最新人教版七年级上册数学 代数式(基础篇)(Word版 含解析)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、初一数学代数式解答题压轴题精选(难)
1.如图所示,在边长为a米的正方形草坪上修建两条宽为b米的道路.
(1)为了求得剩余草坪的面积,小明同学想出了两种办法,结果分别如下:
方法①:________ 方法②:________
请你从小明的两种求面积的方法中,直接写出含有字母a,b代数式的等式是:________
(2)根据(1)中的等式,解决如下问题:
①已知:,求的值;
②己知:,求的值.
【答案】(1)(a-b)2;a2-2ab+b2;(a-b)2=a2-2ab+b2
(2)解:①把代入
∴,
∴
②原式可化为:
∴
∴
∴
【解析】【解答】解:(1)方法①:草坪的面积=(a-b)(a-b)= .
方法②:草坪的面积= ;
等式为:
故答案为:,;
【分析】(1)方法①是根据已知条件先表示出矩形的长和宽,再根据矩形的面积公式即可得出答案;方法②是正方形的面积减去两条道路的面积,即可得出剩余草坪的面积;根据(1)得出的结论可得出;(2)①分别把的值和
的值代入(1)中等式,即可得到答案;②根据题意,把(x-2018)和(x-2020)变成(x-2019)的形式,然后计算完全平方公式,展开后即可得到答案.
2.为了加强公民的节水意识,合理利用水资源,某市采用价格调控的手段达到节水的目的,该市自来水收贵的价目表如下(注:水费按月份结算,m3表示立方米)
价目表
每月用水量价格
不超过6m3的部分2元/m3
超出6m3不超出10m3的部分4元/m3
超出10m3的部分6元/m3
5m3和8m3,则应收水费分别是________元和________元.
(2)若该户居民3月份用水量am3(其中6<a≤10),则应收水费多少元?(用含a的式子表示,并化简)
(3)若该户层民4、5两个月共用水14m3(5月份用水量超过4月份),设4月份用水xm3,求该户居民4、5两个月共交水费多少元?(用含x的式子表示,并化简)
【答案】(1)10;20
(2)解:由依题意得:6×2+(a﹣6)×4=4a﹣12(元)
答:应收水费(4a﹣12)元。
(3)解:当0<x≤4时,该户居民4、5两个月共缴水费=2x+12+4×4+6(14﹣x﹣10)=52﹣4x;
当4<x≤6,该户居民4、5两个月共缴水费=2x+12+4(14﹣x﹣6)=﹣2x+44;
当6<x<7时,该户居民4、5两个月共缴水费=12+4(x﹣6)+12+4(14﹣x﹣6)=32.【解析】【解答】(1)解:该户居民1月份用水5m3,应缴水费=5×2=10(元);
2月份用水8m3,应缴水费=6×2+2×4=20(元);
故答案是:10;20
【分析】(1)①按照价目表可知,不超过6m3的用水量的水费=5×不超过6m3的用水量的价格计算即可求解;
②按照价目表可知,超过6m3的不超过10m3的用水量的水费=6×不超过5m3的用水量的价格+超过6m3的用水量×超过6m3的价格计算即可求解;
(2)由题意知,用水量属于第二档,按照(1)中②的方法可求解;
(3)结合(1)的方法,分类可求解.
3.已知x1, x2, x3,…x2016都是不等于0的有理数,若y1= ,求y1的值.
当x1>0时,y1= = =1;当x1<0时,y1= = =﹣1,所以y1=±1
(1)若y2= + ,求y2的值
(2)若y3= + + ,则y3的值为________;
(3)由以上探究猜想,y2016= + + +…+ 共有________个不同的值,在y2016这些不同的值中,最大的值和最小的值的差等于________.
【答案】(1)解:∵ =±1, =±1,
∴y2= + =±2或0
(2)±1或±3
(3)2017;4032
【解析】【解答】解:(2)∵ =±1, =±1, =±1,
∴y3= + + =±1或±3.
故答案为±1或±3,
( 3 )由(1)(2)可知,
y1有两个值,y2有三个值,y3有四个值,…,
由此规律可知,y2016有2017个值,
最大值为2016,最小值为﹣2016,
最大值与最小值的差为4032.
故答案分别为2017,4032.
