高考数学压轴专题(易错题)备战高考《计数原理与概率统计》单元汇编及答案解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
新高中数学《计数原理与概率统计》专题解析
一、选择题
1.设1021001210)x a a x a x a x =++++L ,那么
()(2
20210139)a a a a a a +++-+++L L 的值为( )
A .0
B .1-
C .1
D .101)
【答案】C 【解析】 【分析】
令1x =和1x =-得到012310a a a a a ++++L ,012310a a a a a -+-++L ,再整体代入可得; 【详解】
解:因为
)10
2
10
1
2
10
x
a a x a x a x =++++L ,
令1x =得)10
1
2
3
10
1a a a a a =++++L ,
令1x =-得)10
1
2
3
10
1a a a a a =-+-++L ,
所以()(2
20210139)a a a a a a +++-+++L L
()()012310012310a a a a a a a a a a =++++-+-++L L
))
10
10
1
1
=
⋅
))
10
11⋅
⎡⎤⎣
⎦
=
1011== 故选:C 【点睛】
本题考查利用待定系数法求二项式系数和的问题,属于中档题.
2.若1()n
x x
+的展开式中第3项与第7项的系数相等,则展开式中二项式系数最大的项为( ) A .252 B .70
C .256x
D .256x -
【答案】B 【解析】
由题意可得26
n n C C =,所以8n =,则展开式中二项式系数最大的项为第五项,即
44445881
()70T C x C x
===,故选B.
3.将一颗骰子掷两次,观察出现的点数,并记第一次出现的点数为m ,第二次出现的点数为n ,向量p u v =(m ,n),q v =(3,6).则向量p u v 与q v
共线的概率为( ) A .
13
B .
14
C .
16
D .
112
【答案】D 【解析】 【分析】
由将一枚骰子抛掷两次共有36种结果,再列举出向量p u r 与q r
共线的基本事件的个数,利用
古典概型及其概率的计算公式,即可求解。
【详解】
由题意,将一枚骰子抛掷两次,共有6636⨯=种结果,
又由向量(,),(3,6)p m n q ==u r r
共线,即630m n -=,即2n m =,
满足这种条件的基本事件有:(1,2),(2,4),(3,6),共有3种结果,
所以向量p u r 与q r 共线的概率为31
3612
P =
=,故选D 。
【点睛】
本题主要考查了向量共线的条件,以及古典概型及其概率的计算,其中解答中根据向量的共线条件,得出基本事件的个数是解答的关键,着重考查了推理与运算能力,属于基础题。
4.下列四个结论中正确的个数是
(1)对于命题0:p x R ∃∈使得2
010x -≤,则:p x R ⌝∃∈都有210x ->;
(2)已知2
(2,)X N σ:,则 (2)0.5P X >=
(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为
ˆ23y
x =-; (4)“1x ≥”是“1
2x x
+≥”的充分不必要条件. A .1 B .2
C .3
D .4
【答案】C 【解析】 【分析】
由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定. 【详解】
由题意,(1)中,根据全称命题与存在性命题的关系,可知命题0:p x R ∃∈使得
2010x -≤,则:p x R ⌝∀∈都有210x ->,是错误的;
(2)中,已知(
)2
2,X N σ
~,正态分布曲线的性质,可知其对称轴的方程为2x =,所
以 (2)0.5P X >=是正确的;
(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质
和直线的点斜式方程,可得回归直线方程为ˆ23y
x =-是正确;
(4)中,当1x ≥时,可得12x x +≥=成立,当12x x +≥时,只需满足0x >,
所以“1x ≥”是“1
2x x
+≥”成立的充分不必要条件. 【点睛】
本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.
5.三位同学参加数学、物理、化学知识竞赛,若每人都选择其中两个科目,则有且仅有两人选择的科目完全相同的概率是( ) A .
14
B .
13
C .
12
D .
23
【答案】D 【解析】 【分析】
先求出三位同学参加数学、物理、化学知识竞赛,每人都选择其中两个科目的基本事件总数,再求出有且仅有两人选择的科目完全相同所包含的基本事件个数,利用古典概型的概率计算公式即可得到答案. 【详解】
三位同学参加数学、物理、化学知识竞赛,每人都选择其中两个科目共有23
3()27C =种不
同
结果,有且仅有两人选择的科目完全相同共有221
33218C C C ⋅⋅=种,故由古典概型的概率计
算公式可得所求概率为182273
=. 故选:D 【点睛】
不同考查古典概型的概率计算问题,涉及到组合的基本应用,考查学生的逻辑推理与数学运算能力,是一道中档题.
