福建宁德2023-2024学年七年级上学期期末数学试题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宁德市2023—2024学年度第一学期期末七年级质量检测
数学试题
(满分:100分;考试时间:90分钟)
友情提示:所有答案都必须填在答题卡相应的位置上,答在本试卷上一律无效.
一、选择题(本大题共10小题,每小题3分,满分30分.每小题只有一个正确的选项,请在答题卡的相应位置填涂)
1.−5的相反数是( )
A .1
5− B .15 C .−5 D .5
2.如图所示的几何体是由5个完全相同的小正方体搭成的,它的左视图是( )
A .
B .
C .
D .
3.为发展清洁能源,我国布局实施一批潮流能、波浪能开发利用与规模化示范项目.近期,我国首台兆瓦级潮流能发电机组并网发电突破2700000度.数据2700000用科学计数法表示为( )
A .70.2710×
B .52.710×
C .62.710×
D .52710×
4.下列计算正确的是( )
A .437−+=−
B .()82÷−
C .134−−=
D .239−=
5.在下列现象中,可以用基本事实“两点之间线段最短”来解释的是( )
A .木工弹线
B .泥工砌墙
C .弯路改直
D .射击瞄准 6.用统计图表清楚地反映上周每天的气温变化情况,最适合制作的是( )
A .折线统计图
B .扇形统计图
C .条形统计图
D .频数分布表 7.已知a b =,则根据等式的性质下列变形错误的是( )
A .33a b +=+
B .33a b −=−
C .33a b −=−
D .33
a b = 8.已知点A ,O ,B 在数轴上的位置如图所示,若点M 所表示的数为−1,则点M 的位置在( )
A .点A 的左侧
B .线段OA 上
C .线段OB 上
D .点B 的右侧
9.用一个平面去截如图所示的圆柱,则截面的形状不可能是( )
A .
B .
C .
D .
10.如图,分别是有机物甲烷、乙烷、丙烷、…的结构图,已知一个烷类有机物的结构与它们类似,且结构中含有n 个C ,则该烷类有机物的结构中含有H 的个数是( )
A .3n
B .31n +
C .4n
D .22n +
二、填空题(本大题共6小题,每小题3分,满分18分)
11.如果河流的水位“上升5米”记为+5米,那么水位“下降3米”记为________米.
12.单项式25mn −的次数是________.
13.小明在农贸市场购买葡萄,为了解葡萄的甜度,他取了一颗品尝.这种了解方式属于________(填“普查”或“抽样调查”)
14.如图,点C 是线段AB 的中点,点D 在线段AC 上,若6AB =,2CD =,则BD 的长是________.
15.已知22a b −=,21b c +=,则a c +=
________. 16.已知一个正n 棱柱,其每一条棱长都为1,现将它的表面沿某些棱剪开,展开成一个平面图形,则该平面展开图的周长是________.(用含n 的代数式表示)
三、解答题(本大题共7题,满分52分)
17.(本题满分8分)
计算:(1)31(2)112 −++−
; (2)()12120254 −+×− .
18.(本题满分9分)
计算:(1)()()232x y x y −−+;
(2)()2232a a b b +−−,其中1a =−,2b =.
19.(本题满分5分) 解方程:152136
x x +++=. 20.(本题满分7分)
“爱中华诗词,寻文化基因,品文学之美”,为了让更多学生喜欢中国文化,学校组级七年级学生开展古诗词知识大赛,随机抽取部分学生的成绩进行整理,并绘制了如下两种不完整的统计图表. 分组
人数(频数) 占样本人数的百分比 50~60
4 8% 60~70
a 12% 70~80
8 b 80~90
20 40% 90~100 12 24%
注:70~80表示7080x <
请根据图表信息解答下列问题:
(1)a =________,b =________.
(2)补全频数分布直方图;
(3)若成绩80分及80分以上为优秀,请估计该校七年级600名学生成绩达到优秀的人数.