【分析】(1)根据题意先求出=±1,=±1,就可求出y2的3个值。
(2)根据题意先求出=±1,=±1,=±1,分情况讨论求出y3的4个值。
(3)根据(1)(2)的规律,可知y2016就有2017个不同的值,最大值的和是2016个1相加,最小值的和是2016个-1相加,再求出它们的差即可。
4.某垃圾处理厂,对不可回收垃圾的处理费用为90元/吨,可回收垃圾的分拣处理费用也为90元/吨,分拣后再被相关企业回收,回收价格如下表:
垃圾种类纸类塑料类金属类玻璃类
回收单价(元/吨)500800500200
A,B,C三个小区12月份产生的垃圾总量分别为100吨,100吨和m吨。
(1)已知A小区金属类垃圾质量是塑料类的5倍,纸类垃圾质量是塑料类的2倍。
设塑
料类的质量为x吨,则A小区可回收垃圾有________吨,其中玻璃类垃圾有________吨(用含x的代数式表示)
(2)B小区纸类与金属类垃圾总量为35吨,当月可回收垃圾回收总金额扣除所有垃圾处理费后,收益16500元,求12月份该小区可回收垃圾中塑料类垃圾的质量。
(3)C小区发现塑料类与玻璃类垃圾的回收总额恰好相等,所有可回收垃圾的回收总金额为12000元,设该小区塑料类垃圾质量为a吨,求a与m的数量关系。
【答案】(1)60
;60-8x
(2)解:由题意得:塑料类和玻璃类垃圾总质量为:100×60%-35=25(吨),设塑料类垃圾为x,
则玻璃类垃圾为:25-x, 得:
800x+(25-x)×200+35×500-100×90=16500,
解得x=.
(3)解:设玻璃类垃圾质量为y,则800a=200x,
∴x=4a,
∴纸类和金属类垃圾质量之和为:m-5a,
∴(m-5a)×500+800a+200×4a=12000,
整理得:5m-9a=120.
【解析】【解答】(1)设塑料类的质量为x吨,纸类垃圾为2x吨,金属类垃圾为5x,
则A小区可回收垃圾为:100×60%=60(吨),
玻璃类垃圾为:60-(x+2x+5x)=60-8x.
故答案为:60,60-8x.【分析】(1)设塑料类的质量为x吨,纸类垃圾为2x吨,金属类垃圾为5x, 因为可回收垃圾占垃圾总量的60%,则A小区可回收垃圾有60吨,玻璃类垃圾为:60-(x+2x+5x),即60-8x.
(2)先求出塑料类和玻璃类垃圾总质量,设塑料类垃圾为x,则玻璃类垃圾为25-x, 然后根据12月份总收益为16500元列方程,求出x即可.
(3)根据塑料类与玻璃类垃圾的回收总额恰好相等把玻璃类垃圾质量用含a的代数式表示,则纸类和金属类垃圾质量之和也可用含a的代数式表示,再根据可回收垃圾的回收总金额为12000元列式,最后化简即可得出a与m的数量关系。
5.将大小不一的正方形纸片①、②、③、④放置在如图所示的长方形ABCD内(相同纸片之间不重叠),其中AB=a.
小明发现:通过边长的平移和转化,阴影部分⑤的周长与正方形①的边长有关.
(1)根据小明的发现,用代数式表示阴影部分⑥的周长________.
(2)阴影部分⑥与阴影部分⑤的周长之差与正方形________(填编号)的边长有关,请计算说明.________
【答案】(1)2a
(2)②
;解:设②的边长是m.
∴阴影部分⑤的周长是2(a-m).
∴阴影部分⑥-阴影部分⑤=2a-2(a-m)=2m
【解析】【解答】解(1)设长方形⑥的长为x, 宽为y, 则x+y=a, 周长=2(x+y)=2a.
【分析】(1)设长方形⑥的长为x, 宽为y, 因为这个长方形的长与宽之和为a, 则周长为2a.
(2)设②的边长是m,把⑤的周长用含m和a的代数式表示,再计算阴影部分⑥的周长和阴影部分⑤的周长之差即可,其结果正好等于正方形②的周长.
6.某学校准备印刷一批证书,现有两个印刷厂可供选择:
甲厂收费方式:收制版费1000元,每本印刷费0.5元;
乙厂收费方式:不超过2000本时,每本收印刷费1.5元;超过2000本超过部分每本收印刷费0.25元,若该校印制证书x本.
