高考物理电磁学计算题(四)含答案与解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高考物理电磁学计算题(四)

组卷老师:莫老师

一.计算题(共50小题)

1.如图甲所示,用粗细均匀的导线制成的一只单匝圆形金属圈,现被一根绝缘丝线悬挂在竖直平面内处于静止状态,已知金属圈的质量为m=0.1kg,半径为r=0.1m,导线单位长度的阻值为ρ=0.1Ω/m,.金属圈的上半部分处在一方向垂直圈面向里的有界匀强磁场中,磁感应强度B随时间t的变化关系如图乙所示.金属圈下半部分在磁场外.已知从t=0时刻起,测得经过10s丝线刚好被拉断.重力加速度g取10m/s2.求:

(1)导体圆中感应电流的大小及方向;

(2)丝线所能承受的最大拉力F;

(3)在丝线断前的10s时间内金属圈中产生的焦耳热Q.

2.如图所示,两平行金属板间距为d,电势差为U,板间电场可视为匀强电场;金属板上方有一磁感应强度为B的匀强磁场.电荷量为+q、质量为m的粒子,由静止开始从正极板出发,经电场加速后射出,从M点进入磁场后做匀速圆周运动,从N点离开磁场.忽略重力的影响.

(1)求匀强电场场强E的大小;

(2)求粒子从电场射出时速度ν的大小;

(3)求M、N两点间距L的大小;保持粒子不变,请你说出一种增大间距L的方法.

3.如图所示,光滑的金属导轨间距为L,导轨平面与水平面成α角,导轨下端接有阻值为R的电阻,质量为m,电阻为r的金属细杆ab与绝缘轻质弹簧相连静止在导轨上,弹簧劲度系数为k,上端固定,弹簧与导轨平面平行,整个装置处在垂直于导轨平面斜向上的匀强磁场中,磁感应强度为B.现给杆一沿轨道向下的初速度v0,杆向下运动至速度为零后,再沿轨道平面向上运动达最大速度v1,然后减速为零,再沿轨道平面向下运动,一直往复运动到静止.试求:(1)细杆获得初速度瞬间,通过R的电流大小;

(2)当杆速度为v1时离最初静止时位置的距离L1.

4.如图所示,静止于A处的带正电粒子,经加速电场加速度后沿图中圆弧虚线通过静电分析器,从P点垂直CN竖直向上进入矩形区域的有界匀强磁场(磁场方向如图所示,其CNQD为匀强磁场的边界).静电分析器通道内有均匀辐向分布的电场,方向如图所示.已知加速电场的电压为U,圆弧虚线的半径为R,粒子质量为m,电荷量为q,QN=2d,PN=3d,粒子重力不计.

(1)求粒子在辐向电场中运动时其所在处的电场强度E的大小;

(2)若粒子恰好能打在N点,求距形区域QNCD内匀强磁场的磁感应强度B的值;

(3)要求带电粒子最终能打在QN上,求磁场感应强度大小B的取值落围及出射点离Q点的最近距离.

5.如图,直角坐标系第Ⅰ、Ⅱ象限存在方向垂直纸面向里的匀强磁场,一质量为m,电量为+q的粒子在纸面内以速度v从﹣y轴上的A点(0,﹣L)射入,其方向+x成30°角,粒子离开磁场后能回到A点,(不计重力).求:

(1)磁感应强度B的大小;

(2)粒子从A点出发到再回到A点的时间.

