长丰县第二高级中学2018-2019学年高三上学期12月月考数学试卷
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
长丰县第二高级中学2018-2019学年高三上学期12月月考数学试卷 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 数列{a n }的通项公式为a n =﹣n+p ,数列{b n }的通项公式为b n =2n ﹣5,设c n =
,若在数列{c n }
中c 8>c n (n ∈N *
,n ≠8),则实数p 的取值范围是( )
A .(11,25)
B .(12,16]
C .(12,17)
D .[16,17)
2. 某校在暑假组织社会实践活动,将8名高一年级学生,平均分配甲、乙两家公司,其中两名英语成绩优秀学生不能分给同一个公司;另三名电脑特长学生也不能分给同一个公司,则不同的分配方案有( ) A .36种 B .38种 C .108种 D .114种
3. 已知集合M={1,4,7},M ∪N=M ,则集合N 不可能是( ) A .∅ B .{1,4} C .M D .{2,7}
4. 已知角α的终边经过点(sin15,cos15)-,则2
cos α的值为( )
A .
12+ B .12- C. 34
D .0 5. 在△ABC 中,∠A 、∠B 、∠C 所对的边长分别是a 、b 、c .若sinC+sin (B ﹣A )=sin2A ,则△ABC 的形状为( )
A .等腰三角形
B .直角三角形
C .等腰直角三角形
D .等腰三角形或直角三角形
6. 已知数列{a n }满足a 1=1,a 2=2,a n+2=(1+cos 2)a n +sin
2
,则该数列的前10项和为( )
A .89
B .76
C .77
D .35
7. 设函数f (x )=,f (﹣2)+f (log 210)=( )
A .11
B .8
C .5
D .2
8. (文科)要得到()2log 2g x x =的图象,只需将函数()2log f x x =的图象( )
A .向左平移1个单位
B .向右平移1个单位
C .向上平移1个单位
D .向下平移1个单位 9. 设集合A={x|y=ln (x ﹣1)},集合B={y|y=2x },则A B ( )
A .(0,+∞)
B .(1,+∞)
C .(0,1)
D .(1,2)
10.与命题“若x ∈A ,则y ∉A ”等价的命题是( )
A .若x ∉A ,则y ∉A
B .若y ∉A ,则x ∈A
C .若x ∉A ,则y ∈A
D .若y ∈A ,则x ∉A
二、填空题
11.设全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},若N ⊆M ,则实数a 的取值范围是 . 12.设()x x
f x e
=
,在区间[0,3]上任取一个实数0x ,曲线()f x 在点()00,()x f x 处的切线斜率为k ,则随机事件“0k <”的概率为_________.
13.已知函数322()7f x x ax bx a a =++--在1x =处取得极小值10,则
b
a
的值为 ▲ . 14.在空间直角坐标系中,设)1,3(,m A ,)1,1,1(-B ,且22||=AB ,则=m .
15.已知数列{a n }满足a n+1=e+a n (n ∈N *,e=2.71828)且a 3=4e ,则a 2015= .
16.若正方形P 1P 2P 3P 4的边长为1,集合M={x|x=且i ,j ∈{1,2,3,4}},则对于下列命题: ①当i=1,j=3时,x=2; ②当i=3,j=1时,x=0;
③当x=1时,(i ,j )有4种不同取值; ④当x=﹣1时,(i ,j )有2种不同取值; ⑤M 中的元素之和为0.
其中正确的结论序号为 .(填上所有正确结论的序号)
三、解答题
17.已知函数f (x )=log 2(m+)(m ∈R ,且m >0).
(1)求函数f (x )的定义域;
(2)若函数f (x )在(4,+∞)上单调递增,求m 的取值范围.
18.如图,四边形ABEF 是等腰梯形,,2,AB EF AF BE EF AB ====,四边形
ABCD 是矩形,AD ⊥平面ABEF ,其中,Q M 分别是,AC EF 的中点,P 是BM 的中点.
