八年级初二数学下学期平行四边形单元 易错题难题提高题学能测试试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

八年级初二数学下学期平行四边形单元 易错题难题提高题学能测试试题
一、选择题
1.如图,ABCD □中,4,60AB BC A ==∠=︒,连接BD ,将BCD 绕点B 旋转,当BD (即BD ')与AD 交于一点E ,BC (即BC ')与CD 交于一点F 时,给出以下结论:①AE DF =;②60BEF ∠=︒;③DEB DFB ∠=∠;④DEF 的周长的最小值是423+.其中正确的是( )
A .①②③
B .①②④
C .②③④
D .①③④
2.如图,在正方形ABCD 中,点E 、F 、H 分别是AB 、BC 、CD 的中点,CE 、DF 交于点G,连接AG 、HG .下列结论:①CE ⊥DF ;②AG=DG;③∠CHG=∠DAG .其中,正确的结论有( )
A .0个
B .1个
C .2个
D .3个
3.如图,在四边形ABCD 中,AB ∥CD ,∠C =90°,AB =8,AD =CD =5,点M 为BC 上异于B 、C 的一定点,点N 为AB 上的一动点,E 、F 分别为DM 、MN 的中点,当N 从A 到B 的运动过程中,线段EF 扫过图形的面积为 ( )
A .4
B .4.5
C .5
D .6
4.线段AB 上有一动点C (不与A ,B 重合),分别以AC ,BC 为边向上作等边△ACM 和等边△BCN ,点D 是MN 的中点,连结AD ,BD ,在点C 的运动过程中,有下列结论:
①△ABD 可能为直角三角形;②△ABD 可能为等腰三角形;③△CMN 可能为等边三角形;④若AB=6,则AD+BD 的最小值为37其中正确的是( )
A .②③
B .①②③④
C .①③④
D .②③④
5.下列命题中,真命题的个数有( )
①对角线相等的四边形是矩形;
②三条边相等的四边形是菱形;
③一组对边平行且相等的四边形是平行四边形.
A .3个
B .2个
C .1个
D .0个
6.如图,四边形ABCD 中,AD ∥BC ,∠ABC+∠DCB=90°,且BC=2AD ,以AB 、BC 、DC 为边向外作正方形,其面积分别为1S 、2S 、3S ,若1S =3,3S =8,则2S 的值为( )
A .22
B .24
C .44
D .48
7.如图,在一张矩形纸片ABCD 中,4AB =,8BC =,点E ,F 分别在AD , BC 上,将纸片ABCD 沿直线EF 折叠,点C 落在AD 上的一点H 处,点D 落在点G 处,有以下四个结论:
①四边形CFHE 是菱形;②EC 平分DCH ∠;③线段BF 的取值范围为34BF ≤≤;④当点H 与点A 重合时,25EF =.
以上结论中,你认为正确的有( )个.
A .1
B .2
C .3
D .4
8.如图,正方形ABCD 中,AB=12,点E 在边CD 上,且BG=CG ,将△ADE 沿AE 对折至△AFE,延长EF 交边BC 于点G ,连接AG 、CF ,下列结论:①△ABG≌△AFG;
②∠EAG=45°;③CE=2DE;④AG∥CF;⑤S △FGC =725
.其中正确结论的个数是( )
A .2个
B .3个
C .4个
D .5个
9.如图,矩形ABCD 和矩形CEFG ,AB =1,BC =CG =2,CE =4,点P 在边GF 上,点Q 在边CE 上,且PF =CQ ,连结AC 和PQ ,M ,N 分别是AC ,PQ 的中点,则MN 的长为( )
A .3
B .6
C .372
D .172
10.已知菱形ABCD 的面积为83,对角线AC 的长为43,∠BCD=60°,M 为BC 的中点,若P 为对角线AC 上一动点,则PB+PM 的最小值为( )
A .3
B .2
C .23
D .4
二、填空题
11.在平行四边形ABCD 中, BC 边上的高为4 ,AB =5 ,25AC = ,则平行四边形ABCD 的周长等于______________ .
12.如图,四边形ABCD ,四边形EBFG ,四边形HMPN 均是正方形,点E 、F 、P 、N 分别在边AB 、BC 、CD 、AD 上,点H 、G 、M 在AC 上,阴影部分的面积依次记为1S ,2S ,则12:S S 等于__________.
13.如图,动点E F 、分别在正方形ABCD 的边AD BC 、上,AE CF =,过点C 作CG EF ⊥,垂足为G ,连接BG ,若4AB =,则线段BG 长的最小值为_________.
14.如图,ABC ∆是边长为1的等边三角形,取BC 边中点E ,作//ED AB ,//EF AC ,得到四边形EDAF ,它的周长记作1C ;取BE 中点1E ,作11//E D FB ,11//E F EF ,得到四边形111E D FF ,它的周长记作2C .照此规律作下去,则
2020C =______.
15.如图,在△ABC 中,AB =3,AC =4,BC =5,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,则EF 的最小值为_____.
16.如图,在等边ABC 和等边DEF 中,FD 在直线AC 上,33,BC DE ==连接,BD BE ,则BD BE +的最小值是______.
