勾股定理ppt课件
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
解:如图,在Rt△ABC中,∠C=90°, AC=6米 ,
BC=2米,则AB= 因为7米大于6.3米 ≈6.3
所以消防队能进入三楼灭火
小结
①本节课学到了什么数学知识? ②你了解了勾股定理的发现方法了吗? ③你还有什么困惑?
作业
教材第77页习题18.1第1、2、3题
3 4
2、湖的两端有A、B两点,从与BA方向成直 角的BC方向上的点C测得CA=130米,CB=120米, 则AB为 ( A ) A.50米 B.120米 C.100米 D.130米
A
130
?
C
120
B
议一议:
如图,大风将一根木制旗 杆吹裂,随时都可能倒下, 十分危急。接警后“119” 迅速赶到现场,并决定从 断裂处将旗杆折断。现在 需要划出一个安全警戒区 域,那么你能确定这个安 全区域的半径至少是多少 米吗?
c
2 2 2 a +b =c
猜想两直角边a、b与斜边c 之间的关系?
勾股定理 (毕达哥拉斯定理)
直角三角形两直角边的平方和 等于斜边的平方.
c
弦 ┏
b a勾
2 2 2 a +b =c
命题1:如果直角三角形的两直角边长分别为a、 b,斜边长为c,那么a2+b2=c2。
勾 股 世 界
两千多年前,古希腊有个哥拉 两千多年前,古希腊有个毕达哥拉斯 斯学派,他们首先发现了勾股定理,因此 学派,他们首先发现了勾股定理,因此在 在国外人们通常称勾股定理为毕达哥拉斯 国外人们通常称勾股定理为毕达哥拉斯定 定理。为了纪念毕达哥拉斯学派, 1955 理。为了纪念毕达哥拉斯学派, 1955年 年希腊曾经发行了一枚纪念票。 希腊曾经发行了一枚纪念邮票。
c
A
b
12 ⑵若c=13,b=5,则a=____ 15 ⑶ 若 c=17,a=8,则b=____
B
C
a
(3 ) 等边三角形的边长为12,
6 3 则它的高为______
(4) 在直角三角形中,如果有两边 5或 7 为3,4,那么另一边为_________
二 选择题:
⑴如果直角三角形的一个锐角为30度,斜边长是2 ㎝ ,那么直角三角形的其它两边长是( A ) C 1, 5 D 1 ,5 ⑵如图,在RT△ABC中,∠C=90°, A ∠B=45°,AC=1,则AB=( C ) A 1,
2
1
1
美丽的勾股树
勾股定理的各种表达式:
在Rt△ABC中,∠C=90°, ∠A 、∠B、 ∠C的对边分别为a 、b 、c ,则:
A
b
c
c2=a2+b2
c= a 2 b 2
a2=c2-b2
a B
a=
b=
c b
2
2
C
b2=c2-a2
c a
2
2
一 填空题:
1) 在直角三角形中,两条直角边 2+b2 2 a 分别为a,b, 斜边为c,则c =____ 2) 在RT△ABC中∠C=90°, 5 ⑴若a=4,b=3,则c=____
图1-1
图1-2
勾股定理(1)
看 一 看
发们 映 友 现, 直 家 什我 角 作 相 么们 三 客 传 ? 也 角 , 25 来 形 发 00 观三现年 察边朋前 下的友, 面某家一 的种用次 图数砖毕 案量铺达 ,关成哥 看系的拉 看,地斯 你同面去 能学反朋
(1)观察图2-1
C A B 图2-1 A B
x 6 2 2 2 32 4 2
x
2.求下列直角三角形中未知边的长:
比 一 比 看 看 谁 算 得 快 !
5 8 17
x
20
16
x
12
x
方法小结: 可用勾股定理建立方程.
1、如图,一个高3 米,宽4 米的大门,需在相 对角的顶点间加一个加固木条,则木条的长 为 ( C )
A.3 米 B.4 米 C.5米 D.6米
24m
9m
?
