[整理]主减速器的设计.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
四、主减速器的设计
(一) 主减速器概述
地下自卸车广泛采用单级主传动,该主传动结构简单,质量小,成本低,使用简单,但主传动比0i 不能太大,一般0i ≤3.6~6.87。
因为进一步提高0i 将增大从动轮直径,从而减少离地间隙和使从动轮热处理复杂。
单级主减速器有螺旋锥齿轮、双曲面齿轮等两种形式。
螺旋锥齿轮传动,制造简单,工作中噪声大,对齿合精度很敏感,
齿轮副锥顶稍有不吻合便使工作条件急剧变坏,伴随磨损、增大和噪声增大。
为保证齿轮副的正确齿合,必须将轴承顶紧,提高支承刚度,增大壳体刚度。
双曲面齿轮传动与螺旋锥齿轮传动不同之处,在于主、从动轴线
不相交而有一偏移距E 。
由于存在偏移距,从而主动齿轮螺旋角1β与从动轮螺旋角2β不等,且21ββ>。
此时两齿轮切向力2F 与1F 之比,可 根据啮合面上法向力彼此相等的条件求出。
1212c o s /c o s
/ββ=F F 设1r 与2r 分别为主、从动轮平均分度圆半径,双曲面的传动比os i 为 1
12
21122c o s c o s ββr r r F r F i os ==
对于螺旋锥齿轮传动,其传动比12/r r i d =,令12cos /cos ββ=K ,则
K i r Kr i d os ==12/
系数一般为1.25~1.5。
这说明当双曲面齿轮尺寸与螺旋锥齿轮尺寸相当时,双曲面传动有更大的传动比,当传动比一定,从动轮尺寸相同时,双曲面主动齿轮比螺旋锥齿轮有较大直径,较高的齿轮强度及较大的主动齿轮轴和轴承刚度,当传动比和主动齿轮尺寸一定时,双曲线从动锥齿轮直径比相应螺旋齿轮为小,因而离地间隙较大。
双曲面齿轮副在工作过程中,除了有沿齿高方向的侧向滑动之外,还
有沿齿长方向的纵向滑动。
纵向滑动可改善齿轮的摩合过程,并使其工作安静平滑。
然而纵向滑动可使摩擦损失增加,降低传动效率,因而偏移距E 不应过大。
双曲面齿轮传动齿面间大的压力和大的摩擦功,可能导致油膜破坏和齿面烧结咬死。
因此,双曲面齿轮传动必须采用可改善油膜强度和避免齿面烧结的特殊润滑油。
(二) 主减速器方案的选择
考虑到生产条件、材料问题、工作环境,选择采用螺旋锥齿轮。
(三)主减速与轮边行星减速的输入功率、转速计算
由于我们采用四轮驱动,前后桥设计一样,主减速器、差速器及轮边行星减速设计如下:
整车满载时总重GVW=m ⨯g=39010⨯9.8=382298N ,打滑时牵引力
S TE =GVW ⨯ψ=382298⨯0.6=229378.8N ,整车打滑时所需扭矩 S M =S TE ⨯r =229378.8⨯0.747=171345.9636N ∙m
根据经验、相关资料、车速要求和类比法,主减速器传动比定为主
i 减
=6.857,效率η主减=0.99,初定主动轮齿数1Z =7;轮边行星减速传动比定为
轮边i =4.80,效率轮边η=0.95,初定太阳轮齿数太Z =15。
整车满载车轮打滑时后桥所需要的扭矩T
S
后=S M ⨯后m /m
=171345.9636⨯20231/39010=88861.8N ∙m (变速箱不均分),后桥单个轮打滑时所需的扭矩T 单轮
=T
S
后/2=88861.8/2=44430.92N ∙m(差速器均分)。
太阳轮输入扭矩T
太
=T
单轮
/轮边η/轮边i =44430.92/0.95/4.8=9743.6228N ∙m 。
由匹配牵引曲线可知,自卸车一挡重载打滑速度v S =0.9458km/h (根据上面重载时匹配曲线可得)。
打滑时轮边行星减速器太阳轮转速n
太
=(v S /3.6/
r /2π)⨯60⨯轮边i =(0.9458/3.6/0.747/2π)⨯60⨯4.8=16.121r /min,由功率
