热处理复习笔记

合集下载

(完整版)金属热处理知识点概括

(完整版)金属热处理知识点概括

(一)淬火--将钢加热到Ac3或Ac1以上,保温一段时间,使之奥氏体化后,以大于临界冷速的速度冷却的一种热处理工艺。

淬火目的:提高强度、硬度和耐磨性。

结构钢通过淬火和高温回火后,可以获得较好的强度和塑韧性的配合;弹簧钢通过淬火和中温回火后,可以获得很高的弹性极限;工具钢、轴承钢通过淬火和低温回火后,可以获得高硬度和高耐磨性;对某些特殊合金淬火还会显著提高某些物理性能(如高的铁磁性、热弹性即形状记忆特性等)。

表面淬火--表面淬火是将钢件的表面层淬透到一定的深度,而心部分仍保持未淬火状态的一种局部淬火的方法。

分类——感应加热表面淬火、火焰加热表面淬火、电接触加热表面淬火、电解液加热表面淬火、激光加热表面淬火、电子束加热表面淬火、离子束加热表面淬火、盐浴加热表面淬火、红外线聚焦加热表面淬火、高频脉冲电流感应加热表面淬火和太阳能加热表面淬火。

单液淬火——将奥氏体化后的钢件投入一种淬火介质中,使之连续冷却至室温(图9-1a线)。

淬火介质可以是水、油、空气(静止空气或风)或喷雾等。

双液淬火——双液淬火方法是将奥氏体化后的钢件先投人水中快冷至接近MS点,然后立即转移至油中较慢冷却(图9-1b线)。

分级淬火——将奥氏体化后的钢件先投入温度约为MS点的熔盐或熔碱中等温保持一定时间,待钢件内外温度一致后再移置于空气或油中冷却,这就是分级淬火等温淬火--奥氏体化后淬入温度稍高于Ms点的冷却介质中等温保持使钢发生下贝氏体相变的淬火硬化热处理工艺。

等温淬火与分级淬火的区别是:分级淬火的最后组织中没有贝氏体而等温淬火组织中有贝氏体。

根据等温温度不同,等温淬火得到的组织是下贝氏体、下贝氏体+马氏体以及残余奥氏体等混合组织。

(二)回火--将淬火后的钢/铁,在AC1以下加热、保温后冷却下来的金属热处理工艺。

回火的目的:为了稳定组织,减小或消除淬火应力,提高钢的塑性和韧性,获得强度、硬度和塑性、韧性的适当配合,以满足不同工件的性能要求。

《工程材料及热处理》复习经典归纳

《工程材料及热处理》复习经典归纳

《工程材料及热处理》复习经典归纳池茶永2011.01.02★基础部分(填空、选择及简答)1、原子(离子、分子或原子团)在三维空间作有规则的周期性重复排列的物质叫晶体;在图示1的晶胞中,a、b、c称晶格常数。

(图示1)(图示2)2、根据晶胞的几何形状或自身的对称性,可把晶体结构分为七大晶系、十四种空间点阵。

3、常见的金属晶体结构有_体心立方晶格(BCC)、面心立方晶格(FCC)和密排六方晶格(HCP)_三种。

4、下列晶面和晶向指数的表示方法正确的是( B )A、﹙h k l﹚﹙µ v w﹚B、﹙h k l﹚[µ v w]C、﹙h, k, l﹚[µ, v, w]D、﹙-h k l﹚[-µ v w](提示:晶面和晶向指数分别用圆括号和方括号表示,数值间不用标点断开,负号写在数值上方)5、实际金属中存在有点缺陷、线缺陷和面缺陷三类晶体缺陷。

位错和晶界分别属于( C )A、点缺陷,面缺陷B、面缺陷,线缺陷C、线缺陷,面缺陷D、点缺陷,线缺陷6、金属结晶的条件是其温度低于理论结晶温度,造成液体与晶体间的自由能差,即具有一定的结晶驱动力才行。

那么由此产生的过冷度指的是理论结晶温度与实际结晶温度之差。

7、下图为金属结晶过程和奥氏体形成过程的示意图,填写下面的空白处。

(1)金属结晶过程:晶核的形成→晶核的成长→晶体互相接触并向液体伸展→结晶完毕(2)奥氏体形成过程:晶核的形成→晶核的长大→残余渗碳体的溶解→奥氏体成分的均匀化8、观察图示2在显微镜下的组织为珠光体。

9、细化铸态金属晶粒主要采用增大金属的过冷度、变质处理的方法。

10、合金中的相结构分为固溶体和金属间化合物两类;前者有可分为置换固溶体、间隙固溶体。

11、合金常见的相图有__匀晶相图、共晶相图、包晶相图_和具有稳定化合物的二元相图。

12、铁碳合金中基本相是那些?其机械性能及结构如何?答:(1)基本相有:铁素体、奥氏体、渗碳体、石墨。

(完整版)金属学热处理笔记

(完整版)金属学热处理笔记

一个晶体的某一方向可以用方向矢量来描述,这就是 晶向指数 [111]
晶体中原子周期排列相同在空间位向不同 (即不平行)的晶向统称为 晶向族 <111>
取晶面在坐标轴上的截距, 取截距的倒数, 将倒数约成互质的整数, 即该晶面的
法向量,就是 晶面指数 ( 111)
在立方晶系中, 由于原子的排列具有高度的对称性, 往往存在有许多原子排列完
400N·m
结构材料
金属材料(主要金属键)
功能特点用途分类
原子间键合分类 陶瓷材料(主要离子键)
功能材料
高分子材料(主要共价键)
复合材料(土坯)
金属:是具有正的电阻温度系数的物质,通常具有良好的导电性、导热性、延展
性、高密度和高的光泽。
陶瓷:金属和非金属元素间化合物。 具有很高的强度和硬度, 较低的导点、导热、
延性、成型性及耐冲击性都很差。 极好的耐高温和耐腐蚀特性, 还有一些独特的
光电性能。
高分子材料: 非金属原子共有电子而构成的大分子材料。 每个大分子由许多结构
相同的单元相互连接而成,因此又称为聚合物。具有较高的强度、良好的塑性、
较强的耐腐蚀性、绝缘性和低密度优良特性。
复合材料: 有两种或两种以上材料组成的材料所不具备的。 复合材料可能具有非
全相同但在空间位向不同(即不平行)的晶面,这些晶面总称为 晶面族 {111}
平行于或者相交于同一直线的一组晶面组成一个晶带,而该直线叫做晶带
晶带轴 计算公式( ?1 ??1?1?) , ( ?2 ?2??2?) [ ????]??
??= |???12?
??12??| ,
??=
|
?1? ?2?
?1 ?2
|