21.(本题满分7分)
如图,已知点A ,B 是圆心为O 的圆上两点,扇形AOB 的面积是圆面积的
14. (1)求AOB ∠的度数;
(2)若点D ,E 是圆上另外两点,其位置如图所示,且60BOE ∠=°,OD 平分AOE ∠.求扇形BOE 面积与扇形BOD 面积的数量关系.
22.(本题满分8分)
为建设文明城市,某社区计划将社区内一条东西走向的水泥道路铺设成柏油路,俗称“白改黑”.甲工程队负责这条道路的铺设,他们从西头开始铺,计划6天内完成.第一天铺了全长的6%,第二天铺的比第一天的2倍少60米,此村还剩下全长的87%没铺.
(1)若用线段图1表示前两天进度情况,请将线段图上的信息补充完整,写出图中x所表示的实际意义,并求出它的值;
图1
(2)为按时完成铺路任务,从第三天开始,甲工程队加快速度,同时乙工程队加入铺路,从东头开始铺.两队的进展情况如线段图2所示,请根据线段图提出一个问题并进行解答.
图2
23.(本题满分8分)
【问题情境】在数学活动课上,同学们玩“计算竟大”游戏:每场游戏开始析的、乙两人手上各执四张数字牌和四张运算符号牌,四张数字牌上分别标有一个数字,四张运算符号牌分别标有“+”“-”“×”“÷”四个运算符号,双方都能看到对方牌面的信息.游戏开始,两人依次轮流出牌,每次只有一人出牌.
游戏规则:
①第一次,由先出牌者出一张数字牌,直接做为第一次结果.
②从第二次开始,每次由出牌者出一张符号牌和一张数字牌,与上一次结果进行相应运算,运算结果记为本次结果.若本次结果的绝对值比上一次结果的绝对值大,则游戏继续;否则游戏结束,本次出牌者失利,对方获得本场游戏胜利;
③若游戏继续,则按上述规则玩到两人手上都没有数字牌为止.若最后一次结果们绝对值大于上一次结果的绝对值,则最后一次出牌者获得本场游戏胜利,否则对方获胜.
−+)(相应的运算示例:若上一次的结果为−3,本次出牌的符号为“÷”,数字为“2”,则相应的运算为32【问题解决】在某一场游戏前,甲、乙两人拿到的数字牌和符号牌如下:
(1)若第一次甲出“2”,第二次乙出“-”和“3”,直接写出第二次的结果,并判断游戏是否继续;
(2)若第一次甲出“−3”,第二次乙出“-”和“1”,第三次甲出“÷和“
1
3
−”,第四次乙出“×”和“3”,
第五次甲出“×”和“2”,请列出综合算式求第五次的结果;
(3)在(2)的基础上,第六次乙应如何出牌才能保证最后结果总是自己胜出?请写出保证乙能最终获胜的第六次出牌方案,并说明该方案乙必胜的理由.
宁德市2023-2024学年度第一学期期末七年级质量检测
数学试题参考答案及评分标准
⑴本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可参照本答案的评分标准的精神进行评分.
⑵对解答题,当考生的解答在某一步出现错误时,如果后续部分的解答未改变该题的立意,可酌情给分. ⑶解答右端所注分数表示考生正确做完该步应得的累加分数.
⑷评分只给整数分,选择题和填空题均不给中间分.
一、选择题(本大题有10小题,每小题3分,满分30分)
1.D 2.A 3.C 4.B 5.C 6.A 7.B 8.B 9.D 10.D
二、填空题(本大题有6小题,每小题3分,满分18分)
11.3−; 12.3; 13.抽样调查; 14.5; 15.3; 16.42n −.
三、解答题(本大题共7题,满分52分)
17.(本题满分8分)
解:(1)原式=()8+112−×− ··································································· 2分
=822−− ·········································································· 3分
=30−; ··········································································· 4分
(2)原式121(20)(20)+(20)254
×−−×−×− ··········································· 1分 =1085−+− ····································································· 3分
=7−. ············································································ 4分
18.(本题满分9分)
解:(1)原式262x y x y −−− ······························································ 2分
8x y =−; ······································································· 4分
(2)原式22+332a a b b −− ····························································· 2分
245a b −. ···································································· 4分
当a =12b −=
,时, 原式=24(1)52×−−×
=410−
=6−. ············································································ 5分
19.(本题满分5分)
解:2(1)652x x ++=+. ······································································ 2分
22652x x +++.
