八年级初二数学 勾股定理知识点-+典型题含答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、选择题
1.如图:在△ABC 中,∠B=45°,D 是AB 边上一点,连接CD ,过A 作AF ⊥CD 交CD 于G ,交BC 于点F .已知AC=CD ,CG=3,DG=1,则下列结论正确的是( )
①∠ACD=2∠FAB ②27ACD S ∆= ③272CF =- ④ AC=AF
A .①②③
B .①②③④
C .②③④
D .①③④
2.如图,在ABC ∆中,,90︒
=∠=AB AC BAC ,ABC ∠的平分线BD 与边AC 相交于点D ,DE BC ⊥,垂足为E ,若CDE ∆的周长为6,则ABC ∆的面积为( ).
A .36
B .18
C .12
D .9
3.如图,所有的四边形都是正方形,所有的三角形都是直角三角形。

若正方形A 、B 、C 、D 的边长是3、5、2、3,则最大正方形E 的面积是
A .13
B .225+
C .47
D .13 4.已知一个直角三角形的两边长分别为1和2,则第三边长是( ) A .3
B .3
C .5
D .3或5
5.如图,在ABC 中,CE 平分ACB ∠,CF 平分ACD ∠,且//EF BC 交AC 于M ,若3CM =,则22CE CF +的值为( )
A .36
B .9
C .6
D .18
6.下列说法不能得到直角三角形的( )
A .三个角度之比为 1:2:3 的三角形
B .三个边长之比为 3:4:5 的三角形
C .三个边长之比为 8:16:17 的三角形
D .三个角度之比为 1:1:2 的三角形
7.如图,透明的圆柱形玻璃容器(容器厚度忽略不计)的高为16cm ,在容器内壁离容器底部4cm 的点B 处有一滴蜂蜜,此时一只蚂蚁正好在容器外壁,位于离容器上沿4cm 的点A 处,若蚂蚁吃到蜂蜜需爬行的最短路径为20cm ,则该圆柱底面周长为( )
A .12cm
B .14cm
C .20cm
D .24cm
8.已知M 、N 是线段AB 上的两点,AM =MN =2,NB =1,以点A 为圆心,AN 长为半径画弧;再以点B 为圆心,BM 长为半径画弧,两弧交于点C ,连接AC ,BC ,则△ABC 一定是( ) A .锐角三角形
B .直角三角形
C .钝角三角形
D .等腰三角形
9.已知直角三角形纸片ABC 的两直角边长分别为6,8,现将ABC 按如图所示的方式折叠,使点A 与点B 重合,则BE 的长是( )
A .
72
B .
74
C .
254
D .
154
10.有下列的判断:
①△ABC 中,如果a 2+b 2≠c 2,那么△ABC 不是直角三角形 ②△ABC 中,如果a 2-b 2=c 2,那么△ABC 是直角三角形 ③如果△ABC 是直角三角形,那么a 2+b 2=c 2 以下说法正确的是( ) A .①②
B .②③
C .①③
D .②
二、填空题
11.如图,Rt △ABC 中,∠ACB =90o ,AC =12,BC =5,D 是AB 边上的动点,E 是AC 边上的动点,则BE +ED 的最小值为 .
12.如图,这是由八个全等的直角三角形拼接而成,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为 1S ,2S ,3S ,若123144S S S ++=,则2S 的值是__________.
13.如图,在矩形ABCD 中,AB =6,AD =8,矩形内一动点P 使得S △PAD =1
3
S 矩形ABCD ,则点P 到点A 、D 的距离之和PA +PD 的最小值为_____.
14.如图,在ABC 中,D 是BC 边中点,106AB AC ==,,4=AD ,则BC 的长是_____________.
15.已知,在△ABC 中,∠C=90°,AC=BC=7,D 是AB 的中点,点E 在AC 上,点F 在BC 上,DE=DF ,若BF=4,则EF=_______
16.如图所示,“赵爽弦图”是由8个全等的直角三角形拼接而成的,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为123,,S S S ,已知12310S S S ++=,则2S 的值是____.
17.如图,在锐角ABC ∆中,2AB =,60BAC ∠=,BAC ∠的平分线交BC 于点D ,
M ,N 分别是AD 和AB 上的动点,则BM MN +的最小值是______.
18.已知x ,y 为一个直角三角形的两边的长,且(x ﹣6)2=9,y =3,则该三角形的第三边
长为_____.
19.如图,在矩形ABCD 中,AD >AB ,将矩形ABCD 折叠,使点C 与点A 重合,折痕为
MN ,连接CN .若△CDN 的面积与△CMN 的面积比为1:3,则2
2
MN BM
的值为______________.
20.在ABC 中,12AB AC ==,30A ∠=︒,点E 是AB 中点,点D 在AC 上,
32DE =,将ADE 沿着DE 翻折,点A 的对应点是点F ,直线EF 与AC 交于点G ,那么DGF △的面积=__________.
三、解答题
21.在等边ABC 中,点D 是线段BC 的中点,120,EDF DE ∠=︒与线段AB 相交于点
,E DF 与射线AC 相交于点F .
()1如图1,若DF AC ⊥,垂足为,4,F AB =求BE 的长;
()2如图2,将()1中的EDF ∠绕点D 顺时针旋转一定的角度,DF 仍与线段AC 相交于
点F .求证:1
2
BE CF AB +=

()3如图3,将()2中的EDF ∠继续绕点D 顺时针旋转一定的角度,使DF 与线段AC 的
延长线交于点,F 作DN AC ⊥于点N ,若,DN FN =设,BE x CF y ==,写出y 关于x 的函数关系式.
22.如图,,90,8,6,,ABC B AB cm BC cm P Q ︒
∆∠===是边上的两点,点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 沿B C A →→运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒. (1)出发2秒后,求线段PQ 的长;
(2)求点Q 在BC 上运动时,出发几秒后,PQB 是等腰三角形; (3)点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.
23.如图1,在△ABC 中,AB =AC ,∠BAC =90°,D 为AC 边上一动点,且不与点A 点C 重合,连接BD 并延长,在BD 延长线上取一点E ,使AE =AB ,连接CE .