高三化学热处理知识点总结

高三化学热处理知识点总结

高三化学热处理知识点总结热处理是指通过加热和冷却对材料进行物理或化学变化,以改变其组织结构和性能的过程。

在高三化学学习中,了解热处理的知识点对于理解材料性质、实验操作及工艺应用都有着重要的作用。

本文将对高三化学热处理的知识点进行总结。

一、热处理的分类1. 相变热处理相变热处理是指物质在固态与液态、气态之间变化过程中受热处理的过程。

常见的相变热处理包括升华、熔化和汽化等。

2. 固态热处理固态热处理是指在物质固态改变过程中进行的热处理,主要包括退火、淬火和回火等。

3. 液态热处理液态热处理是指在物质液态状态下进行的热处理,主要涉及溶解和结晶等。

二、常见的热处理方法1. 退火退火是通过加热材料至一定温度,然后以适当速率冷却的过程,目的是减小材料的硬度和提高延展性。

退火可分为全退火、球化退火、时效退火等。

2. 淬火淬火是将材料加热至临界温度,保持一定时间后迅速冷却,以使材料产生相变,并获得高硬度和高强度。

淬火还可分为水淬、油淬、盐淬等不同介质淬火。

3. 回火回火是在淬火过程中,通过加热材料至较低的温度,然后适当冷却,使材料获得适合使用的组织结构和力学性能。

回火的目的是消除淬火应力和提高材料的韧性。

4. 热残余处理热残余处理是指在材料制备过程中,对材料进行一次或多次退火、淬火和回火等处理,以消除或调整材料内部应力和改变材料组织结构,从而改善材料的性能。

三、热处理对材料性能的影响1. 组织结构的改变热处理可以改变材料的晶格结构、晶粒尺寸和晶界特性,从而影响材料的硬度、强度和韧性等机械性能。

2. 性能的提高通过合理的热处理过程,可以提高材料的硬度、强度、塑性和韧性等性能,使其适应不同的工作环境和使用要求。

3. 应力的消除热处理可以消除材料制备过程中的应力,避免材料在使用过程中发生变形、开裂等问题,提高材料的稳定性和可靠性。

四、热处理的应用领域1. 金属材料加工热处理在金属材料的加工中广泛应用,可以改善金属材料的力学性能,避免加工后出现裂纹、变形等问题,提高产品质量和使用寿命。

工程材料及热处理复习资料

工程材料及热处理复习资料

一.名词解释题间隙固溶体:溶质原子分布于溶剂的晶格间隙中所形成的固溶体。

再结晶:金属发生重新形核和长大而不改变其晶格类型的结晶过程。

淬透性:钢淬火时获得马氏体的能力。

枝晶偏析:金属结晶后晶粒内部的成分不均匀现象。

时效强化:固溶处理后铝合金的强度和硬度随时间变化而发生显著提高的现象。

同素异构性:同一金属在不同温度下具有不同晶格类型的现象。

临界冷却速度:钢淬火时获得完全马氏体的最低冷却速度。

热硬性:指金属材料在高温下保持高硬度的能力。

二次硬化:淬火钢在回火时硬度提高的现象。

共晶转变:指具有一定成分的液态合金,在一定温度下,同时结晶出两种不同的固相的转变。

比重偏析:因初晶相与剩余液相比重不同而造成的成分偏析。

置换固溶体:溶质原子溶入溶质晶格并占据溶质晶格位置所形成的固溶体。

变质处理:在金属浇注前添加变质剂来改变晶粒的形状或大小的处理方法。

晶体的各向异性:晶体在不同方向具有不同性能的现象。

固溶强化:因溶质原子溶入而使固溶体的强度和硬度升高的现象。

形变强化:随着塑性变形程度的增加,金属的强度、硬度提高,而塑性、韧性下降的现象。

残余奥氏体:指淬火后尚未转变,被迫保留下来的奥氏体。

调质处理:指淬火及高温回火的热处理工艺。

淬硬性:钢淬火时的硬化能力。

过冷奥氏体:将钢奥氏体化后冷却至A1温度之下尚未分解的奥氏体。

本质晶粒度:指奥氏体晶粒的长大倾向。

C曲线:过冷奥氏体的等温冷却转变曲线。

CCT曲线:过冷奥氏体的连续冷却转变曲线。

马氏体:含碳过饱和的α固溶体。

热塑性塑料:加热时软化融融,冷却又变硬,并可反复进行的塑料。

热固性塑料:首次加热时软化并发生交连反应形成网状结构,再加热时不软化的塑料。

回火稳定性:钢在回火时抵抗硬度下降的能力。

可逆回火脆性:又称第二类回火脆性,发生的温度在400~650℃,当重新加热脆性消失后,应迅速冷却,不能在400~650℃区间长时间停留或缓冷,否则会再次发生催化现象。

过冷度:金属的理论结晶温度与实际结晶温度之差。

热处理工艺笔记

热处理工艺笔记

表面 空气,高频感 加热到临界点以上的淬火温度后,用水或乳状液喷射零件 淬火 应电流 表面冷却
使零件表层有高硬度和耐磨性,而心部保持原有的强度和韧性。
时效 处理
1.天然时效:在空气中长期的存放。 2.加热到0~200℃,在这个温度保持10~20小时或更多的时间
对加工精度高的零件,慢慢消除其内应力,从而稳定其形状和尺寸。
1.提高硬度和强度;2.增高耐磨性;3.得到要求的其他机械性能。
回火
加热到临界点以下的回火温度后,保温透烧,再迅速地或 空气,液体 缓慢地在水、油或空气中冷却下来
1.消除淬火时产生的内应力和脆性;2.增加塑性和韧性;3.得到各种要求的机 械性能。
调质 空气,液体 淬火后高温回火
得到高的韧性和足够的强度,有较好的综合性能。
渗碳
1.固体渗碳2. 液体渗碳3.气
体渗碳
使表面层增碳:渗碳层深度0.4~0毫米或>0毫米,硬度在 HRC56~65。
增加钢件的耐磨性能,表面硬度,抗拉强度及疲劳极限。适用于低碳,中碳 (〈0.4%C)结构钢的中小型零件和大型的中负荷,受冲击,耐磨的零件。
1.固体渗碳2. 氰化 液体渗碳3.气
体渗碳
使表面增加碳与氮:扩散层深度较浅0.05~2毫米;硬度 高,在薄层0.02~0.04毫米时具有的硬度HV950~1100
增加结构钢,工具钢制件的耐磨性能,表面硬度和疲劳极限,提高刀具切削性 能和使用寿命。适用于要求硬度高,耐磨的中,小型及薄片的零件和刀具等。
氮化
1.液体渗碳2. 气体渗碳
表面增氮:氮化层为0.025~0.8毫米,而氮化时间需40~50 多个小时,硬度很高(HV1200),耐磨,抗腐蚀性高
热处理代号
热处 理方

热处理重点知识总结

热处理重点知识总结

第一章1.工程材料:金属材料、高分子材料、无机非金属材料、复合材料。

2.强度指标:屈服强度、抗拉强度。

塑性指标:伸长率、断面收缩率。

硬度指标:布氏硬度、洛氏硬度、维氏硬度。

韧性指标:冲击韧性。

3.强度:材料在外力作用下抵抗变形和破坏的能力称为强度。

4.塑性:塑性是指材料受力破坏前承受最大塑性变形的能力。

5.刚度:材料受力时抵抗弹性变形的能力称为刚度。

其指标即为弹性模量。

6.硬度:材料表面局部区域抵抗更硬物体压入的能力称为硬度。

7.冲击韧性:材料抵抗冲击载荷作用而不被破坏的能力称为冲击韧性。

8.实际工作中的构件常常是在受交变载荷的作用,所谓交变载荷是指大小或方向随时间而破坏的载荷。

第二章1.热处理:热处理是根据钢在固态下组织转变的规律,通过不同的加热、保温和冷却,以改变其内部组织结构,达到改善钢材性能的一种热加工工艺。

热处理一般是由加热、保温和冷却三个阶段组成的。

2.加热时的转变主要是奥氏体转变。

3.板条马氏体的亚结构主要为高密度的位错。

位错密度高达1223.0(-~⨯cm,故又称为位错马氏体。

)9.0104.片状马氏体又称为针状马氏体。

5.片状马氏体内部的亚结构主要是孪晶。

6.含碳量低于0.25%的板条马氏体的正方度很小,1/≈c,为体心a立方晶格。

7.马氏体具有高硬度、高强度的原因是多方面的,其中主要包括固溶强化、相变强化、时效强化以及晶界强化等。

8.在通常情况下,马氏体转变不能进行到底,也就是说当冷却到M点温度后还不能获得100%的马氏体,而在组织中保留有一定f数量的未转变的奥氏体,称之为残余奥氏体。

9. 粗大的魏氏组织是钢的一种过热缺陷组织。

10.回火:回火是将淬火钢加热到低于临界点A的某一温度保温1一定时间,使淬火组织转变为稳定的回火组织,然后以适当的方式冷却到室温的一种热处理工艺。

11.淬火钢在回火时的组织转变规律:(1)马氏体中碳的偏聚。

(2)马氏体的分解。

(3)残余奥氏体的转变。

(4)碳化物的转变。

金属学与热处理复习资料(本)

