数学(完整版)人教版七年级数学上册期末模拟试卷及答案

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

数学(完整版)人教版七年级数学上册期末模拟试卷及答案
一、选择题
1.在数3,﹣3,
13,13-中,最小的数为( ) A .﹣3 B .13 C .1
3- D .3
2.已知a +b =7,ab =10,则代数式(5ab +4a +7b )+(3a –4ab )的值为( )
A .49
B .59
C .77
D .139 3.一个角是这个角的余角的2倍,则这个角的度数是( ) A .30
B .45︒
C .60︒
D .75︒ 4.若关于x 的方程234k x -=与20x -=的解相同,则k 的值为( )
A .10-
B .10
C .5-
D .5 5.将图中的叶子平移后,可以得到的图案是()
A .
B .
C .
D .
6.已知关于x ,y 的方程组35225
x y a x y a -=⎧⎨-=-⎩,则下列结论中:①当10a =时,方程组的解是155
x y =⎧⎨=⎩;②当x ,y 的值互为相反数时,20a =;③不存在一个实数a 使得x y =;④若3533x a -=,则5a =正确的个数有( ) A .1个
B .2个
C .3个
D .4个 7.﹣2020的倒数是( )
A .﹣2020
B .﹣12020
C .2020
D .12020
8.如图,将长方形ABCD 绕CD 边旋转一周,得到的几何体是( )
A .棱柱
B .圆锥
C .圆柱
D .棱锥 9.赣州是中国脐橙之乡,据估计2013年全市脐橙总产量将达到150万吨,用科学计数法表示为 ( )吨.
A .415010⨯
B .51510⨯
C .70.1510⨯
D .61.510⨯
10.图中是几何体的主视图与左视图, 其中正确的是( )
A .
B .
C .
D . 11.如图,两块直角三角板的直角顶点O 重叠在一起,且OB 恰好平分COD ∠,则AOD ∠的度数为( )
A .100
B .120
C .135
D .150
12.如图,4张如图1的长为a ,宽为b (a >b )长方形纸片,按图2的方式放置,阴影部
分的面积为S 1,空白部分的面积为S 2,若S 2=2S 1,则a ,b 满足( )
A .a =3
2b B .a =2b C .a =52b D .a =3b
二、填空题
13.把一张长方形纸按图所示折叠后,如果∠AOB ′=20°,那么∠BOG 的度数是_____.
14.如图,将一张长方形纸片分別沿着EP ,FP 对折,使点B 落在点B ,点C 落在点C ′.若点P ,B ′,C ′不在一条直线上,且两条折痕的夹角∠EPF =85°,则∠B ′PC ′=_____.
15.禽流感病毒的直径约为0.00000205cm ,用科学记数法表示为_____cm ;
16.把(a ﹣b )看作一个整体,合并同类项:3()4()2()-+---a b a b a b =_____.
17.下列是由一些火柴搭成的图案:图①用了5根火柴,图②用了9根火柴,图③用了13根火柴,按照这种方式摆下去,摆第n 个图案用_____根火柴棒.
18.建筑工人在砌墙时,为了使砌的墙是直的,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的细线绳作参照线.这样做的依据是:____________________________;
19.如图,点C ,D 在线段AB 上,CB =5cm ,DB =8cm ,点D 为线段AC 的中点,则线段AB 的长为_____.
20.将520000用科学记数法表示为_____.
21.A 学校有m 个学生,其中女生占45%,则男生人数为________.
22.3.6=_____________________′
23.当12点20分时,钟表上时针和分针所成的角度是___________.
24.中国始有历法大约在四千年前每页显示一日信息的叫日历,每页显示一个月信息的叫月历,每页显示全年信息的叫年历如图是2019年1月份的月历,用一个方框圈出任意22⨯的4个数,设方框左上角第一个数是x ,则这四个数的和为______(用含x 的式子表示)
三、解答题
25.快车以200km/h的速度由甲地开往乙地再返回甲地,慢车以75km/h的速度同时从乙地出发开往甲地,已知快车回到甲地时,慢车距离甲地还有225km,则
(1)甲乙两地相距多少千米?
(2)从出发开始,经过多长时间两车相遇?
(3)几小时后两车相距100千米?
26.已知
x a
y b
=