扭矩转换公式:T =9550P /n 得太P =T 太
⨯太n /9550=9743.6228⨯
16.121/9550=16.4478kw 。
主减速主动轮输入功率主动P =2太P /(0.9/0.95)=2⨯16.4478/(0.9/0.95)=34.722kw,转速主动n =太n ⨯主减i =16.121⨯6.857=110.5417min /r ,扭矩T 主动
=9550主动P ∙/主动n =9550⨯34.722/110.5417=20363.444N ∙m 。
(四) 采用《易普设计专家》(网络软件)计算过程如下:
请输入数据:
制
系列
:
齿形角α
Σ
传动比
Z 1 2
数
x 1 2
数
x t1t2
螺旋角βm
h a *
计算结果检查:
分度圆d 1
= 70.000mm d 2= 480.00mm
锥 距 R= 242.53mm
分锥角δ1= 8.297° δ2= 81.703° 齿向重合度ε
β
= 1.977 复 原
数c*
ψR
━━━设计说明━━━
1. 圆弧齿锥齿轮主要有格里森制和埃尼姆斯制。
2. 选择齿形制后,齿轮的大端模数m、法向压力角α
n
、齿顶高系数h
a
*、齿顶间隙系数c*和中部
螺旋角β
m
会自动修改为相应的标准值,并给出相应的提示。
用户可以修改模数m为任意值。
3. 齿数Z
1
的选择可按下图进行。
对应的变位系数会自动给出,用户可以修
改。
螺旋角β
m
的选
取一般要求齿向重合度ε
β≥1.25。
4.当齿数Z
2
给定时自动计算传动比i=Z
2
/Z
1。
如果输入传动比i则自动计算齿
数Z
2
=INT(i*Z
1
)。
5. 齿宽系数ψ
R
一般取1/4,≤1/3,宽度B
应≤10m。
6. 按“计算”钮,将计算结果显示于右侧框内。
“计算清单”钮会在另页上显示计算的全部
过程,可以下载或打印。
按“强度计算”则进入齿轮强度计算网页。
最小齿数Z
1
的选择
零度弧齿锥齿轮最小齿数Z 1 弧齿锥齿轮
最小齿数Z 1(βm =35°)
齿数比i 1~1.5 1.5~2.5 2.5~3.5 >3.5 单面法 19 16 13 10 简单双面法
23
18
14
10
洛-卡氏制最小齿数Z 1(等高齿,βm =10~35°)
五、主减速器从动轮与差速器壳联接螺栓计算
从动轮所传递的:功率从动P =主动P ∙主减η=34.722⨯0.99=34.375kw
转速从动n =主动n /主减i =110.5417/6.857=16.121r/min
扭矩T 从动=20363.444N ∙m(上面已计算)
螺栓到从动轮中心的距离定为140mm ,初选M16螺栓《课程设计》P100,
螺母大径e=26.8mm ,(性能等级为8.8),初定12颗。
每颗螺栓所传递的力F=T 从动/(12⨯140⨯103-)=20363.444/(12310140-⨯⨯)
=11784.4N 。
由《机械工程切削手册》P228—238可得出所选M16螺栓的小径d 1
=d-2+0.376=14.376mm
由《机械设计》P76:
剪切强度τ=4F/(2d π)=4⨯11784.4/(2376.14⨯π)=72.601Mpa 挤压强度P σ=F/(d ⨯L m in )=11784.4/[14.376⨯(28-1.5⨯2) ]=32.789 Mpa
(L m in 为螺栓杆与孔壁挤压面的最小高度,其中螺栓孔深度定为28mm ,螺
栓孔倒角长度为1.5mm)
螺纹联接件的许用切应力为:《机械设计》P84
[τ]=σS /S τ=640/(3.5~5)=128~182.857Mpa
[P σ]=s σ/P S =640/(2.5~3.0)=213.33~256Mpa
故 :τ<[τ]满足
P σ<[P σ]满足
六、 主减速器主动轴花键计算主减速器主动轴花键计算
选择渐开线花键,压力角为︒30,模数3=m ,151=z ,齿顶高系数为