17.如图,正方形ABCD 的边长为6,点E 、F 分别在边AD 、BC 上.将该纸片沿EF 折叠,使点A 的对应点G 落在边DC 上,折痕EF 与AG 交于点Q ,点K 为GH 的中点,则随着折痕EF 位置的变化,△GQK 周长的最小值为____.
18.在锐角三角形ABC 中,AH 是边BC 的高,分别以AB ,AC 为边向外作正方形ABDE 和正方形ACFG ,连接CE ,BG 和EG ,EG 与HA 的延长线交于点M ,下列结论:①BG=CE ;②BG ⊥CE ;③AM 是△AEG 的中线;④∠EAM=∠ABC .其中正确的是_________.
19.菱形ABCD 的周长为24,∠ABC=60°,以AB 为腰在菱形外作底角为45°的等腰△ABE ,连结AC ,CE ,则△ACE 的面积为___________.
20.如图,有一张长方形纸片ABCD ,4AB =,3AD =.先将长方形纸片ABCD 折叠,使边AD 落在边AB 上,点D 落在点E 处,折痕为AF ;再将AEF ∆沿EF 翻折,AF 与BC 相交于点G ,则FG 的长为___________.
三、解答题
21.如图,在Rt ABC 中,∠B =90°,AC =60cm ,∠A =60°,点D 从点C 出发沿CA 方向以4cm/s 的速度向点A 匀速运动.同时点E 从点A 出发沿AB 方向以2cm/秒的速度向点B 匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D 、E 运动的时间是ts (0<t≤15).过点D 作DF ⊥BC 于点F ,连接DE ,EF .
(1)求证:AE =DF ;
(2)四边形AEFD 能够成为菱形吗?如果能,求出相应的t 值,如果不能,说明理由; (3)当t 为何值时,DEF 为直角三角形?请说明理由.
22.已知:在ABC 中,∠BAC=90°,AB=AC ,点D 为直线BC 上一动点(点D 不与B 、C 重合).以AD 为边作正方形ADEF ,连接CF .
(1)如图1,当点D 在线段BC 上时,BD 与CF 的位置关系为__________;CF 、BC 、CD 三条线段之间的数量关系____________________.
(2)如图2,当点D 在线段BC 的延长线上时,其它条件不变,请你写出CF 、BC 、CD 三条线段之间的数量关系并加以证明;
(3)如图3,当点D 在线段BC 的反向延长线上时,且点A 、F 分别在直线BC 的两侧,其它条件不变:
①请直接写出CF 、BC 、CD 三条线段之间的关系.
②若连接正方形对角线AE 、DF ,交点为O ,连接OC ,探究AOC △的形状,并说明理由.
23.已知在平行四边形ABCD 中,AB BC ≠,将ABC 沿直线AC 翻折,点B 落在点尽处,AD 与CE 相交于点O ,联结DE .
(1)如图1,求证://AC DE ;
(2)如图2,如果90B ∠=︒,3AB =,6=BC ,求OAC 的面积;
(3)如果30B ∠=︒,23AB =,当AED 是直角三角形时,求BC 的长.
24.如图1,在矩形纸片ABCD 中,AB =3cm ,AD =5cm ,折叠纸片使B 点落在边AD 上的E 处,折痕为PQ ,过点E 作EF ∥AB 交PQ 于F ,连接BF .
(1)求证:四边形BFEP 为菱形;
(2)当E 在AD 边上移动时,折痕的端点P 、Q 也随着移动.
①当点Q 与点C 重合时, (如图2),求菱形BFEP 的边长;
②如果限定P 、Q 分别在线段BA 、BC 上移动,直接写出菱形BFEP 面积的变化范围.
25.共顶点的正方形ABCD 与正方形AEFG 中,AB =13,AE =52.
(1)如图1,求证:DG =BE ;
(2)如图2,连结BF ,以BF 、BC 为一组邻边作平行四边形BCHF .
①连结BH ,BG ,求BH BG
的值; ②当四边形BCHF 为菱形时,直接写出BH 的长.
26.已知四边形ABCD 是正方形,将线段CD 绕点C 逆时针旋转α(090α︒<<︒),得到线段CE ,联结BE 、CE 、DE . 过点B 作BF ⊥DE 交线段DE 的延长线于F .
(1)如图,当BE =CE 时,求旋转角α的度数;
(2)当旋转角α的大小发生变化时,BEF ∠的度数是否发生变化?如果变化,请用含α的代数式表示;如果不变,请求出BEF ∠的度数;
(3)联结AF ,求证:2DE AF =.
27.如图,点A 的坐标为(6,6)-,AB x ⊥轴,垂足为B ,AC y ⊥轴,垂足为C ,点,D E 分别是射线BO 、OC 上的动点,且点D 不与点B 、O 重合,45DAE ︒∠=.
(1)如图1,当点D 在线段BO 上时,求DOE ∆的周长;
(2)如图2,当点D 在线段BO 的延长线上时,设ADE ∆的面积为1S ,DOE ∆的面积为2S ,请猜想1S 与2S 之间的等量关系,并证明你的猜想.
28.(1)问题探究:如图①,在四边形ABCD 中,AB ∥CD ,E 是BC 的中点,AE 是∠BAD 的平分线,则线段AB ,AD ,DC 之间的等量关系为 ;