金属学与热处理复习资料(本)

金属学与热处理复习资料一、名词解释1、晶体:原子在三维空间做有规则的周期性重复排列的物质。

2、非晶体:指原子呈不规则排列的固态物质。

3、晶格:一个能反映原子排列规律的空间格架。

4、晶胞:构成晶格的最基本单元。

5、晶界:晶粒和晶粒之间的界面。

6、单晶体:只有一个晶粒组成的晶体。

7、合金:是以一种金属为基础,加入其他金属或非金属,经过熔合而获得的具有金属特性的材料。

8、组元:组成合金最基本的、独立的物质称为组元。

9、相:金属中具有同一化学成分、同一晶格形式并以界面分开的各个均匀组成部分称为相。

10、固熔体:合金组元通过溶解形成成分和性能均匀的、结构上与组元之一相同的固相。

11、结晶:纯金属或合金由液体转变为固态的过程。

12、重结晶:金属从一种固体晶态改变了晶体结构转变为另一种固体晶态的过程。

13、过冷度:理论结晶温度(T0)和实际结晶温度(T1)之间存在的温度差。

14、铁素体:碳溶解于α-Fe中形成的间隙固溶体。

15、渗碳体:是铁与碳形成的质量分数为6.69%的金属化合物。

16、奥氏体:碳溶解于γ-Fe中形成的间隙固溶体。

17、珠光体:是由铁素体与渗碳体组成的机械化合物。

18、莱氏体:奥氏体与渗碳体的混合物为莱氏体。

19、同素异构转变:一些金属,在固态下随温度或压力的改变,还会发生晶体结构变化,即由一种晶格转变为另一种晶格的变化,称为同素异构转变。

20、实际晶粒度:某一具体热处理或热加工条件下的奥氏体的晶粒度叫实际晶粒度,它决定钢冷却后的组织和性能。

21、马氏体:碳在α-Fe 中的过饱和间隙固溶体,具有很大的晶格畸变,强度很高。

22、贝氏体:渗碳体分布在含碳过饱和的铁素体基体上或的两相混合物。

根据形貌不同又可分为上贝氏体和下贝氏体。

23、淬透性:淬透性是指在规定条件下,钢在淬火冷却时获得马氏体组织的能力。

24、淬硬性:淬硬性是指钢在理想的淬火条件下,获得马氏体所能达到的最高硬度。

25、调质处理:淬火后高温回火的热处理工艺组合。

金属学与热处理期末复习总结

金属学与热处理期末复习总结

一、名词解释:1热强性:在室温下,钢的力学性能与加载时间无关,但在高温下钢的强度及变形量不但与时间有关,而且与温度有关,这就是耐热钢所谓的热强性;2形变热处理:是将塑性变形同热处理有机结合在一起,获得形变强化和相变强化综合效果的工艺方法;3热硬性:热硬性是指钢在较高温度下,仍能保持较高硬度的性能;4固溶处理:指将合金加热到高温单相区恒温保持,使过剩相充分溶解到固溶体中后快速冷却,以得到的热处理工艺;5回火脆性:是指回火后出现韧性下降的;6二次硬化:某些铁碳合金如高速钢须经多次回火后,才进一步提高其硬度;7回火稳定性:在时,抵抗强度、硬度下降的能力称为回火稳定性;8淬硬性:指钢在淬火时硬化能力,用淬成马氏体可能得到的最高硬度表示;9水韧处理:将钢加热至奥氏体区温度1050-1100℃,视钢中碳化物的细小或粗大而定并保温一段时间每25mm壁厚保温1h,使铸态组织中的碳化物基本上都固溶到奥氏体中,然后在水中进行淬火,从而得到单一的奥氏体组织;10分级淬火:将奥氏体状态的工件首先淬入温度略高于钢的Ms点的盐浴或碱浴炉中保温,当工件内外温度均匀后,再从浴炉中取出空冷至室温,完成马氏体转变;11临界淬火冷却速度:是过冷奥氏体不发生分解直接得到全部马氏体含残留奥氏体的最低冷却速度;12季裂:它指的是经冷变形后的金属内有拉伸应力存在又处于特定环境中所发生的断裂; 13奥氏体化:将钢加热至临界点以上使形成奥氏体的金属热处理过程;14本质晶粒度:本质晶粒度用于表征钢加热时晶粒长大的倾向;二、简答:1 何为奥氏体化简述共析钢的奥氏体化过程;答:1、将钢加热至临界点以上使形成奥氏体的金属热处理过程;2、它是一种扩散性相变,转变过程分为四个阶段;1形核;将珠光体加热到Ac1以上,在铁素体和渗碳体的相界面上奥氏体优先形核;珠光体群边界也可形核;在快速加热时,由于过热度大,铁素体亚边界也能形核;2长大;奥氏体晶粒长大是通过渗碳体的溶解、碳在奥氏体和铁素体中的扩散和铁素体向奥氏体转变;为了相平衡,奥氏体的两个相界面自然地向铁素体和渗碳体两个方向推移,奥氏体便不断长大;3残余渗碳体的溶解;铁素体消失后,随着保温时间的延长,通过碳原子扩散,残余渗碳体逐渐溶入奥氏体;4奥氏体的均匀化;残余渗碳体完全溶解后,奥氏体中碳浓度仍是不均匀的;只有经长时间的保温或继续加热,让碳原子进行充分地扩散才能得到成分均匀的奥氏体;2 奥氏体晶粒大小对冷却转变后钢的组织和性能有何影响简述影响奥氏体晶粒大小的因素;答:1、奥氏体晶粒度大小对钢冷却后的组织和性能有很大影响;奥氏体晶粒度越细小,冷却后的组织转变产物也越细小,其强度也越高,此外塑性,韧性也较好;但奥氏体化温度过高或在高温下保持时间过长会显着降低钢的冲击韧度、减少裂纹扩展功和提高脆性转变温度;2、奥氏体晶粒大小是影响使用性能的重要指标,主要有下列因素影响奥氏体晶粒大小;1加热温度和保温时间的影响加热温度越高,保温时间越长,奥氏体晶粒越粗大;2加热速度的影响加热速度越快,奥氏体的实际形成温度越高,形核率和长大速度越大,则奥氏体的起始晶粒越细小,但快速加热时,保温时间不能过长,否则晶粒反而更加粗大;3钢的化学成分的影响在一定含碳量范围内,随着奥氏体中含碳量的增加,碳在奥氏体中的扩散速度及铁的自扩散速度增大,晶粒长大倾向增加,但当含碳量超过一定限度后,碳能以未溶碳化物的形式存在,阻碍奥氏体晶粒长大,使奥氏体晶粒长大倾向减小;4钢的原始组织的影响钢的原始组织越细,碳化物弥散速度越大,奥氏体的起始晶粒越细小,相同的加热条件下奥氏体晶粒越细小;3 