初三数学综合试题一

合集下载

初三数学学科综合试题及答案

初三数学学科综合试题及答案

初三数学学科综合试题及答案一、选择题(每题2分,共20分)1. 下列哪个选项不是实数?A. √2B. -3C. πD. i2. 若a < 0,下列哪个不等式是正确的?A. -a > aB. a < -aC. a > -aD. a = -a3. 一个圆的直径为10cm,那么它的半径是:A. 5cmB. 10cmC. 15cmD. 20cm4. 一个直角三角形的两条直角边分别为3cm和4cm,那么斜边的长度是:A. 5cmB. 6cmC. 7cmD. 8cm5. 下列哪个是二次根式?A. √3xB. 3√xC. √x^2D. √x^36. 一个数的平方是25,这个数是:A. 5B. -5C. 5或-5D. 257. 如果一个数的绝对值是5,那么这个数可以是:A. 5B. -5C. 5或-5D. 都不是8. 以下哪个是一元二次方程?A. x + 2 = 0B. x^2 + 2x + 1 = 0C. x^3 - 4 = 0D. x - 3 = 09. 一个正方体的体积是27立方厘米,它的边长是:A. 3cmB. 6cmC. 9cmD. 12cm10. 以下哪个是代数式?A. 3x + 2B. 3x + 2 = 0C. 3x + 2 > 0D. 3x + 2 < 0答案:1-5 D A A C A;6-10 C C B B A二、填空题(每题2分,共20分)1. 一个数的相反数是-8,这个数是______。

2. 一个数的绝对值是12,这个数可以是______。

3. 一个直角三角形的斜边长为13cm,一条直角边长为5cm,另一条直角边长是______。

4. 一个圆的周长是44cm,它的直径是______。

5. 如果一个数的平方根是4,那么这个数是______。

6. 一个一元二次方程的一般形式是______。

7. 一个数的立方根是2,那么这个数是______。

8. 一个数的平方是36,这个数可以是______。

2024北京顺义区初三一模数学试题及答案

2024北京顺义区初三一模数学试题及答案

顺义区2024年初中学业水平考试综合练习(一)数学答案及评分参考二、填空题(本题共16分,每小题2分)9.3x ≠ ; 10.4(1)(1)m m +− ; 11.2x =; 12.6(答案不唯一);13.OB =OD (答案不唯一);14.72︒; 15. 60 ; 16.1,2n.三、解答题(共68分,第17-19题,每题5分,第20题6分,第21-22题,每题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题每题7分)17.解:1024sin 458(1)π−−++− 1412=− ………………………………………………………4分 32= ………………………………………………………………………………5分 18.解:解不等式①得2x > …………………………………………………………………2分 解不等式②得1x > ………………………………………………………………… 4分 不等式组的解集是 2.x > ………………………………………………………… 5分19.解:()()2411x x ++− =24421x x x =−+−+ ……………………………………………………2分 =225x x ++ ……………………………………………………………3分∵221,x x +=∴ 原式=225x x ++=1+5=6. …………………………………………………5分20.(1)证明:∵四边形ABCD 是菱形,∴AD =BC ,AD ∥EC.∵BE =BC ,∴BE =AD .又BE ∥AD ,∴四边形AEBD 是平行四边形. ……………………………………………………3分(2)解:∵四边形ABCD 为菱形,∴∠BOC =90︒,12OA AC =. ∵四边形AEBD 为平行四边形, ∴AE ∥BD . ∴∠EAC =∠BOC =90︒. 在Rt △AEC 中, ∵AC =2,tan ∠AEB =12. ∴AO =1,AE =4.在Rt △AEO 中,由勾股定理,∵22217OE AO AE =+=,∴OE ………………………………………………………………………6分AB C D OE21.解:(1)n =90; ……………………………………………………………………2分(2)丙; ………………………………………………… …………………………3分 (3)推荐乙组;推荐理由:乙组平均分和丙组一样高,大于甲组平均分;由于乙、丙两组平均分都是90,而且有三个数据一样,所以乙组的两个85以上的数据是87,88或86,89,可以判断乙组的方差小于丙组的方差. …………………………………5分22.