6.如果一个三位数,各位数字之和等于10,但各位上数字允许重复,则称此三位数为“十全九美三位数”(如235,505等),则这种“十全九美三位数”的个数是( ) A .54 B .50 C .60
D .58
【答案】A
【解析】
【分析】
利用分类计数原理,分成有重复数字和无重复数字的情况,即可得答案.
【详解】
利用分类计数原理,分成有重复数字和无重复数字的情况:
(1)无重复数字:109,190,901,910,127,172,271,217,721,712,136,163,316,361,613,631,145,154,451,415,514,541,208,280,802,820,235,253,352,325,523,532,307,370,703,730,406,460,604,640,共40个,(2)有重复数字:118,181,811,226,262,622,334,343,433,442,424,244,550,505,共14个.
故选:A.
【点睛】
本题考查分类计数原理的应用,考查逻辑推理能力和运算求解能力,求解时注意不重不漏.
7.6件产品中有4件合格品,2件次品.为找出2件次品,每次任取一个检验,检验后不放回,则恰好在第四次检验后找出所有次品的概率为()
A.3
5
B.
1
3
C.
4
15
D.
1
5
【答案】C
【解析】
【分析】
题目包含两种情况:第一种是前面三次找出一件次品,第四次找出次品,第二种情况是前面四次都是正品,则剩余的两件是次品,计算概率得到答案.
【详解】
题目包含两种情况:
第一种是前面三次找出一件次品,第四次找出次品,
2
3
14
6
1
5
C
p
C
==;
第二种情况是前面四次都是正品,则剩余的两件是次品,
4
4
24
6
1
15
C
p
C
==;
故
12
4 15
p p p
=+=.
故选:C.
【点睛】
本题考查了概率的计算,忽略掉前面四次都是正品的情况是容易发生的错误.
8.某光学仪器厂生产的透镜,第一次落地打破的概率为0.3;第一次落地没有打破,第二次落地打破的概率为0.4;前两次落地均没打破,第三次落地打破的概率为0.9.则透镜落地3次以内(含3次)被打破的概率是().
A .0.378
B .0.3
C .0.58
D .0.958
【答案】D 【解析】
分析:分别利用独立事件的概率公式求出恰在第一次、恰在第二次、恰在第三次落地打破的概率,然后由互斥事件的概率公式求解即可.
详解:透镜落地3次,恰在第一次落地打破的概率为10.3P =, 恰在第二次落地打破的概率为20.70.40.28P =⨯=, 恰在第三次落地打破的概率为30.70.60.90.378P =⨯⨯=, ∴落地3次以内被打破的概率1230.958P P P P =++=.故选D .
点睛:本题主要考查互斥事件、独立事件的概率公式,属于中档题. 解答这类综合性的概率问题一定要把事件的独立性、互斥性结合起来,要会对一个复杂的随机事件进行分析,也就是说能把一个复杂的事件分成若干个互斥事件的和,再把其中的每个事件拆成若干个相互独立的事件的积,这种把复杂事件转化为简单事件,综合事件转化为单一事件的思想方法在概率计算中特别重要.
9.“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为5的正方形将其包含在内,并向该正方形内随机投掷1000个点,己知恰有400个点落在阴影部分,据此可估计阴影部分的面积是
A .2
B .3
C .10
D .15
【答案】C 【解析】 【分析】
根据古典概型概率公式以及几何概型概率公式分别计算概率,解方程可得结果. 【详解】
设阴影部分的面积是s ,由题意得,选C.
【点睛】
(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.
10.河图是上古时代神话传说中伏羲通过黄河中浮出龙马身上的图案,与自己的观察,画
出的“八卦”,而龙马身上的图案就叫做“河图”.把一到十分成五组,如图,其口诀:一六共宗,为水居北;二七同道,为火居南;三八为朋,为木居东;四九为友,为金居西;五十同途,为土居中.“河图”将一到十分成五行属性分别为金,木,水,火,土的五组,在五行的五种属性中,五行相克的规律为:金克木,木克土,土克水,水克火,火克金;五行相生的规律为:木生火,火生土,土生金,金生水,水生木.现从这十个数中随机抽取3个数,则这3个数字的属性互不相克的条件下,取到属性为土的数字的概率为( )
A .