简述影响过冷奥氏体等温转变的因素;答:奥氏体成分含碳量、合金元素、奥氏体状态钢的原始组织、奥氏体化的温度和保温时间及应力和塑性变形;1、含碳量的影响亚共析钢随奥氏体含碳量增加,使C曲线右移,Ms和Mf点降低;过共析钢随含碳量的增加,使C曲线向左移,Ms和Mf点降低;2、合金元素的影响除Co、AlWAl>%外,所有合金元素的溶解到奥氏体中后,都增大过冷奥氏体的稳定性,使C曲线右移,Ms和Mf点降低;3、奥氏体状态的影响奥氏体化温度越低,保温时间越短,奥氏体晶粒越细小,C曲线左移;4、应力和塑性变形的影响在奥氏体状态下承受拉应力会加速奥氏体的等温转变,承受压应力则会阻碍这种转变;对奥氏体进行塑性变形有加速奥氏体转变的作用,C曲线左移;4简述片状珠光体和粒状珠光体的组织和性能;答:1、片状珠光体组织:WC=%的奥氏体在近于平衡的缓慢冷却条件下形成的珠光体是由铁素体和渗碳体组成的片层相间的组织;性能:主要决定于片间距;片间距越小,钢的断裂强度和硬度均随片间距的缩小而增大;随片间距减小,钢的塑性显着增加;片间距减小,塑性变形抗力增大,故强度;硬度提高;2、粒状珠光体组织:渗碳体呈颗粒状分布在连续的铁素体基体中的组织性能:主要取决于渗碳体颗粒的大小,形态与分布;钢的成分一定时,渗碳体颗粒越细,相界面越多,则刚的硬度和强度越高;碳化物越接近等轴状、分布越均匀,则钢的韧性越好;粒状珠光体的硬度和强度较低,塑性和韧性较好,冷变形性能,可加工性能以及淬火工艺性能都比珠光体好;5何为马氏体简述马氏体的晶体结构、组织形态、性能及转变特点;答:是碳在α-Fe中过饱和的间隙固溶体;2、马氏体的晶体结构在钢中有两种:体心正方结构WC<%,c/a=1;体心正方结构WC>%,c/a>1;组织形态:板条马氏体、片状马氏体200℃以上,WC<%,完全形成板条马氏体,因其体内含有大量位错又称位错马氏体;特点强而韧%<WC<1%,为板条马氏体和片状马氏体的混合物;200℃以下,WC>%,完全形成片状马氏体,因其亚结构主要为孪晶又称孪晶马氏体;特点硬而脆4、1马氏体的显着特点是高硬度和高强度,原因包括固溶强化、相变强化、时效强化、原始奥氏体晶粒大小及板条马氏体束大小;马氏体的硬度主要取决于马氏体的含碳量;合金元素对马氏体的硬度影响不大,但可以提高其强度;2马氏体的塑性和韧性主要取决于马氏体的亚结构;5、1无扩散性;奥氏体成分保留在马氏体中2马氏体转变的切变共格性3马氏体转变具有特定的惯习面和位向关系4马氏体转变是在一定温度范围内进行的6 简述淬火钢的回火转变、组织及淬火钢在回火时的性能变化;答:1、钢的回火转变包括五个方面180℃-100℃以下温度回火,马氏体中碳的偏聚,组织是马氏体马氏体:碳溶于α-Fe的过饱和的固溶体280℃-100℃回火,马氏体开始分解,组织是回火马氏体回火马氏体:低碳马氏体和ε碳化物组成的混合物,称为回火马氏体;3200℃-300℃回火,残余奥氏体开始转变,组织是回火马氏体4200℃-400℃回火,碳化物的转变为Fe3C,组织是回火托氏体回火托氏体:由针状α相和无共格联系的细粒状渗碳体组成的机械混合物;5500℃-650℃渗碳体的聚集长大和α相回复或再结晶,组织是回火索氏体回火索氏体:回复或再结晶的铁素体和粗粒状渗碳体的机械混合物;2、回火时力学性能变化总的趋势是随回火温度提高,钢的抗拉强度、屈服强度和硬度下降,塑性、韧性提高;7 简述回火脆性的分类、特点及如何消除;答:1分类:第一类回火脆性低温回火脆性250℃-400℃和第二类回火脆性高温回火脆性450℃-650℃2特点第一类回火脆性:1具有不可逆性第二类回火脆性:1具有可逆性;2与后的有关3与组织状态无关,但以M的脆化倾向3如何消除第一类回火脆性:无法消除,合金元素会提高脆化温度;第二类回火脆性:1选择含杂质元素极少的优质钢材以及采用形变热处理;2加入适量的Mo、W等合金元素阻碍杂质元素在晶界上便聚;3对亚共析钢在A1~A3临界区可采用4采用高温回火后快冷的方法可抑制回火脆性,但不适用于对回火脆性敏感的较大工件;8 叙述淬透性和淬硬性及淬透性和实际条件下淬透层深度的区别;答:1、淬透性:是指奥氏体化后的钢在淬火时获得马氏体的能力,它反映过冷奥氏体的稳定性,与钢的临界冷却速度有关;临界冷却速度越慢,淬透性越大;其大小以钢在一定条件下淬火获得的淬透层深度和硬度分布来表示;2、淬硬性:是指奥氏体化后的钢在淬火时硬化的能力,主要取决于马氏体中的含碳量,含碳量越高,淬硬性越大;用淬火马氏体可能达到的最高硬度来表示;3、实际条件下的淬透层深度:是指具体条件下测定的半马氏体区至表面的深度;4、区别:1同一材料的淬透层深度与工件尺寸、冷却介质有关.工件尺寸小、介质冷却能力强,淬透层深;2淬透性与工件尺寸、冷却介质无关,它是钢的一种属性;相同奥氏体化温度下的同一钢种,其淬透性是确定不不变的;9 何谓淬火热应力、组织应力影响因素都是什么简述热应力和组织应力造成的变形规律;答:1、淬火热应力:工件在加热或冷却时由于内外的温度差异导致热涨或冷缩的不一致所引起的内应力;2、组织应力:工件在冷却过程中,由于内外温差造成组织转变不同时,引起内外比体积的不同变化而引起的内应力;3、影响因素:1含碳量的影响:随着含碳量的增加热应力作用逐渐减弱组织应力逐渐增强;2合金元素的影响:加入合金元素热应力和组织应力增加;3工件尺寸的影响:a.在完全淬透的情况下随着工件直径的增大淬火后残余应力将由组织应力性逐渐变成热应力性;b.在未完全淬透的情况下所产生的应力特性是与热应力相似的,工件直径越大淬硬层越薄,热应力特性越明显;4淬火介质和冷却方法的影响:如果在高于Ms点以上的温度区域冷却速度快而在温度低于Ms点区域冷却速度慢则为热应力性,反之则为组织应力型;4、变形规律:1热应力引起的变形①沿最大尺寸方向收缩,沿最小尺寸方向伸长;②平面凸起,直角变钝,趋于球形;③外径胀大,内径缩小;2组织应力引起变形与热应力相反;10 何谓回火叙述回火工艺的分类,得到的组织,性能特点及应用;答:1、回火:回火是指将淬火钢加热到A1以下的某温度保温后冷却的工艺;2、分类: 低温回火:1得到回火马氏体;2在保留高硬度、高强度及良好的耐磨性的同时又适当提高了韧性,降低内应力;3适用于刀具、量具、滚动轴承、渗碳件及高频表面淬火件;中温回火:1得到回火托氏体;2基本消除了淬火应力,具有高的弹性极限,较高的强度和硬度,良好的塑性和韧性;3适用于弹簧热处理及热锻模具;高温回火:1得到回火索氏体;2获得良好的综合力学性能,即在保持较高的强度同时,具有良好的塑性和韧性;3广泛用于各种结构件如轴、齿轮等热处理;也可作为要求较高精密件、量具等预备热处理;11 简述化学热处理的一般过程;渗碳的工艺、渗层深度、渗碳后表层含碳量、用钢、热处理、组织和应用;答:1、过程:1介质渗剂的分解2工件表面的吸收3原子向内部扩散;2、渗碳工艺:气体渗碳法,固体渗碳,离子渗碳3、渗碳层厚度由表面到过度层一半处的厚度:一般为-2mm;4、渗碳层表面含碳量:以%%为最好;5、用刚:为含的低碳钢和低碳合金钢;碳高则心部韧性降低;6、热处理:常用方法是渗碳缓冷后,重新加热到Ac1+30-50℃淬火分三类:遇冷直接淬火、一次淬火、二次淬火+低温回火;7、组织:表层:高碳M回+颗粒状碳化物+A少量心部:低碳M回+铁素体淬透时、铁素体+索氏体8、应用:拖拉机履带板,坦克履带板。