(1)解:由题意可得,45,1.k b b +=⎧⎨=−⎩,解得3,21.k b ⎧=⎪⎨⎪=−⎩ ∴该函数的解析式为312y x =−. …………………………………………………….2分 ∵点C 的横坐标为2,点C 在函数312y x =−的图象上, 当x =2时,解得y =2.∴点C 的坐标为(2,2). ……………………………………………………………3分 (2)n 的取值范围是12n ≤≤. ……………………………………………………5分23.设秤砣 x g ,秤盘重y g .由题意可得, 2.5(40)11,2.5(60)16.y x y x +=⎧⎨+=⎩,…………………………………………………3分 解得10,4.x y =⎧⎨=⎩…………………………………………………………………………….4分 所以这把杆秤的秤星E 对应的最大刻度是261041002.5⨯−=.所以这把杆秤的秤星E 对应的最大刻度是100克.……………………………………6分24.(1)证明:连接OC ,OD .∵弧AC = 弧AD ,∴∠AOC=∠AOD .又∵OC =OD ,∴AB ⊥CD .∵BF 是⊙O 的切线,∴AB ⊥BF ,∴CD ∥BF . ……………………………………..3分(2)∵E 为AO 中点,OA =4,∴OE =AE =2.在Rt △EOD 中,OD =4,∴DE=.∵CD ∥BF ,F B D E OG C A∴△AED ∽△ABF , ∴AE ED AB BF=,BF= 在△GEO 和△FBO 中,∠GOE =∠FOB ,∠GEO =∠FBO ,∴△GEO ∽△FBO ∴OE EG OB BF=,EG=∴CG =EG -CE =EG -DE=…………………………………………………..……6分25.(1)……………………………………………………2分(2)6.8 (6.4~7.2); …………………………………………………………………………3分(3)乙类,6.6 (6.2~7.0) . ………………………………………………………………. 5分26.解:(1)∵抛物线2(y ax bx c a =++>经过(0,c )和(2,c ),∴抛物线对称轴为x =1.…………………………………………………..…………….2分(2)2x t t x t =∵抛物线的对称轴为,<<+2,2'x N N ∴点在对称轴右侧,设点关于对称轴对称点的横坐标为2'2,t x t −∴<< 12y y ∵>,11t x t −−<<2 ∴①当点M 在对称轴左侧时, 2t t t −−≤2≥2 ②当点M 对称轴右侧时,11t t t −+≥2≤-21.t t ≥2或≤综述,-所2上…………………………………………………..…………….6分 27. (1)解:∵正方形ABCD ,∴AB =BC ,∠DCB=∠ABC=90°. …………………………………………………1分∴∠ABF=∠BCE=90°.x=h t 1x=h∵CE =BF ,∴△ABF ≌△BCE . ……………………………………………………………..…2分∴∠F=∠E .∵∠GBF=∠CBE ,∴∠FGB=∠ECB=90°.∴∠AGE=90°.……………………………………………………………………..3分(2) ①… ……………………………………………….…4分②BG CH 2=.证明:过点B 作GE BK ⊥交AH 于点K ,过点K 作AF KL ⊥与点L∴∠KBH=∠KLA=90°.∵∠ABC=90°,∴∠ABK+∠KBC=∠KBC +∠CBH .∴∠ABK=∠CBH .∵GH =AG ,∠AGE=90°,∴∠KAL=∠BHK=45°.∴∠AKL=∠BKH=45°.∴BH=BK ,KL=AL .∵AB=BC ,∴△BCH ≌△ABK .∴CH=AK . ……………………………………………………………6分∵∠GLK=∠GBK=∠AGE=90°,∴ 四边形GBKL 为矩形.∴GB=KL .∵△ALK 是等腰直角三角形,∴KL AK 2=.∴BG CH 2=.…………………………………………………………………………7分28.(1)①B ,C. ………………………………………………………………………………2分②设直线BC 的表达式是y =kx +b (k ≠0),则{b =−1−3k +b =2,解得{k =1b =−1 ∴直线BC 的表达式是y =x -1. …………………………………………………………..3分∴直线BC 与x 轴的交点坐标为B ’(1,0)∴BB ’=√2.作OP ’⊥BB ’于点P ’,∴OP .………………………………………………………………………………4分由①问的探索可知,点A 以y 轴上点T 为旋转中心,逆时针旋转90°,得到的点Q 落在直线BC 上,证明略.若⨀O 不是点A 的“关联图形”,∴0<r .…………………………………………………………………………….…5分(2)m的最小值为…………………………………………7分。