=

是方程组
20
25
x y
x y
-=


+=

的解,则3a b
-=_____.
27.如图①,将一个由五个边长为1的小正方形组成的图形剪开可以拼成一个正方形.(1)拼成的正方形的面积与边长分别是多少?
(2)你能在图②中连结四个格点(每一个小正方形的顶点叫做格点),画出一个面积为10的正方形吗?如果不能,请说明理由;如果能,请在图②中画出这个正方形.
28.定义:若线段上的一个点把这条线段分成1:2的两条线段,则称这个点是这条线段的三等分点.如图1,点C在线段AB上,且AC:CB=1:2,则点C是线段AB的一个三等分点.
(1)如图2,数轴上点A、B表示的数分别为-4、12,点D是线段AB的三等分点,求点D 在数轴上所表示的数;
(2)在(1)的条件下,点P从点A出发以每秒1个单位长度的速度在数轴上向右运动;点Q从点B出发,在数轴上先向左运动,与点P重合后立刻改变方向与点P同向而行,且速度始终为每秒3个单位长度,点P、Q同时出发,设运动时间为t秒.
①用含t的式子表示线段AQ的长度;
②当点P是线段AQ的三等分点时,求点P在数轴上所表示的数.
图1
29.保护环境人人有责,垃圾分类从我做起.某市环保部门为了解垃圾分类的实施情况,抽样调查了部分居民小区一段时间内的生活垃圾分类,对数据进行整理后绘制了如下两幅统计图(其中A 表示可回收垃圾,B 表示厨余垃圾,C 表示有害垃圾,D 表示其它垃圾)
根据图表解答下列问题
(1)这段时间内产生的厨余垃圾有多少吨?
(2)在扇形统计图中,A 部分所占的百分比是多少?C 部分所对应的圆心角度数是多少? (3)其它垃圾的数量是有害垃圾数量的多少倍?条形统计图中表现出的直观情况与此相符吗?为什么?
30.如图所示,OC 是AOD ∠的平分线,OE 是BOD ∠的平分线,
65 25EOC DOC ∠=︒∠=,,求AOB ∠的度数.
四、压轴题
31.对于数轴上的点P ,Q ,给出如下定义:若点P 到点Q 的距离为d(d≥0),则称d 为点P 到点Q 的d 追随值,记作d[PQ].例如,在数轴上点P 表示的数是2,点Q 表示的数是5,
则点P到点Q的d追随值为d[PQ]=3.
问题解决:
(1)点M,N都在数轴上,点M表示的数是1,且点N到点M的d追随值d[MN]=a(a≥0),则点N表示的数是_____(用含a的代数式表示);
(2)如图,点C表示的数是1,在数轴上有两个动点A,B都沿着正方向同时移动,其中A 点的速度为每秒3个单位,B点的速度为每秒1个单位,点A从点C出发,点B表示的数是b,设运动时间为t(t>0).
①当b=4时,问t为何值时,点A到点B的d追随值d[AB]=2;
②若0<t≤3时,点A到点B的d追随值d[AB]≤6,求b的取值范围.
32.如图,直线l上有A、B两点,点O是线段AB上的一点,且OA=10cm,OB=5cm.
(1)若点C是线段AB的中点,求线段CO的长.
(2)若动点P、Q分别从 A、B同时出发,向右运动,点P的速度为4c m/s,点Q的速度为3c m/s,设运动时间为x秒,
①当x=__________秒时,PQ=1cm;
②若点M从点O以7c m/s的速度与P、Q两点同时向右运动,是否存在常数m,使得
4PM+3OQ﹣mOM为定值,若存在请求出m值以及这个定值;若不存在,请说明理由.(3)若有两条射线OC、OD均从射线OA同时绕点O顺时针方向旋转,OC旋转的速度为6度/秒,OD旋转的速度为2度/秒.当OC与OD第一次重合时,OC、OD同时停止旋转,设旋转时间为t秒,当t为何值时,射线OC⊥OD?
33.如图,A、B、P是数轴上的三个点,P是AB的中点,A、B所对应的数值分别为-20和
40.
(1)试求P点对应的数值;若点A、B对应的数值分别是a和b,试用a、b的代数式表示P点在数轴上所对应的数值;
(2)若A、B、P三点同时一起在数轴上做匀速直线运动,A、B两点相向而行,P点在动点A和B之间做触点折返运动(即P点在运动过程中触碰到A、B任意一点就改变运动方向,向相反方向运动,速度不变,触点时间忽略不计),直至A、B两点相遇,停止运动.如果A、B、P运动的速度分别是1个单位长度/s,2个单位长度/s,3个单位长度/s,设运动时间为t.
①求整个运动过程中,P点所运动的路程.
②若P点用最短的时间首次碰到A点,且与B点未碰到,试写出该过程中,P点经过t秒钟后,在数轴上对应的数值(用含t的式子表示);
③在②的条件下,是否存在时间t,使P点刚好在A、B两点间距离的中点上,如果存在,请求出t值,如果不存在,请说明理由.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.A
解析:A
【解析】
【分析】
有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.
【详解】
解:∵3>1
3