热处理部分复习总结

热处理部分复习总结

第九章钢的热处理原理总结一、概述1热处理:将钢在固态下加热到预定的温度,并在该温度下保温一段时间,然后以一定的速度冷却下来的一种热加工工艺。

2目的:是改变钢的内部组织结构,以改善钢的性能。

3作用:消除毛坯中的缺陷,改善其工艺性能,显著提高钢的力学性能,充分发挥钢材的潜力。

4什么样的金属材料才能进行热处理:原则上只有在加热或冷却时溶解度发生显著变化或者发生类似纯铁的同素异构转变,即有固态相变发生的合金才能进行热处理。

5金属固态相变的特征:相变阻力大,新相晶核与母相之间存在一定的晶体学位向关系,母相晶体缺陷对相变起促进作用,易于出现过渡相(亚稳相)6固态相变的分类按平衡状态分:平衡相变非平衡相变按原子的迁移特征分:扩散型相变过渡型相变非扩散型相变二、钢在加热时的转变1平衡相图与热处理的滞后现象:平衡相图是表示热力学上近于平衡时的组织状态与温度、成分之间的关系。

由上图可知:A1、A3 、Acm线是钢在缓慢加热和冷却过程中组织转变的临界点。

实际上,钢在热处理时其转变温度要偏离平衡的临界点,产生滞后现象:加热时的组织转变的临界点为Ac1、Ac3 、Accm线;冷却时的组织转变的临界点为Ar1、Ar3 、Arcm线。

加热冷却速度越快,滞后现象越严重。

2“奥氏体”化:钢在加热时获得奥氏体的组织转变的过程3共析钢奥氏体的形成过程,组织成分和结构的变化,形成的步骤有哪些?4亚共析钢和过共析钢奥氏体的过程温度只超过Ac1时,只有原始组织中的P转变为A,仍部分保留先共析相(F和Fe3C ),温度继续升高超过Ac3、Accm,并保温足够时间后,才能获得均匀的单相A组织5 影响A形成速度的因素加热温度和保温时间、原始组织、化学成分如何影响?6 晶粒度是衡量晶粒大小的尺度。

通常以单位面积内的晶粒数目或以每个晶粒的平均面积与平均直径来描述(起始晶粒度:钢在临界温度以上A形成刚结束,其晶粒边界刚刚相互接触时的晶粒大小。

)本质晶粒度:钢在一定条件下A晶粒长大的倾向性。

金属学与热处理笔记

金属学与热处理笔记

金属学与热处理总结一、金属的晶体结构重点内容:面心立方、体心立方金属晶体结构的配位数、致密度、原子半径,八面体、四面体间隙个数;晶向指数、晶面指数的标定;柏氏矢量具的特性、晶界具的特性。

基本内容:密排六方金属晶体结构的配位数、致密度、原子半径,密排面上原子的堆垛顺序、晶胞、晶格、金属键的概念。

晶体的特征、晶体中的空间点阵。

晶胞:在晶格中选取一个能够完全反映晶格特征的最小的几何单元,用来分析原子排列的规律性,这个最小的几何单元称为晶胞。

金属键:失去外层价电子的正离子与弥漫其间的自由电子的静电作用而结合起来,这种结合方式称为金属键。

位错:晶体中原子的排列在一定范围内发生有规律错动的一种特殊结构组态。

位错的柏氏矢量具有的一些特性:①用位错的柏氏矢量可以判断位错的类型;②柏氏矢量的守恒性,即柏氏矢量与回路起点及回路途径无关;③位错的柏氏矢量个部分均相同。

刃型位错的柏氏矢量与位错线垂直;螺型平行;混合型呈任意角度。

晶界具有的一些特性:①晶界的能量较高,具有自发长大和使界面平直化,以减少晶界总面积的趋势;②原子在晶界上的扩散速度高于晶内,熔点较低;③相变时新相优先在晶界出形核;④晶界处易于发生杂质或溶质原子的富集或偏聚;⑤晶界易于腐蚀和氧化;⑥常温下晶界可以阻止位错的运动,提高材料的强度。

12二、纯金属的结晶重点内容:均匀形核时过冷度与临界晶核半径、临界形核功之间的关系;细化晶粒的方法,铸锭三晶区的形成机制。

基本内容:结晶过程、阻力、动力,过冷度、变质处理的概念。

铸锭的缺陷;结晶的热力学条件和结构条件,非均匀形核的临界晶核半径、临界形核功。

相起伏:液态金属中,时聚时散,起伏不定,不断变化着的近程规则排列的原子集团。

过冷度:理论结晶温度与实际结晶温度的差称为过冷度。

变质处理:在浇铸前往液态金属中加入形核剂,促使形成大量的非均匀晶核,以细化晶粒的方法。

过冷度与液态金属结晶的关系:液态金属结晶的过程是形核与晶核的长大过程。

总结热处理知识点

总结热处理知识点

总结热处理知识点退火是指将金属材料加热至一定温度,然后保温一段时间,最后缓慢冷却到室温的一种热处理方法。

通过退火可以消除材料内部应力,改善塑性和韧性,提高材料的加工性能。

金属材料的退火过程包括加热阶段、保温阶段和冷却阶段,这些阶段的温度和时间控制都会影响到最终的退火效果。

正火是指将金属材料加热至一定温度,然后冷却到室温的一种热处理方法。

正火与退火相似,但正火的加热温度和保温时间要比退火高,冷却速度也要比退火快,这样才能得到更细小的马氏体结构,从而提高材料的硬度和强度。

淬火是指将金属材料加热至一定温度,然后迅速冷却到室温的一种热处理方法。

淬火可以使材料产生马氏体,从而提高其硬度和强度,但也会导致材料变脆。

因此在淬火后还需要进行回火处理,以提高材料的韧性。

回火是指将淬火后的金属材料重新加热到一定温度,然后保温一段时间,最后冷却到室温的一种热处理方法。

回火可以消除淬火后的内部应力,降低材料的硬度,提高其韧性。

固溶处理是指将固溶体加热到一定温度,然后保温一段时间,最后迅速冷却的热处理方法。

固溶处理可以使合金中的固溶体中的固溶体和析出物达到热平衡,在这个温度下,合金的强度和硬度会下降,但塑性和韧性会提高。

时效处理是指将合金经过固溶处理后,再进行一段时间的自然或人工时效,使析出相达到稳定状态的热处理方法。

时效处理可以显著提高合金的强度和硬度。

总的来说,热处理是通过控制材料的组织和性能,来改善材料的力学性能、物理性能和化学性能的方法。

热处理可以提高材料的硬度、强度和耐磨性,改善其抗疲劳性、塑性和韧性,降低材料的脆性。

不同的热处理方法适用于不同的材料和要求,因此在实际生产过程中需要根据具体需求进行选择和控制。

热处理工艺的控制对材料的性能有着重大的影响。

首先是控制加热温度和保温时间,这直接影响到材料的组织和性能。

加热温度过高或保温时间过长会导致晶粒长大和过热,从而影响到材料的机械性能。

其次是要控制冷却速度,冷却速度过快会产生应力集中和变形,影响材料的性能。

热处理笔记

热处理笔记

1式样裂纹看有无淬火马氏体和脱碳层?磨削加工时磨削热导致二次淬火层,可使用显微硬度确定是否为马氏体。

脱碳层在例如:齿面磨削裂纹宏观照片荧光灯下裂纹照片室外裂纹照片齿面磨削裂纹金相照片旦纳齿轮轴叉齿面磨削裂纹旦纳齿轮轴叉裂纹收尾处旦纳齿轮轴叉磨削的齿面未磨削的齿根处组织50X应该说这组试样制作水平不高,不能把腐蚀剂的影响减少到最小,给人造成很多错觉.再就是产生磨削裂纹后应当先有磨削面的裂纹照片.这是判断裂纹性质的重要证据。

纵向切片照片中的金相组织没有先解释清楚.这是失效分析的大忌。

渗碳淬火后磨削裂纹的原因判断分析要进行两方面的工作:一是裂纹表面形态:是表面龟裂还是垂直于磨削方向的平行线或者两者兼而有之;表面有无磨削烧伤的痕迹(发黄到发蓝)。

