人教版数学四年级下册乘法分配律教案范文3篇

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

人教版数学四年级下册乘法分配律教案范文3篇
〖人教版数学四年级下册乘法分配律教案范文第【1】篇〗
教学目标
1.引导学生探究和理解乘法分配律。

2.培养学生根据具体情况,选择算法的意识与能力,发展思维的灵活性。

3.使学生感受数学与现实生活的联系,能用所学知识解决简单的实际问题。

教学重点:借助实际问题体会、认识乘法乘法律。

教学难点:用乘法交换律和结合律算式。

预设过程
一、引入
1、学校要买25副乒乓球,每个乒乓球4元,每个乒乓球板9元,一共要多少元?
2、理解题意
二、探新
1、学生独自列式
2、小组交流想法
3、汇报:根据学生的回答板书
25×(4+9)=25×4+25×9=325
25×(4+9)=25×4+25×9
指名学生说出每一步表示的意义
(4+9)×25=4×25+9×25=325
(4+9)×25=4×25+9×25
4、改题:如果改为买45副,你又可以怎样算?
45×(4+9)=45×4+45×9
(4+9)×45=4×45+9×45
5、观察:请你们仔细观察上面这几题,
6、你们发现了什么?
相同点:左边都是两个数的和与一个数相乘,
右边都是两个数和这个数相乘再相加。

不同点:算式左边和右边有什么不同?
联系:算式左边和算式右边有什么联系?
6、举例:这样的算式你能再举出一些吗?
7、概括:你们能把上面的规律概括成一句话吗?
两个数的和与一个数相乘,可以先把它们与这个数分别相乘,再相加。

这叫做乘法分配律。

你能用字母表示吗?(a+b)×c=a×c+b×c
a×(b+c)=a×b+a×c
8、质疑:还有什么问题?
三、巩固
1、做一做
判断并说明理由
2、第5题:下面哪些算式运用了乘法分配律
3、第6题
103×1220×5524×20525×24
四、:你们还有什么问题?
五、布置作业:
1、口算
2、作业本
3、寻找生活中乘法分配律的例子。

板书设计
作业设计:
课堂作业本P15
口算训练P16
教学反思
课后反思:在第一个班上课,我是运用以上的情境情境进行教学,但是题意不是很清楚,学生在这个地方也浪费了许多时间,而后面探究规律的顺序是这样的:先根据情境列式计算,再引导学生观察以上习题,再让学生相关的规律,但是这样下来感觉学生学得非常被动,对规律的概括非常困难,学生理解不够深入,也难以用语言表达出来。

在第二个班上课时,就做了如下的调整:情境改为学校要买25套衣服,每件上衣要20元,每件裤子要10元,一共要多少元?这
样的.情境比较清晰,学生列出算式后再让学生说一说,
生1:我觉得这样的两个数的和与一个数相乘,可以把这两个数与这一个数相乘,再相加。

生2:是呀,一个数好像是公共财产,都是它们共有的。

这样学生对这个因数理解起来就比较简单,也觉得比较有意思。

再让学生举例,举例时再让学生说明这样写的理由,这样学生对于乘法分配律的理解比较轻松。

〖人教版数学四年级下册乘法分配律教案范文第【2】篇〗
一、结合认知进行直观教学,建立运算模型
在对学生的计算中发现,如25×(40+7),学生会算成25×40+7。

之所以会出现这样的错误,原因在于学生对乘法分配律的实质意义没有理解,没有对乘法分配律建立起模型,所以把25这个因数和括号里的一个加数相乘然后再加另一个加数,而没有用25这个因数去和括号里的两个加数“分别”相乘后再求和。

