agglomeration筛分screening, sieving分级classification富集concentration分选separation手选hand sorting重选gravity separation, gravity concentration 磁选magnetic separation电选electrostatic separation浮选flotation化学选矿chemical mineral processing自然铜native copper铝土矿bauxite冰晶石cryolite磁铁矿magnetite赤铁矿hematite假象赤铁矿martite钒钛磁铁矿vanadium titano-magnetite铁燧石taconite褐铁矿limonite菱铁矿siderite镜铁矿specularite硬锰矿psilomelane软锰矿pyrolusite铬铁矿chromite黄铁矿pyrite钛铁矿ilmennite金红石rutile萤石fluorite高岭石kaolinite菱镁矿magnesite重晶石barite石墨graphite石英quartz方解石calcite石灰石limestone白云石dolomite云母mica石膏gypsum硼砂borax石棉asbestos蛇纹石serpentine阶段破碎stage crushing粗碎primary crushing中碎secondary crushing细碎fine crushing 对辊破碎机roll crusher粉磨机pulverizer震动筛vibrating screen筛网screen cloth筛孔screen opening筛上料oversize筛下料undersize粗磨coarse grinding细磨fine grinding球磨机ball mill衬板liner分级机classifier自由沉降free setting沉积sedimentation石灰lime松油pine oil硫化钠sodium sulfide硅酸钠(水玻璃)sodium silicate, water glass过滤filtration过滤机filter给矿,给料feeding给矿机feeder在线分析仪on line analyzer在线粒度分析仪on line size analyzer超声粒度计ultrasonic particle sizer, supersonic particle sizer4 冶金过程物理化学冶金过程热力学thermodynamics of metallurgical processes 统计热力学statistical thermodynamics不可逆过程热力学thermodynamics of irreversible processes 化学热力学chemical thernodynamics表面热力学surface thermodynamics合金热力学thermodynamics of alloys冶金热力学数据库thermodynamics databank in metallurgy 系system单元系single-componentsystem多元系multicomponent system均相系统homogeneous system广度性质extensive property强度性质intensive property过程process等温过程isothermal process等压过程isobaric process等容过程isochoric process绝热过程adiabatic process可逆过程reversible process不可逆过程irreversible process自发过程spontaneous process自理过程physical process化学过程chemical process冶金过程metallurgical process化学反应chemical reaction化合反应combination reaction分解反应decomposition reaction置换反应displacement reaction可逆反应reversible reaction不可逆反应irreversible reaction电化学反应electrochemical reaction多相反应multiphase reaction固态反应solid state reaction气一金(属)反应gas-metal reaction渣一金(属)反应slag-metal reaction平衡equilibrium化学平衡chemical equilibrium相平衡phase equilibrium热力学平衡thermodynamic equilibrium亚稳平衡metastable equilibrium热力学函数thermodynamic function偏摩尔量partial molar quantity总摩尔量integral molar quantity标准态standard state焓enthalpy生成焓enthalpy of formation反应焓enthalpy of reaction熵entropy吉布斯能Gibbs energy生成吉布斯能Gibbs energy of formation 反应吉布斯能Gibbs energy of reaction溶解吉布斯能Gibbs energy of solution吉布斯能函数Gibbs energy function化学位chemical potential热化学thermochemistry热效应heat effect热容heat capacity熔化热heat of fusion汽化热heat of vaporization升华热heat of sublimation相变热heat of phase transformation放热反应exothermic reaction吸热反应endothermic reaction赫斯定律Hess’s law相律phase rule相图phase diagram一元相图single-component phase diagram 二元相图binary-component phase diagram 三元相图ternary-component phase diagram 液相线liquidus固相线solidus共晶点eutectic point杠杆规则lever rule溶液solution溶质solute溶剂solvent 固溶体solid solution溶液浓度concentration of solution摩尔分数mole fraction冶金熔体metallurgical melt金属熔体metal melt(炉)渣,熔渣slag熔盐molten salt, fused salt理想溶液ideal solution真实溶液real solution正规溶液regular solution活度activity活度系数activity coefficient拉乌尔定律Raoult’s law亨利定律Henry’s law纯物质标准态pure substance standard质量1%溶液标准(态)1 mass% solution standard无限稀溶液参考态reference state of infinityly dilute solution相互作用系数interaction coefficient化学反应等温式chemical reaction isotherm吉布斯~亥姆霍兹方程Gibbs-Helmholtz equation质量作用定律law of mass action平衡常数equilibrium constant平衡值equilibrium value直接还原direct reduction间接还原indirect reduction金属热还原metallothermic reduction选择性氧化selective oxidation渣碱度basicity of slag光学破度optical basicity酸性氧化物acid oxide碱性氧化物basicoxide两性氧化物amphoteric泡沫渣foaming slag熔渣的分子理论molecular theory of slag熔渣的离子理论ionization theory of slag脱氧平衡deoxidation equilibrium脱氧常数deoxidation constant熔渣脱硫desulfurization by slag气态脱硫desulfurization in the gaseous state硫分配比sulfur partition ratio硫化物容量sulfide capacity氧化脱磷dephosphorization under oxidizing atmosphere磷分配比碳一氧平衡carbon-oxygen equilibrium真空脱碳vacuum decarburization去气degassing去除非金属夹杂(物)elimination of nonmetallic inclusion非金属夹杂(物)变形form modification of nonmetallic inclusion 脱硅desiliconization脱锰demanganization分配平衡distribution law化学气相沉积chemical vapor deposition(CVD)4.2 冶金过程动力学微观动力学microkinetics化学动力学chemical kinetics反应途径reaction path反应机理reaction mechanism基元反应elementary reaction平行反应parallel链反应chain reaction总反应overall reaction反应速率reaction rate反应速率常数reaction rate constant反应级数reaction order零级反应zero order reaction一级反应first order reaction二级反应second order reactionn级反应nth order reaction碰撞理论collision theory活化能activation energy表现活化能apparent activation energy阿伦尼乌斯方程Arrhenius equation半衰期half-life宏观动力学macrokinetics冶金过程动力学kinetics of metallurgical process 传输现象transport phenomena传质mass transfer传热heat transfer动量传输momentum transfer层流laminar flow湍流turbulent flow气泡gas bubble鼓泡bubbling射流jet液滴liquid droplet粘度viscosity边界层boundary layer流率flow rate通量flux扩散diffusion菲克第一扩散定律Fick’s 1st law of diffusion菲克第一扩散定律Fick’s 2nd law of diffusion 扩散系数diffusion coefficient传质系数mass transfer coefficient热传导heat conduction热对流heat convection自然对流natural convection强制对流forced convection热辐射heat radiation导热率thermal conductivity传热系数heat transfer coefficient体内浓度bulk concentration未反应核模型unreacted core model 扩散控制反应diffusion-controlled reaction化学控制反应chenical-controlled reaction混合控制反应mixed-controlled reaction相似原理priciple of similarity雷诺数Reynolds number固定床fiexed bed填充床packed bed移动床moving bed流态化床fluidized bed混合时间mixing time停留时间residence time, retention time催化catalysis催化剂catalyst表面能surface energy表面张力surface tension界面能interfacial energy界面张力interfacial tension润湿wetting表面活性物质surface-active substance吸收absorption吸附absorption4.3 冶金电化学冶金电化学metallurgical electrochemistry熔盐电化学electrochemistry of fused salts固态离子学solid state ionics电解质溶液electrolyte solution阳离子cation阴离子anion电导conductance电导率conductivity电阻resistance电极electrode阴极cathode阳极anode电镀electroplating固体电解质solid electrolyte稳定的氧化锆stablized zirconia氧传感器oxygen sensor硅传感器silicon sensor定氧测头oxygen probe定硅测头silicon probe4.4 冶金物理化学研究方法冶金物理化学研究方法research methods in metallurgical physical chemistry热电偶thermocouple量热计calorimeter热太平thermobalance热分析thermal analysis差热分析differential thermal analysis,DTA热重法thermogravimetry分子筛molecular sieve5 钢铁冶金 5.1 炼焦炼焦coking高温炭化high temperature carbonization塑性成焦机理plastic mechanism of coke formation中间相成焦机理mesophase mechanism of coke formation 选煤coal preparation, coal washing配煤coal blending配煤试验coal blending test炼焦煤coking coal气煤gas coal肥煤fat coal瘦煤lean coal焦炉coke oven焦化室oven chamber焦饼coke cake结焦时间coking time周转时间cycle time装煤coal charging捣固装煤stamp charging推焦coke pushing焦炭熄火coke quenching干法熄焦dry quenching of coke焦台coke wharf装煤车larry car推焦机pushing machine拦焦机coke guide熄焦车quenching car焦炉焖炉banking for coke oven焦炭coke冶金焦metallurgical coke铸造焦foundry coke焦炭工业分析proximate analysis of coke焦炭元素分析ultimate analysis of coke焦炭落下指数shatter index of coke焦炭转鼓指数drum index of coke焦炭热强度hot strength of coke焦炭反应性coke reactivity焦炭反应后强度post-reaction strength of coke焦炭显微强度microstrength of coke焦炉煤气coke oven gas发热值calorific value煤焦油coal tar粗苯crude benzol苯benzene甲苯toluene二甲苯xylene苯并呋喃-茚树脂coumarone-indene resin精萘refined naphthalene精蒽refined anthracene煤[焦油]沥青coal tar pitch沥青焦pitch coke 针状焦needle coke型焦formcoke5.2 耐火材料耐火材料refractory materials耐火粘土fireclay高岭土kaolin硬质粘土flint clay轻质粘土soft clay陶土pot clay蒙脱石montmorillonite叶蜡石pyrophyllite膨润土bentonite鳞石英tridymite方石英cristobalite砂岩sandstone耐火石firestone莫来石mullite氧化铝alumina烧结氧化铝sintered alumina电熔氧化铝fused alumina刚玉corundum红柱石andalusite蓝晶石kyanite,cyanite硅线石sillimanite橄榄石olivine方镁石periclase镁砂magnesia合成镁砂synthetic sintered magnesia电熔镁砂fused magnesia烧结白云石砂sintered dolomite clinker合成镁铬砂synthetic magnesia chromite clinker尖晶石spinel镁铬尖晶石magnesia chrome spinel,magnesiochromite 硅藻土diatomaceous earth, infusorial earth蛭石vermiculite珍珠岩perlite碳化硅silicon carbide氮化硅silicon nitride氮化硼boron nitride粘土熟料chamotte熟料grog轻烧light burning,soft burning死烧dead burning,hard burning成型模注shaping moulding机压成型mechanical pressing等静压成型isostatic pressing摩擦压砖机friction press液压压砖机hydraulic press捣打成型ramming process熔铸成型fusion cast process砖坯强度green strength,dry strength隧道窑tunnel kiln回转窑rotary kiln倒焰窑down draught kiln耐火砖refractory brick标准型耐火砖standard size refractory brick泡砂石quartzite sandstone酸性耐火材料acid refractory [material]硅质耐火材料siliceous refractory [material]硅砖silica brick,dinas brick熔融石英制品fused quartz product硅酸铝质耐火材料aluminosillicate refractory 半硅砖semisilica brick粘土砖fireclay brick,chamotte brick石墨粘土砖graphite clay brick高铝砖high alumina brick硅线石砖sillimanite brick莫来石砖mullite brick刚玉砖corundum brick铝铬砖alumina chrome brick熔铸砖fused cast brick碱性耐火材料basic refractory [material]镁质耐火材料magnesia refractory [material]镁砖magnesia brick镁铝砖magnesia alumina brick镁铬砖magnesia chrome brick镁炭砖magnesia carbon brick中性耐火材料neutral refractory [material]复合砖composite brick铝炭砖alumina carbon brick铝镁炭转alumina magnesia brick锆炭砖zirconia graphite brick镁钙炭砖magnesia clacia carbon brick长水口long nozzle浸入式水口immersion nozzle,submerged nozzle 定径水口metering nozzle氧化铝-碳化硅-炭砖Al2O3-SiC-C brick透气砖gas permeable brick,porous brick滑动水口slide gate nozzle水口砖nozzle brick塞头砖stopper绝热耐火材料insulating refractory轻质耐火材料light weight refractory袖砖sleeve brick格子砖checker brick,chequer brick陶瓷纤维ceramic fiber耐火纤维refractory fiber耐火浇注料refractory castable耐火混凝土refractory concrete荷重耐火性refractoriness under load抗渣性slagging resistance耐磨损性abrasion resistance5.3 碳素材料[含]碳[元]素材料carbon materials无定形碳amorphous carbon金刚石diamond炭相[学]carbon micrography炭黑carbon black石油沥青petroleum pitch石油焦炭petroleum coke石墨化graphitization石墨化电阻炉electric resistance furnace for graphitization 石墨纯净化处理purification treatment of graphite炭砖carbon brick炭块carbon block碳化硅基炭块SiC-based carbon block炭电极carbon electrode连续自焙电极Soderberg electrode石墨电极graphite electrode超高功率石墨电极ultra-high power graphite electrode石墨电极接头graphite electrode nipple石墨电极接头孔graphite electrode socket plug电极糊electrode paste石墨坩埚graphite crucible石墨电阻棒graphite rod resistor炭刷carbon brush高纯石墨high purity graphite5.4 铁合金铁合金ferroalloy硅铁ferrosilicon硅钙calcium silicon金属硅silicon metal锰铁ferromangnanese低碳锰铁low carbon ferromanganese硅锰silicomanganese金属锰manganese metal铬铁ferrochromium低碳铬铁low carbon ferrochromium微碳铬铁extra low carbon ferrochromium硅铬silicochromium金属铬chromium metal钨铁ferrotunsten钼铁ferromolybdenum钛铁ferrotitanium硼铁ferroboron铌铁ferroniobium磷铁ferrophosphorus镍铁ferronickel锆铁ferrozirconium硅锆silicozirconium稀土硅铁rare earth ferrosilicon稀土镁硅铁rare earth ferrosilicomagnesium成核剂nucleater孕育剂incubater,inoculant球化剂nodulizer蠕化剂vermiculizer中间铁合金master alloy复合铁合金complex ferroalloy电碳热法electro-carbothermic process电硅热法electro-silicothermic process铝热法aluminothermic process,thermit process 电铝热法electro-aluminothermic process开弧炉open arc furnace埋弧炉submerged arc furnace半封闭炉semiclosed furnace封闭炉closed furnace矮烟罩电炉electric furnace with low hood矮炉身电炉low-shaft electric furnace5.5 烧结与球团人造块矿ore agglomerates烧结矿sinter压块矿briquette球团[矿] pellet针铁矿goethite自熔性铁矿self-fluxed iron ore复合铁矿complex iron ore块矿lump ore粉矿ore fines矿石混匀ore blending配矿ore proportioning矿石整粒ore size grading返矿return fines储矿场ore stockyard矿石堆料机ore stocker匀矿取料机ore reclaimer熔剂flux消石灰slaked lime活性石灰quickened lime有机粘结剂organic binder烧结混合料sinter mixture烧结铺底料hearth layer for sinter烧结sintering烧结热前沿heat front in sintering烧结火焰前沿flame front in sintering渣相粘结slag bonding扩散粘结diffusion bonding带式烧结机Dwight-Lloyd sintering machine环式烧结机circular travelling sintering machine 烧结梭式布料机shuttle conveyer belt烧结点火料sintering ignition furnace烧结盘sintering pan烧结锅sintering pot烧结冷却机sinter cooler带式冷却机straight-line cooler 环式冷却机circular cooler,annular cooler生球green pellet,ball生球长大聚合机理ball growth by coalescence生球长大成层机理ball growth by layering生球长大同化机理ball growth by assimilation精矿成球指数balling index for iron ore concentrates 生球转鼓强度drum strength of green pellet生球落下强度shatter strength of green pellet生球抗压强度compression strength of green pellet 生球爆裂温度cracking temperature of green pellet 圆筒造球机balling drum圆盘造球机balling disc竖炉陪烧球团shaft furnace for pellet firing带式机陪烧球团traveling grate for pellet firing链算机-回转窑陪烧球团grate-kiln for pellet firing 环式机陪烧球团circular gates for pellet firing冷固结球团cold bound pellet维式体wustite铁橄榄石fayalite铁尖晶石hercynite铁黄长石ferrogehlenite铁酸半钙calcium diferrite铁酸钙calcium ferrite铁酸二钙dicalcium ferrite锰铁橄榄石knebelite钙铁橄榄石kirschsteinite钙铁辉石hedenbergite钙铁榴石andradite钙长石anorthite钙镁橄榄石monticellite钙钛矿perovskite硅灰石wollastonite硅酸二钙dicalcium silicate硅酸三钙tricalcium silicate镁橄榄石forsterite镁黄长石akermanite镁蔷薇辉石manganolite钙铝黄长石gehlenite钛辉石titanaugite枪晶石cuspidine预还原球团pre-reduced pellet金属化球团metallized pellet转鼓试验drum test,tumbler test落下试验shatter test5.6 高炉炼铁炼铁iron making高炉炼铁[法] blast furnace process高炉blast furnace鼓风炉blast furnace炉料charge, burden矿料ore charge焦料coke charge炉料提升charge