1
3
->﹣3,
∴在数3,﹣3,1
3

1
3
-中,最小的数为﹣3.
故选:A.
【点睛】
此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.B
解析:B
【解析】
【分析】
首先去括号,合并同类项将原代数式化简,再将所求代数式化成用(a+b)与ab表示的形式,然后把已知代入即可求解.
【详解】
解:∵(5ab+4a+7b)+(3a-4ab)
=5ab+4a+7b+3a-4ab
=ab+7a+7b
=ab+7(a+b)
∴当a+b=7,ab=10时
原式=10+7×7=59.
故选B.
解析:C
【解析】
【分析】
设这个角为α,先表示出这个角的余角为(90°-α),再列方程求解.
【详解】
解:根据题意列方程的:2(90°-α)=α,
解得:α=60°.
故选:C.
【点睛】
本题考查余角的概念,关键是先表示出这个角的余角为(90°-α).
4.D
解析:D
【解析】
【分析】
根据同解方程的定义,先求出x-2=0的解,再将它的解代入方程2k-3x=4,求得k的值.【详解】
解:∵方程2k-3x=4与x-2=0的解相同,
∴x=2,
把x=2代入方程2k-3x=4,得2k-6=4,解得k=5.
故选:D.
【点睛】
本题考查了同解方程的概念和方程的解法,关键是根据同解方程的定义,先求出x-2=0的解.
5.A
解析:A
【解析】
【分析】
根据平移的特征分析各图特点,只要符合“图形的形状、大小和方向都不改变”即为正确答案.
【详解】
解:根据平移不改变图形的形状、大小和方向,
将所示的图案通过平移后可以得到的图案是A,
其它三项皆改变了方向,故错误.
故选:A.
【点睛】
本题考查了图形的平移,图形的平移只改变图形的位置,而不改变图形的形状、大小和方向,学生易混淆图形的平移,旋转或翻转而误选.
6.D
【解析】
【分析】
①把a=10代入方程组求出解,即可做出判断;
②根据题意得到x+y=0,代入方程组求出a 的值,即可做出判断;
③假如x=y,得到a 无解,本选项正确;
④根据题中等式得到x-3a=5,代入方程组求出a 的值,即可做出判断
【详解】
①把a=10代入方程组得
352025x y x y -=⎧⎨-=⎩
解得155
x y =⎧⎨=⎩,本选项正确 ②由x 与y 互为相反数,得到x+y=0,即y=-x
代入方程组得3+52+25
x x a x x a =⎧⎨=-⎩ 解得:a=20,本选项正确
③若x=y,则有-225x a x a =⎧⎨-=-⎩
,可得a=a-5,
矛盾,故不存在一个实数a 使得x=y,本选项正确
④方程组解得25-15x a y a
=⎧⎨=-⎩ 由题意得:x-3a=5
把25-15x a y a =⎧⎨=-⎩
代入得 25-a-3a=5
解得a=5本选项正确
则正确的选项有四个
故选D
【点睛】
此题考查二元一次方程组的解,掌握运算法则是解题关键
7.B
解析:B
【解析】
【分析】
根据倒数的概念即可解答.
解:根据倒数的概念可得,﹣2020的倒数是12020
-
, 故选:B .
【点睛】
本题考查了倒数的概念,熟练掌握是解题的关键. 8.C
解析:C
【解析】
【分析】
根据面动成体可得长方形ABCD 绕CD 边旋转所得的几何体.
【详解】
解:将长方形ABCD 绕CD 边旋转一周,得到的几何体是圆柱,
故选:C .
【点睛】
此题考查了平面图形与立体图形的联系,培养学生的观察能力和空间想象能力.
9.D
解析:D
【解析】
【分析】
将150万改写为1500000,再根据科学记数法的形式为10n a ⨯,其中110a ≤<,n 是原数的整数位数减1.
【详解】
150万=1500000=61.510⨯,
故选:D.
【点睛】
本题考查科学记数法,其形式为10n a ⨯,其中110a ≤<,n 是整数,关键是确定a 和n 的值.
10.D
解析:D