(1)若∠AED =20°,则∠DEC = 度;
(2)若∠AED =a ,试探索∠AED 与∠AEC 有怎样的数量关系?并证明你的猜想; (3)如图2,过点A 作AF ⊥BE 于点F ,AF 的延长线与EC 的延长线交于点H ,求证:EH 2+CH 2=2AE 2. 24.阅读与理解:
折纸,常常能为证明一个命题提供思路和方法.例如,在ABC 中,AB AC >(如图),怎样证明C B ∠>∠呢?
分析:把AC 沿A ∠的角平分线AD 翻折,因为AB AC >,所以,点C 落在AB 上的点
C '处,即AC AC '=,据以上操作,易证明AC
D AC D '△△≌,所以AC D C '∠=∠,又因为AC D B '∠>∠,所以C B ∠>∠.
感悟与应用:
(1)如图(a ),在ABC 中,90ACB ∠=︒,30B ∠=︒,CD 平分ACB ∠,试判断
AC 和AD 、BC 之间的数量关系,并说明理由;
(2)如图(b ),在四边形ABCD 中,AC 平分BAD ∠,16AC =,8AD =,
12DC BC ==,
①求证:180B D ∠+∠=︒; ②求AB 的长.
25.如图1,在等腰直角三角形ABC 中,动点D 在直线AB (点A 与点B 重合除外)上时,以CD 为一腰在CD 上方作等腰直角三角形ECD ,且90ECD ∠=︒,连接AE .
(1)判断AE 与BD 的数量关系和位置关系;并说明理由.
(2)如图2,若4BD =,P ,Q 两点在直线AB 上且5EP EQ ==,试求PQ 的长. (3)在第(2)小题的条件下,当点D 在线段AB 的延长线(或反向延长线)上时,判断PQ 的长是否为定值.分别画出图形,若是请直接写出PQ 的长;若不是请简单说明理由. 26.定义:如图1,点M 、N 把线段AB 分割成AM 、MN 和BN ,若以AM 、MN 、
BN 为边的三角形是一个直角三角形,则称点M 、N 是线段AB 的勾股分割点.
(1)已知点M 、N 是线段AB 的勾股分割点,若2AM =,3MN =,求BN 的长; (2)如图2,在Rt ABC △中,AC BC =,点M 、N 在斜边AB 上,45MCN ∠=︒,求证:点M 、N 是线段AB 的勾股分割点(提示:把ACM 绕点C 逆时针旋转
90︒);
(3)在(2)的问题中,15ACM ∠=︒,1AM =,求BM 的长.
27.如图,ABC ∆是等边三角形,,D E 为AC 上两点,且AE CD =,延长BC 至点F ,使CF CD =,连接BD .
(1)如图1,当,D E 两点重合时,求证:BD DF =; (2)延长BD 与EF 交于点G . ①如图2,求证:60BGE ∠=︒;
②如图3,连接,BE CG ,若30,4EBD BG ∠=︒=,则BCG ∆的面积为
______________.
28.如图1,点E 是正方形ABCD 边CD 上任意一点,以DE 为边作正方形DEFG ,连接BF ,点M 是线段BF 中点,射线EM 与BC 交于点H ,连接CM . (1)请直接写出CM 和EM 的数量关系和位置关系.
(2)把图1中的正方形DEFG 绕点D 顺时针旋转45︒,此时点F 恰好落在线段CD 上,如图2,其他条件不变,(1)中的结论是否成立,请说明理由.
(3)把图1中的正方形DEFG 绕点D 顺时针旋转90︒,此时点E 、G 恰好分别落在线段
AD 、CD 上,连接CE ,如图3,其他条件不变,若2DG =,6AB =,直接写出CM 的长度.
29.如图1,已知△ABC 是等边三角形,点D ,E 分别在边BC ,AC 上,且CD =AE ,AD 与BE 相交于点F .
(1)求证:∠ABE =∠CAD ;
(2)如图2,以AD 为边向左作等边△ADG ,连接BG . ⅰ)试判断四边形AGBE 的形状,并说明理由;
ⅱ)若设BD =1,DC =k (0<k <1),求四边形AGBE 与△ABC 的周长比(用含k 的代数式表示).
30.在平面直角坐标系中,点A (0,4),B (m ,0)在坐标轴上,点C ,O 关于直线AB 对称,点D 在线段AB 上.
(1)如图1,若m =8,求AB 的长;
(2)如图2,若m =4,连接OD ,在y 轴上取一点E ,使OD =DE ,求证:CE 2DE ; (3)如图3,若m =3AO 上裁取AF ,使AF =BD ,当CD +CF 的值最小时,请在图中画出点D 的位置,并直接写出这个最小值.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.B 解析:B 【分析】
过点C 作CH AB ⊥于点H ,根据等腰三角形的性质得到1802ACD CDA ∠=︒-∠,根据
AF CD ⊥得到90FAB CDA ∠=︒-∠,可以证得①是正确的,利用勾股定理求出AG 的
长,算出三角形ACD 的面积证明②是正确的,再根据角度之间的关系证明
AFC ACF ∠=∠,得到④是正确的,最后利用勾股定理求出CF 的长,得到③是正确的. 【详解】
解:如图,过点C 作CH AB ⊥于点H ,
∵AC CD =,
∴CAD CDA ∠=∠,1802ACD CDA ∠=︒-∠, ∵AF CD ⊥, ∴90AGD ∠=︒, ∴90FAB CDA ∠=︒-∠, ∴2ACD FAB ∠=∠,故①正确; ∵3CG =,1DG =, ∴314CD CG DG =+=+=, ∴4AC CD ==, 在Rt ACG 中,221697AG AC CG =
--=,
∴1
2
ACD
S
AG CD =
⋅= ∵90CHB ∠=︒,45B ∠=︒, ∴45HCB ∠=︒,
∵AC CD =,CH AD ⊥, ∴1
2
ACH HCD ACD ∠=∠=
∠, ∵45AFC B FAB FAB ∠=∠+∠=︒+∠,
45ACF ACH HCB ACH ∠=∠+∠=∠+︒,
1
2
ACH ACD FAB ∠=∠=∠,
∴AFC ACF ∠=∠,
∴4AC AF ==,故④正确;
∴4GF AF AG =-=-
在Rt CGF 中,2CF ===,故③正确.