hoisting小车上料charge hoisting by skip吊罐上料charge hoisting by bucket皮带上料charge hoisting by belt conveyer装料charging装料顺序charging sequence储料漏斗hopper双料钟式装料two-bells system charging无料钟装料bell-less charging布料器distributor炉内料线stock line in the furnace探料尺gauge rod利用系数utilization coefficient冶炼强度combustion intensity鼓风blast风压blast pressure风温blast temperature鼓风量blast volume鼓风湿度blast humidity全风量操作full blast慢风under blowing休风delay喷吹燃料fuel injection喷煤coal injection喷油oil injection富氧鼓风oxygen enriched blast,oxygen enrichment 置换比replacement ratio喷射器injector热补偿thermal compensation焦比coke ratio,coke rate燃料比fuel ratio,fuel rate氧化带oxidizing zone风口循环区raceway蒸汽鼓风humidified blast混合喷吹mixed injection脱湿鼓风dehumidified blast炉内压差pressure drop in furnace煤气分布gas distribution煤气利用率gas utilization rate炉况furnace condition顺行smooth running焦炭负荷coke load,ore to coke ratio软熔带cohesive zone,softening zone渣比slag to iron ratio,slag ratio上部[炉料]调节burden conditioning下部[鼓风]调节blast conditioning高炉作业率operation rate of blast furnace休风率delay ratio高炉寿命blast furnace campaign悬料hanging 崩料slip沟流channeling结瘤scaffolding炉缸冻结hearth freeze-up开炉blow on停炉blow off积铁salamander炉型profile,furnace lines炉喉throat炉身shaft,stack炉腰belly炉腹bosh炉缸hearth炉底bottom炉腹角bosh angle炉身角stack angle有效容积effective volume工作容积working bolume铁口iron notch, slag notch渣口cinder notch, slag notch 风口tuyere窥视孔peep hole风口水套tuyere cooler渣口水套slag notch cooler风口弯头tuyere stock热风围管bustle pipe堵渣机stopper泥炮mud gun,clay gun开铁口机iron notch drill铁水hot metal铁[水]罐iron ladle鱼雷车torpedo car主铁沟sow出铁沟casting house铁沟iron runner渣沟slag runner渣罐cinder ladle, slag ladle撇渣器skimmer冷却水箱cooling plate冷却壁cooling stave汽化冷却vaporization cooling 热风炉hot blast stove燃烧室combustion chamber 燃烧器burner热风阀hot blast valve烟道阀chimney valve冷风阀cold blast valve助燃风机burner blower切断阀burner shut-off valve 旁通阀by-pass valve混风阀mixer selector valve送风期on blast of stove,on blast燃烧期on gas of stove, on gas换炉stove changing放散阀blow off valve内燃式热风炉Cowper stove外燃式燃烧炉outside combustion stove顶燃式热风炉top combustion stove炉顶放散阀bleeding valve放散管bleeder上升管gas uptake放风阀snorting valve均压阀equalizing valve高压调节阀septum valve炉顶高压elevated top pressure铸铁机pig-casting machine铸铁模pig mold冲天炉cupola水渣granulating slag水渣池granulating pit渣场slag disposal pit高炉煤气top gas,blast furnace gas高炉煤气回收topgas recovery,TGR非焦炭炼铁non-coke iron making直接还原炼铁[法]direct reduction iron making直接还原铁directly reduced iron,DRI竖炉直接炼铁direct reduction in shaft furnace流态化炼铁fluidized-bed iron making转底炉炼铁rotary hearth iron making米德雷克斯直接炼铁[法]Midrex processHYL直接炼铁[法] HYL process克虏伯回转窑炼铁[法] Krupp rotary kiln iron-making 熔态还原smelting reduction铁溶法iron-bath process科雷克斯法COREX process生铁pig iron海绵铁sponge iron镜铁spiegel iron清铁法H-rion process5.7 炼钢钢steel炼钢steelmaking钢水liquid steel,molten steel钢semisteel沸腾钢rimming steel,rimmed steel镇静钢killed steel半镇静钢semikilled steel压盖沸腾钢capped steel坩埚炼钢法crucible steelmaking双联炼钢法duplex steelmaking process连续炼钢法continuous steelmaking process直接炼钢法direct steelmaking process 混铁炉hot metal machine装料机charging machine装料期charging machine加热期heating period熔化期melting period造渣期slag forming period精炼期refining period熔清melting down脱氧deoxidation预脱氧preliminary dexidation 还原渣reducing slag酸性渣acid slag碱性渣basic slag脱碳decarburization增碳recarburization脱磷dephosphorization回磷rephosphorization脱硫desulfurization回硫resulfurization脱氮denitrogenation过氧化overoxidation出钢tapping冶炼时间duration of heat出钢样tapping sample浇铸样casting sample不合格炉次off heat熔炼损耗melting loss铁损iron loss废钢scrap废钢打包baling of scrap造渣材料slag making materials 添加剂addition reagent脱氧剂deoxidizer脱硫剂desulfurizer冷却剂coolant回炉渣return slag喷枪lance浸入式喷枪submerged lance 钢包ladle出钢口top hole出钢槽pouring lining炉顶furnace roof炉衬furnace lining炉衬侵蚀lining erosion渣线slag line炉衬寿命lining life分区砌砖zoned lining补炉fettling热修hot repair喷补gunning火焰喷补flame gunning转炉converter底吹转炉bottom-blown converter酸性空气底吹转炉air bottom-blown acid converter碱性空气底吹转炉air bottom-blown basic converter侧吹转炉side-blown converter卡尔多转炉Kaldo converter氧气炼铁oxygen steelmaking氧气顶吹转炉top-blown oxygen converter,LI converter氧气底吹转炉bottom-blown oxygen converter quiet basic oxygen furnace,QBOF顶底复吹转炉top and bottom combined blown converter喷石灰粉顶吹氧气转炉法oxygen lime process底吹煤氧的复合吹炼法Klockner-Maxhutte steelmaking process,KMS住友复合吹炼法Sumitomo top and bottom blowing process,STB LBE复吹法lance bubbling equilibrium process,LBE顶枪喷煤粉炼钢法Arved lance carbon injection process,ALCI蒂森复合吹炼法Thyssen Blassen Metallurgical process,TBM面吹surface blow软吹soft blow硬吹hard blow补吹reblow过吹overblow后吹after blow目标碳aim carbon终点碳end point carbon高拉碳操作catch carbon practice增碳操作recarburization practice单渣操作single-slag operation双渣操作double-slag operation渣乳化slag emulsion二次燃烧postcombustion吹氧时间oxygen blow duration吹炼终点blow end point倒炉turning down喷渣slopping喷溅spitting静态控制static control动态控制dynamic control氧枪oxygen lance氧枪喷孔nozzle of oxygen lance多孔喷枪multi-nozzle lance转炉炉体converter body炉帽upper cone炉口mouth,lip ring装料大面impact pad活动炉底removable bottom顶吹氧枪top blow oxygen lance副枪sublance多孔砖nozzle brick单环缝喷嘴single annular tuyere双环缝喷嘴double annular tuyere 挡渣器slag stopper挡渣塞floating plug电磁测渣器electromagnetic slag detector废气控制系统off gas control system,OGCS平炉open-hearth furnace平炉炼钢open-hearth steelmaking冷装法cold charge practice热装法hot charge practice碳沸腾carbon boil石灰沸腾lime boil炉底沸腾bottom boil再沸腾reboil有效炉底面积effective hearth area酸性平炉acid open-hearth furnace碱性平炉basic open-hearth furnace固定式平炉stationary open-hearth furnace倾动式平炉tilting open-hearth furnace双床平炉twin-hearth furnace顶吹氧气平炉open-hearth furnace with roof oxygen lance蓄热室regenerator沉渣室slag pocket电炉炼钢electric steelmaking电弧炉electric arc furnace超高功率电弧炉ultra-high power electric arc furnace直流电弧炉direct current electric arc furnace双电极直流电弧炉double electrode direct current arc furnace 竖窑式电弧炉shaft arc furnace电阻炉electric resistance furnace工频感应炉line frequency induction furnace中频感应炉medium frequency induction furnace高频感应炉high frequency induction furnace电渣重熔electroslag remelting,ESR电渣熔铸electroslag casting,ESC电渣浇注Bohler electroslag tapping,BEST真空电弧炉重熔vacuum arc remelting,V AR真空感应炉熔炼vacuum induction melting,VIM电子束炉重熔electron beam remelting,EBR等离子炉重炼plasma-arc remelting,PAR水冷模电弧熔炼cold-mold arc melting等离子感应炉熔炼plasma induction melting,PIM等离子连续铸锭plasma progressive casting,PPC等离子凝壳铸造plasma skull casting,PSC能量优化炼钢炉energy optimizing furnace,EOF氧燃喷嘴oxygen-fuel burner氧煤助熔accelerated melting by coal-oxygen burner氧化期oxidation period还原期reduction period长弧泡沫渣操作弧长控制long arc foaming slag operation 白渣white slag电石渣carbide slag煤氧喷吹coal-oxygen injection炉壁热点hot spots on the furnace wall偏弧arc bias透气塞porous plug出钢到出钢时间tap-to-tap time虹吸出钢siphon tapping偏心炉底出钢eccentric bottom tapping,EBT中心炉底出钢centric bottom tapping,CBT侧面炉底出钢side bottom tapping,SBT滑动水口出钢slide fate tapping5.8 精炼、浇铸及缺陷铁水预处理hot metal pretreatment机械搅拌铁水脱硫法KR process torpedo desulfurization鱼雷车铁水脱磷torpedo dephosphorization二次精炼secondary refining钢包精炼ladle refining合成渣synthetic slag微合金化microalloying成分微调trimming钢洁净度steel cleanness钢包炉ladle furnace,LF直流钢包炉DC ladle furnace真空钢包炉LF-vacuum真空脱气vacuum degassing真空电弧脱气vacuum arc degassing,V AD真空脱气炉vacuum degassing furnace,VDF真空精炼vacuum refining钢流脱气stream degassing提升式真空脱气法Dortmund Horder vacuum degassing process,DH循环式真空脱气法Ruhstahl-Hausen vacuum degassing process,RH 真空浇铸vacuum casting吹氧RH操作RH-oxygen blowing,RH-OB川崎顶吹氧RH操作RH-Kawasaki top blowing,RH-KTB喷粉RH操作RH-poowder blowing,TH-PB喷粉法powder injection process喷粉精炼injection refining蒂森钢包喷粉法Thyssen Niederhein process,TN瑞典喷粉法Scandinavian Lancer process,SL君津真空喷粉法vacuum Kimitsu injection process密封吹氩合金成分调整法composition adjustment by sealed argon bubbling,CAS吹氧提温CAS法CAS-OB process脉冲搅拌法pulsating mixing process,PM电弧加热电磁搅拌钢包精炼法ASEA-SKF process真空吹氧脱碳法vacuum oxygen decarburization process ,VOD氩氧脱碳法argon-oxygen decarburization process,AOD蒸汽氧精炼法Creusot-Loire Uddelholm process,CLU无渣精炼slag free refining摇包法shaking ladle process铝弹脱氧法aluminium bullet shooting,ABS钢锭ingot铸锭ingot casting 坑铸pit casting车铸car casting钢锭模ingot mold保温帽hot top下铸bottom casting上铸top casting补浇back pour,back feeding浇注速度pouring speed脱模ingot stripping发热渣exoslag防再氧化操作reoxidation protection连续浇注continuous casting连铸机continuous caster,CC,continuous casting machine,CCM 弧形连铸机bow-type continuous caster立弯式连铸机vertical-bending caster立式连铸机vertical caster水平连铸机horizontal caster小方坯连铸机billet caster大方坯连铸机bloom caster板坯连铸机slab caster薄板坯连铸机thin-slab casting薄带连铸机strip caster近终型浇铸near-net-shape casting单辊式连铸机single-roll caster单带式连铸机single-belt caster双带式连铸机twin-belt caster倾斜带式连铸机inclined conveyer type caster[连铸]流strand铸流间距strand distance注流对中控制stream centering control钢包回转台ladle turret中间包tundish回转式中间包swiveling tundish倾动式中间包tiltable tundish中间包挡墙weir and dam in tundish引锭杆dummy bar刚性引锭杆rigid dummy bar挠性引锭杆flexible dummy bar结晶器mold直型结晶器straight mold弧形结晶器curved mold组合式结晶器composite mold多级结晶器multi-stage mold调宽结晶器adjustable mold结晶器振动mold oscillation结晶器内钢液顶面meniscus,steel level钢液面控制技术steel level control technique保护渣casting powder,mold powder凝壳shell液芯liquid core空气隙air gap一次冷却区peimary cooling zone二次冷却区secondary cooling zone极限冷却速度critical cooling rate浇铸半径casting radius渗漏bleeding拉坯速度casting speed拉漏breaking out振动波纹oscillation mark水口堵塞nozzle clogging气水喷雾冷却air mist spray cooling分离环separating ring拉辊withdrawal roll立式导辊vertical guide roll弯曲辊bending roll夹辊pinch roll矫直辊straightening roll驱动辊driving roll导向辊装置roller apron切割定尺装置cut-to-length device钢流保护浇注shielded casting practice 多点矫直multipoint straightening电磁搅拌electromagnetic stirring,EMS 浇注周期casting cycle多炉连浇sequence casting事故溢流槽emergercy launder菜花头cauliflower top钢锭缩头piped top表面缺陷surface defect内部缺陷internal defect缩孔shrinkage cavity中心缩孔center line shrinkage气孔blowhole表面气孔surface blowhole皮下气孔subskin blowhole针孔pinhole铸疤feather冷隔cold shut炼钢缺陷lamination发裂flake,hair crack纵裂longitudinal crack横裂transverse crack角部横向裂纹transverse corner crack 角部纵向裂纹longitudinal corner crack 收缩裂纹shrinkage crack热裂hot crack冷裂cold crack冷脆cold shortness热脆hot shortness夹渣slag inclusion皮下夹杂subsurface inclusion正偏析positive segregation 负偏析negative segregation,inverse seregation V形偏析∨-shaped segregation倒V形偏析∧-shaped segregation中心偏析center segregation中心疏松center porosity鼓肚bulging脱方rhomboidity连铸-直接轧制continuous casting-direct rolling 工艺CC-DR6 钢铁材料铸铁cast iron熟铁wrought iron电解铁electrolytic iron白口铸铁white cast iron灰口铸铁grey cast iron麻口铸铁mottled cast iron变性铸铁modified cast iron孕育铸铁inoculated cast iron冷硬铸铁chilled cast iron球墨铸铁nodular cast iron蠕墨铸铁vermicular cast iron可锻铸铁malleable cast iron半可锻铸铁semi-malleable cast iron奥氏体铸铁austenitic cast iron贝氏体铸铁bainitic cast iron共晶白口铁eutectic white iron亚共晶白口铁hypoeutectic white iron过共晶白口铁hypereutectic white iron结构钢constructional steel软钢mild steel普通碳素钢plain carbon steel正火钢normalized steel热轧钢hot rolled steel高强度低合金钢high-strength low-alloy steel 微合金钢micro-alloy steel冷轧钢cold rolled steel深冲钢deep drawing steel双相钢dual phase steel渗碳钢carburizing steel渗氮钢nitriding steel调质钢quenched and tempered steel超高强度钢ultra-high strength steel不锈钢stainless steel奥氏体不锈钢austenitic stainless steel铁素体不锈钢ferritic stainless steel马氏体不锈钢martensitic stainless steel双相不锈钢duplex stainless steel马氏体时效钢maraging steel耐蚀钢corrosion-resisting steel耐热钢heat-resisting steel弹簧钢spring steel。
铸造名词术语GB5611-85