初三数学试题1

初三数学试题1

数学试题(一)1.BD是☉o直径A是BD延长线上的一点AC切☉o于EBC⊥AE于C若AC = 12 BC = 9求:AD的长2.直径BA延长线上一点FFE切☉o于DBE交☉o于C弧AD = 弧DC若DE = 6 DF = 10求:FA及EC的长3.△ABC中,AC、BC的长分别是方程X2–(AB + 4)X+ 4AB + 8 = 0的两个根且满足25BC·sinA = 9ABBD是直径、O为圆心AC切半☉o于EBC交半☉o于F求:△ABC三边及AD的长4.Rt△ABC,∠C = 90O AB = 13BC = a,AC = b,o在AB上半径r = 6/5的☉o切AC于F,切BC于E求:a,b的值5.BA切☉o于A,BC切☉o于E直径AD延长线交BC于C若CD = 1,CE = 2求:AB的长6.Rt△ABC,∠C = 90Oo在BC上,☉o切AB于EAE = BE AC交☉o于D AD=DC若AC = 3,BC = 4求:OC的长7.△ABC,AB = AC以AB为直径的☉o交AC于F交BC于D,DE切☉o于D(1)求证:DE⊥AC(2)若AB :BC = 5 :6,AF = 7求:CE的长8.如图Rt△ABC,∠ACB = 90Oo在BC上,☉o切AB于D若OC :OB = 1 :3,AD = 2求:BE的长9.AC是☉o直径延长弦DA、CB交于E且EA = 12,AD = 6,CE = 36求:(1) BD的长;(2)∠BDC的正弦值10.圆内接四边形ABCDAB = 3,AC = 5,BC = 7∠BCD = 45O求:(1)sinD的值;(2)BD的长11.PCD是过o的割线PA切☉o于A,AB⊥CD于EAB = 6cm,EC = 1cm求:☉o的半径;PA的长12.AD是☉o的直径,AB、AC是弦,且∠CAD = 45O,AB = 3,AC = 2求:以A、B、C、D四点所构成的四边形的周长数学试题(二)1.两圆相交于M、N,过M作直线交两圆于A、C,过N 作直线交两圆于B、D求证: AB∥CD2.两圆相交于M、N,过M、N分别作,直线AM、BN交于P且P在小圆(或大圆)上,CD切小圆(或大圆)于P求证:CD∥AB3.两圆外(内)切于P过P作两直线分别相交两圆于A、C、B、D求证:AB∥CD4.两圆外(内)切于P,过P的直线交两圆于A、C,AB、CD分别是两圆的切线求证:AB∥CD5.☉o、☉o’交于A、BCD是公切线,切点是C、D求证:∠CAD + ∠CBD = 180o6.☉o 、☉o ’交于A 、BCDE 切☉o ’于C ,交☉o 于D 、E求证:∠DAC + ∠EBC = 180o7.☉o 、☉o ’交于A 、BCFED 交两圆于D 、E 、F 、C求证:∠DAC + ∠EBF = 180o8.两圆交于A 、B求证:∠DAC + ∠EBF = 180o9.两圆外切于P求证:∠APB + ∠CPD = 180o10.两圆外切于PCBA 切☉o ’于A求证:∠CPA + ∠BPA = 180o11.☉o 、☉B 交于M 、N ,B 在☉o 上, 求证:AB ⊥NC12.AB切小圆于B,两圆交于B、D求证:AB = AC13.两圆内(外)切于E大圆弦AD(或其延长线)切小圆于C求证:CD·BE = AB·DE14.☉o、☉o’交于A、BAD是☉o直径且AD切☉o’于A☉o半径为6,☉o’半径为4求:AC的长15.图两圆交于M、NC是AB中点求证:DC = CE16.两圆相交于M、N,过M作直线交两圆于A、C,过N 作直线交两圆于B、D,两圆外切于M点NAB、NCD分别为外公切线A、B、C、D为切点求证:AC + BD = AB + CD数学试题(三)1.1、圆内比例线段AD切☉o于A AE平分∠DAC求证:AF·BC = AB·FC2.△ABC内接于☉oMN切☉o于AD是BC中点DF∥BA求证:CE2 = DE·EF3.如图∠1 = ∠2BE切☉o于B求证:CD·CE = CB·EB4.BC∥GFGF切☉o于D求证:BD2 = CE·DG5.AB是☉o直径弧AD = 弧DCDE⊥AB于M求证:FG·AC = AM·AB6.AB是直径CF⊥AB于F求证:DF2 = CF·GF7.BD是直径AG⊥BD于F求证:AB2 = BG·BC8.弧AC = 弧AD求证:AM·AN = AE·AF9.直径AB⊥EN求证:AM·AN = AE·AF10.☉o中弦AB = CD延长DC、BA交于PE是弧BD上一点CE交BD于F求证:AB·EF = BE·DF11.PA·PB切☉o于AB割线PC交☉o于DC求证:AD·BC = AC·BD12.AE切☉o于ABF切☉o于BPC⊥AB于C求证:PC2 = PE·PF13.MB 切☉o 于BMC ∥BA求证:FM FDCF EF14.等边△ABC 内接于☉o D 是弧BC 上一点求证:AB 2 = BE ·CF15.等边△ABC 内接于☉o E 是弧BC 上一点求证:AB 2 = BE ·BD16.△ABC 内接于☉o过A 的切线交CB 延长线于P AD 平分∠BAC求证:PD ·AC = PC ·AB17.AB 是☉o 直径AB = AC过D 的切线交AC 于E 求证:BD 2 = CE ·CA18.AB = ACBE = CD求证:AC ·ED = AD ·BC19.☉o 、☉o ’交于AB O 在☉o ’上求证:OD 2 = OC ·OE20.BC 是☉o 直径 AD 是☉o 切线 AE = ADEF ⊥AB求证:AC AEAF AB。

初三数学初中数学综合库试题答案及解析

初三数学初中数学综合库试题答案及解析

初三数学初中数学综合库试题答案及解析1.(本小题满分10分)如图(1),在平面直角坐标系中,△OAB三个顶点坐标分别为O(0,0),A(1,),B (4,0).(1)求证:AB⊥OA(2)在第一象限内确定点M,使△MOB与△AOB相似,求符合条件的点M的坐标.(3)如图(2),已知D(0,-3),作直线BD.①将△AOB沿射线BD平移4个单位长度后,求△AOB与以D为圆心,以1为半径的⊙D的公共点的个数.②如图(3),现有一点P从D点出发,沿射线DB的方向以1个单位长度/秒的速度作匀速运动,运动时间为秒.当以P为圆心,以为半径的⊙P与△AOB有公共点时,求的取值范围.【答案】(本题满分10分)(1)略--------(2分)(2)符合条件的点M有错误!未找到引用源。

--------(5分)【解析】略2.小明沿着坡度为1:2的山坡向上走了1000m,则他升高了 .【答案】200【解析】略3.如图,有一枚圆形硬币,如果要在这枚硬币的周围摆放几枚与它完全相同的硬币,使得周围的硬币都和这枚硬币相外切,且相邻的硬币相外切,则这枚硬币周围最多可摆放()A.4枚硬币B.5枚硬币C.6枚硬币D.8枚硬币【答案】C【解析】略4.先化简,再求值:,其中a=3,b=6.【答案】原式=(a++b)-(a- +b)=4当a=3,b=6时,原式=4=12【解析】略5.已知两圆的半径分别是5cm和4cm,圆心距为7cm,那么这两圆的位置关系是A.相交B.内切C.外切D.外离【答案】 A【解析】略6.某商场销售一批名牌衬衫,平均每天可售出20件,每件盈利40元。

为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施,经调查发现,如果每件衬衫每降价1元,商场平均每天可多售出2件。