故选:B . 【点睛】
本题考查几何的综合证明,解题的关键是掌握等腰三角形的性质和判定,勾股定理和三角形的外角和定理.
2.D
解析:D 【分析】
利用角平分定理得到DE=AD ,根据三角形内角和得到∠BDE=∠BDA ,再利用角平分线定理得到BE=AB=AC ,根据CDE ∆的周长为6求出AB=6,再根据勾股定理求出
218AB =,即可求得ABC ∆的面积.
【详解】 ∵90BAC ︒∠=, ∴AB ⊥AD,
∵DE BC ⊥,BD 平分ABC ∠, ∴DE=AD ,∠BED=90BAC ︒∠=, ∴∠BDE=∠BDA , ∴BE=AB=AC , ∵CDE ∆的周长为6, ∴DE+CD+CE=AC+CE=BC=6, ∵,90︒
=∠=AB AC BAC ∴22236AB AC BC +==, ∴2236AB =,
218AB =,
∴ABC ∆的面积=211922
AB AC AB ⋅⋅==, 故选:D.
【点睛】
此题考查角平分线定理的运用,勾股定理求边长,在利用角平分线定理时必须是两个垂直一个平分同时运用,得到到角两边的距离相等的结论. 3.C
解析:C
【分析】
根据勾股定理即可得到正方形A 的面积加上B 的面积加上C 的面积和D 的面积是E 的面积.即可求解.
【详解】
四个正方形的面积的和是正方形E 的面积:即222233=92549=47+5+2++++;故答案为C .
【点睛】
理解正方形A ,B ,C ,D 的面积的和是E 的面积是解决本题的关键.
4.D
解析:D
【解析】
当一直角边、斜边为1和2时,第三边=
=; 当两直角边长为1和2时,第三边=
=; 故选:D . 5.A
解析:A
【分析】
先根据角平分线的定义、角的和差可得90ECF ∠=︒,再根据平行线的性质、等量代换可得,ACE CEF ACF F ∠=∠∠=∠,然后根据等腰三角形的定义可得
,EM CM FM CM ==,从而可得6EF =,最后在Rt CEF 中,利用勾股定理即可得.
【详解】
CE 平分ACB ∠,CF 平分ACD ∠,
,1122
ACB ACD BCE ACE DCF ACF ∴∠∠=∠=∠=∠∠=, 111(90222
)ACB AC E D ACB ACD CF ACE ACF ∠=∠+∴∠+∠=∠∠∠=+=︒, //EF BC ,
,BCE CEF DCF F ∠=∴∠∠=∠,
,ACE CEF ACF F ∴∠=∠∠=∠,
3,3EM CM FM CM ∴====,
6EF EM FM ∴=+=,
在Rt CEF 中,由勾股定理得:2222636CE CF EF +===,
故选:A .
【点睛】
本题考查了角平分线的定义、平行线的性质、等腰三角形的定义、勾股定理等知识点,熟练掌握等腰三角形的定义是解题关键.
6.C
解析:C
【分析】
三角形内角和180°,根据比例判断A 、D 选项中是否有90°的角,根据勾股定理的逆定理判断B 、C 选项中边长是否符合直角三角形的关系.
【详解】
A 中,三个角之比为1:2:3,则这三个角分别为:30°、60°、90°,是直角三角形; D 中,三个角之比为1:1:2,则这三个角分别为:45°、45°、90°,是直角三角形;
B 中,三边之比为3:4:5,设这三条边长为:3x 、4x 、5x ,满足:()()()222
345x x x +=,是直角三角形;
C 中,三边之比为8:16:17,设这三条边长为:8x 、16x 、17x ,()()()22281617x x x +≠,不满足勾股定理逆定理,不是直角三角形
故选:C
【点睛】
本题考查直角三角形的判定,常见方法有2种;
(1)有一个角是直角的三角形;
(2)三边长满足勾股定理逆定理. 7.D
解析:D
【分析】
将容器侧面展开,建立A 关于EG 的对称点A ′,根据两点之间线段最短可知A ′B 的长度即为所求.
【详解】
解:如图:将圆柱展开,EG 为上底面圆周长的一半,
作A 关于E 的对称点A',连接A'B 交EG 于F ,则蚂蚁吃到蜂蜜需爬行的最短路径为AF+BF 的长,即AF+BF=A'B=20cm ,
延长BG,过A'作A'D⊥BG于D,
∵AE=A'E=DG=4cm,
∴BD=16cm,
Rt△A'DB中,由勾股定理得:A'D=22
-=cm
201612
∴则该圆柱底面周长为24cm.
故选:D.
【点睛】
本题考查了平面展开---最短路径问题,将图形展开,利用轴对称的性质和勾股定理进行计算是解题的关键.同时也考查了同学们的创造性思维能力.
8.B
解析:B
【分析】
依据作图即可得到AC=AN=4,BC=BM=3,AB=2+2+1=5,进而得到AC2+BC2=AB2,即可得出△ABC是直角三角形.
【详解】
如图所示,AC=AN=4,BC=BM=3,AB=2+2+1=5,
∴AC2+BC2=AB2,
∴△ABC是直角三角形,且∠ACB=90°,
故选B.
【点睛】
本题主要考查了勾股定理的逆定理,如果三角形的三边长a,b,c满足a2+b2=c2,那么这个三角形就是直角三角形.
9.C
解析:C
【分析】
根据图形翻折变换的性质可知,AE=BE,设AE=x,则BE=x,CE=8-x,再在Rt△BCE中利用勾股定理即可求出BE的长度.