二是裂纹纵向切片组织形态和裂纹深度:马氏体、残余奥氏体、碳化物的形态是否合格;表面有无异常组织区域出现(如表面的白亮层、脱碳层、过热区等);各区的显微硬度分布情况;裂纹深度有多深,裂纹前端达到渗碳组织的哪个区域等。

有了以上的证据收集就基本上可以判断裂纹的原因了:表面有龟裂的话与渗碳淬火组织中有大量残余奥氏体有关,这明显是热处理问题。

如果裂纹是平行于磨削方向且互不相交的话情况就复杂些。

就要综合其它的分析结果进行判断。

从你的后序解释来看,主要是由于表面存在大量的残余奥氏体造成的。

这种组织即使磨削符合规范,也会形成磨削裂纹,并且表面裂纹呈龟裂状。

磨削不符合规范,磨削热过大形成表面二次淬火(有了白亮层和热影响区)。

是磨削引起的淬火裂纹!白亮层是一种硬化层,而实质上就是马氏体!我们在使用过的钢丝绳内也常常碰到,它是因外部受到剧烈的磨损或冲撞,使钢的表面温度瞬间达到淬火温度,继而急剧冷却,形成局部马氏体。

由此引起钢丝绳失效的案例也不少!2关于45钢的正火工艺请问楼主,为了便于后续机加工,预先热处理(正火退火)后得到的组织,是等轴状铁素体+珠光体好呢,还是网状铁素体+珠光体好?按理论上来说,相图是平衡状态下测定的,平衡状态即冷速缓慢,那么平衡状态下(就以45钢为例),得到的应该是网状还是等轴状铁素体呢?为什么有此一问,主要是我一直没理解你所说的“冷却速度快(较正火)容易形成网状”。

热处理知识点汇总

热处理知识点汇总

1.相:相抗拉强度屈服强度延伸率冲击韧性硬度160-200 80HBSF 180-280 100-170 30%-50%----- 170-220A 400 ---- 40%-50%Fe3C 30 --- 0 0 800HBW2.合金元素对A的作用增加A区域:Mn、Ni、Co、N;减小A区域:Ti、V、Cr、Mo、W、Al、Si.3.A的置换固溶体:Mn、Si、Cr、Ni.4.比体积:.奥氏体(<)铁素体(<)马氏体面心立方晶格体心立方晶格C在α-Fe过饱和间隙固溶体5.热涨系数奥氏体>铁素体>渗碳体>马氏体6.Al脱氧---AlN 细化晶粒7.不形成碳化物元素:Si、Ni、Cu、Al 作用:C曲线右移;形成碳化物元素:Ti、V、Cr、Mo、W 作用:1.C曲线右移;2.珠光体、贝氏体曲线分开(两个鼻尖)。

8.珠光体:扩散型相变,Fe元素同素异构、C元素扩散;贝氏体:铁元素不变、C元素扩散;马氏体:无扩散型相变。

9.强碳化物:Ti、V、Nb、Cr、Mo、W;弱碳化物:Mn;非碳化物:Ni、Cu、Al、Si。

10.魏氏组织:魏氏组织经常出现在过热的钢中;(Mn增大趋势,Cr、Mo、Si减小趋势)11.B元素只用于亚共析钢中0.001%-0.0035%,降低铁素体析出。

(机理:B为内表面活性元素,有富集于晶界的强烈倾向,降低晶界表面能,铁素体形核困难。

)12.Ni元素为韧化元素,降低铁素体的同素异构转变。

13.Mo、B:贝氏体钢基本成分,推迟共析铁素体和珠光体的转变。

14.第一类回火脆性:Mn、Si、Cr、Ni、V 250-400℃回火;机理:脆性相碳化物薄壳和晶界偏聚理论。

15.第二类回火脆性:Mn、Cr、Cr-Ni.450-600℃回火,缓慢冷却。

Ti、V、Mo、W拟制第二类回火脆性。

16.低碳中碳高碳≤0.25% 0.25-0.6% 0.6-1.4%17.铸钢碳含量一般0.15-0.55%;铸铁2.5%-4.0%;调质钢碳含量0.35-0.55%。

热处理考试重点复习笔记

热处理考试重点复习笔记

热处理复习重点第一章金属材料基础知识1. 材料力学性能(1)材料在外力作用下抵抗变形和破坏的能力称为强度。

强度有多种指标,如屈服强度(σs)、抗拉强度(σb)、抗压强度、抗弯强度、抗剪强度等。

(2)塑性是指材料受力破坏前承受最大塑性变形的能力,指标为伸长率(δ)和断面收缩率(φ),δ和φ越大,材料的塑性越好。

(3)材料受力时抵抗弹性变形的能力称为刚度,其指标是弹性模量(弹性变形范围内,应力与应变的比值)。

(4)硬度(材料表面局部区域抵抗更硬物体压入的能力)a. 布氏硬度(测较低硬度材料)用一定直径的钢球或硬质合金球,在一定载荷的作用下,压入试样表面,保持一定时间后卸除载荷,所施加的载荷与压痕表面积的比值。

HBS(钢球,<450)、HBW(硬质合金球,>650)。

b. 洛氏硬度(测较高硬度材料)利用一定载荷将交角为120°的金刚石圆锥体或直径为1.588mm的淬火钢球压入试样表面,保持一定时间后卸除载荷,根据压痕深度确定的硬度值。

HRA(金刚石圆锥,20~80)、HRB(1.588mm钢球,20~100)、HRC (金刚石圆锥,20~70)c. 维氏硬度(适用范围较广)维氏硬度其测定原理基本与布氏硬度相同,但使用的压头是锥面夹角为136°的金刚石正四棱锥体。

(5)冲击韧性材料抵抗冲击载荷作用而不被破坏的能力。

通常用冲击功A k来度量,A k是冲击试样在摆锤冲击试样机上一次冲击试验所消耗的冲击功。

(6)疲劳强度材料在规定次数(钢铁材料为107次,有色金属为108次)的交换载荷作用下,不发生断裂时的最大应力,用σ-1表示。

2. 铁碳相图第二章钢的热处理原理1. 钢的临界温度A c1——加热时珠光体向奥氏体转变的开始温度A c3——加热时先共析铁素体全部溶入奥氏体的终了温度A ccm——加热时二次渗碳体全部溶入奥氏体的终了温度A r1——冷却时奥氏体向珠光体转变的开始温度A r3——冷却时奥氏体开始析出先共析铁素体的温度A rcm——冷却时奥氏体开始析出二次渗碳体的温度2. 钢在加热时的转变(1)共析钢由珠光体向奥氏体的转变包括以下四个阶段:奥氏体形核(相界面处)、奥氏体晶核长大、剩余渗碳体溶解、奥氏体成分均匀化。

热处理知识点总结

热处理知识点总结

.正火:将钢材或钢件加热到临界点AC3或ACM以上的适当温度保持一定时间后在空气中冷却,得到珠光体类组织的热处理工艺。

退火:将亚共析钢工件加热至AC3以上20—40度,保温一段时间后,随炉缓慢冷却(或埋在砂中或石灰中冷却)至500度以下在空气中冷却的热处理工艺固溶热处理:将合金加热至高温单相区恒温保持,使过剩相充分溶解到固溶体中,然后快速冷却,以得到过饱和固溶体的热处理工艺时效:合金经固溶热处理或冷塑性形变后,在室温放置或稍高于室温保持时,其性能随时间而变化的现象。

固溶处理:使合金中各种相充分溶解,强化固溶体并提高韧性及抗蚀性能,消除应力与软化,以便继续加工成型时效处理:在强化相析出的温度加热并保温,使强化相沉淀析出,得以硬化,提高强度淬火:将钢奥氏体化后以适当的冷却速度冷却,使工件在横截面内全部或一定的范围内发生马氏体等不稳定组织结构转变的热处理工艺回火:将经过淬火的工件加热到临界点AC1以下的适当温度保持一定时间,随后用符合要求的方法冷却,以获得所需要的组织和性能的热处理工艺铁素体:碳在α-Fe(体心立方结构的铁)中的间隙固溶体。