若商场平均每天要盈利1200元,每件衬衫应降价多少元?【答案】解:⑴设每件衬衫应降价x元。

根据题意,得 (40-x)(20+2x)=1200整理,得x2-30x+200=0解之得 x1=10,x2=20。

2023北京朝阳区初三一模数学试题及参考答案

2023北京朝阳区初三一模数学试题及参考答案

北京市朝阳区九年级综合练习(一)一、选择题(共16分,每题2分)第1-8题均有四个选项,其中符合题意的选项只有一个.1.下图是某几何体的三视图,该几何体是(A )长方体(B )三棱柱(C )圆锥(D )圆柱第1题 第3题 第4题 第7题2.我国已建成世界上规模最大的社会保障体系、医疗卫生体系,基本养老保险覆盖1 040 000 000人左右,将1 040 000 000用科学记数法表示应为(A )1.04×1010 (B )1.04×109 (C )10.4×109 (D ) 0.104×10113.如上图,若数轴上的点A 表示下列四个无理数中的一个,则这个无理数是(A ) (B(C (D )π4. 如上图,直线AB ,CD 相交于点O ,若∠AOC =60°,∠BOE =40°,则∠DOE 的度数为(A )60° (B )40°(C )20° (D )10°5. 经过某路口的汽车,只能直行或右转. 若这两种可能性大小相同,则经过该路口的两辆汽车都直行的概率为(A )(B )(C )(D )141312346.正六边形的外角和为(A )180°(B )360°(C )540°(D )720°7.某中学为了解学生对四类劳动课程的喜欢情况,从本校学生中随机抽取了200名进行问卷调查,根据数据绘制了如上面图所示的统计图. 若该校有2000名学生,估计喜欢木工的人数为(A )64(B )380(C )640 (D )7208. 下面的三个问题中都有两个变量:①矩形的面积一定,一边长y 与它的邻边x ;②某村的耕地面积一定,该村人均耕地面积S 与全村总人口n ;③汽车的行驶速度一定,行驶路程s 与行驶时间t .其中,两个变量之间的函数关系可以用形如的式子表示的是(A )①②(B )①③(C )②③(D )①②③二、填空题(共16分,每题2分)9在实数范围内有意义,则实数x 的取值范围是 .10.分解因式:.11. 若关于x 的一元二次方程260x x m ++=有两个相等的实数根,则实数m 的值为 .12.方程的解为 .13.在平面直角坐标系xOy 中,若反比例函数的图象经过点和点,则.14.如图,在△ABC 中,DE 是AC 的垂直平分线,AC =6. 若△ABD 的周长为13,则△ABC 的周长为.15.如图,在矩形ABCD 中,点E 在AD 边上,连接BE 并延长,交CD 的延长0ky k k x=≠(为常数,)2363a a -+=322x x=+6y x=()2A m ,()2B n -,m n +=第14题图第15题图线于点F . 若AB =2,BC =4,,则BF 的长为 .16. 一个33人的旅游团到一家酒店住宿,酒店的客房只剩下4间一人间和若干间三人间,住宿价格是一人间每晚100元,三人间每晚130元.(说明:男士只能与男士同住,女士只能与女士同住. 三人间客房可以不住满,但每间每晚仍需支付130元.)(1)若该旅游团一晚的住宿房费为1530元,则他们租住了间一人间;(2)若该旅游团租住了3间一人间,且共有19名男士,则租住一晚的住宿房费最少为元.三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27-28题,每题7分)17.计算:.18.解不等式组:19.已知,求代数式的值.20. 下面是证明“等腰三角形的两个底角相等”的两种添加辅助线的方法,选择其2AEDE=(02sin 45π-+-o 17242.3x x xx +⎧⎪+⎨⎪⎩>-,≤230x x --=(2)(2)(2)x x x x +---中一种,完成证明.已知:如图,在△ABC 中,AB =AC .求证:∠B =∠C .方法一证明:如图,作△ABC 的中线AD .方法二证明:如图,作△ABC 的角平分线AD .21. 如图,在平行四边形ABCD 中,对角线AC ,BD 相交于点O ,点E ,F 在BD 上,AE ∥CF ,连接AF ,CE .(1)求证:四边形AECF 为平行四边形;(2)若∠EAO +∠CFD =180°,求证:四边形AECF 是矩形.22. 在平面直角坐标系xOy 中,一次函数的图象经过点(0,1),(-2,2),与x轴交于点A .(1)求该一次函数的表达式及点A 的坐标;(2)当2x ≥时,对于x 的每一个值,函数的值大于一次函数0y kx b k =+≠()2y x m =+的值,直接写出m 的取值范围.23. 如图,AB 是⊙O 的弦,过点O 作OC ⊥AB ,垂足为C ,过点A 作⊙O 的切线,交OC 的延长线于点D ,连接OB .(1)求证:∠B =∠D ;(2)延长BO 交⊙O 于点E ,连接AE ,CE ,若AD=,sinBCE 的长.24.某校为了解读书月期间学生平均每天阅读时间,在该校七、八、九年级学生中各随机抽取了15名学生,获得了他们平均每天阅读时间(单位:min ),并对数据进行了整理、描述,给出部分信息.a . 七、八年级学生平均每天阅读时间统计图:0y kx b k =+≠()七年级学生平均每天阅读时间八年级学生平均每天阅读时间b . 九年级学生平均每天阅读时间:21 22 25 33 36 36 37 37 39 39 41 42 46 48 50c . 七、八、九年级学生平均每天阅读时间的平均数:年级七八九平均数26.435.236.8根据以上信息,回答下列问题:(1)抽取的15名九年级学生平均每天阅读时间的中位数是 ;(2)求三个年级抽取的45名学生平均每天阅读时间的平均数;(3)若七、八、九年级抽取的学生平均每天阅读时间的方差分别为,,,则,,之间的大小关系为.25.一位滑雪者从某山坡滑下并滑完全程,滑行距离s (单位:m )与滑行时间t (单位:s )近似满足“一次函数”、“二次函数”或“反比例函数”关系中的一种. 测得一些数据如下:滑行时间t /s 01234滑行距离s /m261220(1)s 是t 的函数(填“一次”、“二次”或“反比例”);21s 22s 23s 21s 22s 23s(2)求s 关于t 的函数表达式;(3)已知第二位滑雪者也从坡顶滑下并滑完全程,且滑行距离与第一位滑雪者相同,滑行距离s (单位:m )与滑行时间t (单位:s )近似满足函数关系2522s t t =+. 记第一位滑雪者滑完全程所用时间为t 1,第二位滑雪者滑完全程所用时间为t 2,则t 1t 2(填“<”,“=”或“>”).26.