铸造名词术语(GB5611-85)1 基本术语1.1 铸造 foundry, founding, casting1.2铸造工艺 foundry technology1.3铸件 casting1.4砂型铸造 sand casting process1.5特种铸造 special casting process2合金性能2.1 流动性 fluidity2.2 充型能力 mold-filling capacity2.3 吸气 gas absorption2.4 过冷 undercooling, supercooling2.5 过冷度 degree of undercooling2.6 成核 nucleation2.7 自发成核(均质成核) homogeneous nucleation2.8非自发成核(非均质成核) heterogeneousnucleation2.9凝固温度范围 solidification range2.10定向凝固(顺序凝固) directionalsolidification2.11液态收缩(液体收缩) liquid contraction 2.12凝固收缩 solidification contraction2.13固态收缩(固体收缩) solid contraction 2.14凝固时间 solidification time2.15自由收缩 free contraction2.16受阻收缩 hindered contraction2.17铸件线收缩率 shrinkage2.18收缩应力 contraction stress2.19热应力 thermal stress2.20相变应力 transformation stress, phasechange stress2.21铸造应力 casting stress2.22残留应力(残余应力) residual stress3铸造用材料3.1金属原材料3.1.1 金属原材料 metallic raw material3.1.2生铁 pig iron3.1.3铁合金 ferro-alloy3.1.4回炉料 foundry returns3.1.5中间合金 master alloy3.2燃料3.2.1铸造焦炭 foundry coke3.2.2冶金焦炭 metallurgical coke3.2.3固定碳 fixed carbon3.3熔剂3.3.1 熔剂 flux3.3.2 除气熔剂(除气剂) degassing flux 3.3.3 覆盖熔剂(覆盖剂) covering flux 3.3.4 精炼熔剂(精炼剂) refining flux 3.4耐火材料3.4.1耐火度(耐火性) refractoriness3.4.2耐火砖 firebrick3.4.3耐火粘土 fireclay3.4.4硅砖 silica brick3.4.5镁砂 grain magnesite3.5 造型材料3.5.1 造型材料 molding material3.5.2 砂 sand3.5.3 水洗砂 washed-out sand3.5.4 硅砂 silica sand3.5.5天然砂 natural sand3.5.6人工砂 artificial sand3.5.7天然粘土砂 naturally clay-bonded sand 3.5.8橄榄石砂 olivine sand3.5.9铬铁矿砂 chromite sand3.5.10锆砂 zircon sand3.5.11炭粒砂 carbon sand3.5.12精硅砂 sharp sand3.5.13红砂 red sand3.5.14熟料砂 chamotte sand3.5.15粘结剂 binder3.5.16粘土 clay3.5.17无机粘结剂 inorganic binder3.5.18有机粘结剂 organic binder3.5.19高岭土 kaolin3.5.20膨润土 bentonite3.5.21钠基膨润土 sodium bentonite3.5.22钙基膨润土 calcium bentonite3.5.23活化膨润土 activated bentonite3.5.24干性油 drying oil3.5.25自硬粘结剂(冷硬粘结剂) no bakebinder3.5.26热固树脂粘结剂 thermosetting resinbinder3.5.27油类粘结剂 oil based binder3.5.28水玻璃粘结剂 water glass binder,sodium silicate binder3.5.29纸浆废液 lignin liquor3.5.30合脂粘结剂 synthetic fat binder3.5.31水玻璃模数 sodium silicate modulus 3.6辅助材料3.6.1附加物 additives3.6.2发热剂 exothermic mixture3.6.3分型剂(脱模剂) parting agent,stripping agent3.6.4固化剂(硬化剂)hardener3.6.5悬浮剂suspending agent3.6.6涂料 coating3.7砂处理3.7.1型砂制备(砂处理) sand preparation 3.7.2混砂 sand mulling, sand mixing3.7.3型砂(造型混合料) molding sand 3.7.4芯砂(造芯混合料) core sand3.7.5合成砂 synthetic sand3.7.6自硬砂 self-hardening sand3.7.7水玻璃砂 sodium silicate-bonded sand 3.7.8覆膜砂 precoated sand3.7.9烂砂泥(麻泥) loam3.7.10调匀砂 temper sand3.7.11面砂 facing sand3.7.12背砂(填充砂) backing sand3.7.13单一砂 unit sand3.7.14含泥量 clay content3.7.15含水量 moisture content3.7.16旧砂 floor sand3.7.17枯砂(焦砂) burnt sand3.7.18废砂 waste sand3.7.19热砂 hot sand3.7.20松砂 aeration , sand-cutting3.7.21筛分(筛析) screen analysis3.7.22旧砂处理 sand reconditioning3.7.23旧砂再生 sand reclamation3.7.24沉降分选 elutriation, decantation3.8型砂性能及试验3.8.1 型砂试验 sand testing3.8.2 透气性 permeability3.8.3 流动性 flowability3.8.4型砂强度 sand strength3.8.5湿强度 green strength3.8.6干强度 dry strength3.8.7耐用性(复用性) durability3.8.8砂型(芯)硬度 mold hardness3.8.9热变形 hot deformation3.8.10残留强度 retained strength3.8.11热强度 hot strength3.8.12韧性 toughness3.8.13发气率(发气速度) gas evolution rate 3.8.14发气性(发气量) gas evolution3.8.15吸湿性 moisture absorption3.8.16落砂性 knock-out capability3.8.17潰散性 collapsibility3.8.18胶质价 colloid index3.8.19破碎指数 shatter index3.9砂处理设备3.9.1热气流烘砂装置 hot pneumatic tubedrier3.9.2混砂机 sand muller, sand mixer 3.9.3松砂机 aerator, sand cutter3.9.4冷却提升机 cooling elevator,coolevator3.9.5筛砂机 riddle3.9.6磁力滚筒 magnetic separator3.9.7旧砂再生设备 sand reclamation3.9.8气力输送装置 pneumatic tube conveyor 4铸造合金4.1铸铁4.1.1 铸铁 cast iron4.1.2 铸铁石墨形态 morphology of graphite in cast iron4.1.3 灰铸铁(灰口铸铁) gray cast iron 4.1.4 白口铸铁 white cast iron4.1.5 麻口铸铁 mottled cast iron4.1.6共晶度 degree of saturation4.1.7碳当量 carbon equivalent4.1.8片状石墨 flake graphite4.1.9初生石墨 primary graphite4.1.10孕育铸铁 inoculated cast iron4.1.11球墨铸铁 spheroidal graphite cast iron,nodular graphite iron, ductile iron4.1.12球状石墨 spheroidal graphite, nodulargraphite4.1.13可锻铸铁 malleable cast iron4.1.14黑心可锻铸铁 black heart malleablecast iron4.1.15珠光体可锻铸铁 pearlitic malleablecast iron4.1.16铁素体可锻铸铁 ferritic malleable castiron4.1.17白心可锻铸铁 white heart malleablecast iron4.1.18团絮石墨 tempered graphite4.1.19冷硬铸铁(激冷铸铁) chilled iron 4.1.20耐磨铸铁 wear resisting cast iron4.1.21耐热铸铁 heat resisting cast iron4.1.22耐酸铸铁 acid resisting cast iron4.1.23高硅铸铁 high silicon cast iron4.1.24蠕墨铸铁 vermicular cast iron,compacted graphite cast iron4.1.25蠕虫状石墨 vermicular graphite4.1.26合金铸铁 alloy cast iron4.2铸钢4.2.1 铸钢 cast steel4.2.2 炭素铸钢 carbon cast iron4.2.3 低合金铸钢 low alloy cast steel4.2.4 高锰钢 high manganese steel4.2.5铁素体钢 ferritic steel4.3铸造非铁合金4.3.1 青铜 bronze4.3.2 铅青铜 lead bronze4.3.3 铝青铜 aluminum bronze4.3.4 黄铜 brass4.3.5铝铜合金 aluminum-copper alloy4.3.6铝镁合金 aluminum-magnesium alloy 4.3.7铝硅合金 aluminum-silicon alloy4.3.8镁合金 magnesium alloy4.3.9轴承合金(减摩合金) bearing metal,antifrictional metal4.3.10巴氏合金 babbitt alloy4.3.11钛合金 titanium alloy5熔炼工艺及设备5.1熔炼基本术语5.1.1 熔化(熔炼) melting5.1.2 重熔 remelting5.1.3 炉料 charge5.1.4 熔化率 melting rate5.1.5 炉料计算 charge calculation5.1.6 双联熔炼 duplexing5.1.7 元素烧损(元素烧损率) melting losses of various chemical elements5.1.8 熔炼损耗(烧损) total melting loss 5.1.9还原气氛 reducing atmosphere5.1.10氧化气氛 oxidizing atmosphere5.1.11惰性气体 inert gas5.1.12碱度(碱性指数) index of basicity 5.1.13碱性渣 basic slag5.1.14酸性渣 acid slag5.1.15精炼 refining5.1.16遗传性 heredity5.2铸铁熔炼5.2.1 风口比 tuyere ratio5.2.2 有效高度 effective height5.2.3 送风强度 blast intensity5.2.4预热送风 hot blast5.2.5底焦 coke bed5.2.6层焦 coke split5.2.7隔焦(结力焦) buffer coke charge 5.2.8炉衬 furnace lining5.2.9碱性炉衬 basic lining5.2.10酸性炉衬 acid lining5.2.11棚料 bridging5.2.12熔池 bath5.2.13吸碳 carbon pick-up5.2.14铁焦比(焦比) iron-coke ratio5.2.15出渣 deslagging5.2.16打炉 cupola drop5.3铸钢5.3.1 氧化熔炼法 oxidizing melting 5.3.2 不氧化熔炼法 dead melting5.3.3 真空熔炼 vacuum refining5.3.4 电渣熔炼 electro-slag melting5.3.5 熔渣 slag5.3.6 沉渣 sludge5.3.7 浮渣 dross, cinder5.3.8 氧化期(沸腾期) oxidizing stage, boil5.3.9还原期 deoxidizing stage, blockingstage5.3.10还原渣 reducing slag5.3.11氧化渣 oxidizing slag5.3.12白渣 white slag5.3.13脱氧 deoxidation5.3.14扒渣 slagging- off5.3.15脱碳 decarburization5.3.16脱硫 desulphurization5.3.17脱磷 dephosphorization5.3.18增碳 recarburizing5.3.19脱氧剂 deoxidizer5.4非铁金属熔炼5.4.1 挥发损耗volatilizing losses5.4.2 静置 stewing, holding5.4.3 吹氮 nitrogen flushing5.5熔炼设备5.5.1 冲天炉 cupola5.5.2 水冷冲天炉 water-cooled cupola5.5.3热风冲天炉 hot-blast cupola5.5.4湿法除尘器 wet cap5.5.5炉缸 cupola well5.5.6前炉 forehearth5.5.7冲天炉加料机 cupola charging machine 5.5.8爬式加料机 skip hoist5.5.9电磁配铁称 electro-magnetic weighingbalancer5.5.10电磁盘 electromagnetic chuck5.5.11电弧炉(直接电弧炉) arc furnace,direct arc furnace5.5.12感应电炉 electric induction furnace 5.5.13电渣炉 electroslag furnace5.5.14电磁搅拌electromagnetic agitation5.5.15浇包 ladle5.5.16摇包 shaking ladle5.5.17底注包 bottom pouring ladle5.5.18保温炉holding furnace5.5.19坩埚炉crucible furnace5.6熔融金属处理5.6.1孕育 inoculation5.6.2多孔塞法 porous plug process5.6.3变质 modification5.6.4墨化剂 graphitizer5.6.5过热 superheating5.6.6石墨球化处理 nodularizing treatment ofgraphite5.6.7碳当量仪eutectometer5.6.8三角试块 wedge test-piece5.6.9真空除气vacuum degassing5.7浇注5.7.1浇注 pouring5.7.2保护气氛浇注 pouring under controlledatmosphere5.7.3浇注速度 pouring rate5.7.4浇注温度 pouring temperature5.7.5浇注时间 pouring time5.7.6浇注位置 pouring position5.7.7型内孕育 inmold inoculation5.7.8压铁 weight5.7.9捣冒口 churning, pumping5.7.10点冒口(补注) teeming5.7.11浸入式高温计 immersion pyremeter5.7.12补炉 patching5.7.13炉龄(炉衬寿命) campaign6工艺设计及工艺装备6.1工艺设计6.1.1 铸造工艺设计 mold design6.1.2 铸造工艺装备设计 foundry tools design 6.1.3 铸造工艺图 foundry molding drawing 6.1.4 铸件图(毛坯图) drawing of rough casting6.1.5起模斜度(拔模斜度) pattern draft6.1.6收缩余量shrinkage allowance6.1.7工艺补正量 molding allowance6.1.8加工余量 machining allowance6.1.9吃砂量 mold thickness6.1.10补贴 pad6.1.11分型负数 joint allowance6.1.12铸件尺寸公差 dimensional tolerance ofcasting6.1.13铸件重量公差 weight allowance ofcasting6.1.14铸件加工基准面 reference face formachining of casting6.1.15铸件表面粗糙度 surface roughness ofcasting6.2浇冒口系统6.2.1 浇注系统(浇口) gating system, running system6.2.2封闭式浇注系统 choked running system,pressurized gating system6.2.3半封闭式浇注系统 enlarged runnersystem 6.2.4开放式浇注系统 unchoked runningsystem, non-pressurized gating system 6.2.5浇口盆(外浇口) pouring basin6.2.6浇口杯 pouring cup6.2.7浇口塞 blanking-off plug6.2.8直浇道 sprue6.2.9直浇道窝 sprue base6.2.10横浇道 runner6.2.11筛网芯(滤网芯) strainer core6.2.12内浇道 ingate6.2.13离心集渣浇注系统 whirl gate, dirttrap system6.2.14顶注式浇注系统 top gating system6.2.15底注式浇注系统 bottom gating system 6.2.16阶梯式浇注系统 step gating system6.2.17雨淋浇口 shower gate6.2.18缝隙浇口 slot gate6.2.19压边浇口 lip runner, kiss runner6.2.20牛角式浇口 horn gate6.2.21热节 hot spot6.2.22冒口 riser, feeder heed6.2.23冒口效率 riser efficiency6.2.24明冒口 open riser6.2.25暗冒口 blind riser6.2.26侧冒口(边冒口) side riser6.2.27压力冒口 pressure riser6.2.28大气压力冒口 atmospheric riser6.2.29发气压力冒口(气弹冒口)gas-deliveredpressure riser6.2.30透气砂芯 pencil core6.2.31冒口颈 riser neck6.2.32冒口根 riser pad6.2.33保温冒口套 heat insulating feedersleeve6.2.34发热冒口套 exothermic feeder sleeve 6.2.35补缩距离 feeding distance, feedingzone6.2.36易割冒口 knock-off head6.2.37易割片(易割芯片) washburn core6.3模样6.3.1铸造工艺装备 foundry tools andequipment6.3.2模样(铸模,模) pattern6.3.3母模 master pattern6.3.4金属模 metal pattern6.3.5骨架模 skeleton pattern6.3.6石膏模 plaster pattern6.3.7塑料模 plastic pattern6.3.8整体模 one-piece pattern6.3.9分开模 parted pattern, split pattern6.3.10活块 loose piece6.3.11模板 pattern plate6.3.12模底板 pattern mounting plate6.3.13单面模板 single face pattern plate6.3.14双面模板 match plate6.3.15放样(伸图) hot dimensional drawing 6.3.16缩尺(模样工缩尺) shrinkage rule,pattern-maker’s rule6.4芯盒6.4.1 芯盒 core box6.4.2 脱落式芯盒 troughed core box6.4.3下芯量具 core setting scale6.4.4下芯夹具 core jig6.4.5烘芯板 core drying plate6.5砂箱6.5.1 砂箱 flask, molding box6.5.2 箱带(箱挡) flask bar, cross bar6.5.3 脱箱 snap flask6.5.4 套箱 mold jacket6.5.5套销 hollow pin, stub pin7造型及造芯7.1造型7.1.1造型 molding7.1.2型腔 mold cavity7.1.3铸型(型) mold7.1.4砂型 sand mold7.1.5上型(上箱) cope, top part7.1.6下型(下箱) drag, bottom part7.1.7手工造型 hand molding7.1.8机器造型 machine molding7.1.9自动化造型automatic molding7.1.10分型面 mold joint7.1.11有箱造型 flask molding7.1.12两箱造型 two-part molding7.1.13三箱造型 three-part molding7.1.14不平分型面 stepped joint7.1.15无箱造型 flaskless molding7.1.16脱箱造型 removable flask molding 7.1.17地坑造型 pit molding7.1.18刮板造型 sweep molding7.1.19抛砂造型 impeller ramming, sandslinging molding7.1.20组芯造型 core assembly molding7.1.21假箱造型 oddside molding7.1.22微震压实造型 vibratory squeezingmolding7.1.23高压造型 high pressure molding7.1.24湿砂型(湿型,潮型) green sand mold 7.1.25砂型烘干 mold drying7.1.26干砂型(干型)dry sand mold 7.1.27表面烘干型 skin dried mold7.1.28烂砂泥型 loam mold7.1.29砂床 bed7.1.30过渡角 transition angle7.1.31吊砂 cod7.1.32砂钩 lifter7.1.33负压造型(真空密封造型) vacuummolding7.1.34流态砂造型 fluid sand molding7.1.35漏模 pattern stripping7.1.36填砂 mold-filling7.1.37紧实(紧砂,舂砂) ramming7.1.38震实 jolt ramming7.1.39压实 squeezing ramming7.1.40紧实度 degree of ramming7.1.41二氧化碳法造型 CO2 process7.1.42自硬砂造型 self-hardening sandmolding7.1.43塞砂 tucking7.1.44刮砂 strike-off7.1.45造型生产线 molding line7.1.46刷水 swabbing7.1.47敲模 rapping7.1.48起模(拔模) stripping7.1.49扎出气孔 venting7.1.50排气道 venting channel7.1.51修型 patching7.1.52冷铁 densener, chill7.1.53外冷铁 surface densener7.1.54内冷铁 internal densener7.1.55验型(验箱) trial closing7.1.56合型(合箱,组型) mold assembling,closing7.2造芯7.2.1造芯(制芯) core making7.2.2芯(芯子) core7.2.3 芯骨 core rod, core scab7.2.4 油砂芯 oil sand core7.2.5 预制芯 embeded core, ram up core7.2.6 芯头 core print7.2.7芯座 core print7.2.8芯头斜度 core print taper7.2.9芯头间隙 core print clearance7.2.10壳芯 shell core7.2.11烘芯 core baking7.2.12通气蜡线 vent wax7.2.13冷芯盒法 cold box process7.2.14热芯盒法 hot box process7.2.15芯撑 chaplet7.3造型工具7.3.1 造型工具 hand tools of molding7.3.2 压勺 heart and spoon7.3.3 提沟 cleaner7.3.4 双头铜勺(秋叶) double ended radius sleeker7.3.5镘刀 trowel7.4造型及造芯设备7.4.1 造型机 molding machine7.4.2 压实造型机 squeezing molding machine7.4.3 震击台 bumper7.4.4 振动台 vibrating table7.4.5微震压实造型机 vibratory squeezer7.4.6震实造型机 jolt molding machine7.4.7高压造型机 high pressure moldingmachine7.4.8射压造型机 shooting and squeezingmolding machine7.4.9多触头造型机 equalizing pistonsqueezer7.4.10抛砂机 sand slinger7.4.11起模机 drawing machine7.4.12射砂机 core shooter7.4.13挤芯机 core extruder7.4.14铸型输送机 mold conveyor8铸件落砂及清理8.1落砂及清理8.1.1 落砂 shake-out, knock-out8.1.2 除芯 decoring8.1.3 噴砂清理 sand blasting8.1.4 抛丸清理 shot blasting8.1.5 水力清砂 hydraulic cleaning8.1.6 水砂清砂 hydraulic blast8.1.7清理 cleaning, fettling8.1.8清砂 cleaning8.1.9火焰表面清理 scarfing8.1.10清铲 chipping8.1.11化学清砂 chemical cleaning8.1.12精整 dressing and finishing8.1.13落砂机 knock-out machine8.1.14抛丸清理机 shot blast machine8.1.15清理滚筒 tumbling barrel8.1.16抛丸落砂清理设备 shot blast reclaimingequipment8.1.17悬挂式磨轮 swing frame grinder8.2修补及矫正8.2.1 矫正 coining, straightening8.2.2 焊补 repair welding8.2.3 渗补 impregnation9特种铸造9.1金属型铸造9.1.1 金属型铸造 permanent mold casting, gravity die casting9.1.2 金属型 metal mold9.1.3 金属芯 metal core9.1.4 覆砂金属型 sand-lined metal mold 9.1.5 排气塞 venting plug9.1.6 排气槽 air vent9.1.7 龟裂 heat checking9.1.8 金属型铸造机 gravity die casting machine9.2压力铸造9.2.1压力铸造(压铸) die casting, pressuredie casting9.2.2压铸型 die-casting die, die9.2.3动型 moving die, ejector die half9.2.4定型 fixed die, cover die half9.2.5合型力 clamping force , die lockingforce9.2.6压室 pressure chamber9.2.7鹅颈管 gooseneck9.2.8分流器 spreader, sprue spreader9.2.9顶杆 ejector pin9.2.10溢流槽 overflow well9.2.11压射冲头(压室) injection piston,plunger9.2.12压射比压 injection pressure9.2.13压射速度 injection speed9.2.14保压时间 dwell time9.2.15真空压铸 evacuated die casting,vacuum die casting9.2.16充氧压铸 pore-free die casting9.2.17双冲头压铸(精速密压铸)acurad(accurate?) die casting9.2.18压铸机 die casting machine9.2.19冷室压铸机 cold chamber die castingmachine9.2.20热室压铸机 hot chamber die castingmachine9.2.21镶铸法 insert process9.3离心铸造9.3.1离心铸造 true centrifugal casting9.3.2半离心铸造 semi-centrifugal casting9.3.3离心浇注 centrifugal pressure casting,centrifuge casting9.3.4双金属离心铸造 bimetal centrifugalcasting9.3.5离心铸造机 centrifugal casting machine 9.4熔模铸造9.4.1 失模铸造 lost pattern casting9.4.2熔模铸造(失蜡铸造) fusible patternmolding, lost-wax molding9.4.3压制熔模 fusible pattern injection9.4.4压型 pattern die9.4.5熔模 fusible pattern9.4.6盐模salt pattern9.4.7蜡模 wax-pattern9.4.8模组 pattern assembly9.4.9熔模涂料(浆料) slurry9.4.10面层涂料 investment