(1)若x 不超过2000时,甲厂的收费为________元,乙厂的收费为________元;
(2)若x 超过2000时,甲厂的收费为________元,乙厂的收费为________元
(3)当印制证书8000本时应该选择哪个印刷厂更节省费用?节省了多少?
(4)请问印刷多少本证书时,甲乙两厂收费相同?
【答案】(1)0.5x+1000;1.5x
(2)1000+0.5x;0.25x+2500
(3)解:当x=8000时,甲厂费用为1000+0.5×8000=5000元,
乙厂费用为:0.25×8000+2500=4500元,
∴当印制证书8000本时应该选择乙印刷厂更节省费用,节省了500元;
(4)解:当x⩽2000时,1000+0.5x=1.5x,
解得:x=1000;
当x>2000时,1000+0.5x=0.25x+2500,
解得:x=6000;
答:印刷1000或6000本证书时,甲乙两厂收费相同.
【解析】【解答】解:(1)若x不超过2000时,甲厂的收费为(1000+0.5x)元,乙厂的收费为(1.5x)元,故答案为:0.5x+1000,1.5x;(2)若x超过2000时,甲厂的收费为(1000+0.5x)元,乙厂的收费为2000×1.5+0.25(x−2000)=0.25x+2500元,
故答案为:1000+0.5x, 0.25x+2500;
【分析】(1)根据印刷费用=数量×单价可分别求得;(2)根据甲厂印刷费用=数量×单价、乙厂印刷费用=2000×1.5+超出部分的费用可得;(3)分别计算出x=8000时,甲、乙两厂的费用即可得;(4)分x≤2000和x>2000分别计算可得.
7.如图所示,图甲由长方形①,长方形②组成,图甲通过移动长方形②得到图乙.
(1)S甲=________,S乙=________(用含a、b的代数式分别表示);
(2)利用(1)的结果,说明a2、b2、(a+b)(a﹣b)的等量关系;
(3)现有一块如图丙尺寸的长方形纸片,请通过对它分割,再对分割的各部分移动,组成新的图形,画出图形,利用图形说明(a+b)2、(a﹣b)2、ab三者的等量关系.
【答案】(1)(a+b)(a-b)
;a2-b2
(2)由两个图形的面积相等可知,(a+b)(a-b)=a2-b2。
(3)
S正方形=(a+b)2, S正方形=(a-b)2+4ab
∴(a+b)2=(a-b)2+4ab
【解析】【分析】(1)根据图形的面积。
列式得到答案即可;
(2)根据两组图案所表示的面积相等,即可得到等量关系;
(3)同理,首先根据面积列出两种方式表示的面积,得到答案即可。
8.
(1)已知3x2-5x+1=0,求下列各式的值:①3x+ ;②9x2+ ;
(2)若3x m+1-2x n-1+x n是关于x的二次多项式,试求3(m-n)2-4(n-m)2-(m-n)3+2(n-m)3的值.
【答案】(1)解:①∵3x2﹣5x+1=0,∴3x﹣5 0,∴3x 5;
②∵3x 5,∴,∴ 25,∴ 19
(2)解:3(m﹣n)2﹣4(n﹣m)2﹣(m﹣n)3+2(n﹣m)3
=﹣(m﹣n)2+3(n﹣m)3
∵3x m+1﹣2x n﹣1+x n是关于x的二次多项式,∴或或
或,解得:或或或.
①当m=1,n=2时,原式=﹣(1﹣2)2+3(2﹣1)3=﹣1+3=2;
②当m=1,n=1时,原式=﹣(1﹣1)2+3(1﹣1)3=0;
③当m=0,n=2时,原式=﹣(0﹣2)2+3(2﹣0)3=﹣4+24=20;
④当m=﹣1,n=2时,原式=﹣(﹣1﹣2)2+3(2+1)3=﹣9+81=72.