在平面直角坐标系xOy 中,抛物线y =ax 2+(2m -6)x +1经过点()124m -,.(1)求a 的值;(2)求抛物线的对称轴(用含m 的式子表示);(3)点()1m y -,,()2m y ,,()32m y +,在抛物线上,若231y y y <≤,求m 的取值范围.27. 如图,∠MON =α,点A 在ON 上,过点A 作OM 的平行线,与∠MON 的平分线交于点B ,点C 在OB 上(不与点O ,B 重合),连接AC ,将线段AC 绕点A 顺时针旋转180°-α,得到线段AD ,连接BD .(1)直接写出线段AO 与AB 之间的数量关系,并证明∠MOB =∠DBA ;(2)连接DC 并延长,分别交AB ,OM 于点E ,F . 若α=60°,用等式表示线段EF 与AC 之间的数量关系,并证明.28. 在平面直角坐标系xOy 中,对于点P ,C ,Q (点P 与点C 不重合),给出如下定义:若∠PCQ =90°,且1CQ CP k,则称点Q 为点P 关于点C 的“k -关联点”.已知点A (3,0),点B (0,),⊙O 的半径为r .(1)①在点D (0,3),E (0,-1.5),F (3,3)中,是点A 关于点O 的“1-关联点”的为;②点B 关于点O 的关联点”的坐标为;(2)点P 为线段AB 上的任意一点,点C 为线段OB 上任意一点(不与点B重合).①若⊙O 上存在点P 关于点O 的关联点”,直接写出r 的最大值及最小值;②当r =⊙O 上不存在点P 关于点C 的“k -关联点”,直接写出k 的取值范围:.北京市朝阳区九年级综合练习(一)数学试卷答案及评分参考2023.4一、选择题(共16分,每题2分)题号12345678答案A B D C A B C A 二、填空题(共16分,每题2分)三、解答题(共68分,第17-20题,每题5分,第21题6分,第22题5分,第23-24题,每题6分,第25题5分,第26题6分,第27,28题,每题7分)17. 解:原式12=-++1=+.18. 解:原不等式组为17242.3x xxx+⎧⎪+⎨⎪⎩>-,≤解不等式①,得 2.x>解不等式②,得 4.x≤∴原不等式组的解集为2 4.x<≤19. 解:(2)(2)(2)x x x x+---2242x x x=--+222 4.x x=--∵230x x--=,∴2 3.x x-=题号9101112答案5x≥23(1)a-9x=4题号13141516答案01951;1600①②∴原式22()4 2.x x =--=20. 方法一证明:∵AD 是△ABC 的中线, ∴BD =CD .在△ABD 和△ACD 中,AB AC AD AD BD CD =⎧⎪=⎨⎪=⎩,,,∴△ABD ≌△ACD . ∴∠B =∠C .方法二证明:∵AD 是△ABC 的角平分线, ∴∠BAD =∠CAD . 在△ABD 和△ACD 中,AB AC BAD CAD AD AD =⎧⎪∠=∠⎨⎪=⎩,,,∴△ABD ≌△ACD . ∴∠B =∠C.21. 证明:(1)∵四边形ABCD 是平行四边形,∴OA =OC . ∵AE ∥CF ,∴∠EAO =∠FCO .∵∠AOE =∠COF ,∴△AEO ≌△CFO . ∴OE =OF .∴四边形AECF 为平行四边形.(2)∵∠EAO +∠CFD =180°,∠CFO +∠CFD =180°,∴∠EAO=∠CFO . ∵∠EAO =∠FCO ,∴∠FCO=∠CFO . ∴OC=OF . ∴AC=EF .∴四边形AECF 是矩形.22. 解:(1)∵一次函数的图象经过点(0,1),(-2,2),∴12 2.b k b =⎧⎨-+=⎩,解得 121.k b ⎧=-⎪⎨⎪=⎩ ∴该一次函数的表达式为11.2y x =-+令0y =,得 2.x =∴()20.A ,(2) 4.m >-23. (1)证明:如图,连接OA .∵AD 为⊙O 的切线,∴∠OAD =90°.∴∠CAD +∠OAB =90°.∵OC ⊥AB ,∴∠ACD =90°.∴∠CAD +∠D =90°.∴∠OAB =∠D .∵OA =OB ,∴∠OAB =∠B .∴∠B =∠D .(2)解:在Rt △ACD 中,AD=,sin D =sin B,可得sin 2AC AD D =⋅=.∴AB =2AC =4.根据勾股定理,得CD =4.∴tan B =tan D =12.∵BE 为⊙O 的直径,0y kx b k =+≠()∴∠EAB =90°.在Rt △ABE 中,tan 2AE AB B =⋅=.在Rt △ACE 中,根据勾股定理,得CE=24.解:(1)37.(2)根据题意可知,三个年级抽取的45名学生平均每天阅读时间的平均数为 1526.41535.21536.832.8.45⨯+⨯+⨯=(3)<<.25.解:(1)二次.(2)设s 关于t 的函数表达式为s =at 2+bt ,根据题意,得242 6.a b a b +=⎧⎨+=⎩,解得11.a b =⎧⎨=⎩,∴s 关于t 的函数表达式为s =t 2+t.(3)>.26.解:(1)∵抛物线y =ax 2+(2m -6)x +1经过点()124m -,,∴2m -4=a +(2m -6)+1.∴a =1(2)由(1)得抛物线的表达式为y =x 2+(2m -6)x +1.∴抛物线的对称轴为3.x m =-(3)①当m >0时,可知点()1m y -,,()2m y ,,()32m y +,从左至右分布.根据23y y <可得232m m m ++-<.∴ 1.m >根据31y y ≤可得232m m m -++-≥.∴ 2.m ≤22s 21s 23s∴1 2.m <≤②当m ≤0时,∵3m m m +≤-<-,∴21y y ≥,不符合题意.综上,m 的取值范围为1 2.m <≤27.解:(1)AO =AB .证明:∵OB 平分∠MON , ∴∠MOB =∠NOB. ∵OM //AB ,∴∠MOB =∠ABO. ∴∠NOB =∠ABO. ∴AO =AB .根据题意,得AC =AD ,∠OAB =∠CAD .∴∠CAO =∠DAB.∴△OAC ≌△BAD. ∴∠COA =∠DBA. ∴∠MOB =∠DBA.(2)EF =.证明:如图,在OM 上截取OH =BE ,连接CH .∵△OAC ≌△BAD ,∴OC=BD.又OH =BE ,∴△OHC ≌△BED.∴CH=DE ,∠OHC=∠BED ,∵OM//AB ,∴∠MFC=∠BED.∴∠MFC=∠OHC.∴CF=CH.∴CF=DE.∴CD=EF.∵α=60°,∴∠CAD=180°-α=120°,作AK ⊥CD 于点K. ∵AC=AD ,∴∠ACK =30°,1.2CK CD =∴.CK AC =∴CD =.∴EF =.28. 解:(1)①D .②(-3,0)或(3,0).(2)① 3,32.②k .。

