八年级数学上册 3.1 勾股定理 知识拓展 总统巧证勾股定理素材 苏科版(2021学年)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级数学上册 3.1 勾股定理知识拓展总统巧证勾股定理素材(新版)苏科版
编辑整理:
尊敬的读者朋友们:
这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望(八年级数学上册3.1 勾股定理知识拓展总统巧证勾股定理素材(新版)苏科版)的内容能够给您的工作和学习带来便利。

同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。

本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为八年级数学上册 3.1 勾股定理知识拓展总统巧证勾股定理素材(新版)苏科版的全部内容。

总统巧证勾股定理
学过几何的人都知道勾股定理.它是几何中一个比较重要的定理,应用十分广泛.迄今为止,关于勾股定理的证明方法已有500余种.其中,美国第二十任总统伽菲尔德的证法在数学史上被传为佳话.总统为什么会想到去证明勾股定理呢?难道他是数学家或数学爱好者?答案是否定的.
事情的经过是这样的:在1876年一个周末的傍晚,在美国首都华盛顿的郊外,有一位中年人正在散步,欣赏黄昏的美景,他就是当时美国俄亥俄州共和党议员伽菲尔德.他走着走着,突然发现附近的一个小石凳上,有两个小孩正在聚精会神地谈论着什么,时而大声争论,时而小声探讨.由于好奇心驱使伽菲尔德循声向两个小孩走去,想搞清楚两个小孩到底在干什么.只见一个小男孩正俯着身子用树枝在地上画着一个直角三角形.于是伽菲尔德便问他们在干什么?只见那个小男孩头也不抬地说:“请问先生,如果直角三角形的两条直角边分别为3和4,那么斜边长为多少呢?”伽菲尔德答道:“是5呀.”小男孩又问道:“如果两条直角边分别为5和7,那么这个直角三角形的斜边长又是多少?”伽菲尔德不加思索地回答到:“那斜边的平方一定等于5的平方加上7的平方.”小男孩又说道:“先生,你能说出其中的道理吗?”伽菲尔德一时语塞,无法解释了,心理很不是滋味.于是伽菲尔德不再散步,立即回家,潜心探讨小男孩给他留下的难题.他经过反复的思考与演算,终于弄清楚了其中的道理,并给出了简洁的证明方法.他是这样分析的,如图所示:
1876年4月1日,伽菲尔德在《新英格兰教育日志》上发表了他对勾股定理的这一证法.1881年,伽菲尔德就任美国第二十任总统后来,人们为了纪念他对勾股定理直观、简捷、
易懂、明了的证明,就把这一证法称为“总统”证法.
以上就是本文的全部内容,可以编辑修改。

高尔基说过:“书是人类进步的阶梯。

”我希望各位朋友能借助这个阶梯不断进步。

物质生活极大丰富,科学技术飞速发展,这一切逐渐改变了人们的学习和休闲的方式。

很多人已经不再如饥似渴地追逐一篇文档了,但只要你依然有着这样一份小小的坚持,你就会不断成长进步,当纷繁复杂的世界牵引着我们疲于向外追逐的时候,阅读一文或者做一道题却让我们静下心来,回归自我。

用学习来激活我们的想象力和思维,建立我们的信仰,从而保有我们纯粹的精神世界,抵御外部世界的袭扰。

Theaboveis thewhole content of this article, Gorky said: "thebook isthe ladder ofhuman progress." I hopeyoucanmake progress with thehelpof this ladder. Material lifeis extremely rich,scienceand technology are developing r apidly, all of which gradually change the way ofpeople's study and leisure. Many peopleare no longereager topursuead ocument, but as long as you still havesuch a small persiste nce,you will continueto grow and progress.When th ecomplex worldleads us to chase out, reading an article ordoin gaproblem makesus calm down and return toourselve s.With learning, we can activateour imagination andthinking, establish our belief, keepour purespiritualworld and resist the attack ofthe externalworld.。

相关文档
最新文档