勾股定理的证法(一) c a b
c a
b
1 2 (b a) 4 ab c 2
2
b 2ab a 2ab c
2 2
2
a b c
2 2
2
勾股定理的证法(二) a b c c b
1 (a b) c 4 ab 2
2 2
a
a b c
2 2
1.求下列图中表示边的未知数x、y、z的值. 144 81 144 ① 169 ②
z
625
576
③
做一做:
A
625 P
225 P的面积 =______________ 25 AB=__________ B 20 BC=__________
AC=__________ 15
C
400
6 2
4 2 X=____________
国家之一。早在三千多年前, 我国是最早了解勾股定理的
国家之一。早在三千多年前, 国家之一。早在三千多年前,周 国家之一。早在三千多年前, 朝数学家商高就提出,将一根直 国家之一。早在三千多年前, 尺折成一个直角,如果勾等于三, 国家之一。早在三千多年前, 股等于四,那么弦就等于五,即 国家之一。早在三千多年前, “勾三、股四、弦五”,它被记 国家之一。早在三千多年前, 载于我国古代著名的数学著作 国家之一。早在三千多年前 《周髀算经》中。
读一读
我国古代把直角三角形中较短的直角边称为勾, 较长的直角边称为股,斜边称为弦 . 图 1-1 称为“弦图 ”,最早是由三国时期的数学家赵爽在为《周髀算经 》作法时给出的 . 图 1-2 是在北京召开的 2002 年国际数 学家大会(TCM-2002)的会标,其图案正是“弦图 ”,它标志着中国古代的数学成就.
正方形A中含有 9 个 小方格,即A的面积是 9 个单位面积。
C
正方形B的面积是
9 个单位面积。
正方形C的面积是
图2-2
18 个单位面积。
(图中每个小方格代表一个单位面积) 你是怎样得到上面的结 果的?与同伴交流交流。
C A B 图2-1 A B
S正方形c
C
1 4 3 3 18 2
图2-2
(图中每个小方格代表一个单位面积)
(单位面积)
分“割”成若干个直 角边为整数的三角形
C A B 图2-1 A B
S正方形c
C
1 62 2
(单位面积) 18
图2-2
(图中每个小方格代表一个单位面积)
把C“补” 成边长为6的 正方形面积的一半
C A B 图2-1 A B
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
(2)你能发现
A B
图3-1
C
C
直角三角形三边 长度之间存在什 么关系吗?与同 伴进行交流。
A
B现? A a B b
Sa+Sb=Sc
c
C
2 2 2 a +b =c
猜想:两直角边a、b与斜边c 之间的关系?
观察所得到的各组数据,你有什么发现? a b
Sa+Sb=Sc
3 B 1 ,3
3 B C ⑶一个长方形的长是宽的2 倍,其对角线的长是5㎝, 那么它的宽是( B ) 5 5 A 2 5㎝ B C ㎝ D ㎝ 5㎝ 2 2
A 2,
B 1,
C
2,
D
应用举例
某楼房三楼失火,消防队员赶来救火,了 解到每层楼高2米,消防队员取来7米长的 云梯,如果梯子的底部离墙基的距离是 2.5米,请问消防队能否进入三楼灭火?
C
图2-2
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么 关系吗?
(图中每个小方格代表一个单位面积)
SA+SB=SC
即:两条直角边上的正方形面积之和等于 斜边上的正方形的面积
一般的直角三角形 三边为边作正方形
S正方形c
1 4 4 3 1 2
(面积单位) 25
A B
图3-1
C
C
A
B
图3-2
分割成若干个直角边为 整数的三角形
S正方形c
1 2 (7 1 ) 2
A B
图3-1
C
C
25 (面积单位)
A
B
图3-2
思考:面积A,B, 把C“补”成边长为7的 正方形面积加1单位面 C还有上述关系 积的一半 吗?
议一议
(1)你能用三 角形的边长表示 正方形的面积吗?