初三数学综合测试题

初三数学综合测试题

初三数学综合测试题一、精心选一选(本大题共8小题,每小题3分,共24分)1.给出四个函数:(1)y =5x (2)y =-5x (3)y =x 2(x <-1) (4)y =-x 2(x >1)其中,y 随x 的增大而减小的函数有( ) A .1个 B .2个 C .3个 D .4个2.植物的叶子上有许多气孔,在阳光下,这些气孔一面排出氧气和蒸腾水分,一面还吸入二氧化碳,有时,一个气孔在一秒钟内能吸进25000亿个二氧化碳分子,用科学记数法表示25000亿为( )A .2.5×1012B .2.5×1011C .2.5×1010D .25×1011 3.在平面直角坐标系中,已知⊙O 的圆心坐标为(-2,-2),半径为3,则⊙O 与直线x =1的位置关系是( ) A .相离 B .相切 C .相交 D .无法确定 4.若x 1、x 2是一元二次方程3x 2+x -1=0的两个根,则11x +21x 的值是( ) A .-1 B .0 C .1 D .25.如图1,在⊙O 中,弦AB 与半径O C 相交于点M ,且OM =MC ,若AM =1.5,BM =4,则OC 的长为()图1A .26B .6C .23D .226.如图2,P A 是⊙O 的直径,PC 为⊙O 的弦,过弧AC 的中点H 作PC 的垂线交PC 的延长线于点B ,若HB =6、BC =4,则⊙O 的直径是()图2A .10B .13C .15D .207.如图3,AB 是⊙O 的直径,弦CD ⊥AB ,垂足为E ,那么下面结论中,错误的是( )图3A.CE=DE B.弧BC=弧BDC.∠BAC=∠BAD D.AC>AD8.某幼儿园准备用三种不同的多边形木板镶嵌地面,现有边长相同的正三角形和和正八边形,还要边长相同的()A.正十二边形B.正十边形C.正八边形D.正六边形二、耐心填一填(本大题共8小题,每小题4分,共32分)9.设方程x2-3x+2=0的两个根为x1、x2,则x1+x2=________;x1·x2=________.10.若点A(1,m)在函数y=x2的图象上,则点A关于原点的对称点的坐标是________.11.如图4,已知:AB是⊙O的弦,C是AB上的点,AC=4、BC=1、OC=2,则⊙O 的半径是________.图412.一次函数的函数值y随自变量x的值增大而增大,且图象经过第四象限,写出一个符合以上条件的函数式________.13.如图5,在直角坐标系中,P为x轴上一点,以P为圆心,2 cm为半径的圆与y轴相切,等边△ABC内接于圆P,且BC与x轴平行,则点A的坐标为________,点B的纵坐标为________.图514.关于x的一元二次方程(m+1)x2+x-m+1=0的根的判别式Δ=________;当-23<m <23时,这个方程的根的情况是________. 15.如图6,△ABC 内接于⊙O ,D 是劣弧AB 上一点,E 是BC 延长线上一点,AE 交⊙O 于F ,为使△ADB ∽△ACE ,应补充的一个条件是________或________.图616.某校初三(8)班第五小组9名学生的视力分别为5.2、5.2、5.2、5.0、4.8、4.4、4.3、4.3、4.2:这组数据的中位数是________;他们的平均视力是________(精确到0.1).能否用这个平均视力来估计该校学生的平均视力吗?________;为什么?________.三、用心想一想(本大题共5小题,17小题8分,18~21小题每题9分,共44分) 17.声音在空气中传播的速度y (米/秒),随着气温x (℃)的上升而增大,下表是一组测量数据:(1)写出满足上表的一个一次函数的关系式.(2)根据表中的函数关系式,如果气温x =12(℃)时,某人看到烟花燃放5秒后才听到声响,那么此人与燃放的烟花所在地约相距多远?18.请阅读下列及其证明过程,并回答所提出的问题,如图7,已知P 为⊙O 外一点,P A 、PB 为⊙O 的切线,A 和B 是切点,BC 是直径.求证:AC ∥OP .图7证明:连接AB ,交OP 于点D .∵ P A 、PB 切⊙O 于A 、B ,∴ P A =PB ,∠1=∠2; ∴ PD ⊥AB ∴ ∠3=90°;∵________,(*)∴∠4=90°∴∠3=∠4∴AC∥OP.(1)在(*)处的横线上补上应填的条件;(2)上述证明过程中用到的定理名称或定理的具体内容是(只要求写出两个).19.已知等腰三角形三边的长为a、b、c,且a=c,若关于x的一元二次方程ax2-2bx +c=0的两根之差为2,求:等腰三角形的底角度数.20.如图8,正方形ABCD中,有一直径为BC的半圆,BC=2厘米,现有两点E、F,分别从点B,点A同时出发,点E沿线段BA以1厘米/秒的速度向点A运动,点F沿折线A-D-C以2厘米/秒的速度向C运动,设点E离开B的时间为t秒.