precoat9.4.11撒砂 stuccoing9.4.12脱蜡 dewaxing9.4.13熔烧 sintering9.5壳型铸造9.5.1壳型铸造 shell molding9.5.2结壳时间 investing time9.5.3结壳温度 investing temperature9.5.4硬化温度 curing temperature9.5.5硬化时间 curing time9.6其它铸造方法9.6.1 陶瓷型铸造 ceramic molding9.6.2 陶瓷型浆料 ceramic slurry9.6.3灌浆 paste pouring9.6.4喷烧 torch firing9.6.5低压铸造 low-pressure die casting9.6.6充型压力 mold filling pressure9.6.7保压压力 dwell pressure9.6.8升液管 stalk9.6.9真空吸铸 suction casting9.6.10差压铸造(反压铸造) counter-pressurecasting9.6.11实型铸造 full mold process, cavitylesscasting9.6.12泡沫塑料模 styrofoam pattern9.6.13磁型铸造(磁丸铸造) magnetic shotmolding process9.6.14凝壳铸造 slush casting9.6.15石膏型铸造 plaster molding9.6.16连续铸造 continuous casting10 铸件质量及铸件缺陷10.1 铸件质量基本术语10.1.1铸件检验 inspection of casting10.1.2铸件质量分析 quality analysis ofcasting10.1.3铸件外观质量 visual quality of casting 10.1.4铸件内在质量 internal quality ofcasting10.1.5铸件使用性能 service ability of casting 10.1.6单铸试块 separated test bar of casting 10.1.7附铸试块 test lug 10.1.8缺陷铸件 defective casting10.1.9废品 reject10.1.10无损检验(无损探伤) nondestructiveinspection10.1.11破坏性试验 destructive testing10.2多肉类缺陷10.2.1飞翅(飞边) joint flash10.2.2毛刺 veining10.2.3抬型(抬箱) cope raise , raised mold 10.2.4胀箱 swell10.2.5冲砂 erosion, cut, wash10.2.6掉砂 drop, crush10.2.7外渗物(外渗豆) sweat10.3孔洞类缺陷10.3.1 气孔 blow hole10.3.2 针孔 pinhole10.3.3 缩孔 shrinkage10.3.4缩松 dispersed shrinkage10.3.5疏松(显微缩松) porositymicroshrinkage10.4裂纹、冷隔类缺陷10.4.1冷裂 cold cracking10.4.2热裂 hot tearing10.4.3热处理裂纹 heat treatment crack10.4.4白点(发裂) flake10.4.5冷隔 cold shut, cold lap10.4.6浇注断流 interrupted pour10.5表面缺陷10.5.1 鼠尾 rat-tail10.5.2 沟漕 buckle10.5.3 夹砂结疤(夹砂) scab10.5.4机械粘砂(渗透粘砂) metal penetration 10.5.5化学粘砂(烧结粘砂)burn-on10.5.6表面粗糙 rough surface10.5.7皱皮 elephant skin10.5.8缩陷 depression10.6残缺类缺陷10.6.1 浇不到 misrun10.6.2 未浇满 poured short10.6.3 跑火 run-out, bleeding10.6.4 型漏(漏箱)run-out, bleeding10.6.5损伤(机械损伤)damage10.7形状及重量差错类缺陷10.7.1 拉长 exaggeration of dimension10.7.2 超重 over-weight10.7.3 变形 distortion, warping10.7.4 错型(错箱) shift10.7.5 错芯 core shift10.7.6 偏芯(漂芯) core raised, corelift 10.8夹杂类缺陷10.8.1 夹杂物 inclusion10.8.2 冷豆 cold shot10.8.3 内渗物(内渗豆) internal sweat 10.8.4 渣气孔 scum, slag-blow hole10.8.5 砂眼 sand inclusion10.9性能、成分、组织不合格10.9.1 亮皮 pearlite layer10.9.2 菜花头 cauli-flowering10.9.3 石墨飘浮 carbon floatation10.9.4 石墨集结 kish graphite spot10.9.5 组织粗大 open grain structure10.9.6 偏析 segregation10.9.7 硬点 hard spot10.9.8 反白口 inverse chill10.9.9 球化不良 under-nodularizing10.9.10 球化衰退 degradated spheroidisation 10.9.11 脱碳 decarburization。
冶金专业英语词汇整理
..专业英语词汇1 总论采矿mining地下采矿underground mining露天采矿open cut mining, open pit mining, surface mining采矿工程mining engineering选矿(学)mineral dressing, ore beneficiation, mineral processing 矿物工程mineral engineering冶金(学)metallurgy过程冶金(学)process metallurgy提取冶金(学)extractive metallurgy化学冶金(学)chemical metallurgy物理冶金(学)physical metallurgy金属学Metallkunde冶金过程物理化学physical chemistry of process metallurgy冶金反应工程学metallurgical reaction engineering冶金工程metallurgical engineering钢铁冶金(学)ferrous metallurgy, metallurgy of iron and steel 有色冶金(学)nonferrous metallurgy真空冶金(学)vacuum metallurgy等离子冶金(学)plasma metallurgy微生物冶金(学)microbial metallurgy喷射冶金(学)injection metallurgy钢包冶金(学)ladle metallurgy二次冶金(学)secondary metallurgy机械冶金(学)mechanical metallurgy焊接冶金(学)welding metallurgy粉末冶金(学)powder metallurgy铸造学foundry火法冶金(学)pyrometallurgy湿法冶金(学)hydrometallurgy电冶金(学)electrometallurgy氯冶金(学)chlorine metallurgy矿物资源综合利用engineering of comprehensive utilization of mineral resources中国金属学会The Chinese Society for Metals中国有色金属学会The Nonferrous Metals Society of China2 采矿采矿工艺mining technology有用矿物valuable mineral冶金矿产原料metallurgical mineral raw materials矿床mineral deposit特殊采矿specialized mining海洋采矿oceanic mining, marine mining矿田mine field矿山mine露天矿山surface mine地下矿山underground mine矿井shaft矿床勘探mineral deposit exploration矿山可行性研究mine feasibility study矿山规模mine capacity矿山生产能力mine production capacity矿山年产量annual mine output矿山服务年限mine life矿山基本建设mine construction矿山建设期限mine construction period矿山达产arrival at mine full capacity开采强度mining intensity 矿石回收率ore recovery ratio矿石损失率ore loss ratio工业矿石industrial ore采出矿石extracted ore矿体orebody矿脉vein海洋矿产资源oceanic mineral resources矿石ore矿石品位ore grade岩石力学rock mechanics岩体力学rock mass mechanics3 选矿选矿厂concentrator, mineral processing plant 工艺矿物学process mineralogy开路open circuit闭路closed circuit流程flowsheet方框流程block flowsheet产率yield回收率recovery矿物mineral粒度particle size粗颗粒coarse particle细颗粒fine particle超微颗粒ultrafine particle粗粒级coarse fraction细粒级fine fraction网目mesh原矿run of mine, crude精矿concentrate粗精矿rough concentrate混合精矿bulk concentrate最终精矿final concentrate尾矿tailings粉碎comminution破碎crushing磨碎grinding团聚agglomeration筛分screening, sieving分级classification富集concentration分选separation手选hand sorting重选gravity separation, gravity concentration 磁选magnetic separation电选electrostatic separation浮选flotation化学选矿chemical mineral processing自然铜native copper铝土矿bauxite冰晶石cryolite磁铁矿magnetite赤铁矿hematite假象赤铁矿martite钒钛磁铁矿vanadium titano-magnetite铁燧石taconite褐铁矿limonite菱铁矿siderite................... tuyere cooler风口水套tuyere stock风口弯头tuyere风口twin-belt caster双带式连铸机twin-hearth furnace双床平炉two-bells system charging双料钟式装料type steel轮箍钢ultimate analysis of coke 焦炭元素分析ultrafine particle超微颗粒ultra-high power electric arc furnace超高功率电弧炉ultra-high power graphite electrode超高功率石墨电极ultra-high strength steel超高强度钢ultrasonic particle sizer, supersonic particle sizer超声粒度计under blowing 慢风underground mine地下矿山underground mining地下采矿undersize筛下料unreacted core model未反应核模型upper cone炉帽utilization coefficient利用系数vacuum arc degassing, VAD真空电弧脱气vacuum arc remelting, VAR真空电弧炉重熔vacuum casting真空浇铸vacuum decarburization真空脱碳vacuum degassing furnace, VDF真空脱气炉vacuum degassing真空脱气vacuum induction melting, VIM真空感应炉熔炼vacuum Kimitsu injection process君津真空喷粉法vacuum metallurgy真空冶金(学)vacuum oxygen decarburization process ,VOD真空吹氧脱碳法vacuum refining真空精炼valuable mineral有用矿物vanadium titano-magne钒钛磁铁矿titevaporization cooling汽化冷却vein矿脉vermicular cast iron蠕墨铸铁vermiculite蛭石vermiculizer蠕化剂vertical caster立式连铸机vertical guide roll立式导辊vertical-bending caster立弯式连铸机vibrating screen震动筛viscosity粘度weir and dam in tundish中间包挡墙welding metallurgy焊接冶金(学)wetting润湿white cast iron白口铸铁white slag白渣withdrawal roll拉辊wollastonite硅灰石working bolume工作容积wrought iron熟铁wustite维式体xylene二甲苯yield产率zero order reaction零级反应zirconia graphite brick锆炭砖zoned lining分区砌砖.。
酚醛树脂包覆氧化天然石墨作为锂离子电池负极材料
酚醛树脂包覆氧化天然石墨作为锂离子电池负极材料高文超1黄桃1沈宇栋2余爱水1,*(1复旦大学化学系,新能源研究院,上海市分子催化和功能材料重点实验室,上海200438;2无锡东恒新能源材料有限公司,江苏无锡214037)摘要:天然石墨经过浓硫酸氧化处理,酚醛树脂包覆并高温碳化后形成具有核壳结构的碳包覆氧化天然石墨复合材料.采用扫描电子显微镜(SEM),透射电子显微镜(TEM),X 射线衍射(XRD),激光显微拉曼光谱(Raman)等检测技术对氧化处理以及酚醛树脂热解碳包覆前后天然石墨材料的结构与形貌进行分析与表征.结果表明,氧化处理与适量的酚醛树脂热解碳包覆有效修复了天然石墨表面的一些缺陷结构,使其表面更为光滑.电化学测试结果显示,经过氧化处理与酚醛树脂热解碳包覆后天然石墨材料电化学性能得到明显提高.酚醛树脂包覆量为9%时,复合材料表现出最好的电化学性能,其首次放电比容量为434.0mAh ·g -1,40次循环后,放电比容量保持在361.6mAh ·g -1,而未经处理的天然石墨放电比容量仅为332.3mAh ·g -1.该改性方法有效提高了天然石墨材料的比容量,对其进一步应用具有重要意义.关键词:负极材料;天然石墨;酚醛树脂;氧化;包覆中图分类号:O646Phenolic Resin Coated Natural Graphite Oxide as an Anode Material forLithium Ion BatteriesGAO Wen-Chao 1HUANG Tao 1SHEN Yu-Dong 2YU Ai-Shui 1,*(1Department of Chemistry,Institute of New Energy,Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials,Fudan University,Shanghai 200438,P .R.China ;2Wuxi Dongheng New Energy Material Co.,Ltd,Wuxi 214037,Jiangsu Province,P .R.China )Abstract:A core-shell structure of the carbon-coated natural graphite oxide composite was successfully prepared.Natural graphite was initially oxidized using concentrated sulfuric acid and then carbon coated by the carbonization of phenolic resin at high temperature.Scanning electron microscopy (SEM),transmission electron microscopy (TEM),X-ray diffraction (XRD),and Raman techniques were used to characterize the morphology and structure of the natural graphite materials before and after oxidation and carbon coating by the pyrolysis of the phenolic resin.The results showed that the surface of the natural graphite particles became smoother and the surface defects were effectively modified after oxidation and carbon coating.The electrochemical test results showed that the electrochemical performance of the natural graphite improved significantly by oxidation with sulfuric acid and by carbon coating.When the covering amount of phenolic resin was 9%the modified natural graphite material gave the best electrochemical performance.Its initial discharge capacity was 434.0mAh ·g -1and it remained 361.6mAh ·g -1after 40charge-discharge cycles.The discharge capacity of the untreated natural graphite was only 332.3mAh ·g -1.The modification approach that improved the capacity of the natural graphite effectively is of great significance for the application of natural graphite in lithium ion batteries.[Article]物理化学学报(Wuli Huaxue Xuebao )Acta Phys.-Chim.Sin .2011,27(9),2129-2134September Received:May 13,2011;Revised:July 7,2011;Published on Web:July 29,2011.∗Corresponding author.Email:asyu@;Tel/Fax:+86-21-51630320.The project was supported by the Key Program of Basic Research of the Shanghai Committee of Science and Technology,China (10JC1401500)and Department of Chemistry and Shanghai Key Laboratory of Molecular and Innovative Materials,China (08DZ2270500).上海市基础研究重点项目(10JC1401500)和上海市分子催化和功能材料重点实验室(08DZ2270500)资助ⒸEditorial office of Acta Physico-Chimica Sinica2129Vol.27Acta Phys.-Chim.Sin.2011Key Words:Anode material;Natural graphite;Phenolic resin;Oxidation;Coating1引言锂离子电池是当今社会最为重要的二次电池,它具有工作电压高、能量密度高、循环寿命长、对环境友好等优点,1,2在手机、数码相机、便携式电脑等领域得到广泛应用.目前,已商业化的锂离子电池负极材料为石墨材料.3其中,天然石墨具有比容量较高、充放电平台平稳、储量大、成本低等优点,是一种十分理想的锂离子电池负极材料.但是,天然石墨与电解液相容性较差,充放电过程中容易发生由于溶剂化锂离子共插入而引起的石墨片层剥离,进而造成循环性能下降,倍率性能差等缺陷,4,5影响了它的进一步应用.针对这些问题,国内外展开相应的研究,对天然石墨进行表面改性和修饰,改善其电化学性能.目前,常见的改性方法包括表面氧化、6,7碳包覆、8,9金属包覆、10,11掺杂其它非碳元素12,13等.其中碳包覆法取得了较好的效果且最易在工业化中实施.然而,碳包覆过程中不可避免地会形成一些没有被包覆在天然石墨表面的热解碳并且经常会遇到包覆过量以及包覆不完全的问题,对材料的容量、循环性能等方面产生不利影响.14,15对此,Zhao等4在碳包覆前预先对天然石墨进行氧化处理,随之用原位聚合法在氧化处理后的天然石墨表面包覆一层间苯二酚甲醛树脂,并高温碳化,取得较好的效果.本文采用浓硫酸对天然石墨进行氧化处理,氧化处理后的天然石墨再以酚醛树脂溶液包覆,包覆方法为更易实现工业化的物理浸渍法,随后在高温下碳化,得到以氧化天然石墨为核心,酚醛树脂热解碳为外壳的核壳型结构改性天然石墨材料,并系统研究了酚醛树脂包覆含量对改性复合材料表面形貌以及电化学性能的影响.2实验2.1氧化石墨的制备取40g球形天然石墨(山东)于圆底烧瓶中,加入100mL98%的H2SO4溶液(分析纯)将其完全浸没,200°C油浴10h,过滤,所得产物经去离子水反复洗涤、过滤后烘干,得到氧化天然石墨.2.2碳包覆氧化石墨的制备将酚醛树脂的乙醇溶液与一定质量的氧化天然石墨均匀混合,分别制成酚醛树脂与氧化天然石墨质量比为5:95,7:93,9:91,11:89的混合溶液.常温下搅拌5h,70°C缓慢蒸发掉乙醇溶液,烘干.在氮气气氛保护下,所得产物在100°C固化1h,再以2°C·min-1的升温速度升温至900°C碳化3h.碳化后所得产物经250目筛过滤,得酚醛树脂包覆氧化天然石墨.按上述酚醛树脂不同质量百分比,将材料分别标记为ONG-5、ONG-7、ONG-9、ONG-11(5、7、9、11代表酚醛树脂的质量分数分别为5%、7%、9%、11%),同时将未经处理的天然石墨标记为NG,氧化天然石墨标记为ONG.2.3材料的物理表征采用X射线粉末衍射仪(XRD,Brucker D8,德国)和激光显微拉曼光谱仪(Renishaw inVia Reflex,英国)表征氧化及包覆前后天然石墨晶体结构;扫描电子显微镜(SEM,Hitachi,FE-SEM S-4800,日本)和透射电子显微镜(TEM,JEOL,JEM-2100F,日本)表征氧化及包覆前后天然石墨表面形貌及尺寸.2.4电池的组装及测试条件将上述处理的天然石墨、导电炭黑和聚偏氟乙烯(PVDF粘结剂,分析纯)按质量比94:1:5充分混合,在N-甲基吡咯烷酮(NMP,分析纯)溶液中搅拌得均匀浆状物.将所得的粘稠浆料均匀涂覆于铜箔上,70°C烘干后冲压成直径为14mm的电极片,10 MPa下压片.压好的电极片于80°C下真空干燥20 h,除去极片中所含微量的水分与NMP.在氩气手套箱内以制得的极片作为工作电极,金属Li作为对电极,Celgard2300聚丙烯(日本)为隔膜,制成扣式电池,电解液为溶于碳酸乙烯酯(EC)和碳酸二乙酯(DMC)(体积比1:1)混合溶剂中浓度为1mol·L-1的LiPF6溶液(国泰华荣化工新材料有限公司).电池的测试在武汉LAND电池测试系统CT2001A上完成.测试条件:恒电流充放电,电压范围为0-2.5V,电流密度为30mA·g-1.测试过程在室温下进行.3结果与讨论3.1氧化处理与碳包覆前后天然石墨的结构与表面形貌图1为氧化处理以及碳包覆改性前后天然石墨的XRD图.由图1可见,改性处理后天然石墨材料的XRD衍射峰位基本没有发生改变,均含(002)峰,这说明氧化处理与酚醛树脂包覆并碳化改性并没2130高文超等:酚醛树脂包覆氧化天然石墨作为锂离子电池负极材料No.9有破坏天然石墨的基本层状结构.此外,在碳包覆石墨材料的XRD衍射图中,并没有观察到无定形碳所特有的宽峰,这是因为酚醛树脂的包覆量有限,高温碳化后形成的复合材料的外层无定形碳壳非常薄,以至于很难在XRD衍射图中显现出来,但是在SEM和TEM中可以清楚地观察到这层无定形碳壳的存在.从这几种石墨材料的XRD衍射图中还可以观察到,经过氧化处理以及碳包覆改性的天然石墨其(002)峰强度明显小于原始天然石墨材料,并且随着酚醛树脂热解碳包覆含量的增加,(002)峰强逐渐降低.这说明石墨材料的结晶度随着氧化处理与碳包覆改性过程的进行而降低,结晶度的降低意味着石墨材料表面的无序化结构增加,进而说明酚醛树脂已经被成功地包覆在球形天然石墨表面,并且经过高温热解,在球形天然石墨表面形成了一层热解碳壳.图2为氧化处理以及碳包覆改性前后天然石墨的Raman光谱图.Raman光谱可以反映石墨表面的无序程度.由图2可见,这六种石墨材料均含有两个Raman峰,分别位于1580cm-1(G峰)与1360cm-1(D 峰)处.其中位于1580cm-1处的G峰被指认为sp2电子结构的E2g联合振动模式,对应石墨片层的芳环结构碳;在1360cm-1处的D峰被指认为类金刚石碳sp3电子结构的A1g联合振动模式,对应石墨片层的边缘碳和无序碳.16因此可以用I D/I G来表征碳材料的石墨化度R(R=I D/I G).17由图2可见,R值随着氧化处理与碳包覆的进行而增大,这说明氧化处理与碳包覆改性增大了天然石墨材料表面的无序化程度,特别是碳包覆改性过程,随着酚醛树脂包覆含量的不断增加,R值不断增大,天然石墨表面无序化程度不断加强.表明酚醛树脂已经被成功地包覆在球形天然石墨表面,并且经过高温热解,在球形天然石墨表面形成了一层热解碳壳,这与XRD显示的结果一致.图3为氧化处理以及碳包覆改性前后天然石墨的SEM图.由图3a可见,未经处理的天然石墨表面存在一些明显的裂纹和缺陷.在充放电过程中,溶剂化锂离子很容易通过这些裂纹与缺陷进入天然石墨层间,引起天然石墨材料的体积膨胀与片层剥离,最终导致其循环性能下降.由图3(b-f)可见,氧化处理和碳包覆改性有效修复了天然石墨表面存在的裂纹与缺陷状况,明显改善了天然石墨的表面形貌.这一修复作用在碳包覆改性过程中表现得尤为明显.外层酚醛树脂热解碳的存在有效覆盖住了天然石墨表面的裂纹、缺陷.随着酚醛树脂包覆含量的增加,天然石墨表面逐渐变得更为光滑,裂纹和缺陷慢慢消失.当酚醛树脂包覆含量达9%时,天然石墨表面的裂纹与缺陷基本消失,由图4可见,此时天然石墨表面形成一层均匀的,厚度约为20nm 的无定形碳壳,该无定形碳壳的存在将有效改善天然石墨材料的电化学性能.而酚醛树脂包覆含量继续增加时,一些多余的热解碳在天然石墨表面形成结块,另外一些则散落在材料中.这些结块以及散图1石墨样品的XRD图Fig.1XRD patterns of graphite samples(a)natural graphite(NG),(b)natural graphite oxide(ONG),(c)ONG-5,(d)ONG-7,(e)ONG-9,(f)ONG-11;ONG-5,ONG-7,ONG-9,ONG-11denote5%,7%,9%,11%(w)phenolic resin coated on the surface of natural graphite oxide.