【解析】
【分析】
从正面看到的图叫做主视图,从左面看到的图叫做左视图.根据图中正方体摆放的位置判定则可.
【详解】
解:从正面看,左边1列,中间2列,右边1列;从左边看,只有竖直2列,故选D .
【点睛】
本题考查简单组合体的三视图.本题考查了空间想象能力及几何体的主视图与左视图.
11.C
解析:C
【解析】
【分析】
首先根据角平分线性质得出∠COB=∠BOD=45°,再根据角的和差得出∠AOC=45°,从而得出答案.
【详解】
解:∵OB平分∠COD,
∴∠COB=∠BOD=45°,
∵∠AOB=90°,
∴∠AOC=45°,
∴∠AOD=135°.
故选:C.
【点睛】
本题考查了角的平分线角的性质和角的和差,角平分线的性质是将两个角分成相等的两个角.
12.B
解析:B
【解析】
【分析】
从图形可知空白部分的面积为S2是中间边长为(a﹣b)的正方形面积与上下两个直角边为(a+b)和b的直角三角形的面积,再与左右两个直角边为a和b的直角三角形面积的总和,阴影部分的面积为S1是大正方形面积与空白部分面积之差,再由S2=2S1,便可得解.【详解】
由图形可知,
S2=(a-b)2+b(a+b)+ab=a2+2b2,
S1=(a+b)2-S2=2ab-b2,
∵S2=2S1,
∴a2+2b2=2(2ab﹣b2),
∴a2﹣4ab+4b2=0,
即(a﹣2b)2=0,
∴a=2b,
故选B.
【点睛】
本题主要考查了求阴影部分面积和因式分解,关键是正确列出阴影部分与空白部分的面积和正确进行因式分解.
二、填空题
【解析】
【分析】
由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.【详解】
解:根据轴对称的性质得:∠B′OG=∠BOG
又∠AOB′=20°,可得∠B′OG+∠BOG=
解析:80°
【解析】
【分析】
由轴对称的性质可得∠B′OG=∠BOG,再结合已知条件即可解答.
【详解】
解:根据轴对称的性质得:∠B′OG=∠BOG
又∠AOB′=20°,可得∠B′OG+∠BOG=160°
∴∠BOG=1
2
×160°=80°.
故答案为80°.
【点睛】
本题考查轴对称的性质,理解轴对称性质以及掌握数形结合思想是解答本题的关键. 14.10°.
【解析】
【分析】
由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′P
解析:10°.
【解析】
【分析】
由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,再根据角的和差关系,可得
∠B′PE+∠C′PF=∠B′PC′+85°,再代入2∠B′PE+2∠C′PF-∠B′PC′=180°计算即可.
【详解】
解:由对称性得:∠BPE=∠B′PE,∠CPF=∠C′PF,
∴2∠B′PE+2∠C′PF﹣∠B′PC′=180°,
即2(∠B′PE+∠C′PF)﹣∠B′PC′=180°,
又∵∠EPF=∠B′PE+∠C′PF﹣∠B′PC′=85°,
∴∠B′PE+∠C′PF=∠B′PC′+85°,
∴2(∠B′PC′+85°)﹣∠B′PC′=180°,
解得∠B′PC′=10°.
故答案为:10°.
此题考查了角的计算,以及折叠的性质,熟练掌握折叠的性质是解本题的关键.
15.【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
解析:62.0510-⨯
【解析】
【分析】
绝对值小于1的正数也可以利用科学记数法表示,一般形式为10n a -⨯,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.
【详解】
0.00000205=62.0510-⨯
故答案为62.0510-⨯
【点睛】
此题考查科学记数法,难度不大