综上所述:原式的值为2或0或20或72
【解析】【分析】(1)①根据等式的性质,由3x2-5x+1=0 得出3x﹣5 + 0,即3x
+ 5;②将3x+ 5的两边完全平方,再利用完全平方公式展开移项合并同类项即可;
(2)首先将代数式合并同类项化为最简形式;由于多项式中,次数最高的项的次数就是单项式的次数,根据3x m+1﹣2x n﹣1+x n是关于x的二次多项式,即可列出关于m,n的方程
组:或或或,一一求解即可分别得出m,n的值,再分别代入代数式化简的结果即可算出答案。
9.若两个有理数的和等于这两个有理数的积,则称这两个有理数互为相依数
例如:有理数与3,因为+3= 3.所以有理数与与3是互为相依数
(1)直接判断下列两组有理数是否互为相依数,
①-5与-2 ②-3与
(2)若有理数与 -7 互为相依数,求m的值;
(3)若有理数a与b互为相依数,b与c互为相反数,求式子
的值
(4)对于有理数a(a 0,1),对它进行如下操作:取a的相依数,得到;取的倒数,得到;取的相依数,得到;取的倒数,得到;….;依次按如上的操
作得到一组数 , , ,…, . 若a= ,试着直接写出 , , ,…, 的和.
【答案】(1)解:若a与b互为相依数,则a+b=ab,
①∵(-5)+(-2)=-7,
(-5)×(-2)=10,
∴(-5)+(-2)≠(-5)×(-2)
∴-5与-2不互为相依数.
②∵-3+=-,
-3×=-,
∴-3+=-3×,
∴-3与互为相依数.
(2)解:∵与-7互为相依数,依题可得:
+(-7)=×(-7),
解得:m=
∴m的值为.
(3)解:依题可得:
a+b=ab,b+c=0,
∴原式=5ab+7c-5a+2b-4,
=5(a+b)+7c-5a+2b-4,
=5a+5b+7c-5a+2b-4,
=7(b+c)-4,
=7×0-4,
=-4.
(4)解:依题可得:
a+a1=a·a1,
解得:a1=,
∵a2为的a1倒数,
∴a2=,
依此类推:
a3=1-a,
a4=,
a5=,
a6=a,
由此可得:这一组数的周期为6,
∵a=,
∴a1=5,a2=, a3=-, a4=-4,a5=, a6=,
∴a1+a2+a3+a4+a5+a6=5+--4++=3,
∴a1+a2+a3+a4+a5+a6+……+a2018,
=336×3+a2017+a2018,
=336×3+a1+a2,
=336×3+5+,
=1013.
【解析】【分析】(1)根据题中给出两个有理数互为相依数的概念即可判断.(2)根据题中给出互为相依数的定义列出方程,解之即可.
(3)根据题意得出a+b=ab,b+c=0,再将原整式化简,计算即可得出答案.
(4)根据题意求得a1=,a2=,a3=1-a,a4=,a5=,a6=a,由此可
得:这一组数的周期为6,将a=代入、可得:a1=5,a2=,a3=-,a4=-4,a5=,
a6=,先求出a1+a2+a3+a4+a5+a6的和为3,再根据a1+a2+a3+a4+a5+a6+……+a2018=336×3+a1+a2,代入计算即可.
10.如图(1)是一个长为2m,宽为2n的长方形,沿图中的虚线剪开均分成四个小长方形,然后按图(2)的形状拼成一个正方形.
(1)你认为图(2)中的阴影部分的正方形边长是多少?
(2)请用两种不同的方法求图(2)阴影部分的面积;
(3)观察图(2),你能写出下列三个代数式之间的等量关系吗?
三个代数式:(m+n)2,(m﹣n)2, mn.
(4)根据第(3)题中的等量关系,解决下列问题:若a+b=7, ab=5,求(a﹣b)2的值.【答案】(1)解:图(2)中的阴影部分的正方形边长是:m-n
(2)解:方法(1):图(2)阴影部分的面积=(m-n)2;
方法(2):图(2)阴影部分的面积=(m+n)2-4mn;
(3)解:(m+n)2=(m﹣n)2+4mn,或(m-n)2=(m+n)2-4mn,或(m+n)2-(m﹣n)2=4mn。
(4)解:∵(a﹣b)2=(a+b)2-4ab,a+b=7, ab=5,
∴(a﹣b)2=72-4×5=29.
【解析】【分析】(1)通过图形观察即可得出:图(2)中的阴影部分的正方形边长是:m-n;
(2)方法(1)利用正方形的面积等于边长的平方可以直接得出;方法(2)利用大正方形的面积减去4个小矩形的面积可以算出;
(3)根据用两种不同的方法表示同一个图形的面积,其结果应该相等即可得出;再根据等式的性质即可得出其它积中情况;
(4)利用(3)的关系式,整体代入即可得出答案。
11.某市居民使用自来水按如下标准收费(水费按月缴纳):
(2)设某户月用水量为n 立方米,当n>20时,则该用户应缴纳的水费________元(用含a、n的整式表示);
(3)当a=2时,甲、乙两用户一个月共用水40 m3 ,已知甲用户缴纳的水费超过了24元,设甲用户这个月用水xm3 ,,试求甲、乙两用户一个月共缴纳的水费(用含x的整式表示).
【答案】(1)解:2×12+2×1.5×(20-12)+2×2×(28-20)=80元
答:该用户这个月应缴纳80元水费
(2)2an-16a
(3)解:∵甲用户缴纳的水费超过了24元
∴x>12
①12<x≤20
甲:2×12+3×(x-12)=3x-12
乙:20≤40-x<28
12×2+8×3+4×(40-x-20)=128-4x
共计:3x-12+128-40x=116-x
②20≤x≤28
甲:2×12+3×8+4(x-20)=4x-32
乙:12≤40-x≤20
2×12+3×(40-x-12)=108-3x
共计:4x-32+108-3x=x+76
③28≤x≤40
甲:2×12+3×8+4×(x-20)=4x-32
乙:0≤40-x≤12
2×(40-x)=80-2x
共计:4x-32+80-2x=2x+48
答:甲、乙两用户共缴纳的水费为
【解析】【解答】解:(2) 2an-16a
【分析】(1)根据表中数据可知28>20,再根据表中数据列式计算,可求出结果。
(2)根据n>20,可得出12a+8×1.5a+2a(n-20),化简即可。
(3)根据已知甲用户缴纳的水费超过了24元,可知a>12,再再分情况讨论:①12<x≤20;②20≤x≤28;③28≤x≤40,分别用含x的代数式表示出甲和乙所付的水费,再求出它们的和即可。
12.小明拿扑克牌若干张变魔术,将这些扑克牌平均分成三份,分别放在左边,中间,右边,第一次从左边一堆中拿出两张放在中间一堆中,第二次从右边一堆中拿出一张放在中间一堆中,第三次从中间一堆中拿出一些放在左边一堆中,使左边的扑克牌张数是最初的2倍.
(1)如一开始每份放的牌都是8张,按这个规则魔术,你认为最后中间一堆剩________张牌?
(2)此时,小慧立即对小明说:“你不要再变这个魔术了,只要一开始每份放任意相同张数的牌(每堆牌不少于两张),我就知道最后中间一堆剩几张牌了,我想到了其中的奥秘!”请你帮小慧揭开这个奥秘.(要求:用所学的知识写出揭秘的过程)
【答案】(1)1
(2)解:不论一开始每堆有几张相同的扑克牌数,按这样的游戏规则,最后中间一堆只剩1张扑克牌.理由是:设一开始每堆扑克牌都是x张,按这样的游戏规则:第一次:左边,中间,右边的扑克牌分别是(x-2)张,(x+2)张,x张;第二次:左边,中间,右边的扑克牌分别是(x-2)张,(x+3)张,(x-1)张,第三次:若中间一堆中拿y张扑克牌到左边,此时左边有(x-2)+y=2x张;即:y=2x-(x-2)=(x+2)张,所以,这时中间一堆剩(x+3)-y=(x+3)-(x+2)=1张扑克牌,所以,最后中间一堆只剩1张扑克牌.【解析】【解答】解:(1)设每份x张,第三次从中间一堆中拿出y张放进左边一堆中,由题意列等式的x-2+y=2x,
解得y=x+2,
即y是x的一次函数,
当x=8时,y=10,
把x=8,y=10代入x+2-y+1=1.
最后中间一堆剩1张牌,
故答案为:1;
【分析】(1)设每份x张,第三次从中间一堆中拿出y张放进左边一堆中,第一次从左
边一堆中拿出两张放在中间一堆中左边一堆剩x-2张,第二次左边的牌的数量没有发生变化,第三次从中间一堆中拿出y张放在左边一堆中,左边一堆中共有(x-2+y)张,又第三次后左边的扑克牌张数是最初的2倍.从而列出方程,然后举哀那个x=8代入即可算出y 的值,进而即可得出答案;
(2)不论一开始每堆有几张相同的扑克牌数,按这样的游戏规则,最后中间一堆只剩1张扑克牌.理由是:设一开始每堆扑克牌都是x张,分别写出第一次,第二次,第三次左边、中间、右边的牌的数量,然后根据题意列出方程,求解即可。