0.5,齿根高系数为0.8,材料选择CrMnTi 20。
分度圆直径 45153=⨯==mz d mm ;
齿顶圆直径 48)25.0(=⨯+=z m d a
齿根圆直径 2.40)28.0(=⨯-=z m d f
静联接 []
p m p zhld T σσ≤⨯=41023
140~100][=p σMpa 45
311575.010728.299923
⨯⨯⨯⨯⨯⨯⨯=l 得出 347.45≥l mm
取有效长度为48mm
五、差速器的设计
(一)差速器的功能原理
地下装载机一般采用四轮驱动行星刚性桥。
它在行驶时,由于短中原因导致车轮行程不同,即在转向或行驶时,左,右侧车轮行程产生差
异。
如果用一根整轴以相同的转速驱动两侧的车轮必然会引起车轮在行
驶面上滑移或滑转现象,导致车论磨损加剧,功率损失增加,转向困难,
操纵性变坏。
因而桥中一定要设置差速器。
目前常采用的井下装载机差
速器有三种不同的结构形式:1.是普通的伞齿轮差速器,简称普通差速
器:2.是防滑自锁差速器,又称NO—SPIN差速器:3.是有限打滑差速
器,又称POSI—TORQ差速器,或限力矩差速器,或防滑差速器。
这
三种差速器的结构,原理,特性是不同的,适用范围也有差别,因此根
据我们设计的桥的工作要求及经济性,我们采用了普通差速器这种结构
设计。
普通差速器主要是由十字轴,半轴齿轮,行星齿轮,差速器左,右半壳等组成,动力由输入法兰输入,半轴齿轮输出,通过半轴齿轮传递
到论边,带动车论转动。
其工作原理如图所示:
当n 3=0时(即行星轮不自转),差速器作整体回转,车辆作直线运行,转速为n 0,当车辆右转弯时,n 3不等于0时,即行星轮以转速n 3自转。
它将加快半轴齿轮1的转速。
同时又使半轴齿轮2转速减慢。
此时半轴齿轮1增高的转速为n 313Z Z ,半轴齿轮2减低的转速为n 313Z Z ,即
n 1=n 0+ n 313Z Z
n= n 0- n 313Z Z
由于Z1=Z2,故n
1+n
2
=2n。
从上述可知,可实现左,右半轴
齿轮转速不相等,其转速差为n
1-n
2
=2 n
3
2
3
Z
Z。
从而实现左,右两车
轮差速,减少轮胎的磨损。
假设左,右车轮由于转弯或者其他原因引起左,右车轮切线方向产生一个附加阻力△P,它们方向相反。
以P表示行星轮轴上作用力,则左,右半轴齿轮给行星齿轮的反作用力为P/2,两半轴齿轮r相同,则传递给左,右半轴的扭矩均为Pr/2。
故直线行驶时左,右驱动轮扭矩相等(r为半轴齿轮的半径)。
当机械转弯时,行星轮随着差速器内的十字轴公转外,同时还绕其自身轴自转。
使他转动的力矩为2△Pr1(r
1
为行星齿轮半径),慢慢的附加阻力△P和P/2。
而快侧△P与P/2方向相反,故慢侧所受的扭矩大,快侧所受的扭矩小。
即:
M
1
=(P/2-△P)r
M
2
=(P/2+△P)r
若以2△Pr=M
F 表示差速器内摩擦力矩,以Pr=M
表示差速器
传递的扭矩,则:
M
1+ M
2
= M
M
2- M
1
= M
F
由上面的分析可知,如果不计摩擦力矩,即M
F =0,则M
1
= M
2
,
故可以认为动锥齿轮的扭矩平均分给左,右半轴,如果考虑到内摩擦,则快侧车轮力矩下,慢车轮力矩大,在普通差速器中,内摩擦较小,
M
2/(M
1
+ M
2
)=0.55~0.6,这就是平英团差速器“差速不差扭”
的传扭特性。
普通差速器的“差速不差扭”的传扭特性,会给机械行驶带来不利的影响,如一车轮陷入泥泞时,由于附着立不够,就会发生打滑。
这时另外一个车轮不但不会增加,反而会减少到与车轮一样,致使整
机的牵引力大大减少。
如果牵引力不能克服行驶阻力,此时打滑的车
轮以两倍于差速器壳的转速转动,而另外一侧不转动,此时整机停留
不前。
(二)三种差速器的性能比较
1.牵引特性