16.【解析】
【分析】
根据合并同类项,系数相加,字母及指数不变,可得答案.
【详解】
解:,
故答案为:.
【点睛】
本题考查合并同类项,熟记合并同类项的法则是解题的关键.
解析:5()-a b
【解析】
【分析】
根据合并同类项,系数相加,字母及指数不变,可得答案.
【详解】
解:3()4()2()(342)()5()-+---=+--=-a b a b a b a b a b ,
故答案为:5()-a b .
【点睛】
本题考查合并同类项,熟记合并同类项的法则是解题的关键.
17.(4n+1)
【解析】
【分析】
由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.
【详解】
∵图①中火柴数量为5=1+4×1,
图②中火柴数量为9=1+4×2,
图③中火柴数量为13=
解析:(4n+1)
【解析】
【分析】
由已知图形得出每增加一个五边形就多4根火柴棒,据此可得答案.
【详解】
∵图①中火柴数量为5=1+4×1,
图②中火柴数量为9=1+4×2,
图③中火柴数量为13=1+4×3,
……
∴摆第n个图案需要火柴棒(4n+1)根,
故答案为(4n+1).
【点睛】
本题主要考查图形的变化规律,解题的关键是根据已知图形得出每增加一个五边形就多4根火柴棒.
18.两点确定一条直线.
【解析】
【分析】
根据两点确定一条直线解析即可.
【详解】
建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直
解析:两点确定一条直线.
【解析】
【分析】
根据两点确定一条直线解析即可.
【详解】
建筑工人砌墙时,经常在两个墙脚的位置分别插一根木桩,然后拉一条直的参照线,这种做法用几何知识解释应是:两点确定一条直线.
故答案为:两点确定一条直线.
【点睛】
考核知识点:两点确定一条直线.理解课本基本公理即可.
19.11cm .
【解析】
【分析】
根据点为线段的中点,可得,再根据线段的和差即可求得的长.
【详解】
解:∵,且,,
∴,
∵点为线段的中点,
∴,
∵,
∴.
故答案为:.
【点睛】
本题考查了两点
解析:11cm .
【解析】
【分析】
根据点D 为线段AC 的中点,可得2AC DC =,再根据线段的和差即可求得AB 的长.
【详解】
解:∵DC DB BC =-,且8DB =,5CB =,
∴853DC =-=,
∵点D 为线段AC 的中点,
∴3AD =,
∵AB AD DB =+,
∴3811()AB cm =+=.
故答案为:11cm .
【点睛】
本题考查了两点间的距离,解决本题的关键是掌握线段的中点.
20.2×105
【解析】
【分析】
科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数
解析:2×105
【解析】
【分析】
科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.
【详解】
解:将520000用科学记数法表示为5.2×105.
故答案为:5.2×105.
【点睛】
此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.
21.【解析】
【分析】
将男生占的比例:,乘以总人数就是男生的人数.
【详解】
男生占的比例是,则男生人数为55%,
故答案是55%.
【点睛】
本题列代数式的关键是正确理解题文中的关键词,从而明确其
解析:55%m
【解析】
【分析】
-,乘以总人数就是男生的人数.
将男生占的比例:145%
【详解】
-=,则男生人数为55%m,
男生占的比例是145%55%
故答案是55%m.
【点睛】
本题列代数式的关键是正确理解题文中的关键词,从而明确其中的运算关系,正确地列出代数式.
22.【解析】
【分析】
由题意直接根据角的度分秒的计算法则进行运算即可.