图2石墨样品的Raman光谱Fig.2Raman spectra of the graphite samples(a)NG,(b)ONG,(c)ONG-5,(d)ONG-7,(e)ONG-9,(f)ONG-11;R=I D/I G2131Vol.27 Acta Phys.-Chim.Sin.2011落在材料中的酚醛树脂热解碳的存在将阻碍锂离子在石墨层中嵌入及脱出,造成其容量衰减.3.2碳包覆含量对改性天然石墨电化学性能的影响图5与表1给出了氧化处理及碳包覆改性前后天然石墨的首次充放电情况.从图5和表1中可以观察到,氧化处理后天然石墨的首次充放电容量及循环效率都得到进一步提高.主要是因为氧化处理去除了天然石墨表面的一些活性较高的基团,使得生成的SEI膜较薄,且更为均匀,进而减小了首次充放电循环过程中的不可逆容量.而对于碳包覆来讲,随碳包覆含量的增加,改性复合材料比容量呈先增加后减小的趋势.当酚醛树脂包覆含量为9%时,复合材料首次充放电比容量最高,其首次放电比容量为434.0mAh·g-1,首次充电比容量为374.8 mAh·g-1,首次充放电效率为86.4%.然而,当酚醛树脂包覆含量继续增加时,复合材料充放电比容量反而呈下降趋势.这可能是由于酚醛树脂热解碳层过厚,阻碍了锂离子插入石墨层间,从而使其充放电图4石墨样品的的TEM图Fig.4TEM images of the graphite samples(a)NG,(b)ONG-9图5电流密度为30mA·g-1时石墨样品的首次充放电曲线Fig.5The initial charge-discharge curves for graphite samples at a current density of30mA·g-1(a)NG,(b)ONG,(c)ONG-5,(d)ONG-7,(e)ONG-9,(f)ONG-11图3石墨样品的SEM图Fig.3SEM images of the graphite samples(a)NG,(b)ONG,(c)ONG-5,(d)ONG-7,(e)ONG-9,(f)ONG-11 2132高文超等:酚醛树脂包覆氧化天然石墨作为锂离子电池负极材料No.9比容量有所降低.图6为氧化处理及碳包覆前后天然石墨的循环充放电性能曲线,充放电电流密度为30mA ·g -1.我们可以看到,酚醛树脂包覆含量为9%的改性天然石墨表现出最为优异的循环性能,经过40次充放电循环后,其放电比容量保持在361.6mAh ·g -1,较未经处理的天然石墨比容量(332.3mAh ·g -1)提高了约30mAh ·g -1.这是因为,适量的酚醛树脂包覆在天然石墨表面形成了一层机械强度较高的缓冲层,该缓冲层的形成有效阻止了由于溶剂共嵌入所引起的石墨结构破坏,提高了石墨负极材料的循环稳定性.而当酚醛树脂包覆含量继续增加时,材料循环性能反而有所下降,过厚的包覆碳层的存在阻碍了锂离子的嵌入和脱嵌.此外,当酚醛树脂包覆含量过多时,很难保证所有的酚醛树脂热解碳都被包覆于石墨材料表面,一些热解碳会散落在石墨材料中,造成了循环性能的下降.图7为酚醛树脂包覆含量为9%的天然石墨与未经处理的天然石墨材料的倍率性能对比图.从图中可以观察到,酚醛树脂包覆含量为9%的改性天然石墨表现出了良好的倍率性能.在330mA ·g -1的电流密度下,其容量仍然保持在150mAh ·g -1以上,较原始天然石墨(60mAh ·g -1)提高了150%.且当电流密度恢复到30mA ·g -1时,其容量基本完全恢复.这可能是由于相比于石墨材料,外层无定形碳材料的层间距更大,锂离子在其中扩散性能较好.这相当于在天然石墨外表面形成一层锂离子缓冲层,从而提高了天然石墨类碳材料的大电流充放电性能.4结论天然石墨经过氧化处理和适量的酚醛树脂热解碳包覆改性后其首次充放电比容量及循环性能得到明显提高.酚醛树脂包覆量为9%时,复合材料表现出最好的电化学性能,其首次放电比容量为434.0mAh ·g -1,循环40次后的放电比容量为361.6mAh ·g -1,且倍率性能良好,在330mA ·g -1的电流密度下进行充放电测试,其容量仍然保持在150mAh ·g -1以上.可见经氧化处理与酚醛树脂热解碳包覆处理后形成的核壳结构有效改善了天然石墨的电化学性能.References(1)Doyle,M.;Fuller,T.F.;Newman,J.J.Electrochem.Soc.1993,140,1526.(2)Whittingham,M.S.Chem.Rev.2004,104(10),4271.(3)Li,F.Q.;Lai,Y .Q.;Zhang,Z.A.;Gao,H.Q.;Yang,J.Acta Phys.-Chim.Sin.2008,24,1302.[李凡群,赖延清,张治安,高宏权,杨娟.物理化学学报,2008,24,1302.](4)Zhao,H.P.;Ren,J.G.;He,X.M.;Li,J.J.;Jiang,C.Y .;Wan,C.R.Electrochim.Acta 2007,52,6006.(5)Yoshio,M.;Wang,H.;Fukuda,K.;Hara,Y .;Adachi,Y .J.Electrochem.Soc.2000,147,1245.(6)Mao,W.Q.;Wang,J.M.;Xu,Z.H.;Niu,Z.X.;Zhang,mun.2006,8,1326.C 1:initial charge capacity,D 1:initial discharge capacity,η:initialefficiency,D 40:discharge capacity at the 40th cycle 表1石墨材料的电化学性能Table 1Electrochemical performance of the graphitesamplesSample NG ONG ONG-5ONG-7ONG-9ONG-11C 1/(mAh ·g -1)348.7357.7357.8362.9374.8345.2D 1/(mAh ·g -1)391.3398.5398.7415.9434.0397.7η/%89.189.889.787.286.486.7D 40/(mAh ·g -1)332.3335.1342.2351.2361.6340.9图6电流密度为30mA ·g -1时石墨样品的循环充放电性能图Fig.6Charge-discharge cycling performance curves of graphite samples at a current density of 30mA ·g -1图7石墨样品的倍率性能曲线Fig.7Rate capacity curves of the graphite samples2133Vol.27 Acta Phys.-Chim.Sin.2011(7)Menachem,C.;Wang,Y.;Floners,J.;Peled,E.;Greenbaum,S.G.J.Power Sources1998,76,180.(8)Chen,J.T.;Zhou,H.H.;Chang,W.B.;Ci,Y.X.ActaPhys.-Chim.Sin.2002,18,180.[陈继涛,周恒辉,常文保,慈云祥.物理化学学报,2002,18,180.](9)Zhang,H.L.;Li,F.;Liu,C.J.Phys.Chem.C2008,112,7767.(10)Choi,W.C.;Byun,D.J.;Lee,J.K.;Cho,B.W.Electrochim.Acta2004,50,523.(11)Takamura,T.Bull.Chem.Soc.Jpn.2002,75,21.(12)Tossici,R.;Berrettoni,M.;Rosolen,M.J.Eletrochem.Soc.1997,144,186.(13)Tanaka,U.;Sogabe,T.;Sakagoshi,H.;Tojo,T.Carbon2001,39,931.(14)Guo,K.K.;Pan,Q.M.;Fan,S.B.J.Power Sources2002,111,350.(15)Yu,Z.H.;Wu,F.Battery Bimonthly2003,33,131.[俞政洪,吴锋.电池,2003,33,131.](16)Tuistra,F.;Koeing,pos.Mater.1970,4,492.(17)Tsumura,T.;Katanosaka,A.;Souma,I.Solid State Ionics2000,135,209.2134。
石墨炉测定各种元素的条件
原子吸收分光光度法分析手册第 4 册石墨炉原子吸收分析各元素的测定条件原子吸收分光光度法分析手册第 4 册目录7.石墨炉原子吸收分析各元素的测定条件 (3)7.1测定条件 (3)7.2应用于实际样品 (3)7.3石墨管的类型和寿命 (3)7.4干扰、背景吸收和测定注意事项 (4)7.5各元素的测定条件 (5)1) 银 (Ag) (6)2) 铝 (A l) (7)2) 铝 (A l) (8)3) 砷 (As) (9)3) 砷 (As) (10)4) 金 (Au) (11)4) 金 (Au) (12)5) 铍 (Be) (14)6) 铋 (Bi) (16)7) 钙 (Ca) (18)8) 镉 (Cd) (20)9) 铬 (Cr) (22)10) 钴 (Co) (24)11) 铜 (Cu) (26)12) 铁 (Fe) (28)13) 钾 (K) (30)14) 锂 (Li) (32)15) 镁 (Mg) (34)16) 锰 (Mn) (36)17) 钼 (Mo) (37)17) 钼 (Mo) (38)18) 钠 (Na) (39)18) 钠 (Na) (40)19) 镍 (Ni) (41)19) 镍 (Ni) (42)20) 铅 (Pb) (43)20) 铅 (Pb) (44)21) 铂 (Pt) (45)21) 铂 (Pt) (46)22) 铑 (Rh) (48)23) 锑 (Sb) (50)24) 硒 (Se) (51)24) 硒 (Se) (52)25) 硅 (Si) (53)25) 硅 (Si) (54)26) 锡 (Sn) I (55)26) 锡 (Sn) I (56)27) 锡 (Sn) II (58)28) 锶 (Sr) (59)28) 锶 (Sr) (60)29) 钛 (Ti) (61)29) 钛 (Ti) (62)30) 钒 (V) (63)30) 钒 (V) (64)31) 锌 (Zn) (65)31) 锌 (Zn) (66)7. 石墨炉原子吸收分析各元素的测定条件7.1 测定条件溶液的制备请参考原子吸收分析手册的第二册第三章,浓度范围要考虑最终的吸收值。
用于SO2去极化电解制氢的铂基催化剂
化工进展Chemical Industry and Engineering Progress2023 年第 42 卷第 S1 期用于SO 2去极化电解制氢的铂基催化剂谢璐垚,陈崧哲,王来军,张平(清华大学核能与新能源技术研究院,北京 100084)摘要:综述了铂基SO 2去极化电解(SDE )阳极催化剂的研究进展。
SDE 阳极反应条件苛刻,铂基催化剂因具备良好的导电性、抗腐蚀性,并能够有效抵抗H 2S 等硫物质的毒化,成为SDE 阳极催化剂的首选。
通过引入Al 、Cr 、Ni 等非贵金属元素,可有效提高铂基催化剂性能并减少Pt 的用量。
在载体方面,综述和讨论了活性炭、石墨、炭黑、石墨烯以及SiC/TiC 等对铂基催化剂性能的影响,此外分析了催化剂制备工艺对催化剂结构参数和性能的影响。
尽管已经取得了很多研究成果,但当前对铂基SDE 阳极催化剂的长期稳定性、多金属催化剂各金属元素间的相互作用等方面的研究尚较少,进一步优化催化剂设计、加强载体筛选及其改性,开发新的制备工艺,提高Pt 利用率及催化剂的活性和稳定性,是未来相关研究的关键所在。
关键词:制氢;混合硫循环;二氧化硫去极化电解;铂基催化剂中图分类号:TQ15 文献标志码:A 文章编号:1000-6613(2023)S1-0299-11Platinum-based catalysts for SO 2 depolarized electrolysisXIE Luyao ,CHEN Songzhe ,WANG Laijun ,ZHANG Ping(Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China)Abstract: The research progress of platinum-based SO 2 depolarized electrolysis (SDE) anode catalysts is reviewed in this paper. Because of the outstanding electrical conductivity, corrosion resistance, and effective resistance to H 2S and other sulfur-containing poisonings, platinum-based catalysts are considered as the best choice for SDE anode. By introducing non-precious metal such as Al, Cr and Ni, the performance of platinum-based catalysts can be effectively improved and the amount of Pt can be reduced. In terms of the support, the effects of activated carbon, graphite, carbon black, graphene and SiC/TiC on the properties were reviewed and discussed. In addition, the effects of catalyst preparation technology on the structural parameters and performance of catalysts were also discussed. Although many research results have been achieved, there are still insufficient studies on the long-term stability of platinum-based SDE anode catalysts and the interactions among metal elements in polymetallic catalysts. Further optimization of catalyst design and carrier screening/modification, development of new preparation processes, improvement of Pt utilization and catalyst activity and stability, are the keys of future research.Keywords: hydrogen production; hybrid sulfur cycle; SO 2 depolarized electrolysis; platinum based catalyst综述与专论DOI :10.16085/j.issn.1000-6613.2023-1169收稿日期:2023-07-10;修改稿日期:2023-09-12。
冶金专业英语词汇
专业英语词汇1 总论采矿mining地下采矿underground mining露天采矿open cut mining, open pit mining, surface mining采矿工程mining engineering选矿(学)mineral dressing, ore beneficiation, mineral processing矿物工程mineral engineering冶金(学)metallurgy过程冶金(学)process metallurgy提取冶金(学)extractive metallurgy化学冶金(学)chemical metallurgy物理冶金(学)physical metallurgy金属学Metallkunde冶金过程物理化学physical chemistry of process metallurgy冶金反应工程学metallurgical reaction engineering冶金工程metallurgical engineering钢铁冶金(学)ferrous metallurgy, metallurgy of iron and steel有色冶金(学)nonferrous metallurgy真空冶金(学)vacuum metallurgy等离子冶金(学)plasma metallurgy微生物冶金(学)microbial metallurgy喷射冶金(学)injection metallurgy钢包冶金(学)ladle metallurgy二次冶金(学)secondary metallurgy机械冶金(学)mechanical metallurgy焊接冶金(学)welding metallurgy粉末冶金(学)powder metallurgy铸造学foundry火法冶金(学)pyrometallurgy湿法冶金(学)hydrometallurgy电冶金(学)electrometallurgy氯冶金(学)chlorine metallurgy矿物资源综合利用engineering of comprehensive utilization of mineral resources中国金属学会The Chinese Society for Metals中国有色金属学会The Nonferrous Metals Society of China2 采矿采矿工艺mining technology有用矿物valuable mineral冶金矿产原料metallurgical mineral raw materials矿床mineral deposit特殊采矿specialized mining海洋采矿oceanic mining, marine mining矿田mine field矿山mine露天矿山surface mine地下矿山underground mine矿井shaft矿床勘探mineral deposit exploration矿山可行性研究mine feasibility study矿山规模mine capacity矿山生产能力mine production capacity矿山年产量annual mine output矿山服务年限mine life矿山基本建设mine construction矿山建设期限mine construction period矿山达产arrival at mine full capacity 开采强度mining intensity矿石回收率ore recovery ratio矿石损失率ore loss ratio工业矿石industrial ore采出矿石extracted ore矿体orebody矿脉vein海洋矿产资源oceanic mineral resources矿石ore矿石品位ore grade岩石力学rock mechanics岩体力学rock mass mechanics3 选矿选矿厂concentrator, mineral processing plant工艺矿物学process mineralogy开路open circuit闭路closed circuit流程flowsheet方框流程block flowsheet产率yield回收率recovery矿物mineral粒度particle size粗颗粒coarse particle细颗粒fine particle超微颗粒ultrafine particle粗粒级coarse fraction细粒级fine fraction网目mesh原矿run of mine, crude精矿concentrate粗精矿rough concentrate混合精矿bulk concentrate最终精矿final concentrate尾矿tailings粉碎comminution破碎crushing磨碎grinding团聚agglomeration筛分screening, sieving分级classification富集concentration分选separation手选hand sorting重选gravity separation, gravity concentration磁选magnetic separation 电选electrostatic separation浮选flotation化学选矿chemical mineral processing 自然铜native copper铝土矿bauxite冰晶石cryolite磁铁矿magnetite赤铁矿hematite假象赤铁矿martite钒钛磁铁矿vanadium titano-magnetite 铁燧石taconite褐铁矿limonite菱铁矿siderite镜铁矿specularite硬锰矿psilomelane软锰矿pyrolusite铬铁矿chromite黄铁矿pyrite钛铁矿ilmennite金红石rutile萤石fluorite高岭石kaolinite菱镁矿magnesite重晶石barite石墨graphite石英quartz方解石calcite石灰石limestone白云石dolomite云母mica石膏gypsum硼砂borax石棉asbestos蛇纹石serpentine阶段破碎stage crushing 粗碎primary crushing 中碎secondary crushing 细碎fine crushing对辊破碎机roll crusher 粉磨机pulverizer震动筛vibrating screen 筛网screen cloth筛孔screen opening筛上料oversize筛下料undersize粗磨coarse grinding 细磨fine grinding球磨机ball mill衬板liner分级机classifier自由沉降free setting沉积sedimentation石灰lime松油pine oil硫化钠sodium sulfide硅酸钠(水玻璃)sodium silicate, water glass过滤filtration过滤机filter给矿,给料feeding给矿机feeder在线分析仪on line analyzer在线粒度分析仪on line size analyzer超声粒度计ultrasonic particle sizer, supersonic particle sizer4 冶金过程物理化学冶金过程热力学thermodynamics of metallurgical processes统计热力学statistical thermodynamics不可逆过程热力学thermodynamics of irreversible processes化学热力学chemical thernodynamics表面热力学surface thermodynamics合金热力学thermodynamics of alloys冶金热力学数据库thermodynamics databank in metallurgy系system单元系single-componentsystem多元系multicomponent system均相系统homogeneous system广度性质extensive property强度性质intensive property过程process等温过程isothermal process等压过程isobaric process等容过程isochoric process绝热过程adiabatic process可逆过程reversible process不可逆过程irreversible process自发过程spontaneous process自理过程physical process化学过程chemical process冶金过程metallurgical process化学反应chemical reaction化合反应combination reaction 分解反应decomposition reaction置换反应displacement reaction可逆反应reversible reaction不可逆反应irreversible reaction电化学反应electrochemical reaction 多相反应multiphase reaction固态反应solid state reaction气一金(属)反应gas-metal reaction渣一金(属)反应slag-metal reaction 平衡equilibrium化学平衡chemical equilibrium相平衡phase equilibrium热力学平衡thermodynamic equilibrium 亚稳平衡metastable equilibrium热力学函数thermodynamic function偏摩尔量partial molar quantity总摩尔量integral molar quantity标准态standard state焓enthalpy生成焓enthalpy of formation反应焓enthalpy of reaction熵entropy吉布斯能Gibbs energy生成吉布斯能Gibbs energy of formation 反应吉布斯能Gibbs energy of reaction溶解吉布斯能Gibbs energy of solution吉布斯能函数Gibbs energy function化学位chemical potential热化学thermochemistry热效应heat effect热容heat capacity熔化热heat of fusion汽化热heat of vaporization升华热heat of sublimation相变热heat of phase transformation放热反应exothermic reaction吸热反应endothermic reaction赫斯定律Hess’s law相律phase rule相图phase diagram一元相图single-component phase diagram 二元相图binary-component phase diagram 三元相图ternary-component phase diagram 液相线liquidus固相线solidus共晶点eutectic point 杠杆规则lever rule溶液solution溶质solute溶剂solvent固溶体solid solution溶液浓度concentration of solution摩尔分数mole fraction冶金熔体metallurgical melt金属熔体metal melt(炉)渣,熔渣slag熔盐molten salt, fused salt理想溶液ideal solution真实溶液real solution正规溶液regular solution活度activity活度系数activity coefficient拉乌尔定律Raoult’s law亨利定律Henry’s law纯物质标准态pure substance standard质量1%溶液标准(态)1 mass% solution standard无限稀溶液参考态reference state of infinityly dilute solution相互作用系数interaction coefficient化学反应等温式chemical reaction isotherm吉布斯~亥姆霍兹方程Gibbs-Helmholtz equation质量作用定律law of mass action平衡常数equilibrium constant平衡值equilibrium value直接还原direct reduction间接还原indirect reduction金属热还原metallothermic reduction选择性氧化selective oxidation渣碱度basicity of slag光学破度optical basicity酸性氧化物acid