在相同的的工况下,由于使用的差速器不同而装载机整机的牵引特
性不同,其中以NO —SPIN 差速器为最好,带弹簧的有限打滑差速器次
之,标准的差速器最差。
需要指出的是,如果有个个轮胎打滑或者悬空,
对NO —SPIN 差速器来说,打滑或者悬空的轮胎不传递扭矩,那么全部
的扭矩就由另外一个不打滑不悬空的这个轮子承受,这无疑增加传递该
负荷所有机械元件(如轮边减速器、半轴、半轴花键及相关的元件)的
负荷,因此这是在选型或设计差速器时要特别注意的地方。
2.动力特性
井下装载机的动力特性是表示该机以各档速度行驶时所达到的最高行
驶速度,加速性能和爬坡能力。
它在很大程度上决定了该机的生产率。
一般用动力因素D 来评价机械的动力性能。
D=fcos α+sin α+g m t
v d d 式中 f 滚动阻力系数;
α 坡道角;
δm 回转质量换算系数;
g 重力加速度m/s
2;
t v d d 机械行驶加速度m/s 2;
D=(F t -F W )/G 0
式中
F t 驱动力(牵引力);
F W 空气阻力;
G 0 地下装载机的使用重量。
从上面分析可知,在最不利的使用情况下,NO —SPIN 差速器牵引性
能、动力因素、加速性能、爬坡能力最好,带有弹簧的有限差速器次之,标准差速器最差。
因而有NO —SPIN 差速器的地下装载机及其动力性能最
好,有限打滑差速器次之,标准差速器最差。
2. 受力状况
当NO —PSIN 差速器起差速作用时,传递给整个驱动桥的扭矩便全部
传给一侧半轴,只由当脱开传动的轮子转速降到不大于慢转侧轮子后,动力又均匀地分配到两侧半轴上。
而普通差速器动力始终是平均分配。
这样从动轮后续船东零件(包括半轴和轮边减速器)的受力状况显然后者比前者要好。
尤其在频繁交替动作的情况下(如连续的左转弯、右转弯)NO —SPIN差速器左右离合器时断时续,引起车轮装置载荷的不均匀,因而受到强烈的冲击。
因此,对于同样使用条件的装载机,若使用NO—SPIN 差速器,其驱动桥半轴和轮边减速器应该有较高的承载能力。
对于带弹簧的有限打滑差速器的受力状况处于上述两者之间。
4.轮胎的磨损
从上面的分析可以知道,对普通差速器来说,如果一侧驱动桥陷入泥坑因附着力不够而产生滑转,另外一侧的好路面上的驱动轮也不能使地下装载机驶出泥坑而前进,这是因为普通差速器的传扭特性之故。
在这种情况下,若驾驶员拼命加油提高发动机转速,力图冲出泥坑,但只能使驱动轮转速为零,因而使差速器以及轮胎加剧磨损。
对NO—SPIN差速器来说,好路面的驱动桥的转速不为零,全部的输出扭矩传递到这个路面好的驱动桥,继续驱动车辆前进直到两轮同时获得附着力为止。
永远不会出现轮子打滑,因而,此时轮胎的磨损大大减轻。
对NO—SPIN差速器来说,由于是部分输入扭矩传递到这个路面好的驱动轮,因而轮胎的磨损比普通差速器得要好,比NO—SPIN差速器差。
5. 通过性能
所谓车辆的通过性是指车辆在一定的载重质量下能以足够高的平均车速通过各种坏路及五路地带和克服各种障碍的能力。
例如通过松软的路面和通过坎坷不平地段及障碍物。
这点对于地下装载机来说尤为重要。
其中差速器的型式与结构对通过性能有很大的影响。
由于普通差速器的传扭特性,是装有普通的差速器的驱动桥的通过性能最差。
由于差速器中机件间的摩擦作用,差速器才可能将较大的扭矩传给不打滑的车轮,这样,两个驱动轮上总的驱动力将有所增加,从而通过性能改善。
这就是NO—SPIN差速器通过性能比普通差速器要好的原因。
由于NO—SPIN差速器的特殊结构,它的通过性能最好。
6.工艺性能
由于NO—SPIN差速器结构父子,精度要求高,选材与热处理也要求严,因而它的工艺性能最差,POSI—TORO差速器次之,普通差速器最好
但是我们考虑我们的车桥是用在地下矿山,其实际情况用普通差速器就可以满足条件了,而且在经济上面考虑,和在制造加工方面考虑,所以决定采用普通差速器.