【详解】
解:∵△ADE翻折后与△BDE完全重合,
∴AE=BE,
设AE=x,则BE=x,CE=8﹣x,
在Rt△BCE中,BE2=BC2+CE2,
即x2=62+(8﹣x)2,
解得,x=25
4

∴BE=25
4

故选:C.
【点睛】
本题考查了图形的翻折变换,解题过程中应注意折叠是一种对称变换,它属于轴对称,根据轴对称的性质,折叠前后图形的形状和大小不变.
10.D
解析:D
【分析】
欲判断三角形是否为直角三角形,这里给出三边的长,需要验证两小边的平方和等于最长边的平方即可.
【详解】
①c不一定是斜边,故错误;
②正确;
③若△ABC是直角三角形,c不是斜边,则a2+b2≠c2,故错误,
所以正确的只有②,
故选D.
【点睛】
本题考查了勾股定理以及勾股定理的逆定理,熟练掌握勾股定理以及勾股定理的逆定理的内容是解题的关键.
二、填空题
11.
【解析】
试题分析:作点B 关于AC 的对称点B′,过B′点作B′D ⊥AB 于D ,交AC 于E ,
连接AB′、BE ,则BE+ED=B′E+ED=B′D 的值最小.∵点B 关于AC 的对称点是B′,BC=5,∴B′C=5,BB′=10.∵Rt △ABC 中,∠ACB=90°,AC=12,BC=5,∴22AC BC +,∵S △ABB′=12•AB•B′D=12•BB′•AC ,∴B′D=B 10121201313B AC AB '⋅⨯==,∴BE+ED= B′D=12013. 考点:轴对称-最短路线问题.
12.48
【分析】
用a 和b 表示直角三角形的两个直角边,然后根据勾股定理列出正方形面积的式子,求出2S 的面积.
【详解】
解:本图是由八个全等的直角三角形拼成的,设这个直角三角形两个直角边中较长的长度为a ,较短的长度为b ,即图中的AE a =,AH b =,
则()221S AB a b ==+,2222S HE a b ==+,()2
23S TM a b ==-, ∵123144S S S ++=,
∴()()22
22144a b a b a b ++++-= 22222222144a b ab a b a b ab ++++++-=
2233144a b +=
2248a b +=,
∴248S =.
故答案是:48.
【点睛】
本题考查勾股定理,解题的关键是要熟悉赵爽弦图中勾股定理的应用.
13.2
【分析】
根据S △PAD =13
S 矩形ABCD ,得出动点P 在与AD 平行且与AD 的距离是4的直线l 上,作A 关于直线l 的对称点E ,连接DE ,BE ,则DE 的长就是所求的最短距离.然后在直角三角形ADE 中,由勾股定理求得DE 的值,即可得到PA+PD 的最小值.
【详解】
设△PAD中AD边上的高是h.
∵S△PAD=1
3
S矩形ABCD,
∴1
2
AD•h=
1
3
AD•AB,
∴h=2
3
AB=4,
∴动点P在与AD平行且与AD的距离是4的直线l上,
如图,作A关于直线l的对称点E,连接BE,DE,则DE的长就是所求的最短距离.
在Rt△ADE中,∵AD=8,AE=4+4=8,
DE=2222
8882
AE AD
+=+= ,
即PA+PD的最小值为82.
故答案82.
【点睛】
本题主要考查了轴对称-最短路线问题,三角形的面积,矩形的性质,勾股定理,两点之间线段最短的性质.得出动点P所在的位置是解题的关键.
14.413
【分析】
延长AD至点E,使得DE=AD=4,结合D是中点证得△ADC≌△EDB,进而利用勾股定理逆定理可证得∠E=90°,再利用勾股定理求得BD长进而转化为BC长即可.
【详解】
解:如图,延长AD至点E,使得DE=AD=4,连接BE,
∵D是BC边中点,
∴BD=CD,
又∵DE=AD,∠ADC=∠EDB,
∴△ADC≌△EDB(SAS),
∴BE=AC=6,
又∵AB=10,
∴AE2+BE2=AB2,
∴∠E=90°,
∴在Rt△BED中,2222
64213
BD BE DE
=+=+=,
∴BC=2BD=413,
故答案为:413.
【点睛】
本题考查了全等三角形的判定及性质、勾股定理及其逆定理,正确作出辅助线是解决本题的关键.
15.322
或11或5或109 5
【分析】
分别就E,F在AC,BC上和延长线上,分别画出图形,过D作DG⊥AC,DH⊥BC,垂足为G,H,通过构造全等三角形和运用勾股定理作答即可.
【详解】
解:①过D作DG⊥AC,DH⊥BC,垂足为G,H
∴DG∥BC,∠CDG=∠CDH=45°
又∵D是AB的中点,
∴DG=1
2 BC
同理:DH=1
2 AC
又∵BC=AC
∴DG=DH
在Rt△DGE和Rt△DHF中
DG=DH,DE=DF
∴Rt△DGE≌Rt△DHF(HL)
∴GE=HF
又∵DG=DH,DC=DC
∴△GDC≌△FHC
∴CG=HC
∴CE=GC-GE=CH-HF=CF=AB-BF=3
∴EF=223332+=
②过D 作DG⊥AC,DH⊥BC,垂足为G ,H
∴DG∥BC,∠CDG=∠CDH=45°
又∵D 是AB 的中点,
∴DG=12
BC 同理:DH=
12
AC 又∵BC=AC
∴DG=DH 在Rt△DGE 和Rt△DHF 中
DG=DH,DE=DF ∴Rt△DGE≌Rt△DHF(HL )
∴GE=HF
又∵DG=DH,DC=DC
∴△GDC≌△FHC
∴CG=HC
∴CE=CF=AC+AE=AB+BF=7+4=11
221111112+=③如图,以点D 为圆心,以DF 长为半径画圆交AC 边分别为E 、E ',过点D 作DH⊥AC 于点H ,可知DF DE DE '==,可证△EHD≌△E HD ',CE D CFD '≌,△DHC 为等腰直角三角形,
∴∠1+∠2=45° ∴∠EDF=2(∠1+∠2)=90°
∴△EDF 为等腰直角三角形 可证AED CFD △△≌
∴AE=CF=3,CE=BF=4
∴2222435EF CE CF =+=+=
④有第③知,EF=5,且△EDF 为等腰直角三角形,

ED=DF=522
,可证△E CF E DE ''∆∽,
2223y x +=
52
52x =+综上可得:422x =
∴2222E F DE DF DE '''''=+=
1095
E F ''= 【点睛】
本题考查了全等三角形和勾股定理方面的知识,做出辅助线、运用数形结合思想是解答本题的关键.