【详解】
解:=3°36′.
故答案为:3; 36.
【点睛】
本题考查角的度分秒的运算,熟练掌握角的度分秒的
解析:336
【解析】
【分析】
由题意直接根据角的度分秒的计算法则进行运算即可.
【详解】
=︒+︒=︒+⨯=3°36′.
解:3.630.63(0.660)'
故答案为:3; 36.
【点睛】
本题考查角的度分秒的运算,熟练掌握角的度分秒的计算法则知道度分秒间的进率为60进行分析运算.
23.110°
【解析】
【分析】
12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.
【详解】
解:因为
解析:110°
【解析】
【分析】
12时整时,分针和时针都指着12,当12时20分时,分针和时针都转过一定的角度,用分针转过的角度减去时针转过的角度,就得到时针与分针所成的角的度数.
【详解】
解:因为时针在钟面上每分钟转0.5°,分针每分钟转6°,
所以钟表上12时20分时,时针转过的角度是:0.5°×20=10°,
分针转过的角度是:6°×20=120°,
所以12时20分钟时分针与时针的夹角120°-10°=110°.
故答案为:110°
【点睛】
本题考查了角的度量,解决的关键是理解钟面上的分针每分钟旋转6°,时针每分钟旋转0.5°.
24.【解析】
【分析】
首先根据题意分别列出四个数的关系,然后即可求得其和.
【详解】
由题意,得
故答案为.
【点睛】
此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式. 解析:416x +
【解析】
【分析】
首先根据题意分别列出四个数的关系,然后即可求得其和.
【详解】
由题意,得
()()()1771416x x x x x +++++++=+
故答案为416x +.
【点睛】
此题主要考查整式的加减,解题关键理解题意找出这四个数的关系式.
三、解答题
25.(1)甲乙两地相距900千米.(2)出发
3636115或小时后,两车相遇.(3)3211或4011或6.4或8或210
3小时, 【解析】
【分析】
(1) 设甲乙两地相距x 千米根据题意列出方程222520075
x x -=解出x 值即可; (2)分为两种情况:①快车到达乙地之前两车相遇,②快车到达乙地之后返回途中相遇,根据两种情况分别列出方程求出答案即可;
(3)分类去讨论:①快车到达乙地之前,且两车相遇前,②快车到达乙地之前,且两车相遇后,③快车到达乙地之后,且返回途中两车相遇前,④快车到达乙地之后,且返回途中两车相遇后,⑤快车到达乙地停止后,并分别求出其时间即可.
【详解】
解:(1)设:甲乙两地相距x 千米.
222520075
x x -= 解得900x =
答:甲乙两地相距900千米.
(2)设:从出发开始,经过t 小时两车相遇.
①快车到达乙地之前,两车相遇
20075900 t t
+=
解得
36
11 t=
②快车到达乙地之后,返回途中两车相遇20075900
t t
-=
解得
36
5 t=
答:出发36
11
小时或
36
5
小时后两车相遇.
(3)设:从出发开始,t小时后两车相距100千米.
①快车到达乙地之前,且两车相遇前,两车相距100千米20075900100
t t
+=-
解得
32
11 t=
②快车到达乙地之前,且两车相遇后,两车相距100千米20075900+100
t t
+=
解得
40
11 t=
③快车到达乙地之后,且返回途中两车相遇前,两车相距100千米200-75900100
t t=-
解得 6.4
t=
④快车到达乙地之后,且返回途中两车相遇后,两车相距100千米200-75900+100
t t=
解得8
t=
⑤快车到达乙地停止后,两车相距100千米
2
(1800200)(225100)75=10
3
÷+-÷
答:出发32
11