(三)差速器的基本参数的选择和设计计算
1.行星齿轮差速器的确定
1)行星齿轮数目的选择
依照《汽车工程手册》,轿车多用2个行星齿轮,货车汽车和越野汽
车多用4个,少数骑车用个行星齿轮。
CA20差速器应选行星齿轮数为4(重载汽车)
2)行星齿轮球面半径B R 的确定
差速器的尺寸通常决定于B R ,它就是行星齿轮的安装尺寸,可根据公式3j B B T K R =来确定。
3j B B T K R ==2.993444.20363⨯=81.65mm
式中:B K — 行星齿轮球面半径系数,B K =2.52~2.99(有四个行星
齿轮的轿车和公路用货车取小值;有2个行星齿轮的轿车,以及越野汽车、矿用汽车取大值);
j T — 主减速器从动轮所传递的扭矩
3)预选其节锥距
B R A )99.0~98.0(0=
B R ⨯=985
.0 425.80=mm
4)行星齿轮与半轴齿轮齿数的选择
为了得到较大的模数,以使齿轮有较高的强度,行星齿轮的齿
数应尽量少,但一般不少于10。
半轴齿轮齿数取14~25;半轴齿轮
与行星齿轮的齿数比多在1.5~2范围内;左、右半轴齿轮的齿数和
必须能被行星齿轮的数目所整除,否则将不能安装。
根据这些要求
初定半轴齿轮齿数为20;差速器行星轮个数为4,齿数为11。
5)行星齿轮节锥角γ、模数m 和节圆直径d 的初步确定
行星齿轮和半轴齿轮的节锥角1γ、2γ计算如下:
938428811.2820
11arctan 1'''︒=︒==γ
121161189.6111
20arctan 2'''︒=︒==γ 式中:1Z 、2Z —分别为行星齿轮和半轴齿轮齿数。
6)大端模数m 及节圆直径d 的计算
047.7938428sin 11
425.802sin 2110='''︒⨯==γZ A m 取7mm 分度圆直径mz d = , 771171=⨯==mz d 行m
1402072=⨯==mz d 半mm
7)压力角α
过去汽车差速器齿轮都选用︒20压力角,这时齿高系数为1,而
最少齿数为13。
现在大都选用0322'︒的压力角,齿高系数为0.8,最
少齿数可减少至10。
某些重型汽车也可选用︒25压力角。
`
所以初定压力角为0322'︒
8) 行星齿轮安装孔直径φ及其深度L 的确定
根据《汽车工程手册》中:[]nl T c σφ1.1103
0⋅=
608.3456
4691.110444.203633
=⨯⨯⨯⨯= 069.38608.341.11.1=⨯==φL mm
式中:0T — 差速器传递的转矩,N.m ;
m — 行星齿轮数;
l — 为行星齿轮支撑面中点到锥顶的距离('≈25.0d l ,'2d 为
半轴齿轮齿面宽中点处的直径,而'2d 28.0d ≈),mm ;
[]c σ —支撑面的许用挤压应力,取为69N/mm 2。
2.差速器直齿锥齿轮的几何尺寸计算
1.行星齿轮齿数 101≥z (应尽量取小值) 取11
2.半轴齿轮齿数 25~142≥z 且须满足安装条件 取20
3.模数 7=m
4.变位系数 0=ξ
5.齿顶高系数 8.00=f
6.径向间隙系数 2.00=c
7.齿面宽 24)30.0~25.0(0==A F
8.齿工作高 2.1176.16.1=⨯==m h g
9.齿全高 567.12051.07788.1051.0788.1=+⨯=+=m h
10.压力角 0322'︒=α
11.轴交角 ︒=∑90
12.节圆直径 7711==mz d 14022==mz d
13.节锥角 938428811.28arctan 2
11'''︒=︒==z z γ 1211619012'''︒=-︒=γγ