(2)方法迁移:如图②,在四边形ABCD 中,AB ∥CD ,AF 与DC 的延长线交于点F ,E 是BC 的中点,AE 是∠BAF 的平分线,试探究线段AB ,AF ,CF 之间的等量关系,并证明你的结论;
(3)联想拓展:如图③,AB ∥CF ,E 是BC 的中点,点D 在线段AE 上,∠EDF =∠BAE ,试探究线段AB ,DF ,CF 之间的数量关系,并证明你的结论.
29.如图,四边形ABCD 为矩形,C 点在x 轴上,A 点在y 轴上,D(0,0),B(3,4),矩形ABCD 沿直线EF 折叠,点B 落在AD 边上的G 处,E 、F 分别在BC 、AB 边上且F(1,4).
(1)求G 点坐标
(2)求直线EF 解析式
(3)点N 在坐标轴上,直线EF 上是否存在点M ,使以M 、N 、F 、G 为顶点的四边形是平行四边形?若存在,直接写出M 点坐标;若不存在,请说明理由
30.如图,在矩形ABCD 中,AB a ,BC b =,点F 在DC 的延长线上,点E 在AD 上,且有12
CBE ABF ∠=∠.
(1)如图1,当a b =时,若60CBE ∠=︒,求证:BE BF =;
(2)如图2,当32
b a =
时, ①请直接写出ABE ∠与BFC ∠的数量关系:_________; ②当点E 是AD 中点时,求证:2CF BF a +=;
③在②的条件下,请直接写出:BCF ABCD S S ∆矩形的值.
【参考答案】***试卷处理标记,请不要删除
一、选择题
1.B
解析:B
【解析】
【分析】
根据题意可证△ABE ≌△BDF ,可判断①②③,由△DEF 的周长=DE +DF +EF =AD +EF =4+EF ,则当EF 最小时△DEF 的周长最小,根据垂线段最短,可得BE ⊥AD 时,BE 最小,即EF 最小,即可求此时△BDE 周长最小值.
【详解】
解:∵AB=BC=CD=AD=4,∠A=∠C=60°
∴△ABD,△BCD为等边三角形,
∴∠A=∠BDC=60°,
∵将△BCD绕点B旋转到△BC'D'位置,
∴∠ABD'=∠DBC',且AB=BD,∠A=∠DBC',
∴△ABE≌△BFD,
∴AE=DF,BE=BF,∠AEB=∠BFD,
∴∠BED+∠BFD=180°,
故①正确,③错误;
∵∠ABD=60°,∠ABE=∠DBF,
∴∠EBF=60°,
故②正确
∵△DEF的周长=DE+DF+EF=AD+EF=4+EF,
∴当EF最小时,∵△DEF的周长最小.
∵∠EBF=60°,BE=BF,
∴△BEF是等边三角形,
∴EF=BE,
∴当BE⊥AD时,BE长度最小,即EF长度最小,
∵AB=4,∠A=60°,BE⊥AD,
∴EB=
∴△DEF的周长最小值为4+
故④正确,
综上所述:①②④说法正确,
故选:B.
【点睛】
本题考查了旋转的性质,等边三角形的性质,平行四边形的性质,最短路径问题,关键是灵活运用这些性质解决问题.
2.C
解析:C
【分析】
连接AH,由四边形ABCD是正方形与点E、F、H分别是AB、BC、CD的中点,容易证得△BCE≌△CDF与△ADH≌△DCF,根据全等三角形的性质,容易证得CE⊥DF与AH⊥DF,故①正确;根据垂直平分线的性质,即可证得AG=AD,继而AG=DC,而DG≠DC,所以
AG≠DG,故②错误;由直角三角形斜边上的中线等于斜边的一半,即可证得HG=1
2 DC,
∠CHG=2∠GDC,根据等腰三角形的性质,即可得∠DAG=2∠DAH=2∠GDC.所以∠DAG=∠CHG,④正确,则问题得解.
【详解】
∵四边形ABCD是正方形,
∴AB=BC=CD=AD,∠B=∠BCD=90°,
∵点E. F. H分别是AB、BC、CD的中点,∴BE=FC
∴△BCE≌△CDF,
∴∠ECB=∠CDF,
∵∠BCE+∠ECD=90°,
∴∠ECD+∠CDF=90°,
∴∠CGD=90°,
∴CE⊥DF,故①正确;
连接AH,
同理可得:AH⊥DF,
∵CE⊥DF,
∴△CGD为直角三角形,
∴HG=HD=1
2 CD,
∴DK=GK,
∴AH垂直平分DG,
∴AG=AD=DC,
在Rt△CGD中,DG≠DC,
∴AG≠DG,故②错误;
∵AG=AD, AH垂直平分DG
∴∠DAG=2∠DAH,
根据①,同理可证△ADH≌△DCF
∴∠DAH=∠CDF,
∴∠DAG=2∠CDF,
∵GH=DH,
∴∠HDG=∠HGD,
∴∠GHC=∠HDG+∠HGD=2∠CDF,
∴∠GHC=∠DAG,故③正确,
所以①和③正确选择C.
【点睛】
本题考查正方形的性质,全等三角形的判定与性质,利用边角边,容易证明
△BCE ≌△CDF ,从而根据全等三角形的性质和等量代换即可证∠ECD+∠CDF=90°,从而①可证;证②时,可先证AG=DC ,而DG≠DC ,所以②错误;证明③时,可利用等腰三角形的性质,证明它们都等于2∠CDF 即可.
3.A
解析:A
【分析】
取MB 的中点P ,连接FP ,EP ,DN ,由中位线的性质,可得当N 从A 到B 的运动过程中,点F 在FP 所在的直线上运动,即:线段EF 扫过图形为∆EFP ,求出当点N 与点A 重合时,FP 的值,以及FP 上的高,进而即可求解.
【详解】
取MB 的中点P ,连接FP ,EP ,DN ,
∵FP 是∆MNB 的中位线,EF 是∆DMN 的中位线,
∴FP ∥BN ,FP=12BN ,EF ∥DN ,EF=12