BC=2米,则AB= 因为7米大于6.3米 ≈6.3
所以消防队能进入三楼灭火
小结
①本节课学到了什么数学知识? ②你了解了勾股定理的发现方法了吗? ③你还有什么困惑?
作业
教材第77页习题18.1第1、2、3题
3 4
2、湖的两端有A、B两点,从与BA方向成直 角的BC方向上的点C测得CA=130米,CB=120米, 则AB为 ( A ) A.50米 B.120米 C.100米 D.130米
A
130
?
C
120
B
议一议:
如图,大风将一根木制旗 杆吹裂,随时都可能倒下, 十分危急。接警后“119” 迅速赶到现场,并决定从 断裂处将旗杆折断。现在 需要划出一个安全警戒区 域,那么你能确定这个安 全区域的半径至少是多少 米吗?
c
2 2 2 a +b =c
猜想两直角边a、b与斜边c 之间的关系?
勾股定理 (毕达哥拉斯定理)
直角三角形两直角边的平方和 等于斜边的平方.
c
弦 ┏
b a勾
2 2 2 a +b =c
命题1:如果直角三角形的两直角边长分别为a、 b,斜边长为c,那么a2+b2=c2。
勾 股 世 界
两千多年前,古希腊有个哥拉 两千多年前,古希腊有个毕达哥拉斯 斯学派,他们首先发现了勾股定理,因此 学派,他们首先发现了勾股定理,因此在 在国外人们通常称勾股定理为毕达哥拉斯 国外人们通常称勾股定理为毕达哥拉斯定 定理。为了纪念毕达哥拉斯学派, 1955 理。为了纪念毕达哥拉斯学派, 1955年 年希腊曾经发行了一枚纪念票。 希腊曾经发行了一枚纪念邮票。
c
A
b
12 ⑵若c=13,b=5,则a=____ 15 ⑶ 若 c=17,a=8,则b=____
B
C
a
(3 ) 等边三角形的边长为12,
6 3 则它的高为______
(4) 在直角三角形中,如果有两边 5或 7 为3,4,那么另一边为_________
二 选择题:
⑴如果直角三角形的一个锐角为30度,斜边长是2 ㎝ ,那么直角三角形的其它两边长是( A ) C 1, 5 D 1 ,5 ⑵如图,在RT△ABC中,∠C=90°, A ∠B=45°,AC=1,则AB=( C ) A 1,
2
1
1
美丽的勾股树
勾股定理的各种表达式:
在Rt△ABC中,∠C=90°, ∠A 、∠B、 ∠C的对边分别为a 、b 、c ,则:
A
b
c
c2=a2+b2
c= a 2 b 2
a2=c2-b2
a B
a=
b=
c b
2
2
C
b2=c2-a2
c a
2
2
一 填空题:
1) 在直角三角形中,两条直角边 2+b2 2 a 分别为a,b, 斜边为c,则c =____ 2) 在RT△ABC中∠C=90°, 5 ⑴若a=4,b=3,则c=____
图1-1
图1-2
勾股定理(1)
看 一 看
发们 映 友 现, 直 家 什我 角 作 相 么们 三 客 传 ? 也 角 , 25 来 形 发 00 观三现年 察边朋前 下的友, 面某家一 的种用次 图数砖毕 案量铺达 ,关成哥 看系的拉 看,地斯 你同面去 能学反朋
(1)观察图2-1
C A B 图2-1 A B
x 6 2 2 2 32 4 2
x
2.求下列直角三角形中未知边的长:
比 一 比 看 看 谁 算 得 快 !
5 8 17
x
20
16
x
12
x
方法小结: 可用勾股定理建立方程.
1、如图,一个高3 米,宽4 米的大门,需在相 对角的顶点间加一个加固木条,则木条的长 为 ( C )
A.3 米 B.4 米 C.5米 D.6米
24m
9m
?