14.节锥距 892.79938428sin 277sin 2sin 222110='
''︒===γγd d A 15. 周节 9912.2171416.31416.3=⨯==m t
16.齿顶高 '1h '-=2h h g 407.7=
='2h 79.3)(370.0430.0212=⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣
⎡+m z z 17.齿根高 109.5788.111='-="h m h 726.8788.122='-="h m h
18.径向间隙 367.1051.0188.0=+=-=m h h c g
19.齿根角 6393366.3arctan 0
11'''︒=︒="=A h δ
15316231.6arctan 0
22'''︒=︒="=A h δ 20.面锥角 03735153169384282101'''︒='''︒+'''︒=+=δγγ 750564639331211611202'''︒='''︒+'''︒=+=δγγ
21.根锥角 092515.25111'''︒=︒=-=δγγR
63755496.54222'''︒=︒=-=δγγR
22.外圆直径 98.89876.0407.7277cos 211101=⨯⨯+='+=γh d d
65.143482.079.32140cos 222202=⨯⨯+='+=γh d d
23节锥顶点至齿轮外缘距离
43.66811.28sin 4065.72
140sin 211201=︒⨯-='-=γh d x 18.35189.61sin 79.32
77sin 222102=︒⨯-='-=γh d x 24.分度圆弧齿厚 99.102
)22(1==++=πταξπ
m tg m s 99.102=s
25.固定弦齿厚 381.9cos 211==αs s g
381.9cos 222==αs s g
26.固定弦齿高 657
.3414.0381.95.06.55.01=⨯⨯-=-=α
tg s h h xg e xg
657.32=xg h
3.差速器直齿锥齿轮的强度计算
差速器齿轮主要进行弯曲强度计算,对疲劳寿命则不予考虑,这是因为行星齿轮在工作中经常只起等臂推力杆的作用,仅在左、右驱动车轮有转速差时行星齿轮与半轴齿轮之间才有相对滚动的缘故。
地下矿山自卸车的差速器齿轮的弯曲应力为: []w v m s w J
m Z F K K K K T σσ≤∙∙∙∙∙∙∙∙∙=2203102 (N/mm 2) 237
.072024105.17245.015166.303910223⨯⨯⨯⨯⨯⨯⨯⨯⨯= 61.829=N/mm []9802=<W σN/mm 2
合格!!
式中: T —差速器一个行星齿轮给予一个半轴齿轮的转矩, N.m ; 5166.30394
6.0444.203636
.0=⨯=⨯=n T T j N.m j T —主减速从动轮所传递的扭矩;
n —行星齿轮数目;
2Z —半轴齿轮齿数;
0K —超载系数,一般载货汽车、矿用汽车和越野汽车,以及液力
传动的各类汽车均取10=K ;
v K —质量系数,对驱动桥齿轮可取1=v K ;
s K —尺寸系数,当端面模数6.1≥m mm
时,取
7245.04.2574.2544===m K s ; m K —载荷分配系数,当两个齿轮均为骑马式支撑时,
10.1~00.1=m K 取05.1;
F 、m ——分别为计算齿轮的齿面宽(mm )、和模数; J —汽车差速器齿轮弯曲应力计算用的综合系数; []w σ—许用弯曲应力为980N/mm 2;
4.根据其计算的外形尺寸画出行星齿轮跟半轴齿轮的图形如下:
图(1)行星齿轮。