DN , ∴当N 从A 到B 的运动过程中,点F 在FP 所在的直线上运动,即:线段EF 扫过图形为∆EFP .
∴当点N 与点A 重合时,FP=
12BN =12BA =4, 过点D 作DQ ⊥AB 于点Q ,
∵AB ∥CD ,∠C =90°,AB =8,AD =CD =5,
∴AQ=8-5=3,
∴DQ=2222534AD AQ -=-=,
∴当点N 与点Q 重合时,EF=
11222DN DQ ==,EF ∥DQ ,即:EF ⊥AB ,即:EF ⊥FP , ∴∆EFP 中,FP 上的高=2,
∴当N 从A 到B 的运动过程中,线段EF 扫过图形的面积=
12
×4×2=4. 故选A .
【点睛】
本题主要考查中位线的性质定理,勾股定理以及三角形的面积公式,添加合适的辅助线,构造三角形以及三角形的中位线,是解题的关键.
4.D
解析:D
根据题意并结合图形,我们可以得出当C 为AB 的中点时,可判断所给结论正确与否.
【详解】
解:
当C 为AB 中点时,有图如下,
∵ACM 与BCN 为等边三角形,
∵C 为AB 中点,
∴AM=AC=MC=NC=BC=NB,MD=ND ,
∵MCN 60∠=︒
∴CMN CNM 60∠∠==︒
∴CMN 为等边三角形,③正确;
∵AMD BND 120∠∠==︒
∴AMD BND ≅
∴AD=BD,△ABD 此时为等腰三角形,②正确;
当C 为AB 中点时,AD+BD 值最小,
∵D 为MN 的中点,
∴CD 为MN 的垂直平分线, ∴1MD 4
AB =,∵AB=6, ∴22333CD 322⎛⎫=-= ⎪⎝⎭
∴2
23337AD 32⎛⎫=+= ⎪ ⎪⎝⎭
∵AD=BD ∴AD+BD=37
若△ABD 可能为直角三角形,则ADB 90∠=︒,
∴CD 为AB 的垂直平分线
∴ADC 45∠=︒
∴AC=CD,与所求结论不符,①错误.
【点睛】
本题考查的知识点是等边三角形的性质以及全等三角形的判定定理及性质,弄清题意,画出当C为AB中点时的图形是解题的关键.
5.C
解析:C
【分析】
正确的命题是真命题,根据矩形的判定定理,菱形的判定定理及平行四边形的判定定理依次判断.
【详解】
①对角线相等且互相平分的四边形是矩形,故该项错误;
②四条边相等的四边形是菱形,故该项错误;
③一组对边平行且相等的四边形是平行四边形,故该项正确;
故选:C.
【点睛】
此题考查真命题的定义,正确掌握矩形、菱形、平行四边形的判定定理是解题的关键. 6.C
解析:C
【分析】
根据已知条件得到AB=3,CD=22,过A作AE∥CD交BC于E,则∠AEB=∠DCB,根据平行四边形的性质得到CE=AD,AE=CD=22,由已知条件得到∠BAE=90°,根据勾股定理得到BE=22
,于是得到结论.
AB AE
【详解】
∵S1=3,S3=8
∴AB=3,CD=22
过A作AE∥CD交BC于E
则∠AEB=∠DCB
∵AD∥BC
∴四边形AECD是平行四边形
∴CE=AD,AE=CD=
∵∠ABC+∠DCB=90°
∴∠AEB+∠ABC=90°
∴∠BAE=90°
∴BE=
∵BC=2AD
∴BC=2BE=
∴S2=(244=
故选:C.
【点睛】
本题考查平行四边形的判定和性质,勾股定理,能正确作辅助线构造直角三角形是解决此题的关键.
7.C
解析:C
【分析】
①先判断出四边形CFHE是平行四边形,再根据翻折的性质可得CF=FH,然后根据邻边相等的平行四边形是菱形证明,判断出①正确;
②根据菱形的对角线平分一组对角线可得∠BCH=∠ECH,然后求出只有∠DCE=30°时EC平分∠DCH,判断出②错误;
③点H与点A重合时,设BF=x,表示出AF=FC=8-x,利用勾股定理列出方程求解得到BF的最小值,点G与点D重合时,CF=CD,求出最大值BF=4,然后写出BF的取值范围,判断出③正确;
④过点F作FM⊥AD于M,求出ME,再利用勾股定理列式求解得到EF,判断出④正确.【详解】
解:
①∵FH与CG,EH与CF都是矩形ABCD的对边AD、BC的一部分,
∴FH∥CG,EH∥CF,
∴四边形CFHE是平行四边形,
由翻折的性质得,CF=FH,
∴四边形CFHE是菱形,(故①正确);
②∴∠BCH=∠ECH,
∴只有∠DCE=30°时EC平分∠DCH,(故②错误);
③点H与点A重合时,此时BF最小,设BF=x,则AF=FC=8-x,
在Rt△ABF中,AB2+BF2=AF2,
即42+x2=(8-x)2,
解得x=3,
点G与点D重合时,此时BF最大,CF=CD=4,
∴BF=4,
∴线段BF的取值范围为3≤BF≤4,(故③正确);
过点F作FM⊥AD于M,
则ME=(8-3)-3=2,
由勾股定理得,
22
MF ME
+22
42
+=5
综上所述,结论正确的有①③④共3个,
故选C.
【点睛】
本题考查了翻折变换的性质,菱形的判定与性质,勾股定理的应用,难点在于灵活运用菱形的判定与性质与勾股定理等其它知识有机结合.
8.D
解析:D
【分析】
根据翻折变换的性质和正方形的性质可证Rt△ABG≌Rt△AFG;根据角的和差关系求得
∠GAF=45°;在直角△ECG中,根据勾股定理可证CE=2DE;通过证明
∠AGB=∠AGF=∠GFC=∠GCF,由平行线的判定可得AG∥CF;求出S△ECG,由S△FCG=3
5GCE S