16.
103
. 【分析】 根据八个直角三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形,得出CG=NG ,
CF=DG=NF ,再根据()21S CG DG =+,22S GF =,()2
3S NG NF =-,12310S S S ++=,即可得出答案.
【详解】
∵八个直三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形
∴CG=NG ,CF=DG=NF
∴()2
222122S CG DG CG DG CG DG GF CG DG =+=++=+ 22S GF =
()2
2232S NG NF NG NF NG NF =-=+-
∴2222212322310S S S GF CG DG GF NG NF NG NF GF ++=+⋅+++-⋅== ∴2103GF = 故2103
S = 故答案为
103
. 【点睛】 本题主要考查了勾股定理的应用,用到的知识点由勾股定理和正方形、全等三角形的性质.
17.3.
【分析】
作点B 关于AD 的对称点B′,过点B′作B′N ⊥AB 于N 交AD 于M ,根据轴对称确定最短路线问题,B′N 的长度即为BM+MN 的最小值,根据∠BAC=60°判断出△ABB′是等边三角形,再根据等边三角形的性质求解即可.
【详解】
如图,作点B 关于AD 的对称点B′,
由垂线段最短,过点B′作B′N ⊥AB 于N 交AD 于M ,B′N 最短,
由轴对称性质,BM=B′M ,
∴BM+MN=B′M+MN=B′N ,
由轴对称的性质,AD 垂直平分BB′,
∴AB=AB′,
∵∠BAC=60°,
∴△ABB′是等边三角形,
∵AB=2,
∴B′N=2×3=3, 即BM+MN 的最小值是3.
故答案为3.
【点睛】
本题考查了轴对称确定最短路线问题,等边三角形的判定与性质,确定出点M 、N 的位置是解题的关键,作出图形更形象直观.
18.310,62或32
【解析】
【详解】
∵(x-6)2=9,
∴x-6=±3,
解得:x 1=9,x 2=3,
∵x ,y 为一个直角三角形的两边的长,y=3,
∴当x=3时,x 、y 都为直角三角形的直角边,则斜边为223332+=;
当x=9时,x 、y 都为直角三角形的直角边,则斜边为2293310+= ;
当x=9时,x 为斜边、y 为直角边,则第三边为263922=-.
故答案为:310,62或32.
【点睛】
本题主要考查了勾股定理的应用,正确分类讨论是解决问题的关键,解题时注意一定不要漏解.
19.12
【解析】
如图,过点N 作NG ⊥BC 于点G ,连接CN ,根据轴对称的性质有:
MA=MC ,NA=NC ,∠AMN=∠CMN.
因为四边形ABCD 是矩形,所以AD ∥BC ,所以∠ANM=∠CMN.
所以∠AMN=∠ANM ,所以AM=AN.
所以AM=AN=CM=CN.
因为△CDN 的面积与△CMN 的面积比为1:3,所以DN:CM=1:3.
设DN=x ,则CG=x ,AM=AN=CM=CN=3x ,
由勾股定理可得NG=()22322x x x -=, 所以MN 2=()()22222312x x x x +-=,BM 2=()()222322x x x -=.
所以22
2212MN x BM x
==12. 枚本题应填12.
点睛:矩形中的折叠问题,其本质是轴对称问题,根据轴对称的性质,找到对应的线段和角,也就找到了相等的线段和角,矩形中的折叠一般会伴随着等腰三角形(也就是基本图形“平行线+角平分线→等腰三角形”),所以常常会结合等腰三角形,勾股定理来列方程求解.
20.639+或639-
【分析】
通过计算E 到AC 的距离即EH 的长度为3,所以根据DE 的长度有两种情况:①当点D 在H 点上方时,②当点D 在H 点下方时,两种情况都是过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,利用含30°的直角三角形的性质和勾股定理求出AH,DH 的长度,进而可求AD 的长度,然后利用角度之间的关系证明AG GE =,再利用等腰三角形的性质求出GQ 的长度,最后利用2DGF AED AEG S
S S =-即可求解.
【详解】
①当点D 在H 点上方时,
过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,
12AB = ,点E 是AB 中点,
162
AE AB ∴== .
∵EH AC ⊥,
90AHE ∴∠=︒ .
30,6A AE ∠=︒=,
132
EH AE ∴== ,
AH ∴===. 3DE =,
3DH ∴=== ,
DH EH ∴=,3AD AH DH =-=,
45EDH ∴∠=︒,
15AED EDH A ∴∠=∠-∠=︒ .
由折叠的性质可知,15DEF AED ∠=∠=︒,
230AEG AED ∴∠=∠=︒ ,
AEG A ∴∠=∠,
AG GE ∴= . 又GQ AE ⊥ ,
132
AQ AE ∴== . 30A ∠=︒ ,
12
GQ AG ∴=. 222GQ AQ AG += , 即2
223(2)GQ GQ +=,
GQ ∴= .
2DGF AED AEG S S S =- ,
11
23)36922
DGF S ∴=⨯⨯⨯-⨯=; ②当点D 在H 点下方时,
过点E 作EH AC ⊥交AC 于点E ,过点G 作GQ AB ⊥交AB 于点Q ,
12AB = ,点E 是AB 中点,
162
AE AB ∴== . ∵EH AC ⊥,
90AHE ∴∠=︒.
30,6A AE ∠=︒= ,
132EH AE ∴=
= , 22226333AH AE EH ∴=-=-=. 32DE =,
2222(32)33DH DE EH ∴=-=-= ,
DH EH ∴=,333AD AH DH =+=,
45DEH ∴∠=︒ ,
90105AED A DEH ∴∠=︒-∠+∠=︒ .