526x x −+=−.
36x −=−. ········································································· 4分
2x =. ··········································································· 5分
20.(本题满分7分)
解:(1) 6 , 16% ; ··································································· 2分
(2)画图正确;(如图所示)
分
人数(频数)50 成绩/分 0 12 18 4 100 6 8 1014 2
16 20
(3)48%50÷=(人). ······································································ 5分
20+12600=38450
×
(人). 答:估计七年级600名学生成绩达到优秀的人数为384人. ·················· 7分 21.(本题满分7分)
解:(1)1360904
AOB =×°=°∠. 答:AOB ∠的度数为90°. ······························································ 2分
(2)∵90AOB
=°∠,60BOE =°∠, ∴9060150AOE AOB BOE =+=°+°
=°∠∠∠. ·································· 3分 ∵OD 平分AOE ∠, ∴111507522
DOE AOE ==×°=°∠∠. ············································· 4分 ∴756015BOD DOE BOE =−=°−°=°∠∠∠. ···································· 5分
∴4BOE BOD =∠∠. ····································································· 6分
∴扇形BOE 的面积是扇形BOD 面积的4倍. ···································· 7分
22.(本题满分8分)
解:(1)①:2×6%x -60; (或0.12x -60)
x 表示道路的全长; ···································································· 2分
6%x+2×6%x -60+87%x=x ··························································· 3分
0.06x+2×0.06x -60+0.87x=x .
0.06x+0.12x -60+0.87x=x .
1.05x -60=x .
0.05x=60.
x =1200. ··················································· 4分
(2)提出的问题:
①加速后,甲工程队每天铺多少米? ················································· 5分
6%×1200+2×6%×1200-60=156(米).
156(62)(62)(75)1200y y +−+−+=. ·················································· 7分
156+4y +4y +300=1200.
8y =744.
y =93.
答:加速后甲工程队每天铺93米. ··························································· 8分
②乙工程队每天铺多少米? ····································································· 5分
解答同上,
93+75=168(米)
答:乙工程队每天铺168米. ··························································· 8分
提出的问题还可以是:
③铺了两天后,甲工程队又铺了多少米?(或甲工程队后4天又铺了多少米?)
后4天甲工程队铺:4×93=372(米).
④乙工程队铺了多少米?
乙工程队铺:4×168=672(米).
⑤甲工程队一共铺了多少米?
甲工程队共铺:156+4×93=528(米)或1200-672=528(米).
⑥甲工程队比乙工程队少铺了多少米?(或乙工程队比甲工程队多铺了多少米?) 4×168-(156+3×93)=144(米).
⑦乙工程队铺的道路长是甲该工程队的几倍?
672÷528=14 11
.
⑧甲工程队后4天铺的道路长是前2天铺的道路长的几倍?
528÷156=44 13
.
(注:提出的问题若没有用到y的值,不给分)
23.(本题满分8分)
解:(1)第二次结果为-1,游戏结束; ···································· 2分
(2)
1
3132
3
−−÷−××
()() ····································································· 4分
=12×3×2
=72. ······························································································ 5分
(注:若分步计算,答案正确,只扣一分)
(3)乙必胜的方案是:第六次乙出“+”和“4”. ······································ 6分
理由一:此时,第六次结果为76,第七次若甲出“-”和“5”,则结果为71,游戏结束,乙获胜;第七
次若甲出“+”和“5”,则结果为81,游戏继续;第八次乙出“÷”和“
1
2
−”,结果为162
−,
游戏结束,乙获胜. ··································································· 8分
理由二:所有的出牌可能有①
1
72()5
2
÷−+,甲负乙胜;②
1
72()54
2
÷−−+,乙负;③724
÷,乙负;
④
1
72()
2
+−,乙负;⑤
1
(7245)()
2
++÷−,乙胜;⑥7245
+−,甲负乙胜,所以乙必胜的是第六
次乙出“+”和“4”8分。