勾股定理的证法(一) c a b
c a
b
1 2 (b a) 4 ab c 2
2
b 2ab a 2ab c
2 2
2
a b c
2 2
2
勾股定理的证法(二) a b c c b
1 (a b) c 4 ab 2
2 2
a
a b c
2 2
1.求下列图中表示边的未知数x、y、z的值. 144 81 144 ① 169 ②
z
625
576
③
做一做:
A
625 P
225 P的面积 =______________ 25 AB=__________ B 20 BC=__________
AC=__________ 15
C
400
6 2
4 2 X=____________
国家之一。早在三千多年前, 我国是最早了解勾股定理的
国家之一。早在三千多年前, 国家之一。早在三千多年前,周 国家之一。早在三千多年前, 朝数学家商高就提出,将一根直 国家之一。早在三千多年前, 尺折成一个直角,如果勾等于三, 国家之一。早在三千多年前, 股等于四,那么弦就等于五,即 国家之一。早在三千多年前, “勾三、股四、弦五”,它被记 国家之一。早在三千多年前, 载于我国古代著名的数学著作 国家之一。早在三千多年前 《周髀算经》中。
读一读
我国古代把直角三角形中较短的直角边称为勾, 较长的直角边称为股,斜边称为弦 . 图 1-1 称为“弦图 ”,最早是由三国时期的数学家赵爽在为《周髀算经 》作法时给出的 . 图 1-2 是在北京召开的 2002 年国际数 学家大会(TCM-2002)的会标,其图案正是“弦图 ”,它标志着中国古代的数学成就.
正方形A中含有 9 个 小方格,即A的面积是 9 个单位面积。
C
正方形B的面积是
9 个单位面积。
正方形C的面积是
图2-2
18 个单位面积。
(图中每个小方格代表一个单位面积) 你是怎样得到上面的结 果的?与同伴交流交流。
C A B 图2-1 A B
S正方形c
C
1 4 3 3 18 2
图2-2
(图中每个小方格代表一个单位面积)
(单位面积)
分“割”成若干个直 角边为整数的三角形
C A B 图2-1 A B
S正方形c
C
1 62 2
(单位面积) 18
图2-2
(图中每个小方格代表一个单位面积)
把C“补” 成边长为6的 正方形面积的一半
C A B 图2-1 A B
(2)在图2-2中,正 方形A,B,C中各含 有多少个小方格?它 们的面积各是多少?
(2)你能发现
A B
图3-1
C
C
直角三角形三边 长度之间存在什 么关系吗?与同 伴进行交流。
A
B现? A a B b
Sa+Sb=Sc
c
C
2 2 2 a +b =c
猜想:两直角边a、b与斜边c 之间的关系?
观察所得到的各组数据,你有什么发现? a b
Sa+Sb=Sc
3 B 1 ,3
3 B C ⑶一个长方形的长是宽的2 倍,其对角线的长是5㎝, 那么它的宽是( B ) 5 5 A 2 5㎝ B C ㎝ D ㎝ 5㎝ 2 2
A 2,
B 1,
C
2,
D
应用举例
某楼房三楼失火,消防队员赶来救火,了 解到每层楼高2米,消防队员取来7米长的 云梯,如果梯子的底部离墙基的距离是 2.5米,请问消防队能否进入三楼灭火?
C
图2-2
(3)你能发现图2-1 中三个正方形A,B, C的面积之间有什么 关系吗?
(图中每个小方格代表一个单位面积)
SA+SB=SC
即:两条直角边上的正方形面积之和等于 斜边上的正方形的面积
一般的直角三角形 三边为边作正方形
S正方形c
1 4 4 3 1 2
(面积单位) 25
A B
图3-1
C
C
A
B
图3-2
分割成若干个直角边为 整数的三角形
S正方形c
1 2 (7 1 ) 2
A B
图3-1
C
C
25 (面积单位)
A
B
图3-2
思考:面积A,B, 把C“补”成边长为7的 正方形面积加1单位面 C还有上述关系 积的一半 吗?
议一议
(1)你能用三 角形的边长表示 正方形的面积吗?