由折叠的性质可知,105DEF AED ∠=∠=︒,
218030AEG AED ∴∠=∠-︒=︒ ,
AEG A ∴∠=∠,
AG GE ∴= . 又GQ AE ⊥ ,
132
AQ AE ∴== . 30A ∠=︒,
12
GQ AG ∴= . 222GQ AQ AG += , 即2
223(2)GQ GQ +=,
GQ ∴= .
2DGF AED AEG S S S =- ,
11
23)36922
DGF S ∴=⨯⨯⨯-⨯=,
综上所述,DGF △的面积为9或9.
故答案为:9或9.
【点睛】
本题主要考查折叠的性质,等腰三角形的判定及性质,等腰直角三角形的性质,勾股定理,含30°的直角三角形的性质,能够作出图形并分情况讨论是解题的关键.
三、解答题
21.(1)BE =1;(2)见解析;(3)(2y x =
【分析】
(1)如图1,根据等边三角形的性质和四边形的内角和定理可得∠BED =90°,进而可得∠BDE =30°,然后根据30°角的直角三角形的性质即可求出结果;
(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,根据AAS 易证△MBD ≌△NCD ,则有BM =CN ,DM =DN ,进而可根据ASA 证明△EMD ≌△FND ,可得EM =FN ,再根据线段的和差即可推出结论;
(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法和已知条件可得DM =DN =FN =EM ,然后根据线段的和差关系可得BE +CF =2DM ,BE ﹣CF =2BM ,在Rt △BMD 中,根据
30°角的直角三角形的性质可得DM BM ,进而可得BE +CF (BE ﹣CF ),代入x 、y 后整理即得结果.
【详解】
解:(1)如图1,∵△ABC 是等边三角形,
∴∠B =∠C =60°,BC =AC =AB =4.
∵点D 是线段BC 的中点,
∴BD =DC =12
BC =2. ∵DF ⊥AC ,即∠AFD =90°,
∴∠AED =360°﹣60°﹣90°﹣120°=90°,
∴∠BED =90°,∴∠BDE =30°,
∴BE =12
BD =1;
(2)过点D 作DM ⊥AB 于M ,作DN ⊥AC 于N ,如图2,
则有∠AMD =∠BMD =∠AND =∠CND =90°.
∵∠A =60°,
∴∠MDN =360°﹣60°﹣90°﹣90°=120°.
∵∠EDF =120°,
∴∠MDE =∠NDF .
在△MBD 和△NCD 中,
∵∠BMD =∠CND ,∠B =∠C ,BD =CD ,
∴△MBD ≌△NCD (AAS ),
∴BM =CN ,DM =DN .
在△EMD 和△FND 中,
∵∠EMD =∠FND ,DM =DN ,∠MDE =∠NDF ,
∴△EMD ≌△FND (ASA ),
∴EM =FN ,
∴BE +CF =BM +EM +CN -FN =BM +CN =2BM =BD =12BC =12
AB ;
(3)过点D 作DM ⊥AB 于M ,如图3,同(2)的方法可得:BM =CN ,DM =DN ,EM =FN .
∵DN =FN ,
∴DM =DN =FN =EM ,
∴BE +CF =BM +EM +FN -CN =NF +EM =2DM =x +y ,
BE ﹣CF =BM +EM ﹣(FN -CN )=BM +NC =2BM =x -y ,
在Rt △BMD 中,∵∠BDM =30°,∴BD =2BM ,
∴DM 22=3BD BM BM -,
∴)3x y x y +=-,整理,得(23y x =.
【点睛】
本题考查了等边三角形的性质、四边形的内角和定理、全等三角形的判定与性质、30°角的直角三角形的性质以及勾股定理等知识,具有一定的综合性,正确添加辅助线、熟练掌握上述知识是解题的关键.
22.(1)出发2秒后,线段PQ 的长为2132)当点Q 在边BC 上运动时,出发
83
秒后,△PQB 是等腰三角形;(3)当t 为5.5秒或6秒或6.6秒时,△BCQ 为等腰三角形.
【分析】
(1)由题意可以求出出发2秒后,BQ 和PB 的长度,再由勾股定理可以求得PQ 的长度; (2)设所求时间为t ,则可由题意得到关于t 的方程,解方程可以得到解答; (3)点Q 在边CA 上运动时,ΔBCQ 为等腰三角形有三种情况存在,对每种情况进行讨论可以得到解答.
【详解】
(1)BQ=2×2=4cm ,BP=AB−AP=8−2×1=6cm ,
∵∠B=90°,
由勾股定理得:22224652213BQ BP +=+==
∴出发2秒后,线段PQ 的长为13
(2)BQ=2t ,BP=8−t
由题意得:2t=8−t
解得:t=83
∴当点Q 在边BC 上运动时,出发
83秒后,△PQB 是等腰三角形; (3) ∵∠ABC=90°,BC=6,AB=8,∴2268+=10.
①当CQ=BQ 时(图1),则∠C=∠CBQ ,
∵∠ABC=90°,∴∠CBQ+∠ABQ=90°,∠A+∠C=90°,
∴∠A=∠ABQ ,∴BQ=AQ ,∴CQ=AQ=5,
∴BC+CQ=11,∴t=11÷2=5.5秒;
②当CQ=BC时(如图2),则BC+CQ=12
∴t=12÷2=6秒
③当BC=BQ时(如图3),过B点作BE⊥AC于点E,
∴BE=
6824
105 AB BC
AC
⋅⨯
==,
所以CE=22
BC BE
-=18
5
=3.6,
故CQ=2CE=7.2,
所以BC+CQ=13.2,
∴t=13.2÷2=6.6秒.
由上可知,当t为5.5秒或6秒或6.6秒时,△BCQ为等腰三角形.
【点睛】
本题考查三角形的动点问题,利用分类讨论思想和方程方法、综合力学的运动知识和三角形边角的有关知识求解是解题关键.