40
11
或6.4或8或
2
10
3
小时后,两车相距100千米.
【点睛】
本题考查的是一元一次方程的应用问题,解题关键在于分别去讨论所发生的情况去分别求解即可.
26.【解析】
【详解】
解:∵
x a
y b
=


=

是方程组
20
25
x y
x y
-=


+=

的解,

20
25
a b
a b
-=


+=




①+②得,3a﹣b=5.
故答案为5.
27.(1)面积为5,边长为;(2)详见解析.
【解析】
【分析】
(1)一共有5个小正方形,那么组成的大正方形的面积为5,边长为5的算术平方根;(2)根据正方形的面积为10,可得这个正方形的边长为,根据格点的特征结合勾股定理画出边长为的正方形即可.
【详解】
(1)5个小正方形拼成一个大正方形后,面积不变,所以拼成的正方形的面积是:
5×1×1=5;
边长=;
(2)能,如图所示:边长=,

【点睛】
本题考查了勾股定理,正方形的面积和正方形的有关画图,巧妙地根据网格的特点画出正方形是解此题的关键.正方形的面积是由组成正方形的面积的小正方形的个数决定的;边长为面积的算术平方根.
28.(1)4
3

20
3
;(2)①4,16-3t或3t-8;②
4
-
3

4
-
9

4
3
【解析】【分析】
(1)根据三等分点的定义,分两种情况:AD=1
3
AB时;AD=
2
3
AB 时,分别在数轴上找到
点D的位置即可;
(2)①P、Q两点经过4秒相遇,分相遇前和相遇后两种情况讨论,分别表示出AQ即可;
②根据①中的结论,分相遇前和相遇后两种情况,结合三等分点的定义,一共有四种情况,分别计算即可,最后总结所求结果.
【详解】
解:(1)根据题意,分情况讨论:
当AD:BD=1:2时,AD=1
3
AB=
16
3
,点D表示的数为-4+
16
3
=
4
3

当AD:BD=2:1时,AD=2
3
AB=
32
3
,点D表示的数为-4+
32
3
=
20
3

所以,点D在数轴上所表示的数为4
3

20
3

故答案为:4
3

20
3

(2)①P、Q两点经过4秒相遇,相遇时,AP=4, P、Q相遇前,当t小于或等于4时,AQ=16-3t;
P、Q相遇后,当t大于4时,AQ=4+3(t-4)=3t-8;
②当P、Q相遇前:若AP=1
3
AQ,则t=
1
3
(16-3t),t=
8
3
,此时点P表示的数为-
4
3

若AP=2
3
AQ,则t=
2
3
(16-3t),t=
32
9
,此时点P表示的数为-
4
9

当P、Q相遇后:若AP=2
3
AQ,则t=
2
3
(3t-8),t=
16
3
,此时点P表示的数为
4
3

若AP=1
3
AQ,则t=
1
3
(3t-8),无解,
综上所述,点P为线段AQ的三等分点时,点P表示的数分别为
4
-
3

4
-
9

4
3

故答案为:
4
-
3

4
-
9

4
3

【点睛】
本题考查了三等分点的定义,相遇问题,数轴上的动点问题,掌握数轴上的动点问题以及三等分点的定义是解题的关键.
29.(1)餐厨垃圾有280吨;(2)在扇形统计图中,A部分所占的百分比是50%,C部分所对应的圆心角度数是18°;(3)2倍,相符,理由是纵轴的数量是从0开始的,并且单位长度表示的数相同
【解析】
【分析】
(1)求出样本容量,进而求出厨余垃圾的吨数;
(2)A部分由400吨,总数量为800吨,求出所占的百分比,C部分占整体的
40
800
,因此
C部分所在的圆心角的度数为360°的
40 800

