固体物理第六章晶体X射线衍射
合集下载
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
倒易点阵(Reciprocal Lattice)
• Vectors in the direct lattice have the dimensions of [length]; vectors in the reciprocal lattice have the dimensions of [1/length]. • The reciprocal lattice is a lattice in the Fourier space associated with the crystal.
n=3, =67.52o no reflection for n4
Combining Bragg and d-spacing equation
X-rays with wavelength 1.54 Å are “reflected” from the (1 1 0) planes of a cubic crystal with unit cell a = 6 Å. Calculate the Bragg angle, , for all orders of reflection, n.
• a1,a2,a3又称为正点阵
a3 b3
a2 b2 a1
b1
倒易点阵(Reciprocal Lattice)
• 此时, b1,b2,b3为不共面的基矢,称为倒易点阵 (reciprocal lattice) • If a1,a2,a3 are primitive vectors of the crystal lattice, then b1,b2,b3 are primitive vectors of the reciprocal lattice.
2d sin = n
(1 0 0) reflection, d=5 Å n=1, =8.86o n=2, =17.93o n=3, =27.52o n=4, =38.02o n=5, =50.35o n=6, =67.52o no reflection for n7 (2 0 0) reflection, d=2.5 Å n=1, n=2, =17.93o =38.02o
X射线的发现
Methods and Instruments
All are based on:
X-ray Source
Sample
Detector
Sample can be
• single crystal(单晶) • Powder(粉末)
Laue Method
White Xray source Collimator Fixed single crystal
• 倒易点阵及其性质 • 一般,我们用a1,a2,a3表示点阵的基矢。
a3
a2 a1
倒易点阵(Reciprocal Lattice)
• a1,a2,a3又称为正点阵 • 晶胞的体积为:
倒易点阵(Reciprocal Lattice)
• 如定义b1 ,b2 ,b3 为新的基矢:
倒易点阵(Reciprocal Lattice)
• B1沿(a2,a3)平面的法线方向 • 而 为平行四边形(a2,a3)的面积, 故设(a2,a3)平面所在的晶面族的面间距为 d1
倒易点阵(Reciprocal Lattice)
• 则有:
• 表明倒易点阵基矢的长度正好与晶面间 距的倒数成正比
倒易点阵的物理意义:
(1) 倒易点阵的一个基矢是与正点阵的一组 晶面相对应的; (2) 倒易点阵基矢的方向是该晶面的法线方 向; (3) 倒易点阵基矢的大小是该晶面族的晶面 间距的倒数的2π倍。单位为长度的倒数
“Reflected” radiation
1 2
X Z Y
d
Transmitted radiation
Beam 2 lags beam 1 by XYZ = 2d sin so
2d sin = n
Bragg’s Law
e.g. X-rays with wavelength 1.54Å are reflected from planes with d=1.2Å. Calculate the Bragg angle, , for constructive interference. = 1.54 x 10-10 m, d = 1.2 x 10-10 m, =?
Detector photographic film or area detector
Laue Method
Each spot corresponds to a different crystal plane
USES:
• Alignment(定向)of single crystal
• info on unit cell
X射线与Brag衍射
• X射线的发现 • Brag衍射
X射线的发现
• 1876年, 发现阴极射线, 如上图, 只要金属靶上的电 压足够高。 • 1895年, X射线, 可穿过包装的底片,留下手骨印。 • 1912年, 劳厄猜测X射线是电磁波, 他的两个弟子 Freidrich 和 Knipping在Cu2SO4晶体上获得衍射斑 点。 • 1913年, Brag父子分析衍射斑点与晶格结构间的关 系 • 1914年, M.V. Laue, (德国),因从电磁波入手推得劳厄 方程获Nobel price。 • 1915年, S.W. Henry Bragg & wrence Bragg, (英 国), 获Nobel price。 • 至今已有30多项Nobel price颁发给X射线结构分析 成就。
倒易点阵与正点阵的关系
• 则有:
倒易点阵与正点阵的关系
• 则有:
倒易点阵与正点阵的关系
• 两种点阵的原胞之间的关系: 正点阵晶胞的体积为:
倒易点阵的体积为:
倒易点阵与正点阵的关系
倒易点阵与正点阵的关系
表明正点阵的原胞体积与倒易点阵的原胞 体积的倒数成正比
倒易点阵与正点阵的关系