图8(1)当t为何值时,线段EF与BC平行?(2)设1<t<2,当t为何值时,EF与半圆相切?21.把边长为2 cm的正方形剪四个全等的直角三角形,请用这四个直角三角形拼成符合下列要求的图形(全部用上,互不重叠互不留空隙),并把你的拼法依照图按实际大小画在方格纸内.(1)不是正方形的菱形(一个);(2)不是正方形的矩形(一个);(3)梯形(一个);(4)不是矩形和梯形的平行四边形(一个);(5)不是梯形和平行四边形的凸四边形(一个);(6)与以上画出的图形不全等的凸四边形(画出的图形不全等,能画出几个画出几个,至少画出三个).图9 参考答案一、1.C 2.A 3.B 4.C 5.D 6.B 7.D 8.A 二、9.3 2 10.(-1,-1) 11.2212.y =x -1 13.(2,2) -114.4m 2-3 无实数根15.∠DAB =∠CAE 或∠ABD =∠E 或=或AC AD =CEBD16.4.8 4.73 不能 ∵ 样本容量太小,选取样本的范围太小三、17.解:(1)设y =kx +b ,∵ x =0时,y =331;x =5时,y =334.∴ ⎩⎨⎧=+=3345331b k b ∴ ⎪⎩⎪⎨⎧==53331k b所求函数关系式是y =53x +331; (2)当x =12时,y =53×12+331=338.2(米/秒), 338.2×5=1691(米)∴ 此人与燃放的烟花所在地约相距1691米. 18.(1)BC 是⊙O 的直径.(2)切线长定理;等腰三角形顶角的平分线垂直平分底边;直径所对的圆周角是直角;内错角相等,两直线平行.19.解:设二次方程ax 2-2bx +c =0的两实数根是x 1、x 2且x 1>x 2,则x 1-x 2=221)(x x -=21224)(1x x x x -+=24)2(2=⨯-aca b 由c =a 及3=a b ,如图,过等腰三角形的顶点B 作BD ⊥AC ,则AD =21b ,Rt △ABD 中,cos A =2321==a bAB AD ∴ ∠A =30°,即底角为30°.20.解:(1)设E 、F 出发后t 秒时,有EF ∥BC (如图甲) 则BE =t 、CF =4-2t ,∵ BE =CF ,∴ t =4-2t ,∴ t =34, 即E 、F 出发后34秒时, EF 与半圆相切(2)(如图乙)过F 作KF ∥BC 交AB 于K , 则BE =t ,在Rt △EKF 中,EF 2=EK 2+KF 2,∴ (4-t )2=(3t -4)2+22 2t 2-4t +1=0,∴ t =222±,又∵ 1<t <2,∴ t =222+ 即E 、F 出发后222+秒,EF 与半圆相切. 21.以下图形,供选择:。

初三数学综合试题一10732

初三数学综合试题一10732

1
24、问渠那得清如许,为有源头活水来——朱熹
24、问渠那得清如许,为有源头活水来——朱熹 初三数学综合试题一 第一部分(100分) 一、 填空题(24分,每空2分) 1、当k___时,关于x的方程(k+1)x2+2x+3=0是一元二次方程 2、方程x(x+2)=3(x+2) 的根是______ 3、函数y=中自变量x的取值范围是_____ 4、点P的坐标为(3,-4),则点P关于原点的对称点P1的坐标是_____ 5、抛物线y=-x2-5的顶点坐标是________ 6、在Rt△ABC中,∠C=900,, tanA=,则cosA=_______ C B 7、圆内接四边形ABCD中,∠A:∠B:∠C=2:3:4,则∠D=____度 8、AB为⊙O的直径,弦CD⊥AB于M,AM=4,BM=9,则弦CD=_______ 9、若两圆共有三条公切线,则两圆的位置关系是______ A P 10、如图,PA切⊙O于A,∠PAB=500,∠ABC=700,则∠BAC=_______度 (图10) 11、已知外切两圆半径分别为6和2,则两圆的外公切线长等于________ 12、已知⊙O的半径为6cm,⊙O的一条弦AB的长为6cm,则弦AB所对的圆周角的度 数是____ 二、 选择题(24分) 13、一元二次方程x2+x-3=0的根的情况是 ( ) B、有两个相等的实数根 A、有两个不相等的实数根 C、没有实数根 D、不能确定 14、如果点P(a,b)在第四象限,则点P1(-b,-a)所在的象限是 ( ) A、第一象限 B、第二象限 C、第三象限 D、第四象限 15、Rt△ABC中,∠C=900,a,b分别为∠A,∠B的对边,若sinA:sinB=2:3,则a:b= ( ) A、2:3 B、3:2 C、4:9 D 、9:4 16、直线y=-4x+3不经过的象限是 ( ) A、第一象限 B第二象限 C、第三象限 D、第四象限 17、如图,PA,PB切⊙O于A、B,C是优弧AB上的点,∠C=640,则∠P等于 ( ) A A、 260 B、620 P C