(3)求出“其它垃圾”的数量是“有害垃圾”的倍数,再通过图形得出结论.【详解】
解:(1)80÷10%=800吨,800﹣400﹣40﹣80=280吨,
答:厨余垃圾有280吨;
(2)400÷800=50%,360°×
40
800
=18°,
答:在扇形统计图中,A部分所占的百分比是50%,C部分所对应的圆心角度数是18°.
(3)80÷40=2倍,相符,
理由是纵轴的数量是从0开始的,并且单位长度表示的数相同.
【点睛】
考查扇形统计图、条形统计图的意义和制作方法,从两个统计图中获取数量及数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法.
30.130︒
【解析】
【分析】
根据题意直接利用角平分线的性质得出∠AOD和∠BOD,进而求出AOB
∠的度数.
【详解】
解:∠EOD=∠EOC-∠DOC=65°-25°=40°,
∵OC是∠AOD的平分线,OE是∠BOD的平分线,
∴∠AOD=2∠DOC=2⨯25°=50°,
∠BOD=2∠EOD=2⨯40°=80°,
∴∠AOB=∠AOD+∠BOD =50°+80°=130°.
【点睛】
本题主要考查角的运算,熟练运用角平分线的定义以及正确掌握角平分线的性质是解题关键.
四、压轴题
31.(1)1+a或1-a;(2)1
2

5
2
;(3)1≤b≤7.
【解析】
【分析】
(1)根据d追随值的定义,分点N在点M左侧和点N在点M右侧两种情况,直接写出答案即可;
(2)①分点A在点B左侧和点A在点B右侧两种情况,类比行程问题中的追及问题,根据“追及时间=追及路程÷速度差”计算即可;②
【详解】
解:(1)点N在点M右侧时,点N表示的数是1+a;
点N在点M左侧时,点N表示的数是1-a;
(2)①b=4时,AB相距3个单位,
当点A在点B左侧时,t=(3-2)÷(3-1)=1
2

当点A在点B右侧时,t=(3+2)÷(3-1)=5
2

②当点B在点A左侧或重合时,即d≤1时,随着时间的增大,d追随值会越来越大,∵0<t≤3,点A到点B的d追随值d[AB]≤6,
∴1-d+3×(3-1)≤6,
解得d≥1,
∴d=1,
当点B在点A右侧时,即d>1时,在AB重合之前,随着时间的增大,d追随值会越来越小,
∵点A到点B的d追随值d[AB]≤6,∴d≤7
∴1<d≤7,
综合两种情况,d的取值范围是1≤d≤7.
故答案为(1)1+a或1-a;(2)①1
2

5
2
;②1≤b≤7.
【点睛】
本题考查了数轴上两点之间的距离和动点问题.
32.(1)CO=2.5;(2)①14和16 ;②定值55,理由见解析;(3)t=22.5和67.5
【解析】
【分析】
(1)先求出线段AB的长,然后根据线段中点的定义解答即可;
(2)①由PQ=1,得到|15-(4x-3x)|=1,解方程即可;
②先表示出PM、OQ、OM的长,代入4PM+3OQ﹣mOM得到55+(21-7m)x,要使
4PM+3OQ﹣mOM为定值,则21-7m=0,解方程即可;
(3)分两种情况讨论,画出图形,根据图形列出方程,解方程即可.
【详解】
(1)∵OA=10cm,OB=5cm,∴AB=OA+OB=15cm.
∵点C是线段AB的中点,∴AC=AB=7.5cm,∴CO=AO-AC=10-7.5=2.5(cm).
(2)①∵PQ=1,∴|15-(4x-3x)|=1,∴|15-x|=1,∴15-x=±1,解得:x=14或16.
②∵PM=10+7x-4x=10+3x,OQ=5+3x,OM=7x,∴4PM+3OQ﹣
mOM=4(10+3x)+3(5+3x)-7mx=55+(21-7m)x,要使4PM+3OQ﹣mOM为定值,则21-7m=0,解得:m=3,此时定值为55.
(3)分两种情况讨论:①如图1,根据题意得:6t-2t=90,解得:t=22.5;
②如图2,根据题意得:6t+90=360+2t,解得:t=67.5.
综上所述:当t=22.5秒和67.5秒时,射线OC⊥OD.
【点睛】
本题考查了一元一次方程的应用.解题的关键是分类讨论.
33.(1)10,(a+b);(2)①60个单位长度;②10-3t,0≤t≤7.5;③不存在,理由见解析.。

相关文档
最新文档