即可得出结论.
【详解】
①正确.理由:
∵AB=AD=AF,AG=AG,∠B=∠AFG=90°,∴Rt△ABG≌Rt△AFG(HL);
②正确.理由:
∵∠BAG=∠FAG,∠DAE=∠FAE.
又∵∠BAD=90°,∴∠EAG=45°;
③正确.理由:
设DE=x,则EF=x,EC=12-x.在直角△ECG中,根据勾股定理,
得:(12﹣x)2+62=(x+6)2,解得:x=4,∴DE=x=4,CE=12-x=8,∴CE=2DE;
④正确.理由:
∵CG=BG,BG=GF,∴CG=GF,∴∠GFC=∠GCF.

∵Rt△ABG≌Rt△AFG,∴∠AGB=∠AGF,∠AGB+∠AGF=2∠AGB=∠GFC+∠GCF=2∠GFC=2∠GCF,∴∠AGB=∠AGF=∠GFC=∠GCF,∴AG∥CF;
⑤正确.理由:
∵S△ECG=1
2
GC•CE=
1
2
×6×8=24.
∵S△FCG=3
5GCE
S

=
3
24
5
⨯=
72
5

故选D.
【点睛】
本题考查了翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算等知识.此题综合性较强,难度较大,解题的关键是注意数形结合思想与方程思想的应用.
9.C
解析:C
【分析】
连接CF,交PQ于R,延长AD交EF于H,连接AF,则四边形ABEH是矩形,求出FH=1,AF2237
+=
AH FH ASA证得△RFP≌△RCQ,得出RP=RQ,则点R与点M 重合,得出MN是△CAF的中位线,即可得出结果.
【详解】
解:连接CF,交PQ于R,延长AD交EF于H,连接AF,如图所示:
则四边形ABEH是矩形,
∴HE=AB=1,AH=BE=BC+CE=2+4=6,
∵四边形CEFG是矩形,
∴FG∥CE,EF=CG=2,
∴∠RFP=∠RCQ,∠RPF=∠RQC,FH=EF﹣HE=2﹣1=1,
在Rt△AHF中,由勾股定理得:AF2222
6137
+=+=
AH FH,
在△RFP和△RCQ中,
RFP RCQ PF CQ
RPF RQC ∠=


=

⎪∠=


∴△RFP≌△RCQ(ASA),∴RP=RQ,
∴点R与点M重合,
∵点N是AC的中点,
∴MN是△CAF的中位线,
∴MN=1137
37
222
=⨯=
AF,
故选:C.
【点睛】
本题考查了矩形的判定与性质、平行线的性质、勾股定理、全等三角形的判定与性质、三角形中位线定理等知识;作辅助线构建全等三角形是解题的关键.
10.C
解析:C
【分析】
作点B关于对角线AC的对称点,该对称点与D重合,连接DM,则PB与PM之和的最小值为DM的长;由菱形的面积可求出BD=4,由题意可证△BCD是等边三角形,由等边三角形的性质可得DM⊥BC,CM=BM=2,由勾股定理可求DM=23.
【详解】
解:作点B关于对角线AC的对称点,该对称点与D重合,连接DM,则PB与PM之和的最小值为DM的长;
∵菱形ABCD的面积为3,对角线AC长为3,
∴BD=4,
∵BC=CD,∠BCD=60°,
∴△BCD是等边三角形,
∴BD=BC=4,
∵M是BC的中点,
∴DM⊥BC,CM=BM=2,
在Rt△CDM中,CM=2,CD=4,
∴2216423
CD CM-=
-
故选:C.
【点睛】
本题考查了轴对称-最短路线问题,菱形的性质,等边三角形的性质,直角三角形勾股定理;掌握利用轴对称求最短距离,将PB与PM之和的最小值转化为线段DM的长是解题的
二、填空题
11.12或20
【分析】
根据题意分别画出图形,BC边上的高在平行四边形的内部和外部,进而利用勾股定理求出即可.
【详解】
解:情况一:当BC边上的高在平行四边形的内部时,如图1所示:
在平行四边形ABCD中,BC边上的高为4,AB=5,AC=25,
在Rt△ACE中,由勾股定理可知:2222
CE AC AE,
(25)42
在Rt△ABE中,由勾股定理可知:2222
=-=-=,
BE AB AE543
∴BC=BE+CE=3+2=5,
此时平行四边形ABCD的周长等于2×(AB+BC)=2×(5+5)=20;
情况二:当BC边上的高在平行四边形的外部时,如图2所示:
在平行四边形ABCD中,BC边上的高为AE=4,AB=5,AC=25
在Rt△ACE中,由勾股定理可知:2222
(25)42
CE AC AE,
在Rt△ABE中,由勾股定理可知:2222
-=-,
BE AB AE543
∴BC=BE-CE=3-2=1,
∴平行四边形ABCD的周长为2×(AB+BC)=2×(5+1)=12,
综上所述,平行四边形ABCD的周长等于12或20.
故答案为:12或20.
【点睛】
此题主要考查了平行四边形的性质以及勾股定理等知识,分高在平行四边形内部还是外部讨论是解题关键.
12.4:9
设DP =DN =m ,则PN =2m ,PC =2m ,AD =CD =3m ,再求出FG=CF=12BC=32m ,分别求出两个阴影部分的面积即可解决问题.
【详解】
根据图形的特点设DP =DN =m ,则PN =22m m +=2m ,
∴PM=2m=MC ,PC=22PM MC +=2m ,
∴BC =CD =PC+DP=3m ,
∵四边形HMPN 是正方形,
∴GF ⊥BC
∵∠ACB =45︒,
∴△FGC 是等腰直角三角形,
∴FG=CF=
12BC=32m , ∴S 1=12DN×DP=12m 2,S 2=12FG×CF=98
m 2, ∴12:S S =
12m 2: 98m 2=4:9, 故答案为4:9.
【点睛】
本题考查正方形的性质,勾股定理等知识,解题的关键是学会利用参数解决问题,属于中考常考题型.
13.102-
【分析】
连结AC ,取OC 中点M ,连结 MB ,MG ,则MB ,MG 为定长,利用两点之间线段最短解决问题即可.
【详解】
连接AC ,交EF 于O ,
∵AD ∥BC ,
∴∠EAO =∠FCO ,∠AEO =∠CFO ,
∵AE =CF ,
∴△AEO ≌△CFO (ASA ),
∴OA =OC ,
∴O 是正方形的中心,
∵AB =BC =4,
∴AC =OC =,
取OC 中点M ,连结 MB ,MG ,过点M 作MH ⊥BC 于H ,
∵MC =12
OC , ∴MH =CH =1,
∴BH =4−1=3,
由勾股定理可得MB
在Rt △GOC 中,M 是OC 的中点,则MG =
12OC
∵BG≥BM−MG ,
当B ,M ,G 三点共线时,BG ,