oxide碱性氧化物basicoxide两性氧化物amphoteric泡沫渣foaming slag熔渣的分子理论molecular theory of slag熔渣的离子理论ionization theory of slag脱氧平衡deoxidation equilibrium脱氧常数deoxidation constant熔渣脱硫desulfurization by slag气态脱硫desulfurization in the gaseous state硫分配比sulfur partition ratio 硫化物容量sulfide capacity氧化脱磷dephosphorization under oxidizing atmosphere磷分配比碳一氧平衡carbon-oxygen equilibrium真空脱碳vacuum decarburization去气degassing去除非金属夹杂(物)elimination of nonmetallic inclusion非金属夹杂(物)变形form modification of nonmetallic inclusion脱硅desiliconization脱锰demanganization分配平衡distribution law化学气相沉积chemical vapor deposition(CVD)4.2 冶金过程动力学微观动力学microkinetics化学动力学chemical kinetics反应途径reaction path反应机理reaction mechanism基元反应elementary reaction平行反应parallel链反应chain reaction总反应overall reaction反应速率reaction rate反应速率常数reaction rate constant反应级数reaction order零级反应zero order reaction一级反应first order reaction二级反应second order reactionn级反应nth order reaction碰撞理论collision theory活化能activation energy表现活化能apparent activation energy阿伦尼乌斯方程Arrhenius equation半衰期half-life宏观动力学macrokinetics冶金过程动力学kinetics of metallurgical process传输现象transport phenomena传质mass transfer传热heat transfer动量传输momentum transfer层流laminar flow湍流turbulent flow气泡gas bubble鼓泡bubbling射流jet液滴liquid droplet 粘度viscosity边界层boundary layer流率flow rate通量flux扩散diffusion菲克第一扩散定律Fick’s 1st law of diffusion 菲克第一扩散定律Fick’s 2nd law of diffusion 扩散系数diffusion coefficient传质系数mass transfer coefficient热传导heat conduction热对流heat convection自然对流natural convection强制对流forced convection热辐射heat radiation导热率thermal conductivity传热系数heat transfer coefficient体内浓度bulk concentration未反应核模型unreacted core model扩散控制反应diffusion-controlled reaction 化学控制反应chenical-controlled reaction 混合控制反应mixed-controlled reaction相似原理priciple of similarity雷诺数Reynolds number固定床fiexed bed填充床packed bed移动床moving bed流态化床fluidized bed混合时间mixing time停留时间residence time, retention time催化catalysis催化剂catalyst表面能surface energy表面张力surface tension界面能interfacial energy界面张力interfacial tension润湿wetting表面活性物质surface-active substance吸收absorption吸附absorption4.3 冶金电化学冶金电化学metallurgical electrochemistry 熔盐电化学electrochemistry of fused salts 固态离子学solid state ionics电解质溶液electrolyte solution阳离子cation阴离子anion 电导conductance电导率conductivity电阻resistance电极electrode阴极cathode阳极anode电镀electroplating固体电解质solid electrolyte稳定的氧化锆stablized zirconia氧传感器oxygen sensor硅传感器silicon sensor定氧测头oxygen probe定硅测头silicon probe4.4 冶金物理化学研究方法冶金物理化学研究方法research methods in metallurgical physicalchemistry热电偶thermocouple量热计calorimeter热太平thermobalance热分析thermal analysis差热分析differential thermal analysis,DTA热重法thermogravimetry分子筛molecular sieve5 钢铁冶金 5.1 炼焦炼焦coking高温炭化high temperature carbonization塑性成焦机理plastic mechanism of coke formation中间相成焦机理mesophase mechanism of coke formation选煤coal preparation, coal washing配煤coal blending配煤试验coal blending test炼焦煤coking coal气煤gas coal肥煤fat coal瘦煤lean coal焦炉coke oven焦化室oven chamber焦饼coke cake结焦时间coking time周转时间cycle time装煤coal charging捣固装煤stamp charging推焦coke pushing焦炭熄火coke quenching干法熄焦dry quenching of coke 焦台coke wharf装煤车larry car推焦机pushing machine拦焦机coke guide熄焦车quenching car焦炉焖炉banking for coke oven焦炭coke冶金焦metallurgical coke铸造焦foundry coke焦炭工业分析proximate analysis of coke焦炭元素分析ultimate analysis of coke焦炭落下指数shatter index of coke焦炭转鼓指数drum index of coke焦炭热强度hot strength of coke焦炭反应性coke reactivity焦炭反应后强度post-reaction strength of coke焦炭显微强度microstrength of coke焦炉煤气coke oven gas发热值calorific value煤焦油coal tar粗苯crude benzol苯benzene甲苯toluene二甲苯xylene苯并呋喃-茚树脂 coumarone-indene resin 精萘refined naphthalene精蒽refined anthracene煤[焦油]沥青 coal tar pitch沥青焦pitch coke针状焦needle coke型焦formcoke5.2 耐火材料耐火材料refractory materials耐火粘土fireclay高岭土kaolin硬质粘土flint clay轻质粘土soft clay陶土pot clay蒙脱石montmorillonite叶蜡石pyrophyllite膨润土bentonite鳞石英tridymite方石英cristobalite砂岩sandstone耐火石firestone莫来石mullite 氧化铝alumina烧结氧化铝sintered alumina电熔氧化铝fused alumina刚玉corundum红柱石andalusite蓝晶石kyanite,cyanite硅线石sillimanite橄榄石olivine方镁石periclase镁砂magnesia合成镁砂synthetic sintered magnesia电熔镁砂fused magnesia烧结白云石砂sintered dolomite clinker合成镁铬砂synthetic magnesia chromite clinker尖晶石spinel镁铬尖晶石magnesia chrome spinel,magnesiochromite硅藻土diatomaceous earth, infusorial earth蛭石vermiculite珍珠岩perlite碳化硅silicon carbide氮化硅silicon nitride氮化硼boron nitride粘土熟料chamotte熟料grog轻烧light burning,soft burning死烧dead burning,hard burning成型模注shaping moulding机压成型mechanical pressing等静压成型isostatic pressing摩擦压砖机friction press液压压砖机hydraulic press捣打成型ramming process熔铸成型fusion cast process砖坯强度green strength,dry strength隧道窑tunnel kiln回转窑rotary kiln倒焰窑down draught kiln耐火砖refractory brick标准型耐火砖standard size refractory brick泡砂石quartzite sandstone酸性耐火材料acid refractory [material]硅质耐火材料siliceous refractory [material]硅砖silica brick,dinas brick熔融石英制品fused quartz product硅酸铝质耐火材料aluminosillicate refractory半硅砖semisilica brick粘土砖fireclay brick,chamotte brick石墨粘土砖graphite clay brick高铝砖high alumina brick硅线石砖sillimanite brick莫来石砖mullite brick刚玉砖corundum brick铝铬砖alumina chrome brick熔铸砖fused cast brick碱性耐火材料basic refractory [material]镁质耐火材料magnesia refractory [material]镁砖magnesia brick镁铝砖magnesia alumina brick镁铬砖magnesia chrome brick镁炭砖magnesia carbon brick中性耐火材料neutral refractory [material]复合砖composite brick铝炭砖alumina carbon brick铝镁炭转alumina magnesia brick锆炭砖zirconia graphite brick镁钙炭砖magnesia clacia carbon brick长水口long nozzle浸入式水口immersion nozzle,submerged nozzle定径水口metering nozzle氧化铝-碳化硅-炭砖 Al2O3-SiC-C brick透气砖gas permeable brick,porous brick滑动水口slide gate nozzle水口砖nozzle brick塞头砖stopper绝热耐火材料insulating refractory轻质耐火材料light weight refractory袖砖sleeve brick格子砖checker brick,chequer brick陶瓷纤维ceramic fiber耐火纤维refractory fiber耐火浇注料refractory castable耐火混凝土refractory concrete荷重耐火性refractoriness under load抗渣性slagging resistance耐磨损性abrasion resistance5.3 碳素材料[含]碳[元]素材料 carbon materials无定形碳amorphous carbon金刚石diamond炭相[学]carbon micrography 炭黑carbon black石油沥青petroleum pitch石油焦炭petroleum coke石墨化graphitization石墨化电阻炉electric resistance furnace for graphitization石墨纯净化处理purification treatment of graphite炭砖carbon brick炭块carbon block碳化硅基炭块SiC-based carbon block炭电极carbon electrode连续自焙电极Soderberg electrode石墨电极graphite electrode超高功率石墨电极ultra-high power graphite electrode石墨电极接头graphite electrode nipple石墨电极接头孔graphite electrode socket plug电极糊electrode paste石墨坩埚graphite crucible石墨电阻棒graphite rod resistor炭刷carbon brush高纯石墨high purity graphite5.4 铁合金铁合金ferroalloy硅铁ferrosilicon硅钙calcium silicon金属硅silicon metal锰铁ferromangnanese低碳锰铁low carbon ferromanganese硅锰silicomanganese金属锰manganese metal铬铁ferrochromium低碳铬铁low carbon ferrochromium微碳铬铁extra low carbon ferrochromium 硅铬silicochromium金属铬chromium metal钨铁ferrotunsten钼铁ferromolybdenum钛铁ferrotitanium硼铁ferroboron铌铁ferroniobium磷铁ferrophosphorus镍铁ferronickel锆铁ferrozirconium硅锆silicozirconium 稀土硅铁rare earth ferrosilicon稀土镁硅铁rare earth ferrosilicomagnesium成核剂nucleater孕育剂incubater,inoculant球化剂nodulizer蠕化剂vermiculizer中间铁合金master alloy复合铁合金complex ferroalloy电碳热法electro-carbothermic process电硅热法electro-silicothermic process铝热法aluminothermic process,thermit process电铝热法electro-aluminothermic process开弧炉open arc furnace埋弧炉submerged arc furnace半封闭炉semiclosed furnace封闭炉closed furnace矮烟罩电炉electric furnace with low hood矮炉身电炉low-shaft electric furnace5.5 烧结与球团人造块矿ore agglomerates烧结矿sinter压块矿briquette球团[矿] pellet针铁矿goethite自熔性铁矿self-fluxed iron ore复合铁矿complex iron ore块矿lump ore粉矿ore fines矿石混匀ore blending配矿ore proportioning矿石整粒ore size grading返矿return fines储矿场ore stockyard矿石堆料机ore stocker匀矿取料机ore reclaimer熔剂flux消石灰slaked lime活性石灰quickened lime有机粘结剂organic binder烧结混合料sinter mixture烧结铺底料hearth layer for sinter烧结sintering烧结热前沿heat front in sintering烧结火焰前沿flame front in sintering 渣相粘结slag bonding扩散粘结diffusion bonding 带式烧结机Dwight-Lloyd sintering machine环式烧结机circular travelling sintering machine烧结梭式布料机shuttle conveyer belt烧结点火料sintering ignition furnace烧结盘sintering pan烧结锅sintering pot烧结冷却机sinter cooler带式冷却机straight-line cooler环式冷却机circular cooler,annular cooler生球green pellet,ball生球长大聚合机理ball growth by coalescence生球长大成层机理ball growth by layering生球长大同化机理ball growth by assimilation精矿成球指数balling index for iron ore concentrates生球转鼓强度drum strength of green pellet生球落下强度shatter strength of green pellet生球抗压强度compression strength of green pellet生球爆裂温度cracking temperature of green pellet圆筒造球机balling drum圆盘造球机balling disc竖炉陪烧球团shaft furnace for pellet firing带式机陪烧球团traveling grate for pellet firing链算机-回转窑陪烧球团grate-kiln for pellet firing环式机陪烧球团circular gates for pellet firing冷固结球团cold bound pellet维式体wustite铁橄榄石fayalite铁尖晶石hercynite铁黄长石ferrogehlenite铁酸半钙calcium diferrite铁酸钙calcium ferrite铁酸二钙dicalcium ferrite锰铁橄榄石knebelite钙铁橄榄石kirschsteinite钙铁辉石hedenbergite钙铁榴石andradite钙长石anorthite钙镁橄榄石monticellite钙钛矿perovskite硅灰石wollastonite硅酸二钙dicalcium silicate 硅酸三钙tricalcium silicate镁橄榄石forsterite镁黄长石akermanite镁蔷薇辉石manganolite钙铝黄长石gehlenite钛辉石titanaugite枪晶石cuspidine预还原球团pre-reduced pellet金属化球团metallized pellet转鼓试验drum test,tumbler test落下试验shatter test5.6 高炉炼铁炼铁iron making高炉炼铁[法] blast furnace process高炉blast furnace鼓风炉blast furnace炉料charge, burden矿料ore charge焦料coke charge炉料提升charge hoisting小车上料charge hoisting by skip吊罐上料charge hoisting by bucket皮带上料charge hoisting by belt conveyer装料charging装料顺序charging sequence储料漏斗hopper双料钟式装料two-bells system charging无料钟装料bell-less charging布料器distributor炉内料线stock line in the furnace探料尺gauge rod利用系数utilization coefficient冶炼强度combustion intensity鼓风blast风压blast pressure风温blast temperature鼓风量blast volume鼓风湿度blast humidity全风量操作full blast慢风under blowing休风delay喷吹燃料fuel injection喷煤coal injection喷油oil injection富氧鼓风oxygen enriched blast,oxygen enrichment置换比replacement ratio 喷射器injector热补偿thermal compensation焦比coke ratio,coke rate燃料比fuel ratio,fuel rate氧化带oxidizing zone风口循环区raceway蒸汽鼓风humidified blast混合喷吹mixed injection脱湿鼓风dehumidified blast炉内压差pressure drop in furnace煤气分布gas distribution煤气利用率gas utilization rate炉况furnace condition顺行smooth running焦炭负荷coke load,ore to coke ratio软熔带cohesive zone,softening zone渣比slag to iron ratio,slag ratio上部[炉料]调节burden conditioning下部[鼓风]调节blast conditioning高炉作业率operation rate of blast furnace 休风率delay ratio高炉寿命blast furnace campaign悬料hanging崩料slip沟流channeling结瘤scaffolding炉缸冻结hearth freeze-up开炉blow on停炉blow off积铁salamander炉型profile,furnace lines炉喉throat炉身shaft,stack炉腰belly炉腹bosh炉缸hearth炉底 bottom炉腹角bosh angle炉身角stack angle有效容积effective volume工作容积working bolume铁口iron notch, slag notch 渣口cinder notch, slag notch 风口tuyere窥视孔peep hole风口水套tuyere cooler 渣口水套slag notch cooler风口弯头tuyere stock热风围管bustle pipe堵渣机stopper泥炮mud gun,clay gun开铁口机iron notch drill铁水hot metal铁[水]罐iron ladle鱼雷车torpedo car主铁沟sow出铁沟casting house铁沟iron runner渣沟slag runner渣罐cinder ladle, slag ladle 撇渣器skimmer冷却水箱cooling plate冷却壁cooling stave汽化冷却vaporization cooling 热风炉hot blast stove燃烧室combustion chamber燃烧器burner热风阀hot blast valve烟道阀chimney valve冷风阀cold blast valve助燃风机burner blower切断阀burner shut-off valve旁通阀by-pass valve混风阀mixer selector valve送风期on blast of stove,on blast燃烧期on gas of stove, on gas换炉stove changing放散阀blow off valve内燃式热风炉Cowper stove外燃式燃烧炉outside combustion stove 顶燃式热风炉top combustion stove炉顶放散阀bleeding valve放散管bleeder上升管gas uptake放风阀snorting valve均压阀equalizing valve高压调节阀septum valve炉顶高压elevated top pressure铸铁机pig-casting machine铸铁模pig mold冲天炉cupola水渣granulating slag 水渣池granulating pit渣场slag disposal pit高炉煤气top gas,blast furnace gas高炉煤气回收topgas recovery,TGR非焦炭炼铁non-coke iron making直接还原炼铁[法]direct reduction iron making直接还原铁directly reduced iron,DRI竖炉直接炼铁direct reduction in shaft furnace流态化炼铁fluidized-bed iron making转底炉炼铁rotary hearth iron making米德雷克斯直接炼铁[法]Midrex processHYL直接炼铁[法] HYL process克虏伯回转窑炼铁[法] Krupp rotary kiln iron-making熔态还原smelting reduction铁溶法iron-bath process科雷克斯法COREX process生铁pig iron海绵铁sponge iron镜铁spiegel iron清铁法H-rion process5.7 炼钢钢steel炼钢steelmaking钢水liquid steel,molten steel钢semisteel沸腾钢rimming steel,rimmed steel镇静钢killed steel半镇静钢semikilled steel压盖沸腾钢capped steel坩埚炼钢法crucible steelmaking双联炼钢法duplex steelmaking process连续炼钢法continuous steelmaking process 直接炼钢法direct steelmaking process混铁炉hot metal machine装料机charging machine装料期charging machine加热期heating period熔化期melting period造渣期slag forming period精炼期refining period熔清melting down脱氧deoxidation预脱氧preliminary dexidation 还原渣reducing slag酸性渣acid slag碱性渣basic slag脱碳decarburization增碳recarburization脱磷dephosphorization回磷rephosphorization脱硫desulfurization回硫resulfurization脱氮denitrogenation过氧化overoxidation出钢tapping冶炼时间duration of heat出钢样tapping sample浇铸样casting sample不合格炉次off heat熔炼损耗melting loss铁损iron loss废钢scrap废钢打包baling of scrap造渣材料slag making materials 添加剂addition reagent脱氧剂deoxidizer脱硫剂desulfurizer冷却剂coolant回炉渣return