对此,在教学中就需以直观方式引导学生建立起分配律的模型。

首先,要结合学生的知识基础,利用知识直观促进模型构建。

在学乘法分配律之前,学生对乘法就有了“几个几相加”的概念,那么,拓展到分配律,在教学中就应结合具体算式而让学生理解等号左右两边为什么会相等。

如(2+6)×125=2×125+6×125,问“左边是几个125,右边是几个125?”由此建立起分配后相等的概
念。

在教学中也要注重结合学生的生活实际,通过具体的物而引导学生理解交换位置后左右两边依然不变的道理。

如加法交换律的学习中,可结合购物的案例,以购买一支铅笔、两个本子和一本字典与购买三种物品但顺序不同的案例,促进学生对结合律的理解。

其次,要注重结合生活经验而促进学生建立模型。

以加法结合律为例,170+45+30=(170+30)+45,在教学中利用购物情境,以先算买三样东西的总价来渗透交换了加数的位置和不变的内涵。

乘法分配律的核心是“和×一个数=两积求和”,但要学生理解这一点较为困难,因其思维以抽象思维为主,故而教学中就需引导学生由表及里地今夕分析,建立乘法分配律的模型雏形。

如(170+30)×50=170×50+30×50,教学中先引导学生分析等号左右两边的算式,分析其异同,理解左边是先算和再算积,而右边则是先算积再算和,但其结果相同,由此而抽象出“和×一个数=两积求和”的结论。

二、改革模式提倡合作探究,促进模型理解
学生在应用运算律进行计算时容易出错,但当问及学生运算律的定义时,学生似乎又能说出来,原因何在?其实,虽然学生在学习中通过听教师讲、记忆、背诵方式掌握了运算律的定义,但却不理解其中的含义,故而在应用时也就容易出错。

由此而观课堂教学教师所采用的模式,讲授是不利于学生理解运算律的本质特点的,教学中还应多引导学生合作探究
首先,教学中要借助“数形结合”的思想来引导学生理解运算律的含义。

以25×(40+4)为例,计算时学生就会写成25×40+4,
此时借助幻灯片呈现右图,问“25×40+4是不是大长方形的面积?如果要求大长方形的面积可以怎么计算?”引导学生用两种方法计算25×(40+4)和25×40+25×4)后对比,由图形而过渡到对算式的分析理解,由此而建立起乘法分配律“分别与括号中两个加数(或减数)相乘”的模型。

其次,由“灌”而“引”,通过变式对比,促进学生对运算律算理的理解。

要让学生理解运算律的本质,在建构模型的过程中,还需要通过变式来帮助学生辨析。

如乘法分配律的辨析,在对分配律探究后,教师可提供如46×101=46×(101-1)=46×100;46×99=46×(99+1)=46×100;46×99+46=46×(100-1);46×101-46=46×(100+1),在计算类似题目时,学生只想到的是凑整计算,而没有考虑变化后数目是否相等,从而出错。

在这个过程中就需要引导学生对46×101与46×99进行对比,在对比中理解该算式的意义。

在教学中,要充分发挥好学生的主体作用,多引导学生参与讨论,这样效果才会更好。

三、加强练习巩固对比分析,促进模型巩固
练习是引导学生从知识向技能过渡的重要方式,在运算律的教学中,构建模型属于知识领域的学习,而练习则属于应用领域。

在数学教学中帮助学生建立运算律的模型后,接下来就需要引导学生在应用中巩固模型。

在应用环节中,一是要利用类似或相似的题型帮助学生在计算中再次对运算律的本质特点进行辨析,二是要注重引导学生纠错并结合生活实际问题展开应用。

在练习环节中,一是要注重结合所学运算律以相似或类似练习题引导学生展开辨析计算。

〖人教版数学四年级下册乘法分配律教案范文第【3】篇〗
教学目标:
1、通过探索乘法分配律的活动,进一步体验探索规律的过程,并能用字母表示。

2、经历共同探索的过程,培养解决实际问题和数学交流的能力。

3、会用乘法分配律进行一些简便计算
重点难点:
1、指导探索乘法分配律。

2、发现并归纳乘法分配律。

方法指导:
通过讲学练相结合,设计相应的练习题,逐步理解抽象的乘法分配律。

教学过程:
具体内容
一、激趣导入
(约3分钟)
创设情境,提出问题
1、师:老师想请大家帮一个忙,我有一个朋友开了一家小公司,
有4名员工,她想给公司的员工每人买一套工作服,她去商店看中了几件衣服和几条裤子,想选一套衣服做工作服。