23.(1)45度;(2)∠AEC﹣∠AED=45°,理由见解析;(3)见解析
【分析】
(1)由等腰三角形的性质可求∠BAE=140°,可得∠CAE=50°,由等腰三角形的性质可得∠AEC=∠ACE=65°,即可求解;
(2)由等腰三角形的性质可求∠BAE=180°﹣2α,可得∠CAE=90°﹣2α,由等腰三角形的性质可得∠AEC=∠ACE=45°+α,可得结论;
(3)如图,过点C作CG⊥AH于G,由等腰直角三角形的性质可得EH=2EF,CH=
2CG,由“AAS”可证△AFB≌△CGA,可得AF=CG,由勾股定理可得结论.
【详解】
解:(1)∵AB=AC,AE=AB,
∴AB=AC=AE,
∴∠ABE=∠AEB,∠ACE=∠AEC,
∵∠AED=20°,
∴∠ABE=∠AED=20°,
∴∠BAE=140°,且∠BAC=90°
∴∠CAE=50°,
∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,
∴∠AEC=∠ACE=65°,
∴∠DEC=∠AEC﹣∠AED=45°,
故答案为:45;
(2)猜想:∠AEC﹣∠AED=45°,
理由如下:∵∠AED=∠ABE=α,
∴∠BAE=180°﹣2α,
∴∠CAE=∠BAE﹣∠BAC=90°﹣2α,
∵∠CAE+∠ACE+∠AEC=180°,且∠ACE=∠AEC,
∴∠AEC=45°+α,
∴∠AEC﹣∠AED=45°;
(3)如图,过点C作CG⊥AH于G,
∵∠AEC﹣∠AED=45°,
∴∠FEH=45°,
∵AH⊥BE,
∴∠FHE=∠FEH=45°,
∴EF=FH,且∠EFH=90°,
∴EH2EF,
∵∠FHE=45°,CG⊥FH,
∴∠GCH=∠FHE=45°,
∴GC=GH,
∴CH CG,
∵∠BAC=∠CGA=90°,
∴∠BAF+∠CAG=90°,∠CAG+∠ACG=90°,
∴∠BAF=∠ACG,且AB=AC,∠AFB=∠AGC,
∴△AFB≌△CGA(AAS)
∴AF=CG,
∴CH AF,
∵在Rt△AEF中,AE2=AF2+EF2,
AF)2+EF)2=2AE2,
∴EH2+CH2=2AE2.
【点睛】
本题是综合了等腰直角三角形的性质,全等三角形的性质与判定的动点问题,三个问题由易到难,在熟练掌握各个相关知识的基础上找到问题之间的内部联系,层层推进去解答是关键.
24.(1)BC−AC=AD;理由详见解析;(2)①详见解析;②AB=14
【分析】
(1)在CB上截取CE=CA,连接DE,证△ACD≌△ECD得DE=DA,∠A=∠CED=60°,据此∠CED=2∠CBA,结合∠CED=∠CBA+∠BDE得出∠CBA=∠BDE,即可得DE=BE,进而得出答案;
(2)①在AB上截取AM=AD,连接CM,先证△ADC≌△AMC,得到∠D=∠AMC,CD=CM,结合CD=BC知CM=CB,据此得∠B=∠CMB,根据∠CMB+∠CMA=180°可得;
②设BN=a,过点C作CN⊥AB于点N,由CB=CM知BN=MN=a,CN2=BC2−BN2=AC2−AN2,可得关于a的方程,解之可得答案.
【详解】
解:(1)BC−AC=AD.
理由如下:如图(a),在CB上截取CE=CA,连接DE,
∵CD平分∠ACB,
∴∠ACD=∠ECD,
又CD=CD,
∴△ACD≌△ECD(SAS),
∴DE=DA,∠A=∠CED=60°,
∴∠CED=2∠CBA,
∵∠CED=∠CBA+∠BDE,
∴∠CBA=∠BDE,
∴DE=BE,
∴AD=BE,
∵BE =BC−CE =BC−AC ,
∴BC−AC =AD .
(2)①如图(b ),在AB 上截取AM =AD ,连接CM ,
∵AC 平分∠DAB ,
∴∠DAC =∠MAC ,
∵AC =AC ,
∴△ADC ≌△AMC (SAS ),
∴∠D =∠AMC ,CD =CM =12,
∵CD =BC =12,
∴CM =CB ,
∴∠B =∠CMB ,
∵∠CMB +∠CMA =180°,
∴∠B +∠D =180°;
②设BN =a ,
过点C 作CN ⊥AB 于点N ,
∵CB =CM =12,
∴BN =MN =a ,
在Rt △BCN 中,2222212CN BC BN a --==,
在Rt △ACN 中,2222216(8)CN AC AN a --+==
, 则2222
1216(8)a a --+=
, 解得:a =3,
即BN =MN =3,
则AB =8+3+3=14,
∴AB=14.
【点睛】
本题考查了四边形的综合题,以及全等三角形的判定与性质、勾股定理、等腰三角形的判定与性质;本题有一定难度,需要通过作辅助线证明三角形全等才能得出结果.