slag喷枪lance浸入式喷枪submerged lance钢包ladle出钢口top hole出钢槽pouring lining炉顶furnace roof炉衬furnace lining炉衬侵蚀lining erosion渣线slag line炉衬寿命lining life分区砌砖zoned lining补炉fettling热修hot repair喷补gunning火焰喷补flame gunning转炉converter底吹转炉bottom-blown converter酸性空气底吹转炉air bottom-blown acid converter碱性空气底吹转炉air bottom-blown basic converter 侧吹转炉side-blown converter卡尔多转炉Kaldo converter氧气炼铁oxygen steelmaking氧气顶吹转炉top-blown oxygen converter,LI converter氧气底吹转炉bottom-blown oxygen converter quiet basic oxygen furnace,QBOF顶底复吹转炉top and bottom combined blown converter喷石灰粉顶吹氧气转炉法oxygen lime process底吹煤氧的复合吹炼法Klockner-Maxhutte steelmaking process,KMS住友复合吹炼法Sumitomo top and bottom blowing process,STBLBE复吹法lance bubbling equilibrium process,LBE顶枪喷煤粉炼钢法Arved lance carbon injection process,ALCI蒂森复合吹炼法Thyssen Blassen Metallurgical process,TBM面吹surface blow软吹soft blow硬吹hard blow补吹reblow过吹overblow后吹after blow目标碳aim carbon终点碳end point carbon高拉碳操作catch carbon practice 增碳操作recarburization practice 单渣操作single-slag operation双渣操作double-slag operation渣乳化slag emulsion二次燃烧postcombustion吹氧时间oxygen blow duration吹炼终点blow end point倒炉turning down喷渣slopping喷溅spitting静态控制static control动态控制dynamic control氧枪oxygen lance氧枪喷孔nozzle of oxygen lance 多孔喷枪multi-nozzle lance转炉炉体converter body炉帽upper cone炉口mouth,lip ring装料大面impact pad活动炉底removable bottom 顶吹氧枪top blow oxygen lance副枪sublance多孔砖nozzle brick单环缝喷嘴single annular tuyere双环缝喷嘴double annular tuyere挡渣器slag stopper挡渣塞floating plug电磁测渣器electromagnetic slag detector 废气控制系统off gas control system,OGCS 平炉open-hearth furnace平炉炼钢open-hearth steelmaking冷装法cold charge practice热装法hot charge practice碳沸腾carbon boil石灰沸腾lime boil炉底沸腾bottom boil再沸腾reboil有效炉底面积effective hearth area酸性平炉acid open-hearth furnace碱性平炉basic open-hearth furnace固定式平炉stationary open-hearth furnace 倾动式平炉tilting open-hearth furnace双床平炉twin-hearth furnace顶吹氧气平炉open-hearth furnace with roof oxygen lance蓄热室regenerator沉渣室slag pocket电炉炼钢electric steelmaking电弧炉electric arc furnace超高功率电弧炉ultra-high power electric arc furnace直流电弧炉direct current electric arc furnace双电极直流电弧炉double electrode direct current arc furnace竖窑式电弧炉shaft arc furnace电阻炉electric resistance furnace工频感应炉line frequency induction furnace中频感应炉medium frequency induction furnace高频感应炉high frequency induction furnace电渣重熔electroslag remelting,ESR电渣熔铸electroslag casting,ESC电渣浇注Bohler electroslag tapping,BEST真空电弧炉重熔vacuum arc remelting,VAR真空感应炉熔炼vacuum induction melting,VIM电子束炉重熔electron beam remelting,EBR等离子炉重炼plasma-arc remelting,PAR 水冷模电弧熔炼cold-mold arc melting等离子感应炉熔炼plasma induction melting,PIM等离子连续铸锭plasma progressive casting,PPC等离子凝壳铸造plasma skull casting,PSC能量优化炼钢炉energy optimizing furnace,EOF氧燃喷嘴oxygen-fuel burner氧煤助熔accelerated melting by coal-oxygen burner氧化期oxidation period还原期reduction period长弧泡沫渣操作弧长控制 long arc foaming slag operation白渣white slag电石渣carbide slag煤氧喷吹coal-oxygen injection炉壁热点hot spots on the furnace wall偏弧arc bias透气塞porous plug出钢到出钢时间tap-to-tap time虹吸出钢siphon tapping偏心炉底出钢eccentric bottom tapping,EBT中心炉底出钢centric bottom tapping,CBT侧面炉底出钢side bottom tapping,SBT滑动水口出钢slide fate tapping5.8 精炼、浇铸及缺陷铁水预处理hot metal pretreatment机械搅拌铁水脱硫法KR process torpedo desulfurization鱼雷车铁水脱磷torpedo dephosphorization二次精炼secondary refining钢包精炼ladle refining合成渣synthetic slag微合金化microalloying成分微调trimming钢洁净度steel cleanness钢包炉ladle furnace,LF直流钢包炉DC ladle furnace真空钢包炉LF-vacuum真空脱气vacuum degassing真空电弧脱气vacuum arc degassing,VAD真空脱气炉vacuum degassing furnace,VDF真空精炼vacuum refining钢流脱气stream degassing提升式真空脱气法Dortmund Horder vacuum degassing process,DH循环式真空脱气法Ruhstahl-Hausen vacuum degassing process,RH真空浇铸vacuum casting吹氧RH操作RH-oxygen blowing,RH-OB川崎顶吹氧RH操作RH-Kawasaki top blowing,RH-KTB喷粉RH操作RH-poowder blowing,TH-PB喷粉法powder injection process喷粉精炼injection refining蒂森钢包喷粉法Thyssen Niederhein process,TN瑞典喷粉法Scandinavian Lancer process,SL君津真空喷粉法vacuum Kimitsu injection process密封吹氩合金成分调整法composition adjustment by sealed argon bubbling,CAS吹氧提温CAS法CAS-OB process脉冲搅拌法pulsating mixing process,PM电弧加热电磁搅拌钢包精炼法ASEA-SKF process真空吹氧脱碳法vacuum oxygen decarburization process ,VOD氩氧脱碳法argon-oxygen decarburization process,AOD蒸汽氧精炼法Creusot-Loire Uddelholm process,CLU无渣精炼slag free refining摇包法shaking ladle process铝弹脱氧法aluminium bullet shooting,ABS钢锭ingot铸锭ingot casting坑铸pit casting车铸car casting钢锭模ingot mold保温帽hot top下铸bottom casting上铸top casting补浇back pour,back feeding浇注速度pouring speed脱模ingot stripping发热渣exoslag防再氧化操作reoxidation protection连续浇注continuous casting连铸机continuous caster,CC,continuous casting machine,CCM弧形连铸机bow-type continuous caster立弯式连铸机vertical-bending caster立式连铸机vertical caster水平连铸机horizontal caster小方坯连铸机billet caster大方坯连铸机bloom caster板坯连铸机slab caster 薄板坯连铸机thin-slab casting薄带连铸机strip caster近终型浇铸near-net-shape casting单辊式连铸机single-roll caster单带式连铸机single-belt caster双带式连铸机twin-belt caster倾斜带式连铸机inclined conveyer type caster [连铸]流strand铸流间距strand distance注流对中控制stream centering control钢包回转台ladle turret中间包tundish回转式中间包swiveling tundish倾动式中间包tiltable tundish中间包挡墙weir and dam in tundish引锭杆dummy bar刚性引锭杆rigid dummy bar挠性引锭杆flexible dummy bar结晶器mold直型结晶器straight mold弧形结晶器curved mold组合式结晶器composite mold多级结晶器multi-stage mold调宽结晶器adjustable mold结晶器振动mold oscillation结晶器内钢液顶面meniscus,steel level钢液面控制技术steel level control technique 保护渣casting powder,mold powder凝壳shell液芯liquid core空气隙air gap一次冷却区peimary cooling zone二次冷却区secondary cooling zone极限冷却速度critical cooling rate浇铸半径casting radius渗漏bleeding拉坯速度casting speed拉漏breaking out振动波纹oscillation mark水口堵塞nozzle clogging气水喷雾冷却air mist spray cooling分离环separating ring拉辊withdrawal roll立式导辊vertical guide roll弯曲辊bending roll夹辊pinch roll 矫直辊straightening roll驱动辊driving roll导向辊装置roller apron切割定尺装置cut-to-length device钢流保护浇注shielded casting practice 多点矫直multipoint straightening电磁搅拌electromagnetic stirring,EMS 浇注周期casting cycle多炉连浇sequence casting事故溢流槽emergercy launder菜花头cauliflower top钢锭缩头piped top表面缺陷surface defect内部缺陷internal defect缩孔shrinkage cavity中心缩孔center line shrinkage气孔blowhole表面气孔surface blowhole皮下气孔subskin blowhole针孔pinhole铸疤feather冷隔cold shut炼钢缺陷lamination。
石墨炉测定各种元素的条件讲解
原子吸收分光光度法分析手册第 4 册石墨炉原子吸收分析各元素的测定条件原子吸收分光光度法分析手册第 4 册目录7.石墨炉原子吸收分析各元素的测定条件 (3)7.1测定条件 (3)7.2应用于实际样品 (3)7.3石墨管的类型和寿命 (3)7.4干扰、背景吸收和测定注意事项 (4)7.5各元素的测定条件 (5)1) 银 (Ag) (6)2) 铝 (A l) (7)2) 铝 (A l) (8)3) 砷 (As) (9)3) 砷 (As) (10)4) 金 (Au) (11)4) 金 (Au) (12)5) 铍 (Be) (14)6) 铋 (Bi) (16)7) 钙 (Ca) (18)8) 镉 (Cd) (20)9) 铬 (Cr) (22)10) 钴 (Co) (24)11) 铜 (Cu) (26)12) 铁 (Fe) (28)13) 钾 (K) (30)14) 锂 (Li) (32)15) 镁 (Mg) (34)16) 锰 (Mn) (36)17) 钼 (Mo) (37)17) 钼 (Mo) (38)18) 钠 (Na) (39)18) 钠 (Na) (40)19) 镍 (Ni) (41)19) 镍 (Ni) (42)20) 铅 (Pb) (43)20) 铅 (Pb) (44)21) 铂 (Pt) (45)21) 铂 (Pt) (46)22) 铑 (Rh) (48)23) 锑 (Sb) (50)24) 硒 (Se) (51)24) 硒 (Se) (52)25) 硅 (Si) (53)25) 硅 (Si) (54)26) 锡 (Sn) I (55)26) 锡 (Sn) I (56)27) 锡 (Sn) II (58)28) 锶 (Sr) (59)28) 锶 (Sr) (60)29) 钛 (Ti) (61)29) 钛 (Ti) (62)30) 钒 (V) (63)30) 钒 (V) (64)31) 锌 (Zn) (65)31) 锌 (Zn) (66)7. 石墨炉原子吸收分析各元素的测定条件7.1 测定条件溶液的制备请参考原子吸收分析手册的第二册第三章,浓度范围要考虑最终的吸收值。
Characterization and Modification of Indonesian Na
J. Chem. Chem. Eng. 7 (2013) 175-180Characterization and Modification of Indonesian Natural Zeolite for Hydrocracking of Waste Lubricant Oil into Liquid Fuel FractionWega Trisunaryanti1*, Akhmad Syoufian1 and Suryo Purwono21. Department of Chemistry, Faculty of Mathematics and Natural Sciences, Gadjah Mada University, Yogyakarta 55281, Indonesia2. Department of Chemical Engineering, Faculty of Engineering, Gadjah Mada University, Yogyakarta 55281, IndonesiaReceived: December 06, 2012 / Accepted: December 28, 2012 / Published: February 25, 2013.Abstract: Modification and characterization of natural zeolite under some various methods for hydrocracking catalyst of waste lubricant to gasoline and diesel fractions have been conducted. Natural zeolite from Klaten was activated using hydrothermal treatmentat temperature 500 o C for 6 h (produced ZAAHd), the ZA sample was treated with hydrothermal followed by Microwave (produced ZAAHdM), the ZA sample was treated with HCl 3 N at temperature of 90 o C for 30 min (produced ZAAH), the ZAAH sample was heated in to microwave (produced ZAAHM), the ZAAHM was treated hydrothermal (produced ZAAHMHd), the ZAAHMHd sample was heated in to microwave (produced ZAAHMHdM), soaking of natural zeolit activated by HCl-microwave-hydrothermal-microwave in NH4NO3 1 N which was stirred using stirer at room temperature for 24 h (produced ZAAHMHdMN) and the ZAAHMHdMN sample was heated into microwave (ZAAHMHdMNM). The heating process by microwave was conducted at 550 watt for 15 min. Catalyst characterization involved determination of the number of total acid sites using gravimetric method with vapour adsorption of NH3 and pyridine, catalyst crystallinity by XRD (X-ray diffraction) and TO4 (T= Si and Al) site by infra red spectrophotometer (IR). Hydrocracking of waste lubricants oil was performed in a fixed bed reactor of stainless steel at temperature of 450 o C, H2 flow rate of 15 mL/min., feed/catalyst ratio of 5. Liquid products of the hydrocracking were analyzed using GC (gas chromatography). The characterization results showed that various modification of natural zeolite increased acidity and dealumination degree of the catalysts. Products of the hydrocracking were liquid, coke, and gas fractions. Liquid products consisted of gasoline fraction (C5-C12), diesel fraction (C12-C20), and heavy oil fraction (> C20).The conversion of liquid products was increased with the increase of catalyst acidity. The greatest liquid product conversion was produced by the ZAAHMHdMNM catalyst, i.e., 56.80%, with selectivity towards gasoline, diesel, and heavy oil fractions was 88.37%, 8.61% and 3.02%, respectively. The increase of catalyst acidity increased the selectivity of gasoline fraction.Key words: Natural zeolite, characterization, modification, hydrocracking, waste lubricant oil.1. IntroductionZeolites play highly important roles as acidic solid catalysts in petroleum refining and petrochemical industry, including cracking, hydrocracking and isomerization of hydrocarbon and hence, various methods have been developed to modify their acid properties and to improve their catalytic performance,*Corresponding authors: Wega Trisunaryanti, Processor, research fields: materials and catalysis. E-mail: *****************.e.g., acid dealumination [1-3].On the other hand, there are widespread, abundant resources of natural zeolites in Indonesia. Their utilization as catalysts, however, has been little explored, in spite of the fact that their potential effectiveness may contribute to reduce industrial production costs. Synthetic zeolites were used in a wide range as catalysts. However, the synthetic zeolite was expensive and still imported by Indonesia. In spite of the fact that Indonesia have abundant natural zeolitesspread out in Java, Celebes, Sumatra and Timor.l Rights Reserved.Characterization and Modification of Indonesian Natural Zeolite forHydrocracking of Waste Lubricant Oil into Liquid Fuel Fraction 176Indonesian natural zeolites produced in West Java (Bayah and Cipatuja), Center of Java (Wonosari, Yogyakarta) has been known contains large portion of mordenite. The zeolites showed better performance in crystallinity and acidity after treated with HCl [1-2]. The treatment of waste lubricant oil was an important concern of modern society to protect the environment. The thermal and catalytic treatment of waste lubricant oil into fuel or chemical feedstock is one of the best methods for preserving valuable petroleum resources in addition to protect the environment. The recycling of waste lubricant oil from automobile industry was found to be best alternative to incineration. Bhaskar [4] carried out the recycling of waste lubricant oil by thermal and catalytic desulphurization over supported iron oxide catalysts such as Fe/SiO2, Fe/Al2O3 and Fe/SiO2-Al2O3 catalysts at 400 o C. The results showed that Fe/SiO2 catalyst facilitated the formation of lower hydrocarbons by cracking higher hydrocarbons (about C40) present in waste lubricant in a small portion.In an attempt to utilized Indonesian natural zeolite as catalysts, in the present the authors undertaken characterization and modification of natural zeolite produced in Klaten, Indonesia, which have appeared to consist mainly of mordenite type crystalline matter, and its modifications by treating with an aqueous HCl solution, and/or hydrothermal followed by microwave treatment. Their properties