6.如图甲所示,间距为l=0.5 m的两条足够长的平行金属导轨所在平面与水平面的夹角θ=37°,导轨上端接有一个R=0.5Ω的电阻,导轨所在平面可划分为I、Ⅱ、Ⅲ三个区域,两导轨间长度为s1=l m的矩形区域Ⅰ中存在垂直导轨平面向上的匀强磁场,其磁感应强度大小B随时间t的变化关系如图乙所示,长度为s2=3m的区域Ⅱ中无磁场,区域Ⅲ中存在垂直导轨平面向上的匀强磁场,其磁感应强度的大小B0=1 T.在t=0时刻,质量m=l kg且与导轨垂直的金属棒ab从区域I和区域Ⅱ的交界处静止滑下,当金属棒到达区域Ⅱ和区域Ⅲ的交界处CD时,区域Ⅰ中的磁场突然撤去,此后金属棒恰好保持匀速运动.边界CD上方的导轨光滑,边界CD下方的导轨粗糙,不计金属棒与导轨的电阻,金属棒在下滑过程中始终与导轨垂直且接触良好,已知sin37°=0.6,cos37°=0.8.求:

(1)金属棒在到达边界CD前的运动过程中,回路中产生的感应电流大小I;(2)金属棒在区域Ⅱ中运动的过程中,电阻产生的焦耳热Q;

(3)金属棒与区域Ⅲ中的两导轨之间的动摩擦因数μ.

7.如图所示,光滑导轨EF、GH等高平行放置,EG间宽度为FH间宽度的3倍,导轨右侧水平且处于竖直向上的匀强磁场中,左侧呈弧形升高,ab、cd是质量均为m的金属棒,现让ab从离水平轨道h高处由静止下滑,设导轨足够长.(1)ab、cd棒的最终速度;

(2)全过程中感应电流产生的焦耳热.

8.一光滑绝缘细直杆MN,长为L,水平固定在匀强电场中,场强大小为B,方向与竖直方向夹角为θ.杆的M端固定一个带负电小球A,电荷量大小为Q;另一带负电的小球B穿在杆上,可自由滑动,电荷量大小为q,质量为m,现将小球B从杆的N端由静止释放,小球B开始向A端运动,已知k为静电力常量,g 为重力加速度,求:

(1)小球B对细杆的压力的大小;

(2)小球B开始运动时的加速度的大小;

(3)小球B速度最大时,离M端的距离.

9.如图,两条间距L=0.5m且足够长的平行光滑金属直导轨,与水平地面成α=30°角固定放置,磁感应强度B=0.4T的匀强磁场方向垂直导轨所在的斜面向上,质量m ab=0.1kg、m cd=0.2kg的金属棒ab、cd垂直导轨放在导轨上,两金属棒的总电阻r=0.2Ω,导轨电阻不计.ab在沿导轨所在斜面向上的外力F作用下,沿该

斜面以v=2m/s的恒定速度向上运动.某时刻释放cd,cd向下运动,经过一段时间其速度达到最大.已知重力加速度g=10m/s2,求在cd速度最大时,

(1)abcd回路的电流强度I以及F的大小;

(2)abcd回路磁通量的变化率以及cd的速率.

10.如图所示,一足够大的倾角θ=30°的粗糙斜面上有一个粗细均匀的由同种材料制成的金属线框abcd,线框的质量m=0.6kg,其电阻值R=1.0Ω,ab边长L1=1m,bc边长L2=2m,与斜面之间的动摩擦因数μ=.斜面以EF为界,EF上侧有垂直于斜面向上的匀强磁场.一质量为M的物体用绝缘细线跨过光滑定滑轮与线框相连,连接线框的细线与斜面平行且线最初处于松弛状态.现先释放线框再释放物体,当cd边离开磁场时线框即以v=2m/s的速度匀速下滑,在ab边运动到EF位置时,细线恰好被拉直绷紧(时间极短),随即物体和线框一起匀速运动t=1s 后开始做匀加速运动.取g=10m/s2,求:

(1)匀强磁场的磁感应强度B;

(2)细绳绷紧前,M下降的高度H;

(3)系统在线框cd边离开磁场至重新进入磁场过程中损失的机械能△E.

11.平行金属板A、B的间距为d,板间加有随时间变化的电压,如图所示.设U0、T为已知,A板上孔O处有静止的带电粒子(不计重力),其电荷量为q,质量为m.在t=0的时刻受AB间电场力的作用而加速向B板运动,途中由于电场方向反向粒子又向O处返回,为使t=T时粒子恰好又回到O点,则:

相关文档
最新文档