【点睛】
本题主要考查了正方形的性质,根据正方形的性质得出当E ,F 运动到AD ,BC 的中点时,MG 最小是解决本题的关键.
14.20181
2
【分析】
根据几何图形特征,先求出1C 、2C 、3C ,根据求出的结果,找出规律,从而得出2020C .
【详解】
∵点E 是BC 的中点,ED ∥AB ,EF ∥AC
∴DE 、EF 是△ABC 的中位线
∵等边△ABC 的边长为1
∴AD=DE=EF=AF =
12 则1C =1422
⨯= 同理可求得:2C =1,3C =12
发现规律:规律为依次缩小为原来的
12 ∴2020C =20181
2 故答案为:
201812.
【点睛】
本题考查找规律和中位线的性质,解题关键是求解出几组数据,根据求解的数据寻找规律.
15.4
【分析】
根据三个角都是直角的四边形是矩形,得四边形AEPF 是矩形,根据矩形的对角线相等,得EF =AP ,则EF 的最小值即为AP 的最小值,根据垂线段最短,知:AP 的最小值即等于直角三角形ABC 斜边上的高.
【详解】
解:连接AP ,
∵在△ABC 中,AB =3,AC =4,BC =5,
∴AB 2+AC 2=BC 2,
即∠BAC =90°.
又∵PE ⊥AB 于E ,PF ⊥AC 于F ,
∴四边形AEPF 是矩形,
∴EF =AP ,
∵AP 的最小值即为直角三角形ABC 斜边上的高,
设斜边上的高为h ,
则S △ABC =1122
BC h AB AC ⋅=⋅ ∴1153422
h ⨯⋅=⨯⨯ ∴h=2.4,
∴EF 的最小值为2.4,
故答案为:2.4.
【点睛】
本题考查了矩形的性质和判定,勾股定理的逆定理,直角三角形的性质的应用,要能够把要求的线段的最小值转化为便于求的最小值得线段是解此题的关键.
1637
【分析】
如图,延长CB 到T ,使得BT=DE ,连接DT ,作点B 关于直线AC 的对称点W ,连接TW ,DW ,过点W 作WK ⊥BC 交BC 的延长线于K .证明BE=DT ,BD=DW ,把问题转化为求DT+DW 的最小值.
【详解】
解:如图,延长CB 到T ,使得BT=DE ,连接DT ,作点B 关于直线AC 的对称点W ,连接
TW,DW,过点W作WK⊥BC交BC的延长线于K.
∵△ABC,△DEF都是等边三角形,BC=3DE=3,
∴BC=AB=3,DE=1,∠ACB=∠EDF=60°,
∴DE∥TC,
∵DE=BT=1,
∴四边形DEBT是平行四边形,
∴BE=DT,
∴BD+BE=BD+AD,
∵B,W关于直线AC对称,
∴CB=CW=3,∠ACW=∠ACB=60°,DB=DW,
∴∠WCK=60°,
∵WK⊥CK,
∴∠K=90°,∠CWK=30°,
∴CK=1
2
CW=
3
2
,3
33

