中考数学经典选择题100题(含答案)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
)
中考数学经典选择题100题
22
,,cos60°,ta n30° 3,0.123 中,无理数有(
2、下列运算正确的是(
9、设 代B 都是关于x 的5次多项式,则下列说法正确的是( )
A 、A
B 是关于x 的5次多项式 B 、
A B 是关于x 的4次多项式
A
C 、 AB 是关于x 的10次多项式
D 、 是与x 无关的常数
B
----------------- A B
10、实数a,b 在数轴对应的点 A 、B 表示如图,化简 a 2 4a 4 |a b|的结果为 ------------------ ----------------
-1 a 0 1b
1、在实数,8,3 2,3
64,314,
,0.2121121112 A 、x 2 x 3 =x 6 x 2+ x 2=2x 4
C 、(-2x) 2 =4x 2
D 、(-2x)2 (-3x )3=6x 5
2 2
3、算式2 2
22 22
可化为( A 、24
82
C 、28
D 、216
4、世界银行全球扶贫大会 ”于2004年5月26日在上海开幕.从会上获知, 我国国民生产总值达到 11.69万亿元,
人民生活总体上达到小康水平,其中 11.69万亿用科学记数法表示应为(
14
A 、11.69X 10 1.169 1014
C 、 1.169 1013
D 、0.1169
1014
5、不等式2(x 2)
2的非负整数解的个数为
B 、
C 、3
6、不等式组
2x x 1
的最小整数解是(
2x
A 、一 1 C 、2
7、为适应国民经济持续协调的发展,自
2004年4月18日起,全国铁路第五次提速,提速后,火车由天津到上
海的时间缩短了 7.42小时,若天津到上海的路程为
1326千米,提速前火车的平均速度为
x 千米/小时,提速后火
车的平均速度为y 千米/时,则x 、y 应满足的关系式是( )
1326 A 、x -y =
7.42
y -x =
1326 7.42
1326 x
1326 =7.42
y
1326 =7.42
x
8、一个自然数的算术平方根为
a ,则与它相邻的下一个自然数的算术平方根为(
c 、 . a 2
1 B
、
5 5 60
60
30
5
20、 30 30 5 x x
30
5 60
已知关于 x 的方程 x 2
mx B 、 1
30 30
B 、——
x 5 x
0的两根的平方和是 3, 30 30
C 、—
x x 5
则m 的值是(
11、 某商品降价20%后出售,一段时间后恢复原价,则应在售价的基础上提高的百分数是 ()
A 、20%
B 、25%
C 、30%
D 、35%
12、 某种出租车的收费标准是:起步价 7元(即行驶距离不超过 3km 都需付7元车费),超过3km 以后,每增 加,加收2.4元(不足1km 按1km 计),某人乘这种车从甲地到乙地共支付车费 19元,那么,他行程的最大值
是( ) A 、11 km
B 、8 km
c 、7 km
D 、5 km
13、 在高速公路上,一辆长 4米,速度为110千米/小时的轿车准备超越一辆长 12米,速度为100千米/小时的卡
A 、 2a b 2
B 、2 b 2a
C 、2 b
车, 则轿车从开始追及到超越卡车,需要花费的时间约是(
1.6秒 B 、4.32 秒
C 、5.76 秒
D 、345.6 秒
14、
2
如果关于x 的一元二次方程kx
6x 9 0有两个不相等的实数根,那么
k 的取值范围是(
c 、k 1 且 k 0
15、若a 2
+ma+18在整数范围内可分解为两个一次因式的乘积,则整数 m 不可能是 B 、土 11
C 、
± 12 D 、土 19
16、在实数范围内把 2x 2
4x 8分解因式为(
A 、2(x 3)(x 1)
B 、(X 1 ,5)(x • 5)
C 、2(x 1 '一 5)(x
D 、2(x
1 ,5)(x
.5)
17、用换元法解方程
2
—
时,若设x 2+x=y,则原方程可化为(
x x
A 、y 2
+y+2=0 B 、
y 2 — y — 2=0 C 、y 2— y+2=0
D 、y 2+y — 2=0
18、某商品经过两次降价, 由每件 100元降至81元,则平均每次降价的百分率为(
A 、8.5%
B 、9%
C 、9.5%
D 、10%
19、一列火车因事在途中耽误了 5分钟,恢复行驶后速度增加
5千米/时,这样行了 30千米就将耽误的时间补了
回来,若设原来的速度为 x 千米/时,则所列方程为(