25.(1)AE=BD且AE⊥BD;(2)6;(3)PQ为定值6,图形见解析
【分析】
(1)由“SAS”可证△ACE≌△BCD,可得AE=BD,∠EAC=∠DBC=45°,可得AE⊥BD;(2)由等腰三角形的性质可得PA=AQ,由勾股定理可求PA的长,即可求PQ的长;(3)分两种情况讨论,由“SAS”可证△ACE≌△BCD,可得AE=BD,∠EAC=∠DBC,可得AE⊥BD,由等腰三角形的性质可得PA=AQ,由勾股定理可求PA的长,即可求PQ的长.【详解】
解:(1)AE=BD,AE⊥BD,
理由如下:∵△ABC,△ECD都是等腰直角三角形,
∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,
∴∠ACE=∠DCB,且AC=BC,CE=CD,
∴△ACE≌△BCD(SAS)
∴AE=BD,∠EAC=∠DBC=45°,
∴∠EAC+∠CAB=90°,
∴AE⊥BD;
(2)∵PE=EQ,AE⊥BD,
∴PA=AQ,
∵EP=EQ=5,AE=BD=4,
∴,
∴PQ=2AQ=6;
(3)如图3,若点D在AB的延长线上,
∵△ABC,△ECD都是等腰直角三角形,
∴AC=BC,CE=CD,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,
∴∠ACE=∠DCB,且AC=BC,CE=CD,
∴△ACE≌△BCD(SAS)
∴AE=BD,∠CBD=∠CAE=135°,且∠CAB=45°,
∴∠EAB=90°,
∵PE=EQ,AE⊥BD,
∴PA=AQ,
∵EP=EQ=5,AE=BD=4,
∴,
∴PQ=2AQ=6;
如图4,若点D 在BA 的延长线上,
∵△ABC ,△ECD 都是等腰直角三角形,
∴AC=BC ,CE=CD ,∠ACB=∠ECD=90°,∠ABC=∠CAB=45°,
∴∠ACE=∠DCB ,且AC=BC ,CE=CD ,
∴△ACE ≌△BCD (SAS )
∴AE=BD ,∠CBD=∠CAE=45°,且∠CAB=45°,
∴∠EAB=90°,
∵PE=EQ ,AE ⊥BD ,
∴PA=AQ ,
∵EP=EQ=5,AE=BD=4,
∴AQ=22=2516=3EQ AE --,
∴PQ=2AQ=6.
【点睛】
本题是三角形综合题,考查了全等三角形的判定和性质,等腰三角形的性质,勾股定理等知识,证明AE ⊥BD 是本题的关键.
26.(15132)见解析;(3)23
【分析】
(1)分两种分割法利用勾股定理即可解决问题;
(2)如图,过点A 作AD ⊥AB ,且AD=BN .只要证明△ADC ≌△BNC ,推出CD=CN ,∠ACD=∠BCN ,再证明△MDC ≌△MNC ,可得MD=MN ,由此即可解决问题;
(3)过点B 作BP ⊥AB ,使得BP=AM=1,根据题意可得△CPB ≌△CMA ,△CMN ≌△CPN ,利用全等性质推出∠BNP=30°,从而得到NB 和NP 的长,即得BM.
【详解】
解:(1)当MN 最长时,BN=22
5MN AM -=,
当BN 最长时,BN=2213AM MN +=;
(2)证明:如图,过点A 作AD ⊥AB ,且AD=BN ,
在△ADC 和△BNC 中,
AD BN DAC B AC BC =⎧⎪∠=∠⎨⎪=⎩

∴△ADC ≌△BNC (SAS ),
∴CD=CN ,∠ACD=∠BCN ,
∵∠MCN=45°,
∴∠DCA+∠ACM=∠ACM+∠BCN=45°,
∴∠MCD=∠MCN ,
在△MDC 和△MNC 中,
CD CN MCD MCN CM CM =⎧⎪∠=∠⎨⎪=⎩

∴△MDC ≌△MNC (SAS ),
∴MD=MN
在Rt △MDA 中,AD 2+AM 2=DM 2,
∴BN 2+AM 2=MN 2,
∴点M ,N 是线段AB 的勾股分割点;
(3)过点B 作BP ⊥AB ,使得BP=AM=1,
根据(2)中过程可得:△CPB ≌△CMA ,△CMN ≌△CPN ,
∴∠AMC=∠BPC=120°,AM=PB=1,
∠CMN=∠CPN=∠A+∠ACM=45°+15°=60°,
∴∠BPN=120°-60°=60°,
∴∠BNP=30°,
∴NP=2BP=2=MN ,
∴22213-=,
∴BM=MN+BN=23
+.
【点睛】
本题是三角形的综合问题,考查了全等三角形的判定和性质、勾股定理等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,属于中考常考题型.
27.(1)见解析;(2)①见解析;②2.
【分析】
(1)当D、E两点重合时,则AD=CD,然后由等边三角形的性质可得∠CBD的度数,根据等腰三角形的性质和三角形的外角性质可得∠F的度数,于是可得∠CBD与∠F的关系,进而可得结论;
(2)①过点E作EH∥BC交AB于点H,连接BE,如图4,则易得△AHE是等边三角形,根据等边三角形的性质和已知条件可得EH=CF,∠BHE=∠ECF=120°,BH=EC,于是可根据SAS 证明△BHE≌△ECF,可得∠EBH=∠FEC,易证△BAE≌△BCD,可得∠ABE=∠CBD,从而有
∠FEC=∠CBD,然后根据三角形的内角和定理可得∠BGE=∠BCD,进而可得结论;
②易得∠BEG=90°,于是可知△BEF是等腰直角三角形,由30°角的直角三角形的性质和等腰直角三角形的性质易求得BE和BF的长,过点E作EM⊥BF于点F,过点C作CN⊥EF于点N,如图5,则△BEM、△EMF和△CFN都是等腰直角三角形,然后利用等腰直角三角形的性质和30°角的直角三角形的性质可依次求出BM、MC、CF、FN、CN、GN的长,进而可得△GCN也是等腰直角三角形,于是有∠BCG=90°,故所求的△BCG的面积
=1
2
BC CG
⋅,而BC和CG可得,问题即得解决.
【详解】
解:(1)∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,
当D、E两点重合时,则AD=CD,∴
1
30
2
DBC ABC
∠=∠=︒,
∵CF CD
=,∴∠F=∠CDF,
∵∠F+∠CDF=∠ACB=60°,∴∠F=30°,
∴∠CBD=∠F,∴BD DF
=;
(2)①∵△ABC是等边三角形,∴∠ABC=∠ACB=60°,AB=AC,
过点E作EH∥BC交AB于点H,连接BE,如图4,则∠AHE=∠ABC=60°,∠AEH=∠ACB=60°,
∴△AHE是等边三角形,∴AH=AE=HE,∴BH=EC,
∵AE CD
=,CD=CF,∴EH=CF,。

相关文档
最新文档