∴TK=1+3+3
2
=
11
2


2
2
22
1133
22
TK WK
⎛⎫
⎛⎫
+=+ ⎪
⎪ ⎪
⎝⎭⎝⎭
37
∴DB+BE=DB+DT=DW+DT≥TW,
∴BD37
∴BD+BE37,
37.
【点睛】
本题考查轴对称-最短问题,等边三角形的性质,解直角三角形,平行四边形的判定和性质等知识,解题的关键是学会用转化的思想思考问题,属于中考填空题中的压轴题.17.5
【分析】
取AB的中点M,连接DQ,QM,DM.证明QM=QK,QG=DQ,求出DQ+QM的最小值即可解决问题.
【详解】
取AB的中点M,连接DQ,QM,DM.
∵四边形ABCD是正方形,
∴AD=AB=6,∠DAM=∠ADG=90°,
∵AM=BM=3,
∴DM2222
AB AM
+=+5,
63
∵GK=HK,AB,GH关于EF对称,
∴QM=QK,
∵∠ADG=90°,AQ=QG,
∴DQ=AQ=QG,
∵△QGK的周长=GK+QG+QJ=3+DQ+QM.
又∵DQ+QM≥DM,
∴DQ+QM≥5
∴△QGK的周长的最小值为5,
故答案为5
【点睛】
本题考查了折叠的性质、正方形的性质、勾股定理、最值问题,解题的关键是取AB的中点M,确定QG+QK=QD+QM,属于中考常考题型.
18.①②③④
【分析】
根据正方形的性质和SAS可证明△ABG≌△AEC,然后根据全等三角形的性质即可判断①;设BG、CE相交于点N,AC、BG相交于点K,如图1,根据全等三角形对应角相等可得
∠ACE=∠AGB,然后根据三角形的内角和定理可得∠CNG=∠CAG=90°,于是可判断②;过点E作EP⊥HA的延长线于P,过点G作GQ⊥AM于Q,如图2,根据余角的性质即可判断④;利用AAS即可证明△ABH≌△EAP,可得EP=AH,同理可证GQ=AH,从而得到EP =GQ,再利用AAS可证明△EPM≌△GQM,可得EM=GM,从而可判断③,于是可得答案.
【详解】
解:在正方形ABDE和ACFG中,AB=AE,AC=AG,∠BAE=∠CAG=90°,
∴∠BAE+∠BAC=∠CAG+∠BAC,
即∠CAE=∠BAG,
∴△ABG≌△AEC(SAS),
∴BG=CE,故①正确;
设BG、CE相交于点N,AC、BG相交于点K,如图1,
∵△ABG ≌△AEC ,
∴∠ACE =∠AGB ,
∵∠AKG =∠NKC ,
∴∠CNG =∠CAG =90°,
∴BG ⊥CE ,故②正确;
过点E 作EP ⊥HA 的延长线于P ,过点G 作GQ ⊥AM 于Q ,如图2,
∵AH ⊥BC ,
∴∠ABH +∠BAH =90°,
∵∠BAE =90°,
∴∠EAP +∠BAH =90°,
∴∠ABH =∠EAP ,即∠EAM =∠ABC ,故④正确;
∵∠AHB =∠P =90°,AB =AE ,
∴△ABH ≌△EAP (AAS ),
∴EP =AH ,
同理可得GQ =AH ,
∴EP =GQ ,
∵在△EPM 和△GQM 中,
90P MQG EMP GMQ EP GQ ∠=∠=︒⎧⎪∠=∠⎨⎪=⎩

∴△EPM ≌△GQM (AAS ),
∴EM =GM ,
∴AM 是△AEG 的中线,故③正确.
综上所述,①②③④结论都正确.
故答案为:①②③④.
【点睛】
本题考查了正方形的性质、三角形的内角和定理以及全等三角形的判定和性质,作辅助线构造出全等三角形是难点,熟练掌握全等三角形的判定和性质是关键.
19.9或9(31)

【分析】
分两种情况画图,利用等腰直角三角形的性质和勾股定理矩形计算即可.
【详解】
解:①如图1,延长EA交DC于点F,
∵菱形ABCD的周长为24,
∴AB=BC=6,
∵∠ABC=60°,
∴三角形ABC是等边三角形,
∴∠BAC=60°,
当EA⊥BA时,△ABE是等腰直角三角形,
∴AE=AB=AC=6,∠EAC=90°+60°=150°,
∴∠FAC=30°,
∵∠ACD=60°,
∴∠AFC=90°,
∴CF=1
2
AC=3,
则△ACE的面积为:1
2
AE×CF=
1
2
×6×3=9;
②如图2,过点A作AF⊥EC于点F,
由①可知:∠EBC=∠EBA+∠ABC=90°+60°=150°,∵AB=BE=BC=6,
∴∠BEC=∠BCE=15°,
∴∠AEF=45°-15°=30°,∠ACE=60°-15°=45°,
∴AF=1
2
AE,
2
AC=32
∵AB=BE=6,
∴AE=
∴=
∴EC=EF+FC=
则△ACE 的面积为:
12EC×AF=11)2⨯⨯=.
故答案为:9或1).
【点睛】
本题考查了菱形的性质、等腰三角形的性质、等边三角形的判定与性质,解决本题的关键是掌握菱形的性质.
20
【解析】
【分析】
根据折叠的性质可得∠DAF=∠BAF=45°,再由矩形性质可得FC=ED=1,然后由勾股定理求出FG 即可.
【详解】
由折叠的性质可知,∠DAF=∠BAF=45°,
∴AE=AD=3,EB=AB-AD=1,
∵四边形EFCB 为矩形,
∴FC=BE=1,
∵AB ∥FC ,
∴∠GFC=∠DAF=45°,
∴GC=FC=1,
∴FG ===

【点睛】
本题考查了折叠变换,矩形的性质是一种对称变换,理解折叠前后图形的大小不变,位置变化,对应边和对应角相等是解决此题的关键.
三、解答题
21.(1)证明见解析;(2)能,10;(3)
152
,理由见解析; 【分析】
(1)利用题中所给的关系式,列出CD ,DF ,AE 的式子,即可证明.
(2)由题意知,四边形AEFD 是平行四边形,令AD=DF ,求解即可得出t 值.
(3)由题意可知,当DE ∥BC 时,△DEF 为直角三角形,利用AD+CD=AC 的等量关系,代入式子求值即可.
【详解】
(1)由题意知:三角形CFD是直角三角形∵∠B=90°,∠A=60°
∴∠C=30°,CD=2DF,
又∵由题意知CD=4t,AE=2t,
∴CD=2AE
∴AE=DF.
(2)能,理由如下;
由(1)知AE=DF
又∵DF⊥BC,∠B=90°
∴AE∥DF
∴四边形AEFD是平行四边形.
当AD=DF时,平行四边形AEFD是菱形
∵AC=60cm,DF=1
2
CD,CD=4t,
∴AD=60-4t,DF=2t,∴60-4t=2t
∴t=10.
(3)当t为15
2
时,△DEF为直角三角形,理由如下;
由题意知:四边形AEFD是平行四边形,DF⊥BC,AE∥DF,∴当DE∥BC时,DF⊥DE
∴∠FDE=∠DEA=90°
在△AED中,
∵∠DEA=90°,∠A=60°,AE=2t
∴AD=4t,
又∵AC=60cm,CD=4t,
∴AD+CD=AC,8t=60,
∴t=15
2