请同学们想一想,怎样搭配
2、学生思考:(1)有几种搭配方案
(2)选择你喜欢的一种方案,并算出总价。

(学生自己选择方案并在练习本上完成。

师强调:是买4套衣服)
二、自主学习
(约7分钟)
(一)组内研讨,确定方案
1、组内研讨
(1)一共有几种搭配方案
(2)介绍自己的方案,并说一说,你推荐的理由。

(3)说说你推荐的方案,需要花多少钱你是怎么算的
合作交流
(约10分钟)
2、汇报交流
师:哪一个同学想先来给老师推荐他的方案
师:要想求4套这样的衣服需要多少元可以先求什么,再求什么
分别列式解答
师:因为总价相等,这两个算式我们可以用什么符号把它们连接起来(学生回答后,师在两个算式中间用等号连接)
师:这个等式怎么读呢
生尝试读等式。

(预设学生读法:A.225加上75的和乘4等于乘225乘4加75乘4
B.225加上75的和乘4等于225和75分别与4相乘的积再相加。

)
3、研究其它方案
由学生依次汇报出其余3种不同的搭配方案,并引导说出是怎么想的。

计算后分别加上等号。

教师板书
一套×4 = 4件上衣+ 4条裤子
(225+75)×4 = 225×4 + 75×4
(225+125) ×4 = 225×4 + 125×4
(175+75)×4 = 175×4 + 75×4
(175+125) ×4 = 175×4 + 125×4
精讲点拨
(约8分钟)
(二)观察比较、猜测验证
1、观察比较
2、提出猜想。

师:观察上面的等式,左右两边的算式什么变了什么没变
你们有什么发现
3、举例验证。

让学生再举出一些这样的`例子进行验证,看看是否也有这样的规律
学生汇报,教师根据汇报板书。

(三)总结规律,概括模型
1、总结规律
师:刚才同学们发现了数学中的一个规律,很了不起。

大家知道这是什么规律吗(生猜测)
师:这个规律就是我们今天学习的乘法分配律。

(齐读)你能说一说什么叫乘法分配律吗
2、用字母表示
师:用字母如何表示乘法分配律
三、测评总结(约12分钟)
巩固应用,训练提升
1、请你根据乘法分配律填空
(12+40)×3=()×3+()×3
15×(40+8)=15×()+15×()
78×20+22×20=( + )×20
66×28+66×32+66×40=( + + ) ×40
教师结合学生回答,介绍前两道为乘法分配律的正向应用,后三道属于乘法分配律的反向应用。

2、火眼金睛辨对错
56×(19+28)=56×19+56×28
(18+15)×26=18×15+26×15
(11×25) ×4= 11×4+25×4
(45-5)×14 =45 ×14 -5 ×14
强调:两个数的差与一个数相乘,也可以把它们分别与这个数相乘,再相减。

3、用乘法分配律计算下面各题。

(40+4)×25 39×8+39×6-4×39
4、拓展提高
你能用乘法分配律解决这道题吗
86×101
四、课堂小结
说一说,今天我们研究了什么你有什么收获
板书设计:
乘法分配律
一套×4 = 4件上衣+ 4条裤子
(225+75)×4 = 225×4 + 75×4
(225+125) ×4 = 225×4 + 125×4
(175+75)×4 = 175×4 + 75×4
(175+125) ×4 = 175×4 + 125×4
乘法分配律:两个数的和与一个数相乘,可以用这两个数分别和这个数相乘,再相加。

相关文档
最新文档