• 正点阵中(hkl)晶面族与倒易位矢的关 系: 可以证明倒格矢Ghkl=hb1+kb2+lb3 与Miller Indices (hkl) 的晶面族相垂直。即 Ghkl=hb1+kb2+lb3与(hkl) 晶面族的法线方 向平行。
Use Bragg’s law and the d-spacing equation to solve a wide variety of problems
2d sin = n or
2dhkl sin =
1 h k l 2 2 2 2 d a b c
2
2
2
Example of equivalence of the two forms of Bragg’s law: Calculate for =1.54 Å, cubic crystal, a=5Å
1 h k l 2 d a2
2 2
2
11 0 0.056 2 6
d 18
2
d = 4.24 Å
d = 4.24 Å
=
n sin 2d
1
n=1: 10.46° n=2: 21.30°
= (1 1 0) =
= (2 2 0)
= (3 3 0) = (4 4 0) = (5 5 0)
倒易点阵(Reciprocal Lattice)
• 原胞体积:
• 倒格矢的基矢为:
倒易点阵(Reciprocal Lattice)
• 计算结果为:
倒易点阵与正点阵的关系
• 两种点阵的基矢之间的关系
倒易点阵与正点阵的关系
• 两种点阵的位矢之间的关系 设在正点阵中,位置矢量为:
在倒易点阵中,位置矢量为:
• info on imperfections, defects in crystal
Diffraction from crystals
Incident radiation “Reflected” radiation
1 2
X Z Y
d
?
Transmitted radiation
Incident radiation
倒易点阵(Reciprocal Lattice)
• 正点阵中的晶面方程为: (hb1+kb2+lb3)•x=2n n为整数, x=1a1+2a2+3a3 为晶面中的任意一点。 不同的n,表示不同的晶面。
倒易点阵(Reciprocal Lattice)
• Each vector defined as above is orthogonal to two vectors of the crystal lattice.
倒易点阵(Reciprocal Lattice)
• Thus the b1,b2,b3 have the property:
倒易点阵(Reciprocal Lattice)
倒易点阵与正点阵的关系倒易点阵与正点阵的关系表明正点阵的原胞体积与倒易点阵的原胞体积的倒数成正比倒易点阵与正点阵的关系可以证明倒格矢ghklhb与millerindiceshkl的晶面族相垂直
晶体衍射和倒易点阵
• • • • • • X射线(Diffraction of Waves by Crystals) Brag衍射 (Bragg Scattering) 倒易点阵(Reciprocal Lattice) 布里渊区(Brillouin Zones) 傅立叶分析和基元 准晶体(Quasicrystals)
倒易点阵的物理意义:
• 可以说正点阵里的一族晶面与倒易点阵 中的一个点相对应。 • So every crystal structure has two lattices associated with it, the direct lattice and the reciprocal lattice. • Thus when we rotate a crystal in a holder, we rotate both the direct lattice and the reciprocal lattice.
n=3: 33.01°
n=4: 46.59° n=5: 65.23°
=
= =
2dhkl sin =
Example: A monochromator is made using the (111) planes of germanium, which is cubic, a=5.66Å. Calculate the angle at which it must be oriented to give CuK1 radiation
倒易点阵(Reciprocal Lattice)
• A diffraction pattern of a crystal is , as we shall show, a map of the reciprocal lattice of a crystal. • A microscope image, if it could be resolved on a fine enough scale, is a map of the direct lattice of the crystal, or the crystal structure in real space.
1 h 2 k 2 l2 3 2 2 d a (5.66) 2
=2d sin
d=3.27Å
1 1.540 sin sin (2 3.27) 2d
1
= 13.62°
倒易点阵(Reciprocal Lattice)
倒易点阵(Reciprocal Lattice)
• 例:试确定BCC结构的倒易点阵
倒易点阵(Reciprocal Lattice)
• • • • • 解:BCC原胞的基矢一般如下选取: a1= (a/2)(-i+j+k) a2= (a/2)(i-j+k) a3= (a/2)(i+j-k) 其中i、j、k为单位矢量, a为晶胞的边长
2d sin n n sin 2d
1
n=1 : = 39.9°
n=2 : X (n/2d)>1
2d sin = n
We normally set n=1 and adjust Miller indices, to give 2dhkl sin =