(1)求证:PQ平面BCE;
(2)AM⊥平面BCM.
19.(本小题满分10分)
已知圆P过点)0,1(A,)0,4(B.
(1)若圆P还过点)2,6(-
C,求圆P的方程;(2)若圆心P的纵坐标为,求圆P的方程.
20.(本小题满分12分)椭圆C:x2
a2+y2
b2=1(a>b>0)的右焦点为F,P是椭圆上一点,PF⊥x轴,A,B
是C的长轴上的两个顶点,已知|PF|=1,k P A·k PB=-1
2.
(1)求椭圆C的方程;
(2)过椭圆C的中心O的直线l交椭圆于M,N两点,求三角形PMN面积的最大值,并求此时l的方程.
21.已知椭圆C的中心在坐标原点O,长轴在x轴上,离心率为,且椭圆C上一点到两个焦点的距离之和为
4.
(Ⅰ)椭圆C的标准方程.
(Ⅱ)已知P、Q是椭圆C上的两点,若OP⊥OQ,求证:为定值.
(Ⅲ)当为(Ⅱ)所求定值时,试探究OP⊥OQ是否成立?并说明理由.
22.在平面直角坐标系中,以坐标原点为极点,x轴非负半轴为极轴建立极坐标系.已知直线l过点P(1,0),斜率为,曲线C:ρ=ρcos2θ+8cosθ.
(Ⅰ)写出直线l的一个参数方程及曲线C的直角坐标方程;
(Ⅱ)若直线l与曲线C交于A,B两点,求|PA|•|PB|的值.
长丰县第二高级中学2018-2019学年高三上学期12月月考数学试卷(参考答案)
一、选择题
1.【答案】C
【解析】解:当a n≤b n时,c n=a n,当a n>b n时,c n=b n,∴c n是a n,b n中的较小者,
∵a n=﹣n+p,∴{a n}是递减数列,
∵b n=2n﹣5,∴{b n}是递增数列,
∵c8>c n(n≠8),∴c8是c n的最大者,
则n=1,2,3,…7,8时,c n递增,n=8,9,10,…时,c n递减,
∴n=1,2,3,…7时,2n﹣5<﹣n+p总成立,
当n=7时,27﹣5<﹣7+p,∴p>11,
n=9,10,11,…时,2n﹣5>﹣n+p总成立,
当n=9时,29﹣5>﹣9+p,成立,∴p<25,
而c8=a8或c8=b8,
若a8≤b8,即23≥p﹣8,∴p≤16,
则c8=a8=p﹣8,
∴p﹣8>b7=27﹣5,∴p>12,
故12<p≤16,
若a8>b8,即p﹣8>28﹣5,∴p>16,
∴c8=b8=23,
那么c8>c9=a9,即8>p﹣9,
∴p<17,
故16<p<17,
综上,12<p<17.
故选:C.
2.【答案】A
【解析】解:由题意可得,有2种分配方案:①甲部门要2个电脑特长学生,则有3种情况;英语成绩优秀学生的分配有2种可能;再从剩下的3个人中选一人,有3种方法.
根据分步计数原理,共有3×2×3=18种分配方案.
②甲部门要1个电脑特长学生,则方法有3种;英语成绩优秀学生的分配方法有2种;再从剩下的3个人种选2个人,方法有33种,共3×2×3=18种分配方案.
由分类计数原理,可得不同的分配方案共有18+18=36种,
故选A.
【点评】本题考查计数原理的运用,根据题意分步或分类计算每一个事件的方法数,然后用乘法原理和加法原理计算,是解题的常用方法.
3.【答案】D
【解析】解:∵M∪N=M,∴N⊆M,
∴集合N不可能是{2,7},
故选:D
【点评】本题主要考查集合的关系的判断,比较基础.
4.【答案】B
【解析】
考点:1、同角三角函数基本关系的运用;2、两角和的正弦函数;3、任意角的三角函数的定义.