110
B .
15
C .
25
D .
12
【答案】C 【解析】 【分析】
从这十个数中随机抽取3个数,这3个数字的属性互不相克,包含的基本事件个数
11221
52222()20n C C C C C =+=,这3个数字的属性互不相克的条件下,取到属性为土的数字包含的基本事件个数为:11221
22222()8,m C C C C C =+=,由此能求出这3个数字的属性互不
相克的条件下,取到属性为土的数字的概率. 【详解】
由题意得数字4,9属性为金,3,8属性为木,1,6属性为水, 2,7属性为火,5,10属性为土,
从这十个数中随机抽取3个数,这3个数字的属性互不相克,
包含的基本事件个数11221
52222()20n C C C C C =+=,
这3个数字的属性互不相克的条件下,取到属性为土的数字包含的基本事件个数为:
11221
22222()8,m C C C C C =+=,
∴这3个数字的属性互不相克的条件下,取到属性为土的数字的概率82
205
m p n ===. 故选:C . 【点睛】
此题考查古典概型,关键在于根据计数原理准确求解基本事件总数和某一事件包含的基本事件个数.
11.某公司在2014~2018年的收入与支出情况如下表所示: 收入x (亿元)
2.2
2.4
3.8
5.2
6.0
根据表中数据可得回归直线方程为$$0.7y x a
=+,依此估计如果2019年该公司收入为8亿元时的支出为( ) A .4.502亿元 B .4.404亿元 C .4.358亿元 D .4.856亿元
【答案】D 【解析】 【分析】
先求 3.92x =,2y =,根据$0.7a y x =-,求解$0.744a =-,将8x =代入回归直线方程为$$0.7y x a
=+,求解即可. 【详解】 2.2 2.4 3.8 5.2 6.0
3.925x ++++=
=,0.2 1.5 2.0 2.5 3.825
y ++++==
$0.720.7 3.920.744a y x =-=-⨯=-即$0.70.744y x =-
令8x =,则$0.780.744 4.856y =⨯-= 故选:D 【点睛】
本题考查回归分析,样本中心点()
,x y 满足回归直线方程,是解决本题的关键.属于中档题.
12.某产品的广告费用x 与销售额y 的统计数据如下表:
根据上表可得回归方程ˆˆˆy
bx a =+中的ˆb 约等于9,据此模型预报广告费用为6 万元时,销售额为( ) A .54万元 B .55万元
C .56万元
D .57万元
【答案】D 【解析】
试题分析:由表格可算出1(1245)34x =
+++=,1
(10263549)304
y =+++=,根据点
(),x y 在回归直线ˆˆˆy bx a =+上,ˆ9b
=,代入算出ˆ3a =,所以ˆ93y x =+,当6x =时,ˆ57y =,故选D.
考点:回归直线恒过样本点的中心(),x y .
13.在区间[2,2]-上任意取一个数x ,使不等式20x x -<成立的概率为( ) A .
1
6
B .
12
C .
13
D .
14
【答案】D 【解析】 【分析】
先解不等式,再根据几何概型概率公式计算结果. 【详解】
由20x x -<得01x <<,所以所求概率为101
2(2)4
-=--,选D.
【点睛】
(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解. (2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.
(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.
14.设01p <<,随机变量ξ的分布列是
则当p 在(0,1)内增大时,“()E ξ减小”是“()D ξ增加”的( ) A .充分不必要条件 B .必要不充分条件 C .充分必要条件 D .既不充分也不必要条件
【答案】D 【解析】 【分析】
首先求()E ξ和()D ξ,然后换元()t E ξ=,
()2
21331321
222228
D t t t ξ⎛⎫=-++=--+ ⎪⎝⎭,利用函数的单调性,判断充分必要条件.
