初中苏科版数学七年级下册9.5《多项式的因式分解》教案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
《多项式的因式分解》教案
教学目标
1、使学生能明确因式分解与整式乘法之间的关系,让学生在探索中进行新知识的比较,理解因式分解的过程,发现因式分解的基本方法;
2、使学生明白可以将因式分解的结果现乘出来就能检验因式分解的正确性.
3、激发学生的兴趣,让学生体会到数学的应用价值.
重点难点
重点
掌握提公因式法,公式法进行因式分解;
难点
怎么样进行多项式的因式分解,如何能将多项式分解彻底;
关键:灵活应用因式分解的常用方法,对于每个多项式分解因式分解彻底. 教学设计
一、知识回顾:
运用前两节课的知识填空:
1、()m a b c ++= ;
2、()()a b a b +-= ;
3、2()a b += .
二、探索问题:
请完成以下填空:
1、(
)()ma mb mc ++= 2、2
2()()a b -= 3、2222(
)a ab b ++= 通过学生的动手,发现:
运用多项式乘法的逆思维来探索出因式分解的新知识,“探索”与“回忆”正好相反,它是把一个多项式化成几个整式的乘积的形式,这就是因式分解.
(1)中的多项式ma mb mc ++中的每一项都含有相同因式m ,称m 为公因式,把公因式提出来,多项式ma mb mc ++就可以分解成两个因式m 与a b c ++的积了,这种因式分解的方法,叫做提公因式法;
(2)、(3),是利用乘法公式对多项式进行因式分解,这种因式分解的方法称之为公式法.
师:由a (a +1)(a -1)得到a 3-a 的变形是什么运算?由a 3-a 得到a (a +1)(a -1)的变形与这种
运算有什么不同?你还能举一些类似的例子加以说明吗?
[生]由a(a+1)(a-1)得到a3-a的变形是整式乘法
如:m(a+b+c)=ma+mb+mc(1)
ma+mb+mc=m(a+b+c) (2)
联系:等式(1)和(2)是同一个多项式的两种不同表现形式.
区别:等式(1)是把几个整式的积化成一个多项式的形式,是乘法运算.
等式(2)是把一个多项式化成几个整式的积的形式,是因式分解.
即ma+mb+mc=m(a+b+c).
所以,因式分解与整式乘法是相反方向的变形.
练习
下列各式从左到右的变形,哪些是因式分解?
(1)4a(a+2b)=4a2+8ab;
(2)6ax-3ax2=3ax(2-x);
(3)a2-4=(a+2)(a-2);
(4)x2-3x+2=x(x-3)+2.
[生](1)左边是整式乘积的形式,右边是一个多项式,因此从左到右是整式乘法,而不是因式分解;
(2)左边是一个多项式,右边是几个整式的积的形式,因此从左到右的变形是因式分解;
(3)和(2)相同,是因式分解;
(4)是因式分解.
[师]大家认可吗?
[生]第(4)题不对,因为虽然x2-3x=x(x-3),但是等号右边x(x-3)+2整体来说它还是一个多项式的形式,而不是乘积的形式,所以(4)的变形不是因式分解.
[师]大家会计算(a+b)(a-b)吗?
[生]会.(a+b)(a-b)=a2-b2.
[师]对,这是大家学过的平方差公式,我们是在整式乘法中学习的.从式子(a+b)(a-b)=a2-b2中看,由等号左边可以推出等号右边,那么从等号右边能否推出等号左边呢?即a2-b2=(a+b)(a-b)是否成立呢?
[生]能从等号右边推出等号左边,因为多项式a2-b2与(a+b)(a-b)既然相等,那么两个式子交换一下位置还成立.
[师]很好,a2-b2=(a+b)(a-b)是成立的,那么如何去推导呢?这就是我们即将学习的内容:因式分解的问题.
明确目标,互助探究: