苏教版新精选 五年级下册数学专项练习题含答案解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

苏教版新精选五年级下册数学专项练习题含答案解析
一、苏教小学数学解决问题五年级下册应用题
1.一个两位数,交换个位与十位上的数字所得的两位数仍是质数。

这样的两位数有多少个?
2.修一条千米长的公路,第一天修了全长的,第二天比第一天多修了全长的。

第二天修了全长的几分之几?还剩下全长的几分之几没有修?
3.35名学生分成甲、乙两队。

如果甲队人数为偶数,乙队人数为奇数还是偶数?如果甲队人数为奇数呢?
4.用长5厘米、宽4厘米的长方形,照下图的样子拼成正方形。

拼成的正方形的边长最小是多少厘米?需要几个长方形?
5.填出下面加法算式中的六个质数。

6.人们知道废电池对环境和人类的危害,同学们为保护环境,举行收集废电池的活动。

甲组7人收集了6千克,乙组8人收集了7千克,丙组6人收集了5千克。

哪个小组平均每人收集的电池多?写出主要理由。

7.有一包糖果,无论平均分给8个人,还是平均分给10个人,都剩下3块。

(1)这包糖果至少有多少块?
(2)这包糖果的数量在80~120,这包糖果有多少块?
8.甲、乙两数的最大公因数与最小公倍数的和为240,且甲数是它们的最大公因数的5倍,乙数为它们最大公因数的3倍。

求甲、乙两数?
9.童童和红红都在舞蹈馆培训舞蹈,童童每6天去一次,红红每8天去一次,如果4月1日她们在舞蹈馆相遇,那么下一次在舞蹈馆相遇是几月几日?
10.一个长方体的体积是441立方厘米,如果它的高减少2厘米,它就变成一个正方体。

这个正方体的棱长是多少厘米?
11.蓬溪县某小学校五(2)班组织植树活动,在活动中发现,小宇和小斌同时栽第一棵树苗,小宇在每隔6分钟栽一棵树苗,小斌在每隔8分钟栽一棵树苗,至少多少分钟后两人再次同时栽树苗?此时,小宇和小斌各栽了多少棵树苗?
12.体育课上,30名学生站成一排,按老师口令从左到右报数:1,2,3,4 (30)
(1)老师先让所报的数是2的倍数的学生去跑步,参加跑步的有多少人?
(2)让余下学生中所报的数是3的倍数的学生进行跳绳训练,参加跳绳的有多少人?(3)两批学生离开后,再让余下学生中所报的数是5的倍数的同学去器材室拿篮球,有几人去拿篮球?
(4)现在队伍里还剩多少人?
13.三个连续自然数的和是72,这三个自然数分别是多少?如果是三个连续偶数,这三个数又分别是多少?
14.果园里梨树比苹果树少36棵,苹果树的棵数是梨树的3倍。

苹果树和梨树各有多少棵?
15.下面两根小棒,要把它们截成同样长的小段,不能有剩余,每小段小棒最长是多少厘米?一共可以截成几小段?
16.把50克糖溶解在300克水中化成糖水,糖的重量是水的几分之几?糖占糖水的几分之几?(结果化成最简分数)
17.有一堆苹果,如果按每6个一份或每8个一份进行分,结果都多1个,这堆苹果最少有多少个?
18.修一条长5km的路,第一天修了全程的,第二天修了全程的,还剩下全程的几分之几没有修?
19.一条公路,已经修了干米,剩下的比已经修了的多千米,这条公路有多少千米?
20.把的分子、分母加上同一个数以后,正好可以约成。

这个加上去的数是多少?21.下面正方形的边长是6厘米,求涂色部分的周长。

22.成渝高速路长330千米,一辆大客车从重庆开往成都,一辆小轿车同时从成都开往重庆.2小时在途中相遇,已知小轿车的速度是大客车的1.2倍.两车每小时各行多少千米?23.把48块月饼装在盒子里,每个盒子装得同样多,有几种装法?(装在至少两个盒子里)每种装法各需要几个盒子?如果有47块月饼呢?
24.一辆汽车从甲地开往乙地,平均每小时行驶60km。

这辆汽车到达乙地后又以90千米
时的速度返回甲地,往返一次共用2.5小时。

求甲、乙两地间的路程。

25.暑假期间,小林每6天游泳一次,小军每8天游泳一次。

7月31日两人在游泳池相遇,八月几日他们又再次相遇?
26.在下面一个边长为4厘米的正方形中画一个最大的圆。

如果将这个圆剪去,剩下图形的面积是多少平方厘米?
27.有两根木棒,一根长36dm,另一根长42dm,要把他们截成同样长的小段,而不能有剩余,每根小棒最长有多少dm?一共可以截成多少段?
28.“植树节”到了,有25个小伙伴要分成甲、乙两个组去植树,如果甲队人数为奇数,那么乙队人数为奇数还是偶数?如果有1人请假未到,这时甲队人数为偶数,那么乙队人数呢?
29.爱心书屋里的科技书的本数是故事书的1.5倍,科技书的本数比故事书多240本。

科技书和故事书各有多少本?(用方程解)
30.南海公园有一个近似圆形的湖面,它的直径大约1000米。

(1)沿湖的一周每隔5米栽一棵柳树,一共要栽多少棵柳树?
(2)在湖里养鱼,按每100平方米能养路60条鱼计算,湖里-共可养鱼多少条?
31.正方形,大三角形内的空白部分为一个正方形,三角形甲与三角形乙的面积和是39平方米。

求大三角形ABC的面积。

32.下面是林叔叔家和张叔叔家去年上半年用电情况统计图。

(1)林叔叔第二季度平均每月用电多少千瓦时?
(2)张叔叔家二月份的用电量是第一季度用电量的几分之几?
33.一个养殖场一共养鸡680只,其中母鸡的只数是公鸡的2.4倍。

公鸡和母鸡各有多少只?
34.如图,一个圆形花圃的直径是20米,里面种植了3种不同的鲜花。

(1)先估计一下牡丹的种植面积占整个花圃的几分之几,再算出它的面积大约有多少平方米。

(2)沿着花圃的边线大约每隔0.4米种一棵月季花,一共要种多少棵月季花?
35.看统计图,完成下面各题。

(1)乙市6月1日的最高气温是________℃。

(2)甲市6月2日的最高气温是________℃。

(3)两个城市的最高气温在6月________日相差的最大,相差________℃。

(4)列式并计算出6月5日甲市最高气温是乙市最高气温的几分之几?(结果要约分)36.班主任把20支钢笔和25本练习本平均奖给“三好学生”,结果钢笔多了2支,练习本少了2本。

“三好学生”最多有多少人?
37.甲、乙两人到体育馆健身,甲每6天去一次.乙每9天去一次,如果6月5日他们两人在体育馆相遇。

(1)那么下一次两人都到体育馆的时间是几月几日?
(2)如果丙6月5日也去了体育馆,他每4天去一次,他们三人下一次都到体育馆的时间是几月几日?
38.一张长方形纸,长50厘米,宽30厘米.若把它裁成若干个大小相同的最大方形,且不许有剩余。

能裁多少个这样的正方形?边长有多大?
39.五(1)班有男生28人,是女生人数2倍少6人,女生人数占全班人数的几分之几?40.有两根钢丝,长度分别是12cm、18cm。

现在要把他们截成长度相同的小段,但每一根都不能剩余,每小段最长多少米?一共可以截成多少段?
【参考答案】***试卷处理标记,请不要删除
一、苏教小学数学解决问题五年级下册应用题
1.解:这样的两位数有 11,13,31,17,71,37,73,79,97 ,共9个。

答:这样的两位数有9个。

【解析】【分析】一个数,如果只有1和它本身两个因数,这样的数叫做质数,据此解答。

2.第二天:+
=+
=;
剩下:1--
=-
=;
答:第二天修了全长的;还剩下全长的没有修。

【解析】【分析】第二天修了全长的几分之几=第一天修的全长的几分之几+ 第二天比第一天多修了全长的几分之几;还剩下全长的几分之几没有修=1-第一天修的全长的几分之几-第二天修了全长的几分之几,代入数值计算即可。

3.解:如果甲队人数为偶数,乙队人数为奇数;如果甲队人数为奇数,乙队人数为偶数。

【解析】【分析】奇数+奇数=偶数;奇数+偶数=奇数;偶数+偶数=偶数。

据此作答即可。

4.解:4×5=20,即拼成的正方形的边长最小是20厘米;
20÷4×(20÷5)
=5×4
=20(个)
答:拼成的正方形的边长最小是20厘米,需要20个长方形。

【解析】【分析】此题主要考查了最小公倍数的应用,根据题意可知,拼成的正方形的边长最小是小长方形长与宽的最小公倍数,据此计算;
要求需要几个长方形,分别用除法求出长、宽部分需要的长方形个数,然后相乘即可,据此列式解答。

5.解:936+287=1223或936+387=1323或936+587=1523或936+787=1723,
所以;

;。

【解析】【分析】由竖式加法算式可以知道,每个位置的质数只能是一位数,而10以内的质数有:2、3、5、7,然后再把每个质数代入算式进行验证。

6.解:甲:6÷7= (千克/人)
乙:7÷8= (千克/人)
丙:5÷6= (千克/人)
>>
答:乙小组平均每人收集的电池多。

【解析】【分析】根据题意可知,分别用除法求出每个小组平均每人收集的电池质量,然后对比即可解答。

7.(1)解:8和10的最小公倍数为40,40+3=43(块)
答:这包糖果至少有43块。

(2)解:40×2+3=83(块)
答:这包糖果至少有83块。

【解析】【分析】(1)如果把糖拿出3块,就刚好能分完,此时糖的总数是8和10的最小公倍数,由此求出8和10的最小公倍数再加上3就是糖的总数;
(2)找出80~120之间8和10的倍数,再加上3就是这包糖果的总数。

8.解:设甲、乙两数的最大公因数是d,则甲=5d,乙=3d,甲、乙两数的最小公倍数是5d×3d÷d=15d。

所以15d+d=240,即d=15。

甲=15×5=75,乙=3×15=45。

【解析】【分析】设甲、乙两数的最大公因数是d,根据甲数是它们的最大公因数的5倍,乙数为它们最大公因数的3倍,可知甲=5d,乙=3d,
甲、乙两数的最小公倍数就是5d和3d的最小公倍数15d;
甲、乙两数的最大公因数与最小公倍数的和为240,可知等量关系是:甲、乙两数的最大公因数+最小公倍数=240,根据等量关系列方程,根据等式性质解方程;
甲数=最大公因数×5倍,乙数=最大公因数×3倍,据此求甲、乙两数。

9.解:6=2×3,
8=2×2×2,
6和8的最小公倍数是2×3×2×2=24,
4月1日+24日=4月25日
答:下一次在舞蹈馆相遇是4月25日。

【解析】【分析】此题主要考查了最小公倍数的应用,用分解质因数的方法求两个数的最小公倍数,先把每个数分别分解质因数,把这两个数公有的质因数和各自独有的质因数相乘,它们的乘积就是这两个数的最小公倍数,也就是需要间隔的天数,然后用上次相遇的时间+间隔的天数=下次相遇的时间,据此列式解答。

10.解:441=3×3×7×7=7×7×9,
9-2=7(厘米)
答:正方体的棱长是7厘米。

【解析】【分析】长方体的高减少2厘米后是正方体,所以长方体的长和宽相等,而长方体的体积=长×宽×高,所以可以先把长方体的体积分解质因数,只需要有两个数值相等,另一个数值比这两个值小2,那么相等的这个数值就是正方体的棱长。

11.解:6=2×3,8=2×2×2,
6和8的最小公倍数=2×2×2×3=24,所以至少24分钟后两人再次同时栽树苗。

小宇:(24÷6)+1
=4+1
=5(棵),
小斌:(24÷8)+1
=3+1
=4(棵)。

答:至少24分钟后两人再次同时栽树;小宇栽了5棵,小斌栽了4棵。

【解析】【分析】分析题意可知要求至少多少分钟后两人再次同时栽树苗即是求6和8的最小公倍数,将6和8分别写成质数连乘的形式,再找出最小的公倍数即可。

小宇(小斌)栽树苗的棵数=(6和8的最小公倍数÷小宇(小斌)栽两棵树之间的分钟数)+1,代入数值计算即可。

12.(1)解:30÷2=15(人)
答:参加跑步的有15人。

(2)解:余下的数是1,3,5,7,9,11,13,15,17,19,21,23,25,27,29,其中3的倍数有:3,9,15,21,27,共5人。

答:参加跳绳的有5人。

(3)解:余下的数是1,5,7,11,13,17,19,23,25,29,其中5的倍数有:5,25,共2人。

答:有2人去拿篮球。

(4)解:30-15-5-2=8(人)
答:现在队伍里还剩8人。

【解析】【分析】(1)2的倍数都是偶数,30个数中,有15个奇数,15个偶数;
(2)求参加跳绳的人数就是求30以内的奇数中,3的倍数有几个;
(3)求去拿篮球的人数就是求余下的数中,5的倍数有几个;
(4)总人数-参加跑步的人数-参加跳绳的人数-去拿篮球的人数=现在队伍里还剩人数。

13.解:设三个连续自然数分别是a-1,a,a+1。

a-1+a+a+1=72,
3a=72
a=24,
所以三个自然数分别是23,24,25。

设三个连续偶数分别是b-2,b,b+2。

b-2+b+b+2=72,
3b=72
b=24,
所以三个连续偶数分别是22,24,26 。

答:这三个自然数分别是23,24,25。

如果是三个连续偶数,这三个数又分别是22,24,26 。

【解析】【分析】三个连续自然数之间相差1,三个连续偶数之间相差2,据此解答。

14.解:设梨树有x棵,则苹果树有3x棵;
答:苹果树有54棵,梨树有18棵。

【解析】【分析】设梨树有x棵,根据“苹果树的棵树(梨树的棵树×3)-梨树的棵树=梨树比苹果树少的棵树”即可列出方程,求解即可得出答案。

15.解:16=2×2×2×2,44=2×2×2,
所以16和44的最大公因数是2×2=4,
所以每小段木棒最长是4厘米。

16÷4+44÷4
=4+11
=15(小段)
答:每小段木棒最长是4厘米,一共可以截成15小段。

【解析】【分析】求每小段木棒最长的厘米数,即是求16和44的最大公因数,先将16和44分解质因数,再找出公共因数,公共因数的乘积即为16和44的最大公因数(每小段木棒最长的厘米数);一共可以截成的段数=第一根木棒的总长度÷每小段木棒最长的厘米数+第二根木棒的总长度÷每小段木棒最长的厘米数。

16.解:糖的重量是水的几分之几=50÷300=;
糖占糖水的几分之几=50÷(50+300)=。

答:糖的重量是水的;糖占糖水的。

【解析】【分析】糖的重量是水的几分之几=糖的重量÷水的重量;糖占糖水的几分之几=糖的重量÷(糖的重量+水的重量),代入数值计算,并根据分数与除法的关系以及分数的基本性质计算即可。

17.解:6和8的最小公倍数是24,
24+1=25(个)
答:这堆苹果最少有25个。

【解析】【分析】分析题中的信息“ 按每6个一份或每8个一份进行分,结果都多1个,”,所以这堆苹果最少的个数为6和8的最小公倍数+1,所以求出6和8的最小公倍数是解题的关键。

18.解:1--
=1--
=
答:还剩下全程的。

【解析】【分析】还剩下全程的几分之几=1-第一天修了全程的几分之几-第二天修了全程的几分之几,代入数值计算即可。

19.解:+(+)
=++
=
=(千米)
答:这条公路有千米。

【解析】【分析】这条公路的总长=已经修了的千米数+剩下的千米数(已经修了的千米数+剩下的比已经修了的多的千米数),代入数值计算即可。

20.解:设加上去的数是x。

3×(5+x)=2×(23+x)
15+3x=46+2x
3x-2x=46-15
x=31
答:加上去的数是31。

【解析】【分析】等量关系:的分子分母都加上x,等于,根据等量关系列方程,根据等式性质解方程。

21.解:圆的直径=6÷2=3(厘米)
6×4+3.14×3×4
=24+37.68
=61.68(厘米)
答:阴影部分的周长是61.68厘米。

【解析】【分析】正方形的周长=正方形的边长×4,4个圆的周长=π×圆的直径×4;涂色部分的周长=正方形的周长+4个圆的周长,据此解答。

22.解:设大客车每小时行x千米,则小轿车每小时行1.2x千米。

(1.2x+x)×2=330
2.2x×2=330
4.4x=330
x=330÷4.4
x=75
75×1.2=90(千米)
答:大客车每小时行75千米,小轿车每小时行90千米。

【解析】【分析】本题属于相遇问题,等量关系:(大客车的速度+小客车的速度)×行驶时间=行驶路程,根据等量关系列方程,根据等式性质解方程。

23.解:平均每个盒子里装2块月饼,需要48÷2=24(个)盒子;
平均每个盒子里装3块月饼,需要48÷3=16(个)盒子;
平均每个盒子里装4块月饼,需要48÷4=12(个)盒子;
平均每个盒子里装6块月饼,需要48÷6=8(个)盒子;
平均每个盒子里装8块月饼,需要48÷8=6(个)盒子;
平均每个盒子里装12块月饼,需要48÷12=4(个)盒子;
平均每个盒子里装24块月饼,需要48÷24=2(个)盒子;
如果有47块月饼,做不到每个盒子装得同样多。

答:每个盒子装得同样多,有7种装法,从多到少各需要24、16、12、8、6、4、2个盒子,如果有47块月饼,做不到每个盒子装得同样多。

【解析】【分析】根据48的因数分析,两个数相乘积是48,一个因数是盒子数,一个因数是盒子里装的月饼数,据此解答。

24.解:设去时时间为x小时,则返回时间为(2.5-x)小时,
60x=90×(2.5-x)
60x=90×2.5-90x
60x+90x=90×2.5-90x+90x
150x=225
150x÷150=225÷150
x=1.5
1.5×60=90(千米)
答:甲、乙两地间的路程是90千米。

【解析】【分析】此题主要考查了列方程解决问题,去时与返回时的路程不变,设去时时间为x小时,则返回时间为(2.5-x)小时,去时速度×去时用的时间=返回速度×返回用的时间,据此列方程解答,然后用速度×时间=路程,据此列式解答。

25.解:6=2×3,8=2×2×2
6和8的最小公倍数是:2×2×2×3=24
7月31日再过24天是8月24日
答:8月24日他们又再次相遇。

【解析】【分析】6和8的最小公倍数就是他们再次相见隔的时间,据此解答。

26.解:4×4-3.14×(4÷2)2
=16-3.14×4
=16-12.56
=3.44(平方厘米)
答:剩下图形的面积是3.44平方厘米。

【解析】【分析】正方形的面积-圆的面积=剩余图形的面积。

27.解:36=2×2×3×3
42=2×3×7
36和42的最大公因数是2×3=6
一共可以截成:36÷6+42÷6=13(段)
答:每根小棒最长有6dm,一共可以截成13段。

【解析】【分析】此题主要考查了最大公因数的应用,用分解质因数的方法求两个数的最大公因数,先把每个数分别分解质因数,再把两个数中的全部公有质因数提取出来连乘,所得的积就是这两个数的最大公因数,也就是每根小棒最长的长度;
要求一共可以截成几段,分别用除法求出两根木棒截的段数,然后相加即可。

28.解:25-奇数=偶数;
25-1=24,
24-偶数=偶数。

答:有25个小伙伴要分成甲、乙两个组去植树,如果甲队人数为奇数,那么乙队人数为偶数;如果有1人请假未到,这时甲队人数为偶数,那么乙队人数为偶数。

【解析】【分析】此题主要考查了奇数和偶数的应用,奇数-奇数=偶数,奇数-偶数=奇数,偶数-偶数=偶数,据此解答。

29.解:设故事书有x本,则科技书有1.5x本,
1.5x-x=240
0.5x=240
0.5x÷0.5=240÷0.5
x=480
科技书:480×1.5=720(本)
答:科技书有720本,故事书有480本。

【解析】【分析】此题主要考查了列方程解决问题,设故事书有x本,则科技书有 1.5x 本,科技书的本数-故事书的本数=240,据此列方程解答。

30.(1)解:3.14×1000÷5
=3.14×200
=628(棵)
答:一共要栽628棵。

(2)解:半径:1000÷2=500(米)
面积:3.14×500×500
=3.14÷250000
=785000(平方米)
785000÷100×60
=7850×60
=471000(条)
答:湖里一共养471000条鱼。

【解析】【分析】(1)3.14×直径=圆的周长,圆的周长÷间距=栽树棵树;
(2)直径÷2=半径,3.14×半径的平方=面积,面积÷100×60=湖里-共可养鱼条数。

31.解:设正方形边长为a,根据等量关系列式:
4a÷2+9a÷2=39
2a+4.5a=39
6.5a=39
a=39÷6.5
a=6
正方形面积:6×6=36(平方米),所以大三角形面积为:36+39=75(平方米)
答:大三角形ABC的面积75平方米。

【解析】【分析】看图可知,甲、乙都是直角三角形,一条直角边是正方形的边长,所以设正方形边长是a,等量关系:甲的面积+乙的面积=39,根据等量关系列出方程,解方程求出正方形的边长,然后用正方形面积加上甲、乙的面积和就是大三角形的面积。

32.(1)解:(100+80+90)÷3
=270÷3
=90(千瓦时)
答:林叔叔第二季度平均每月用电90千瓦时。

(2)解:60÷(50+60+90)
=60÷200
=
答:张叔叔家二月份的用电量是第一季度用电量的。

【解析】【分析】(1)第二季度是4月、5月、6月;林叔叔家4、5、6月的用电量之和÷3=第二季度平均每月用电量;
(2)张叔叔家二月份的用电量÷1、2、3月的用电量之和=张叔叔家二月份的用电量是第一季度用电量的几分之几。

33.解:设公鸡有x只,则母鸡有2.4x只,
x+2.4x=680
3.4x=680
3.4x÷3.4=680÷3.4
x=200
母鸡:200×2.4=480(只)
答:公鸡有200只,母鸡有480只。

【解析】【分析】此题主要考查了列方程解决问题,设公鸡有x只,则母鸡有2.4x只,公鸡的只数+母鸡的只数=养殖场一共养鸡的只数,据此列方程解答。

34.(1)解:牡丹的种植面积占整个花圃的,
牡丹的种植面积:3.14×(20÷2)²÷4
=3.14×100÷4
=78.5(平方米)
答:牡丹的种植面积占整个花圃的,大约有78.5平方米。

(2)解:3.14×20÷0.4=157(棵)
答:一共要种157棵月季花。

【解析】【分析】(1)通过观察可知牡丹的种植面积占整个花圃的,所以:牡丹的种植面积=圆形花圃面积÷4,据此解题;
(2)月季花棵数=圆形花圃周长÷0.4,据此解题。

35.(1)21
(2)18
(3)3;9
(4)25÷30=
答:6月5日甲市最高气温是乙市最高气温的。

【解析】【解答】解:(1)乙市6月1日的最高气温是21℃;
(2)甲市6月2日的最高气温是18℃;
(3)两个城市的最高气温在6月3日相差最大,相差:30-21=9℃。

故答案为:(1)21;(2)18;(3)3;9。

【分析】(1)虚线表示乙市,横轴表示日期,由此确定乙市1日的最高气温;
(2)实线表示甲市,由此确定2日甲市的最高气温即可;
(3)根据折线的走势先确定相差最大的日期,用减法计算相差的温度;
(4)5日甲市的最高气温是25℃,乙市的最高气温是30℃,用甲市的最高气温除以乙市的最高气温,用最简分数表示即可。

36.解:20-2=18(支),25+2=27(本),18和27的最大公因数是9
答:“三好学生”最多有9人。

【解析】【分析】把钢笔支数减去2,练习本本数加上2,那么钢笔和练习本就刚好能全部奖励给“三好学生”,那么三好学生数一定是18和27的最大公因数。

37.(1)解:6和9的最小公倍数是18,
6月5日向后推18天是6月23日。

答:下一次两人都到体育馆的时间是6月23日。

(2)解:4、6、9的最小公倍数是36,6月5日向后推36天是7月11日。

答:他们三人下一次都到体育馆的时间是7月11日。

【解析】【分析】(1)他们两人下一次都到体育馆经过的时间一定是6和9的最小公倍数,由此确定两个数的最小公倍数,在从6月5日向后推算时间即可;
(2)他们三人下一次都到体育馆经过的时间一定是4、6、9的最小公倍数,三个数的最
小公倍数是36。

6月是小月共30天,6月5日过25天是6月30日,再过11天就是7月11日。

38.解:50和30的最大公因数是10,所以正方形边长是10厘米,
(50÷10)×(30÷10)
=5×3
=15(个)
答:能裁15个这样的正方形,边长是10厘米。

【解析】【分析】要使裁成的正方形最大,则正方形的边长一定是30和50的最大公因数,由此确定正方形的边长是10厘米。

这样用除法计算出沿着长和宽分别能裁出正方形的个数即可求出一共裁出正方形的个数。

39.解:28+6=34(人)
34÷2=17(人)
28+17=45(人)
17÷45=
答:女生人数占全班人数的。

【解析】【分析】先计算出女生人数的2倍有多少人,用男生的人数加上男生比女生2倍少的人数;进行可求出女生的人数;再用男生的人数+女生的人数计算出总人数,最后用女生的人数除以总人数即可得出女生人数占全班人数的几分之几。

40.解:12=3×2×2,
18=2×3×3,
12和18的最大公因数是3×2=6,所以每小段最长是6米;
12÷6+18÷6
=2+3
=5(段)
答:每小段最长是6米,一共可以截成5段。

【解析】【分析】此题主要考查了最大公因数的应用,用分解质因数的方法求两个数的最大公因数,先把每个数分别分解质因数,再把两个数中的全部公有质因数提取出来连乘,所得的积就是这两个数的最大公因数;
然后用长÷每段的长度+宽÷每段的长度=一共可以截的段数,据此列式解答。

相关文档
最新文档