【详解】
由题意可知:()()2
21210p p p p -+-+= , 且()2
011p <-<,()0211p p <-<,201p <<
解得:01p <<,
()()()2
211121341E p p p p p ξ=-⨯-+⨯-+⨯=-,
()()()()()()2
2
2
2
2
141114121341D p p p p p p p ξ=----+--⨯-+--⨯⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦
288p p =-+,
设()411,3E p t ξ=-=∈-,
2
21113884422t t D t t ξ++⎛⎫=-⨯+⨯=-++ ⎪
⎝⎭ ()2
1122
t =-
-+, 当()1,1t ∈-时,D ξ增大,当()1,2t ∈时,D ξ减小, 所以当E ξ减小时,不能推出D ξ增加; 设()2
880,2D p p t ξ=-+=∈,
2
1822p t ⎛
⎫--+= ⎪⎝⎭,
2
1228t p -⎛⎫-= ⎪⎝⎭
,
当102p <<
时,12p =,此时1412
E ξ⎛=- ⎝,当D t ξ=增加时,E ξ也增加,
当112p ≤<时,12p =+1412E ξ⎛=+- ⎝,当D t ξ=增加时,E ξ减小,
所以当D ξ增加,不能推出E ξ减小.
综上可知:“E ξ减小”是“D ξ增加”的既不充分也不必要条件. 故选:D 【点睛】
本题考查充分必要条件,离散型随机变量的期望和方程,重点考查换元,二次函数的单调性,属于中档题型.
15
.3
ax ⎛ ⎝
⎭的展开式中,第三项的系数为1,则11a dx x =⎰( ) A .2ln 2 B .ln 2 C .2 D .1
【答案】A 【解析】 【分析】
首先根据二项式定理求出a ,把a 的值带入1
1
a
dx x
⎰
即可求出结果. 【详解】
解题分析
根据二项式3
ax ⎛- ⎝⎭
的展开式的通项公式得2
21
213()4a T C ax x +⎛== ⎝⎭. Q 第三项的系数为1,1,44
a
a ∴=∴=,
则4
4
111
11d d ln 2ln 2a x x x x x ===⎰⎰.
故选:A 【点睛】
本题考查二项式定理及定积分. 需要记住二项式定理展开公式:1C k n k k
k n T a b -+=.属于中等
题.
16.一个袋中放有大小、形状均相同的小球,其中红球1个、黑球2个,现随机等可能取出小球,当有放回依次取出两个小球时,记取出的红球数为1ξ;当无放回依次取出两个小球时,记取出的红球数为2ξ,则( ) A .12E E ξξ<,12D D ξξ< B .12E E ξξ=,12D D ξξ> C .12E E ξξ=,12D D ξξ< D .12E E ξξ>,12D D ξξ>
【答案】B 【解析】 【分析】
分别求出两个随机变量的分布列后求出它们的期望和方差可得它们的大小关系. 【详解】
1ξ可能的取值为0,1,2;2ξ可能的取值为0,1,
()1409P ξ==
,()1129P ξ==,()141411999
P ξ==--=, 故123E ξ=
,2
2214144402199999
D ξ=⨯+⨯+⨯-=.
()22110323P ξ⨯==
=⨯,()22122
1323
P ξ⨯⨯===⨯, 故223E ξ=
,2
221242013399
D ξ=⨯+⨯-=, 故12
E E ξξ=,12D D ξξ>.故选B. 【点睛】
离散型随机变量的分布列的计算,应先确定随机变量所有可能的取值,再利用排列组合知识求出随机变量每一种取值情况的概率,然后利用公式计算期望和方差,注意在取球模型中摸出的球有放回与无放回的区别.
17.已知随机变量ξ,η的分布列如下表所示,则( )
A .E E ξη<,D D ξη<
B .E E ξη<,D D ξη>
C .E E ξη<,
D D ξη= D .
E E ξη=,D D ξη=
【答案】C 【解析】 【分析】
由题意分别求出E ξ,D ξ,E η,D η,由此能得到E ξ<E η,D ξ>D η. 【详解】 由题意得: E ξ111123326=⨯
+⨯+⨯=116
, D ξ22211111111151(1)(2)(3)636108
266=-⨯+-⨯+-⨯=. E η111131236236
=⨯
+⨯+⨯=,
D η=(1316-
)216⨯+(2136-)212⨯+(3136
-)2151
3108⨯=, ∴E ξ<E η,D ξ=D η. 故选:C . 【点睛】
本题考查离散型随机变量的分布列、数学期望、方差的求法,考查运算求解能力,是中档题.