5.【答案】D
【解析】解:∵sinC+sin(B﹣A)=sin2A,
∴sin(A+B)+sin(B﹣A)=sin2A,
∴sinAcosB+cosAsinB+sinBcosA﹣cosBsinA=sin2A,
∴2cosAsinB=sin2A=2sinAcosA,
∴2cosA(sinA﹣sinB)=0,
∴cosA=0,或sinA=sinB,
∴A=,或a=b,
∴△ABC为等腰三角形或直角三角形
故选:D.
【点评】本题考查三角形形状的判断,涉及三角函数公式的应用,本题易约掉cosA而导致漏解,属中档题和易错题.
6.【答案】C
【解析】解:因为a1=1,a2=2,所以a3=(1+cos2)a1+sin2=a1+1=2,a4=(1+cos2π)a2+sin2π=2a2=4.
一般地,当n=2k﹣1(k∈N*)时,a2k+1=[1+cos2]a2k﹣1+sin2=a2k﹣1+1,即a2k+1﹣a2k﹣1=1.所以数列{a2k﹣1}是首项为1、公差为1的等差数列,因此a2k﹣1=k.
当n=2k(k∈N*)时,a2k+2=(1+cos2)a2k+sin2=2a2k.
所以数列{a2k}是首项为2、公比为2的等比数列,因此a2k=2k.
该数列的前10项的和为1+2+2+4+3+8+4+16+5+32=77
故选:C.
7.【答案】B
【解析】解:∵f(x)=,
∴f(﹣2)=1+log24=1+2=3,
=5,
∴f(﹣2)+f(log210)=3+5=8.
故选:B.
【点评】本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.
8.【答案】C
【解析】
试题分析:()2222
==+=+,故向上平移个单位.
g x x x x
log2log2log1log
考点:图象平移.
9.【答案】A
【解析】解:集合A={x|y=ln(x﹣1)}=(1,+∞),集合B={y|y=2x}=(0,+∞)
则A∪B=(0,+∞)
故选:A.
【点评】本题考查了集合的化简与运算问题,是基础题目.
10.【答案】D
【解析】解:由命题和其逆否命题等价,所以根据原命题写出其逆否命题即可.
与命题“若x∈A,则y∉A”等价的命题是若y∈A,则x∉A.
故选D.
二、填空题
11.【答案】 [,1] .
【解析】解:∵全集U=R ,集合M={x|2a ﹣1<x <4a ,a ∈R},N={x|1<x <2},N ⊆M ,
∴2a ﹣1≤1 且4a ≥2,解得 2≥a ≥,故实数a 的取值范围是[,1],
故答案为[,1].
12.【答案】
35
【解析】解析:本题考查几何概率的计算与切线斜率的计算.
001()x x k f x e
-'==
,由0()0f x '<得,01x >,∴随机事件“0k <”的概率为2
3. 13.【答案】1
2
-
考
点:函数极值
【方法点睛】函数极值问题的常见类型及解题策略
(1)知图判断函数极值的情况.先找导数为0的点,再判断导数为0的点的左、右两侧的导数符号. (2)已知函数求极值.求f ′(x )―→求方程f ′(x )=0的根―→列表检验f ′(x )在f ′(x )=0的根的附近两侧的符号―→下结论.
(3)已知极值求参数.若函数f (x )在点(x 0,y 0)处取得极值,则f ′(x 0)=0,且在该点左、右两侧的导数值符号相反. 14.【答案】1 【解析】 试题分析:()()()()22131112
22=-+--+-=
m AB ,解得:1=m ,故填:1.
考点:空间向量的坐标运算 15.【答案】 2016 .
【解析】解:由a n+1=e+a n,得a n+1﹣a n=e,
∴数列{a n}是以e为公差的等差数列,
则a1=a3﹣2e=4e﹣2e=2e,
∴a2015=a1+2014e=2e+2014e=2016e.
故答案为:2016e.