to hydrocrack waste lubricant oil collected from automotive industry in Indonesia were then evaluated. The results described in the following section.2. Experiments2.1 Treatment of ZeoliteZA (natural zeolite) produced in Klaten, Indonesia was ground and sieved to < 100 mesh particles before use. About 5 g of natural zeolite sample in 3 N HCl (125 cm3) was heated at 90 ºC for 30 min while magnetically stirred. After the HCl treatment, the sample was filtered and washed with deionized water until no chloride ion could be detected by test using AgNO3 solution, after which it was dried at 120 ºC for3 h and calcined at 450 ºC for 3 h. This sample was coded as ZAAH. The ZAAH sample was then heated ina microwave at 550 watt, 90 ºC for 15 min produced the ZAAHM sample. The ZA sample was hydrothermally treated for 6 h produced the ZAAHd then followed by heating in a microwave under the same condition produced the ZAAHdM sample. For modification of zeolite treatment, the ZAAHM sample was hydrothermally treated for 6 h produced the ZAAHMHd sample. The ZAAHMHdM was the sample of ZAAHMHd heated in a microwave. The ZAAHMHdM was then immersed in 1 N NH4NO3 solution for 24 h at 30 ºC while mild stirring. After the treatment the sample was then filtered and washed with deionized water, after that it was dried at 120 ºC for 3 h. The resulting sample was coded as ZAAHMHdMN and followed by microwave produced the ZAAHMHdMNM.2.2 Catalyst CharacterizationThe effect of modified treatments towards dealumination (TO4 sites) as well as acid sites in the natural zolite was analyzed by FT-IR spectrophotometer (Shimazu). Total acid site amount on zeolite samples was determined gravimetrically using ammonia and pyridine base vapour adsorption. Crystallinity changed of zeolite samples was analyzed by XRD (Shimazu), and their surface perform was observed using SEM (scanning electron microscope) connected with EDAX-Hitachi.2.3 Catalytic Activity TestCatalytic activity test was carried out in hydrocracking process of waste lubricant oil. The process was conducted in a semi flow reactor system using H2 gas at flow rate of 15 mL/min.; for 60 min; reaction temperature 450 o C, feed/catalyst weight ratio= 5 (the feed was a waste lubricant oil). The liquid product was analyzed by GC. Oxidation of the usedl Rights Reserved.Characterization and Modification of Indonesian Natural Zeolite forHydrocracking of Waste Lubricant Oil into Liquid Fuel Fraction177catalyst was conducted at 500 o C for 1 h to determine the amount of coke. Gas product (wt.%) was quantitatively calculated by means of [(the initial weight of waste lubricant oil-coke-liquid products)( initial weight of lubricant oil)] 100%.3. Results and Discussion3.1 Zeolites AcidityTable 1 showed total acid amount of the zeolite samples determinated by ammonia or pyridine base vapour adsorption. It can be seen that the acid amount determined by ammonia was higher than that of pyridine. This phenomena caused by the facts that ammonia was a stronger base than that of pyridine and pyridine has bigger molecular size than ammonia thus pyridine can only adsorbed in the outer surface of the zeolite. Ammonia with smaller molecular size can be adsorbed on outer and inside the zeolite surfaces. It can also be seen that the total acid amount of the zeolite samples increased by the treatment orders. These may be caused by the dissapear of impurities in the zeolite.3.2 Dealumination of ZeolitesEffect of the modified treatment towards dealumination of zeolite framework was analyzed by IR (infra red spectroscopy) based on the wave numberof TO4 (T = Si or Al) site at 1,250-950 cm-1. The result was shown in Fig. 1.Fig. 1 showed that the acid treatment caused dealumination of the zeolite sample indicated by the shifted of the wave number from 1,064.71 to 1,072. 42 cm-1. The successive treatment caused the increase of dealumination. The acid treatment leached Al framework of Indonesian natural zeolites as shown by research undertaken by Trisunaryanti et al. [5]. Microwave treatment enhanced the dealumination caused by the wave that activated the movement of Al out from the zeolite framework. The hydrothermal treatment was also leached Al from zeolite framework.Fig. 1 Infra red spectra of: (a) ZA, (b) ZAAH, (c) ZAAHM, (d) ZAAHMHd, (e) ZAAHMHdM and (f) ZAAHMHdMN.Table 1 Total acid amount in zeolite.Sample Ammonia (mmol/g) Pyridne (mmol/g)ZA 1.67 0.57ZAAH 1.73 1.11ZAAHd 1.00 0.35ZAAHdM 1.62 1.10ZAAHM 2.02 0.95ZAAHMHd 2.04 1.10ZAAHMHdM 2.05 0.87ZAAHMHdMN 2.07 0.66ZAAHMHdMNM 2.54 1.14l Rights Reserved.Characterization and Modification of Indonesian Natural Zeolite for Hydrocracking of Waste Lubricant Oil into Liquid Fuel Fraction1783.3 Zeolites CrystallinityIt can be seen from Fig. 2 that the successive treatment to the natural zeolite did not caused the crystal defect. The mordenite content of the natural zeolite was about 75% (marked by M in Fig. 2). This indicated that the natural zeolite has high stability towards the acid and thermal treatment. 3.4 Hydrocracking ResultThe activity of catalysts on hydrocracking of lubricant oil was showed in Table 2. It was seen that the successive treatment increased the liquid product.This fact can be described by the fact that the treatments removed some impurities from the zeolite surface and pore that caused the increase of acidity and crystallinity, thus, produced clean surface zeolite. The phenomena increased the catalytic activity in producing liquid fraction and decreased the gas fraction production.Table 3 showed the distribution of the liquid fraction that consisted of gasoline (C 5-C 12), diesel (C 13-C 20) and heavy oil (> C 20). The gasoline fraction was predominant for all catalysts. The successive treatments increased the gasoline production. The phenomena indicated that the catalysts were selectiveTable 2 Product distribution of hydrocracking of lubricant oil. CatalystProduk distribution (wt.%)Liquid GasCoke ZAAHd 10.70 87.92 1.38 ZAAH 12.96 85.36 1.68 ZAAHdM 31.18 67.85 0.97 ZAAHM 37.73 61.23 1.04 ZAAHMHd 43.50 54.372.13 ZAAHMHdM 48.02 49.842.14 ZAAHMHdMN 50.15 47.42 2.43 ZAAHMHdMNM 56.80 40.482.72Fig. 2 Difractogram of: (a) ZA, (b) ZAAH, (c) ZAAHM, (d) ZAAHMHd, (e) ZAAHMHdM and (f) ZAAHMHdMN.Table 3 Product distribution of liquid fraction.CatalystProduct distribution (wt.%)Gasoline Diesel oilHeavy oilZAAHM 73.44% 12.62% 13.94% ZAAHMHd 78.98% 10.18% 10.84% ZAAHMHdM 80.46% 12.36% 7.18% ZAAHMHdMN 88.37% 8.61 % 3.02%l Rights Reserved.Characterization and Modification of Indonesian Natural Zeolite forHydrocracking of Waste Lubricant Oil into Liquid Fuel Fraction179Fig. 3 Chromatograms of: (a) waste lubricant oil, hydrocracking product of the lubricant oil using: (b) ZAAH, (c) ZAAHd, (d) ZAAHM AND (e) ZAAHDM catalyst.to the gasoline fraction. This may be due to the pore size of the catalyst that similar to the gasoline molecularsize. The data was support by chromatogram of the product fractions showed in Fig. 3. It can be seen from Fig. 3 that the heavy hydrocarbons (C40) in the waste lubricant oil was converted to the lighter hydrocarbons (C5-C20). The performed zeolites showed high catalytic activity in hydrocracking of a heavy hydrocarbon feed. This result was in line with the result showed by Bhaskar, et al. [4]. Bhaskar et al. used Fe/SiO2 catalyst at 400 ºC and showed only a small portion of high molecule hydrocarbons converted into lighter hydrocarbons. In the present study, the modified Indonesian natural zeolites showed better performance in converting the high hydrocarbons to lower hydrocarbons in the range of gasoline fraction. 4. ConclusionsModifications of Indonesian natural zeolite produced in Klaten and their characterizations for hydrocracking of waste lubricant oil have been carried out.The characterization results showed that various modification of natural zeolite increased acidity and dealumination degree of the catalysts. Products of the hydrocracking were liquid, coke, and gas fractions. Liquid products consisted of gasoline fraction (C5-C12), diesel fraction (C12-C20), and heavy oil fraction (> C20). The conversion of liquid products was increased with the increase of catalyst acidity. The greatest liquid product conversion was produced by the ZAAHMHdMNM catalyst, i.e., 56.80%, with selectivity towards gasoline, diesel, and heavy oill Rights Reserved.Characterization and Modification of Indonesian Natural Zeolite forHydrocracking of Waste Lubricant Oil into Liquid Fuel Fraction 180fractions was 88.37%, 8.61% and 3.02%, respectively. The increase of catalyst acidity increased the selectivity of gasoline fraction.AcknowledgmentsThe authors thank the Ministry Office of Indonesian Culture and Education (DP2M-DIKTI) and the Lembaga Penelitian dan Pengabdian Kepada Masyarakat Universitas Gadjah Mada (LPPM-UGM) for the financial supported under The Research Program of HIBAH KOMPETENSI 2010.References[1]Trisunaryanti, W.; Shiba, R.; Miura, M.; Nomura, M.;Nishiyama, N.; Matsukata, M. Characterization andModification of Indonesian Natural Zeolites and TheirProperties for Hydrocracking of a Paraffin. J. Jpn. Petr.Inst. 1996,1, 20-25.[2]Trisunaryanti, W.; Syoufyan, A.; Purwono, S.; Izul, F. I.;Padi, P. In The Effect of Hydrochloric Acid SolutionTreatment towards Characters of Indonesian NaturalZeolite, Proceeding of the 2nd International Conference onChemical Sciences, Yogyakarta, 2010.[3]Trisunaryanti, W. In Effect of Sulfuric Acid Treatmenttowards Indonesian Natural Zeolite for Catalytic Cracking of N-Hexane, Proceeding of the NationalSeminar of Chemistry,Yogyakarta, Indonesia, 2006.[4]Bhaskar, T.; Md, U. A.; Akinori, M.; Yusaku, S.Recycling of Waste Lubricant Oil into Chemical Feedstock or Fuel Oil over Supported Iron Oxide Catalysts.Fuel2004,83, 9-15.[5]Trisunaryanti, W.; Triyono, P. S.; Dewi, K.Characteristics of Metals Supported-Zeolites Catalysts onSteam Reforming of Bioethanol. J. Materiala Science andEngineering2011,5, 239-246.l Rights Reserved.。
钠离子电池碳基负极材料的研究进展
钠离子电池碳基负极材料的研究进展张英杰;朱子翼;董鹏;赵少博;章艳佳;杨成云;杨城沣;韦克毅;李雪【期刊名称】《化工进展》【年(卷),期】2017(36)11【摘要】电极材料的研究开发是钠离子电池技术发展和应用的关键之一,碳基负极材料具有原料丰富、成本低廉、可逆容量较大及倍率性能良好等优点,备受国内外专家、学者的关注.本文系统综述了钠离子电池碳基负极材料的最新研究进展,就石墨类和非石墨类碳基负极材料的分类和掺杂改性研究进行了详细介绍.石墨类材料有石墨和石墨烯,非石墨类材料有软碳和硬碳;元素掺杂改性主要是以N和S为主,并分别阐述了各种碳基负极材料的电化学性能及可能的充放电机理.分析了目前碳基负极材料面临着首次库仑效率较低、电压滞后现象严重、循环稳定性能不佳等问题,未来的发展方向主要是增大碳基负极材料的碳层间距、结构的纳米化以及优化制备工艺,以确保循环稳定性及倍率性能的优异性.%The development of electrode materials is one of the key factors in the application of sodium ion batteries. Carbon-based anode materials have attracted the attention of experts and scholars at home and abroad because of their advantages of rich raw materials,low cost,high reversible capacity and good rate performance. In this paper,the recent research progress of the carbon-based anode materials for sodium ion batteries have been briefly reviewed,and the classification and doping modification of graphite and non-graphite carbon-based anode materials are described in detail. Graphite-based materials are graphite and graphene,while non-graphite-based materials are soft carbon and hard carbon and element doping modification is mainly N- and S-based. The electrochemical properties and the possible mechanism of the sodium storage process are discussed in detail as well. The future advances of carbon-based anode materials should mainly focus on improving the low efficiency of coulomb,the phenomenon of severe voltage hysteresis and poor cycle stability. The future modification direction is to increase the carbon layer spacing,reduce the structure into nanoscale and optimize the preparation process to ensure the high cyclical stability and excellent rate performance.【总页数】10页(P4106-4115)【作者】张英杰;朱子翼;董鹏;赵少博;章艳佳;杨成云;杨城沣;韦克毅;李雪【作者单位】昆明理工大学,锂离子电池及材料制备技术国家地方联合工程实验室,云南省先进电池材料重点实验室,云南昆明 650093;昆明理工大学,锂离子电池及材料制备技术国家地方联合工程实验室,云南省先进电池材料重点实验室,云南昆明650093;昆明理工大学,锂离子电池及材料制备技术国家地方联合工程实验室,云南省先进电池材料重点实验室,云南昆明 650093;昆明理工大学,锂离子电池及材料制备技术国家地方联合工程实验室,云南省先进电池材料重点实验室,云南昆明650093;昆明理工大学,锂离子电池及材料制备技术国家地方联合工程实验室,云南省先进电池材料重点实验室,云南昆明 650093;云南能投汇龙科技股份有限公司,云南昆明 650093;云南能投汇龙科技股份有限公司,云南昆明 650093;云南中烟工业有限责任公司技术中心,云南昆明 650093;昆明理工大学,锂离子电池及材料制备技术国家地方联合工程实验室,云南省先进电池材料重点实验室,云南昆明 650093【正文语种】中文【中图分类】TM911【相关文献】1.钠离子电池碳基负极材料研究进展 [J], 胡明祥;吕瑞涛2.钠离子电池碳基负极材料的研究进展 [J], 黄剑锋;王彩薇;李嘉胤;曹丽云;朱东岳;席婷3.钠离子电池碳基负极材料研究进展 [J], 胡明祥;吕瑞涛;4.基于双模板法钠离子电池三维碳基负极复合材料的制备和性能 [J], 汪若冰5.钠离子电池软碳基负极材料研究进展 [J], 刘彬华;王静因版权原因,仅展示原文概要,查看原文内容请购买。