18.某运动制衣品牌为了成衣尺寸更精准,现选择15名志愿者,对其身高和臂展进行测量(单位:厘米),左图为选取的15名志愿者身高与臂展的折线图,右图为身高与臂展所对
应的散点图,并求得其回归方程为 1.160.5ˆ37y
x =-,以下结论中不正确的为( )
A .15名志愿者身高的极差小于臂展的极差
B .15名志愿者身高和臂展成正相关关系,
C .可估计身高为190厘米的人臂展大约为189.65厘米
D .身高相差10厘米的两人臂展都相差11.6厘米, 【答案】D 【解析】 【分析】
根据散点图和回归方程的表达式,得到两个变量的关系,A 根据散点图可求得两个量的极差,进而得到结果;B ,根据回归方程可判断正相关;C 将190代入回归方程可得到的是估计值,不是准确值,故不正确;D ,根据回归方程x 的系数可得到增量为11.6厘米,但是回归方程上的点并不都是准确的样本点,故不正确. 【详解】
A ,身高极差大约为25,臂展极差大于等于30,故正确;
B ,很明显根据散点图像以及回归直线得到,身高矮臂展就会短一些,身高高一些,臂展就长一些,故正确;
C ,身高为190厘米,代入回归方程可得到臂展估计值等于189.65厘米,但是不是准确值,故正确;
D ,身高相差10厘米的两人臂展的估计值相差11.6厘米,但并不是准确值,回归方程上的点并不都是准确的样本点,故说法不正确. 故答案为D.
本题考查回归分析,考查线性回归直线过样本中心点,在一组具有相关关系的变量的数据间,这样的直线可以画出许多条,而其中的一条能最好地反映x 与Y 之间的关系,这条直线过样本中心点.线性回归方程适用于具有相关关系的两个变量,对于具有确定关系的两个变量是不适用的, 线性回归方程得到的预测值是预测变量的估计值,不是准确值.
19.已知变量y 关于x 的回归方程为0.5ˆbx y
e -=,其一组数据如下表所示:
若5x =,则预测y 的值可能为( ) A .5e B .
11
2e
C .7e
D .15
2e
【答案】D 【解析】 【分析】
将式子两边取对数,得到$ln 0.5y bx =-,令ln z y $=,得到0.5z bx =-,根据题中所给的表格,列出,x z 的取值对应的表格,求得,x z ,利用回归直线过样本中心点,列出等量关系式,求得 1.6b =,得到 1.60.5z x =-,进而得到$ 1.60.5x y e -=,将5x =代入,求得结果. 【详解】
由$0.5bx y e -=,得$ln 0.5y bx =-,令ln z y $=,则0.5z bx =-.
1234
2.54x +++=
=,1346 3.54
z +++==, ∵(,)x z 满足0.5z bx =-,∴3.5 2.50.5b =⨯-, 解得 1.6b =,∴ 1.60.5z x =-,∴ 1.60.5
x y e -=,
当5x =时,$15
1.650.52y e e ⨯-==, 故选D.
该题考查的是有关回归分析的问题,涉及到的知识点将对数型回归关系转化为线性回归关系,根据回归直线过样本中心点求参数,属于简单题目.
20.某地区甲、乙、丙三所单位进行招聘,其中甲单位招聘2名,乙单位招聘2名,丙单位招聘1名,并且甲单位要至少招聘一名男生,现有3男3女参加三所单位的招聘,则不同的录取方案种数为( ) A .36 B .72 C .108 D .144
【答案】D 【解析】 【分析】
按三步分步进行,先考虑甲单位招聘,利用间接法,因为至少招聘一名男生,将只招女生
的情况去掉,录取方案数为22
63C C -,然后剩余四人依次分配给乙单位和丙单位,分别为
24C 、2
2C ,然后根据分步乘法计数原理将三个数相乘可得出答案。
【详解】
根据题意,分3步进行分析:
①单位甲在6人中任选2人招聘,要求至少招聘一名男生,有226312C C -=种情况, ②单位乙在剩下的4人中任选2人招聘,有246C =种情况,
③单位丙在剩下的2人中任选1人招聘,有1
2
2C =种情况, 则有1262144⨯⨯=种不同的录取方案; 故选:D . 【点睛】
本题考查排列组合问题,将问题分步骤处理和分类别讨论,是两种最基本的求解排列组合问题的方法,在解题的时候要审清题意,选择合适的方法是解题的关键,着重考查学生分析问题和解决问题的能力,属于中等题。