【点评】本题考查了数列递推式,考查了等差数列的通项公式,是基础题.
16.【答案】①③⑤
【解析】解:建立直角坐标系如图:
则P1(0,1),P2(0,0),P3(1,0),P4(1,1).
∵集合M={x|x=且i,j∈{1,2,3,4}},
对于①,当i=1,j=3时,x==(1,﹣1)•(1,﹣1)=1+1=2,故①正确;
对于②,当i=3,j=1时,x==(1,﹣1)•(﹣1,1)=﹣2,故②错误;
对于③,∵集合M={x|x=且i,j∈{1,2,3,4}},
∴=(1,﹣1),==(0,﹣1),==(1,0),
∴•=1;•=1;•=1;•=1;
∴当x=1时,(i,j)有4种不同取值,故③正确;
④同理可得,当x=﹣1时,(i,j)有4种不同取值,故④错误;
⑤由以上分析,可知,当x=1时,(i,j)有4种不同取值;当x=﹣1时,(i,j)有4种不同取值,当i=1,j=3时,x=2时,当i=3,j=1时,x=﹣2;
当i=2,j=4,或i=4,j=2时,x=0,
∴M中的元素之和为0,故⑤正确.
综上所述,正确的序号为:①③⑤,
故答案为:①③⑤.
【点评】本题考查命题的真假判断与应用,着重考查平面向量的坐标运算,建立直角坐标系,求得=(1,
﹣1),==(0,﹣1),==(1,0)是关键,考查分析、化归与运算求解能力,属于难题.
三、解答题
17.【答案】
【解析】解:(1)由m+>0,(x﹣1)(mx﹣1)>0,
∵m>0,
∴(x﹣1)(x﹣)>0,
若>1,即0<m<1时,x∈(﹣∞,1)∪(,+∞);
若=1,即m=1时,x∈(﹣∞,1)∪(1,+∞);
若<1,即m>1时,x∈(﹣∞,)∪(1,+∞).
(2)若函数f(x)在(4,+∞)上单调递增,则函数g(x)=m+在(4,+∞)上单调递增且恒正.
所以,
解得:.
【点评】本题考查的知识点是函数的定义域及单调性,不等关系,是函数与不等式的简单综合应用,难度中档.
18.【答案】(1)证明见解析;(2)证明见解析.
【解析】
考
点:直线与平面平行的判定;直线与平面垂直的判定.
19.【答案】(1)04752
2
=++-+y x y x ;(2)4
25)2()25(2
2=
-+-y x . 【解析】
试题分析:(1)当题设给出圆上三点时,求圆的方程,此时设圆的一般方程02
2
=++++F Ey Dx y x ,将三点代入,求解圆的方程;(2)AB 的垂直平分线过圆心,所以圆心的横坐标为2
5
,圆心与圆上任一点连线段为半径,根据圆心与半径求圆的标准方程.
试题解析:(1)设圆P 的方程是02
2
=++++F Ey Dx y x ,则由已知得
⎪⎩
⎪⎨⎧=+-+-+=++++=++++0
26)2(60
04040001222
222F E D F D F D ,解得⎪⎩⎪⎨⎧==-=475F E D . 故圆P 的方程为04752
2
=++-+y x y x .
(2)由圆的对称性可知,圆心P 的横坐标为25
241=+,故圆心)2,2
5(P , 故圆P 的半径25)20()251(||2
2=-+-==AP r ,
故圆P 的标准方程为4
25)2()25(2
2=-+-y x .
考点:圆的方程 20.【答案】 【解析】解:
(1)可设P 的坐标为(c ,m ),
则c 2a 2+m 2
b
2=1, ∴m =±b 2
a ,
∵|PF |=1 ,
即|m |=1,∴b 2=a ,①
又A ,B 的坐标分别为(-a ,0),(a ,0),
由k P A ·k PB =-1
2
得
b 2a
c +a ·b 2a c -a
=-12,即b 2=12a 2,②
由①②解得a =2,b =2,
∴椭圆C 的方程为x 24+y 2
2
=1.