即t=15
2
时,∠FDE=∠DEA=90°,△DEF为直角三角形.
【点睛】
本题主要考查了三角形、平行四边形及菱形的性质,正确掌握三角形、平行四边形及菱形的性质是解题的关键.
22.(1)BD⊥CF,CF=BC-CD;(2)CF=BC+CD,见解析;(3)①CF=CD−BC,②等腰三角形,见解析
【分析】
(1)先说明△ABC是等腰直角三角形,利用SAS即可证明△BAD≌△CAF,从而证得
CF⊥BD、CF=BD,又 BD+CD=BC, CF=BC-CD;
(2)先利用SAS即可证得△BAD≌△CAF,从而证得BD=CF,即可得到CF-CD=BC;(3)①与(2)同理可得BD=CF,然后结合图形可得CF=CD-BC;
②先根据等腰直角三角形的性质得到∠ABC=∠ACB=45°,再根据邻补角的定义求出
∠ABD=135°,再根据同角的余角相等求出∠BAD=∠CAF,然后利用“边角边”证明
△BAD≌△CAF,得∠ACF=∠ABD,求出∠FCD=90°,然后根据直角三角形斜边上的中线等
于斜边的一半求出OC=1
2
DF,再根据正方形的对角线相等求出OC=OA,从而得到△AOC
是等腰三角形.
【详解】
(1)解:∵∠B4C=90°,AB=AC
∴∠ABC=∠ACB=45°
∵四边形ADEF是正方形
∴AD=AF,∠DAF=90°
∵∠BAC=∠BAD+∠DAC=90°,∠DAF=∠CAF+∠DAC=90°∴∠BAD=∠CAF
在△BAD和△CAF中,
AB=AC,∠BAD=∠CAF,AD=AF,
∴△BAD≌△CAF(SAS),
∴BD=CF,∠ABD=∠ACF=45°
∴∠FCB=∠ACF+ ∠ACB=90°,即CF⊥BC
∵BD+CD=BC
∴CF+CD=BC;
故答案为:BD⊥CF,CF=BC-CD;
(2)证明:∵∠BAC=90°,AB=AC,
∴∠ABC=∠ACB=45°,
∵四边形ADEF是正方形,
∴AD=AF,∠DAF=90°,
∵∠BAD=∠BAC+∠DAC,
∠CAF=∠DAF+∠DAC,
∴∠BAD=∠CAF,
在△BAD和△CAF中,
AB=AC,∠BAD=∠CAF,AD=AF,
∴△BAD≌△CAF(SAS),
∴BD=CF,
∵BD=BC+CD,
∴CF=BC+CD;
(3)①与(2)同理可得,BD=CF,
所以,CF=CD−BC;
②∵∠BAC=90°,AB=AC,
∴∠ABC=∠ACB=45°,
则∠ABD=180∘−45°=135°,
∵四边形ADEF 是正方形,
∴AD=AF ,∠DAF=90°,
∵∠BAC=∠BAF+∠CAF=90°,
∠DAF=∠BAD+∠BAF=90°,
∴∠BAD=∠CAF ,
在△BAD 和△CAF 中,
AB=AC ,∠BAD=∠CAF ,AD=AF ,
∴△BAD ≌△CAF(SAS),
∴∠ACF=∠ABD=180°−45°=135°,
∴∠FCD=∠ACF−∠ACB=90°,
则△FCD 为直角三角形,
∵正方形ADEF 中,O 为DF 中点,
∴OC=12
DF , ∵在正方形ADEF 中,OA=
12AE ,AE=DF , ∴OC=OA ,
∴△AOC 是等腰三角形.
【点睛】
本题考查了四边形的综合题,正方形的性质、全等三角形的判定与性质、等腰直角三角形的性质、等腰三角形的判定以及同角的余角相等的性质,在(1)证明三角形全等得到思路并推广到(2)(3)是解答本题的关键.
23.(1)见解析;(2)
8;(3)4或6 【分析】
(1)由折叠的性质得ACB ACE ∠=∠,BC EC =,由平行四边形的性质得AD BC =,//AD BC .则EC AD =,ACB CAD ∠=∠,得ACE CAD ∠=∠,证出OA OC =,则OD OE =,由等腰三角形的性质得ODE OED ∠=∠,证出
CAD ACE OED ODE ∠=∠=∠=∠,即可得出结论;
(2)证四边形ABCD 是矩形,则90CDO ∠=︒,==CD AB AD BC ==
OA OC x ==
,则OD x ,在Rt OCD ∆中,由勾股定理得出方程,求出OA =,由三角形面积公式即可得出答案;
(3)分两种情况:90EAD ∠=︒或90AED ∠=︒,需要画出图形分类讨论,根据含30角的直角三角形的性质,即可得到BC 的长.
【详解】
解:(1)证明:由折叠的性质得:ABC ∆≅△AEC ∆,。

相关文档
最新文档