奥氏体:碳在γ-Fe(面心立方结构的铁)中的间隙固溶体。

渗碳体:碳和铁形成的稳定化合物(Fe 3c )。

珠光体:铁素体和渗碳体组成的机械混合物(F+Fe3c 含碳0.8%)莱氏体:渗碳体和奥氏体组成的机械混合物(含碳 4.3%)调质处理:将钢件淬火,随之进行高温回火,这种复合工艺称调质处理。

表面热处理:改变钢件表面组织或化学成分,以其改面表面性能的热处理工艺。

表面淬火:是将钢件的表面通过快速加热到临界温度以上,但热量还未来得及传到心部之前迅速冷却,这样就可以把表面层被淬在马氏体组织,而心部没有发生相变,这就实现了表面淬硬而心部不变的目的。

适用于中碳钢。

化学热处理:是指将化学元素的原子,借助高温时原子扩散的能力,把它渗入到工件的表面层去,来改变工件表面层的化学成分和结构,从而达到使钢的表面层具有特定要求的组织和性能的一种热处理工艺渗碳:向钢的表面渗入碳原子,提高表面含碳量,提高材料表面硬度、抗疲劳性和耐磨性。

金属热处理知识点要点(良心出品必属精品)

金属热处理知识点要点(良心出品必属精品)

1 热处理的目的、分类、条件;定义:通过加热、保温和冷却的方法,使金属的内部组织结构发生变化,从而获得所要求的性能的一种工艺方法。

目的: 1、消除毛坯中的缺陷,改善工艺性能,为切削加工或热处理做组织和性能上的准备。

2、提高金属材料的力学性能,充分发挥材料的潜力,节约材料延长零件使用寿命。

分类:特点:热处理区别于其他加工工艺如铸造、压力加工等的特点是只通过改变工件的组织来改变性能,而不改变其形状。

热处理条件:(1)有固态相变发生的金属或合金(2)加热时溶解度有显著变化的合金热处理过程中四个重要因素:(1)加热速度V; (2)最高加热温度T;(3)保温时间h; (4)冷却速度Vt.2 什么是铁素体、奥氏体、渗碳体?其结构与性能; Ac1、Ar1、Ac3、Ar3、Accm、Arcm临界温度的意义;奥氏体的形成条件;奥氏体界面形核的原因/条件;以共析钢为例,详细分析奥氏体的形成机理;影响奥氏体转变速度的因素;影响奥氏体晶粒长大的因素;铁素体:碳溶于α-Fe中形成的间隙固溶体,以F或α表示;结构:体心立方结构;组织:多边形晶粒性能:铁素体的塑性、韧性很好(δ=30~50%、aKU=160~200J/cm2),但强度、硬度较低(σb=180~280MPa、σs=100~170MPa、硬度为50~80HBS)。

其力学性能几乎与纯铁相同。

奥氏体:碳溶于γ-Fe中的间隙固溶体;用A或γ表示结构:面心立方晶格性能:奥氏体常存在于727℃以上,是铁碳合金中重要的高温相,强度和硬度不高,但塑性和韧性很好(σb≈400 MPa、δ≈40~50%、硬度为160~200HBS),易锻压成形。

钢材热加工都在γ区进行。

组织:多边形等轴晶粒,在晶粒内部往往存在孪晶亚结构渗碳体:铁与碳形成的金属化合物,是钢铁中的强化相,高温下可分解, Fe3C →3Fe+C(石墨) 。

结构:复杂斜方性能:渗碳体中碳的质量分数为6.69%,熔点为1227℃,硬度很高(800HBW),塑性和韧性极低(δ≈0、aKU≈0),脆性大。

钢的热处理考试知识点

钢的热处理考试知识点

钢的热处理1、钢的热处理工艺主要有几种退火、淬火、正火、回火、外表热处理2、什么是同素异构转变、多形性转变同素异构转变:纯金属在温度和压力变化时,由某一种晶体结构转变为另一种晶体结构的过程称为同素异构转变。

多形性转变:在固溶体中发生的由一种晶体结构转变为另一种晶体结构的过程称为多形性转变。

3、奥氏体及其结构特点奥氏体是碳在γ-Fe中的间隙固溶体,具有面心立方结构。

奥氏体的面心立方结构使其具有高的塑性和低的屈服强度,在相变过程中容易发生塑性变形,产生大量位错或出现孪晶,从而造成相变硬化和随后的再结晶、高温下经历的反常细化以及低温下马氏体相变的一系列特点。

4、共析碳钢在加热转变时,奥氏体优先形核位置及原因奥氏体的形核1〕球状珠光体中:优先在F/Fe3C界面形核2〕片状珠光体中:优先在珠光体团的界面形核,也在F/Fe3C片层界面形核奥氏体在F/Fe3C界面形核原因:(1) 易获得形成A所需浓度起伏,结构起伏和能量起伏.(2) 在相界面形核使界面能和应变能的增加减少。

△G = -△Gv + △Gs + △Ge△Gv—体积自由能差,△Gs —外表能,△Ge —弹性应变能5、珠光体向奥氏体转变的三阶段,并说明为什么铁素体完全转变为奥氏体后仍然有一局部碳化物没有溶解?〔1〕奥氏体的形核;〔2〕奥氏体的长大;〔3〕剩余碳化物的溶解和奥氏体成分的均匀化;奥氏体长大的是通过γ/α界面和γ/Fe3C界面分别向铁素体和渗碳体迁移来实现的。

由于γ/α界面向铁素体的迁移远比γ/Fe3C界面向Fe3C的迁移来的快,因此当铁素体已完全转变为奥氏体后仍然有一局部渗碳体没有溶解。

6、晶粒度概念奥氏体本质晶粒度:根据标准试验方法,在930±10°C保温足够时间后测得的奥氏体晶粒大小。

奥氏体起始晶粒度:在临界温度以上,奥氏体形成刚刚完成,其晶粒边界刚刚相互接触时的晶粒大小奥氏体实际晶粒度:在某一加热条件下所得的实际奥氏体晶粒大小。

金属学级热处理笔记

金属学级热处理笔记

本科生上课笔记重点宏观的塑性变形是位错在外力作用下运动的结果。

位错在晶体中的运动方式有两种:滑移slip:与金属的变形密切相关攀移climba位错的滑移是在切应力作用下进行的,存在一个最小切应力。

使刃型位错滑移的切应力必须与位错线垂直。

对于刃型位错,晶体滑移的方向与位错运动方向一致。

滑移面:位错线与柏氏矢量组成的原子面,对于刃型位错,位错线与柏氏矢量垂直,因此刃位错的滑移面是唯一确定的。

使螺型位错滑移的切应力必须与位错线平行。

对于螺型位错,晶体滑移的方向与位错运动方向垂直。

滑移面:对于螺型位错,位错线与柏氏矢量平行,因此螺型位错可以有多个滑移面。

要点(1)位错的滑移面包含柏氏矢量和位错线。

(2)对于一根位错线而言,柏氏矢量是固定不变(3 )可以通过柏氏矢量和位错线的关系来判断位错特征。

b⊥t时为刃型位错,b∥t为螺型位错,对于混合型位错,b和t的角度在0°和90°。

的。

(4)位错线不能终止于完整晶体之中。

位错通常可以在包含位错线和柏氏矢量的面上滑移,在某些情况下,还能发生垂直于滑移面方向的移动,称为攀移。

只有刃型位错会发生攀移。

攀移的本质是刃型位错半原子面的向上(正攀移)或向下运动(负攀移)。

攀移时伴随物质的迁移,需要空位的扩散,需要热激活,比滑移需要更大的能量原子正常的堆剁次序遭到破坏的现象称为堆垛层错。

面缺陷包括晶界、相界和表面前面举例晶体有规则的外形,金属内部是由大量的小的单晶体组成,称为晶粒,每个晶粒内部,原子是规则排列的。

晶粒之间的界面称为晶界。

在晶界部分,原子呈不规则排列。

晶界两侧晶粒的位相差θθ<10o 小角度晶界θ>10o 大角度晶界在晶界处,原子处于较高能量状态。

这部分能量称为晶界能点缺陷、线缺陷、面缺陷、肖脱基空位、弗兰克耳缺陷、间隙原子、置换原子、刃型位错、螺型位错、位错密度、滑移、攀移、全位错、不全位错、层错、大角度晶界、小角度晶界、晶界能刃型位错和螺型位错的特征。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