(2)当l 与y 轴重合时(即斜率不存在),由(1)知点P 的坐标为P (2,1),此时S △PMN =1
2
×22×2=
2.
当l 不与y 轴重合时,设其方程为y =kx ,代入C 的方程得x 24+k 2x 22=1,即x =±2
1+2k
2
,
∴y =±2k
1+2k 2
,
即M (
21+2k
2
,
2k 1+2k
2
),N (
-21+2k
2
,
-2k 1+2k
2
),
∴|MN |= ⎝ ⎛⎭⎪⎫41+2k 22+⎝ ⎛⎭
⎪⎫4k 1+2k 22 =4
1+k 21+2k 2
,
点P (2,1)到l :kx -y =0的距离d =|2k -1|k 2+1,∴S △PMN =12|MN |d =1
2
·
4
1+k 21+2k 2·|2k -1|
k 2+1
=2·|2k -1|1+2k 2
=2
2k 2+1-22k
1+2k 2
=2
1-22k 1+2k 2
, 当k >0时,22k 1+2k 2≤22k
22k =1,
此时S ≥0显然成立, 当k =0时,S =2.
当k <0时,-22k 1+2k 2≤1+2k 2
1+2k 2=1, 当且仅当2k 2=1,即k =-
2
2
时,取等号. 此时S ≤22,综上所述0≤S ≤2 2.
即当k =-22时,△PMN 的面积的最大值为22,此时l 的方程为y =-2
2x .
21.【答案】
【解析】(I )解:由题意可设椭圆的坐标方程为
(a >b >0).
∵离心率为,且椭圆C 上一点到两个焦点的距离之和为4.
∴
,2a=4,解得a=2,c=1.
∴b 2=a 2﹣c 2
=3.
∴椭圆C 的标准方程为.
(II )证明:当OP 与OQ 的斜率都存在时,设直线OP 的方程为y=kx (k ≠0),则直线OQ 的方程为y=﹣x (k ≠0),P (x ,y ).
联立,化为,
∴|OP|2=x2+y2=,同理可得|OQ|2=,
∴=+=为定值.
当直线OP或OQ的斜率一个为0而另一个不存在时,上式也成立.
因此=为定值.
(III)当=定值时,试探究OP⊥OQ是否成立?并说明理由.
OP⊥OQ不一定成立.下面给出证明.
证明:当直线OP或OQ的斜率一个为0而另一个不存在时,则===,满足条件.
当直线OP或OQ的斜率都存在时,
设直线OP的方程为y=kx(k≠0),则直线OQ的方程为y=k′x(k≠k′,k′≠0),P(x,y).
联立,化为,
∴|OP|2=x2+y2=,
同理可得|OQ|2=,
∴=+=.
化为(kk′)2=1,
∴kk′=±1.
∴OP⊥OQ或kk′=1.
因此OP⊥OQ不一定成立.
【点评】本题考查了椭圆的标准方程及其性质、直线与椭圆相交问题转化为方程联立可得交点坐标、相互垂直的直线斜率之间的关系,考查了分析问题与解决问题的能力,考查了推理能力与计算能力,属于难题.
22.【答案】
【解析】解:(Ⅰ)∵直线l过点P(1,0),斜率为,
∴直线l的一个参数方程为(t为参数);
∵ρ=ρcos2θ+8cosθ,∴ρ(1﹣cos2θ)=8cosθ,即得(ρsinθ)2=4ρcosθ,
∴y2=4x,∴曲线C的直角坐标方程为y2=4x.
(Ⅱ)把代入y2=4x整理得:3t2﹣8t﹣16=0,
设点A,B对应的参数分别为t1,t2,则,
∴.
【点评】本题考查了直线参数方程及其应用、极坐标方程化为直角坐标方程,考查了推理能力与计算能力,属于中档题.。