项目二热处理复习笔记
1.热处理的作用:1)提高工件的使用性能和寿命;2)改善工件的加工工艺性能
2.热处理的特性:只改变材料的内部组织结构或工件材料表面的化学成分,不改变工件的形状和整体化学成分。

3.热处理对象:主要是钢铁材料,也可以是铝、铜、镁、钛等及其合金。

4.热处理的定义:对金属材料采用适当方式进行加热、保温和冷却,以获得预期的性能的工艺。

加热目的:为了获得强度、硬度低、塑性、韧性好的奥氏体组织。

保温目的:使工件热透,组织转变均匀。

冷却方式:随炉冷却、空气冷却、油冷、水冷,水中最快,炉中最慢。

表面热处理:只加热工件表层,以改变其表层材料力学性能的热处理工艺。

化学热处理:是改变工件表层材料的化学成分、组织、性能的表面热处理工艺。

6.退火
6.1定义:把钢加热到适当的温度,保温一定时间,然后缓慢冷却(炉冷),以获得接近平衡组织的热处理工艺。

6.2主要特点:冷却缓慢。

6.3分类:按冷却方式分为连续冷却退火、等温退火。

按加热温度分,在临界温度(AC3或AC1)以上,有完全退火、不完全退火、等温退火、球化退火、均匀化退火。

在临界温度(AC1)以下,有再结晶退火、去应力退火、脱氢退火等。

常见为表格中的三类:
6.4目的
(性能)降低硬度,利于切削加工;提高塑性韧性,利于冷加工。

(硬度降,塑性韧性即升)
(组织)消除或减少毛坯加工中形成的组织缺陷;细化晶粒(均匀化),为最终热处理做组织准备。

(应力)消除内应力,减少变形,防止开裂。

7.正火
7.1定义:将钢加热到适当温度(AC3或Acm以上40~60℃),保温一定时间,然后在空冷的热处理工艺。

7.2特点:组织细,强度、硬度比退火钢高(原因:冷却速度快)
7.3目的:对于低碳钢,细化组织,提高硬度,改善切削加工性
对于中碳钢和性能要求不高零件,做调质处理。

对于高碳钢,消除网状碳化物,为球化退火做组织准备。

性能要求不高,形状复杂、横截面有急剧变化的钢件,用正火代替淬火作为最终热处理(淬
火是水或油冷)
8.正火和退火的共同点
作为预备热处理,即处于锻造和粗加工之间。

消除内应力、均匀组织、改善力学性能和工艺性能。

要求不高零件,可作为最终热处理,如铸件,退火和正火就是最终热处理。

9.正火和退火的选择
从切削加工性考虑,含碳量0.5%以上用退火,含碳量0.5%以下用正火;
从使用性能考虑,要有好的力学性能,用正火,性能要求不高,正火为最终热处理,形状复杂,用退火。

从最终热处理考虑,减小淬火时的变形开裂,预先热处理用退火,要快速加热的工件,预先热处理用正火。

从经济性方面考虑,优先用正火,因为操作简便,生产周期短,成本低。

10.淬火
10.1定义:将钢加热到临界温度以上并保温一段时间,然后迅速放入淬火剂(冷却介质)中,使其温度骤然降低,用大于临界冷却速度的速度急速冷却,获得以马氏体为主的不平衡组织的热处理工艺。

加热温度:Ac3或Ac1以上30~50℃。

冷却介质:水、油、碱水、盐类溶液等。

临界冷却速度:钢淬火连续冷却中,能获得完全马氏体组织的最小冷却速度。

马氏体:是金属材料的一种组织名称,具有高硬度和高强度。

不平衡组织,后面要加回火热处理。

10.2目的:提高钢的硬度和耐磨性;提高工件的综合力学性能。

提高钢件的某些特殊性能。

10.3淬透性:钢经淬火后获得淬硬层深度(马氏体的深度)的能力。

淬透性好,淬硬层就厚,马氏体组织深度就深。

取决钢的化学成分和淬火冷却方式,加入合金元素可降低临界冷却速度,其淬透性好,冷却速度快淬透性好。

合金钢的淬透性比碳钢好。

10.4淬硬性:钢经淬火后达到的最高硬度,取决于Wc。

低碳钢的淬硬性比高碳钢好。

10.5淬火工艺有单液淬火、双液淬火、分级淬火、等温淬火等。

11.回火
11.1定义:将已经淬火的工件加热到适当温度(150-650℃),保持一段时间后冷却,以获得所需要的性能的热处理。

11.2回火(淬火+回火为最终热处理)
注意:淬火+高温回火为调质
12.表面热处理
12.1表面淬火
定义:表层加热,改变表层力学性能。

加热上要注意使表层或局部瞬时或短时达到高温。

分类及应用:主要有火焰淬火和感应加热表面淬火。

火焰淬火的淬硬层深度为2-6㎜,加热温度、淬硬层深度、淬火质量不容易控制,适合单件或小批量生产。

感应加热表面淬火淬硬层深度为0.5-15㎜,易实现机械化和自动化,容易控制、质量稳定,适用大批量生产。

后者的种类及淬硬层深度:高频 0.5-2.5㎜;中频3-10㎜;工频10-20㎜。

12.2化学热处理
定义:将工件置于一定温度的活性介质中保温,使一种或集中元素渗入它的表层以改变其化学成分、组织和性能的表面热处理工艺。

分类:渗碳(固体渗碳、液体渗碳、气体渗碳);渗碳设备有井式渗碳炉,网带式渗碳炉,多用炉等。

渗碳是碳原子渗入低碳钢或低碳合金钢工件表层的化学热处理工艺。

经淬火和低温回火后,工件表层具有高硬度和高耐磨性。

渗氮是渗入氮原子后,可获得比渗碳层更高的硬度及更好的耐磨性、耐蚀性和耐疲劳性能。

碳氮共渗是在工件表面同时渗入碳、氮两种元素的化学热处理工艺。

渗金属是将金属原子渗入钢的表面的过程,它使钢的表面合金化,以使工件表面具有某些合金钢、特殊性能钢的特性,常见有渗铝、渗铬、渗锌等。

主要方法有固体法、气体法、液体法等。

13.1在工艺过程中如何选择合理的热处理
举例1:下料—锻造—预先热处理—切削加工—最终热处理—磨削加工—检验。

预先热处理:材料的含碳量高于0.5%,一般选退火。

反之选正火;
最终热处理:一般为淬火+回火。

热处理的零件为工具(用低温);为弹性零件(用中温);为受力复杂零件(用高温)。

若表面有单独硬度要求,一般为表面淬火+低温回火。

若为合金渗碳钢,为渗碳+淬火、低温回火
举例2:下料—锻造—预先热处理—机械粗加工—中间热处理—机械精加工-最终热处理—磨削加工—检验。

中间热处理一般为调质,但此时最终热处理一般不为淬火+高温回火。

其他同举例1
正火或退火的目的:
消除内应力,改善切削加工性能(退火是降低硬度,正火是提高硬度),为后续热处理做准备。

淬火+低温回火:提高***的硬度和耐磨性。

淬火+中温回火:提高***的弹性性能。

淬火+高温回火:提高***的综合力学性能。

表面淬火+低温回火:使零件表面具有高硬度、高耐磨性、心部保持良好的综合力学性能。

渗碳+淬火、低温回火:使零件表面具有高硬度、高耐磨性、心部有足够的塑性和韧性。

淬火目的:提高钢的硬度和耐磨性。

回火的目的:消除淬火产生的内应力,降低硬度和脆性,以取得预期的力学性能。

相关文档
最新文档