2024年北京市门头沟区九年级中考一模数学试题(原卷版)

2024年北京市门头沟区九年级中考一模数学试题(原卷版)

门头沟区2024年初三年级综合练习(一)数学考生须知:1.本试卷共10页,共三道大题,28个小题.满分100分.考试时间120分钟.2.在试卷和答题卡上准确填写学校和姓名,并将条形码粘贴在答题卡相应位置处.3.试题答案一律填涂或书写在答题卡上,在试卷上作答无效.4.在答题卡上,选择题、作图题用2B 铅笔作答,其它试题用黑色字迹签字笔作答.5.考试结束,将试卷、答题卡和草稿纸一并交回.一、选择题(本题共16分,每小题2分)第1-8题均有四个选项,符合题意的选项只有一个.1. 下列几何体中,俯视图是三角形的是( )A. B. C. D.2. 近几年全国各省市都在发展旅游业,让游客充分感受地域文化,据统计,某市2023年的游客接待量为210000000人次,将210000000用科学记数法表示为( )A. B. C. D. 3. 下图是手机的一些手势密码图形,其中既是轴对称图形又是中心对称图形的是( )A. B. C. D.4. 一个正n 边形的每一个外角都是60°,则这个正n 边形是( )A 正四边形 B. 正五边形 C. 正六边形 D. 正七边形5. 数轴上的两点所表示的数分别为a ,b ,且满足,下列结论正确的是( )A. B. C. D. 6. 如图,,平分交于点,,则().72.110⨯82.110⨯92.110⨯102.110⨯·0,0a b a b >+<0,0a b >>0,0a b <<0,0a b ><0,0a b <>AB CD AD BAC ∠CD D 130∠=︒CAB ∠=A. B. C. D. 7. 同时掷两枚质地均匀的骰子,朝上的一面点数之和为整数的平方的概率为( )A. B. C. D. 8. 如图,在等边三角形中,有一点P ,连接、、,将绕点B 逆时针旋转得到,连接、,有如下结论:①;②是等边三角形;③如果,那么.以上结论正确的是( )A. ①②B. ①③C. ②③D. ①②③二、填空题(本题共16分,每小题2分)9.的取值范围是__________.10 因式分解:______.11. 如图所示,为了验证某个机械零件的截面是个半圆,某同学用三角板放在了如下位置,通过实际操作可以得出结论,该机械零件的截面是半圆,其中蕴含的数学道理是_______.12. 在中,,,,点P 在线段上(不与B 、C 两点重合),如果的长度是个无理数,则的长度可以是______.(写出一个即可).30︒45︒60︒90︒16736142936ABC PA PB PC BP 60︒BD PD AD BPC BDA ≌ BDP △150BPC ∠=︒²²²PA PB PC =+x 22mx mx m -+=ABC 90C ∠=︒3AB =2AC =BC AP AP13. 已知一元二次方程,有两个根,两根之和为正数,两根之积是负数,写出一组符合条件的a、b的值_________.14. “洞门初开,佳景自来”,园林建筑中的门洞设计有很多数学中的图形元素,如图中的门洞造型,由四个相同的半圆构成,且半圆的直径围成了正方形,如果半圆的直径为米,则该门洞的通过面积为_______平方米.15. 下面是某小区随机抽取的50户家庭的某月用电量情况统计表:月用电量x(千瓦时/户/月)户数(户)61511144已如月用电量第三档的标准为大于240小于等于400,如果该小区有500户家庭,估计用电量在第三档的家庭有______户.16. 5月20日是中国学生营养日,青少年合理膳食是社会公共卫生关注的问题之一.某食堂为了均衡学生的营养,特设置如下菜单,每种菜品所含的热量,脂肪和蛋白质如下:编号菜名类别热量/千焦脂肪/g蛋白质/g1宫保鸡丁荤菜1033187 2炸鸡排荤菜12541920 3糖醋鱼块荤菜211218144土豆炖牛肉荤菜109523165香菇油菜素菜911117 20x ax b++=1240x≤240300x<≤300350x<≤350400x<≤400x>6家常豆腐素菜102016137清炒冬瓜素菜564718韭菜炒豆芽素菜491239米饭主食3601810紫菜鸡蛋汤汤10058学校规定每份午餐由1份荤菜,2份素菜,1份汤和1碗米饭搭配.小明想要搭配一份营养午餐,那么他摄入的脂肪最低量是____________g .(12岁岁的青少年男生午餐营养标准:摄入热量为2450千焦,摄入蛋白质为65g ,蛋白质越接近标准越营养)三、解答题(本题共68分,第17~21题每小题5分,第22~24题每小题6分,第25题5分,第26题6分,第27~28题每小题7分)解答应写出文字说明、证明过程或演算步骤.17. .18. .19. 已知,求代数式的值.20. 如图所示,在长为11、宽为10矩形内部,沿平行于矩形各边的方向割出三个完全相同的小矩形,求每个小矩形的面积.21. 如图,在四边形中,,,,点E 为中点,射线交的延长线于点F ,连接.的14-011(2021)22sin 45()3π---+︒-()2131242x x x x ⎧+>-⎪⎨-<+⎪⎩23210x x +-=22(1)(2)(2)3x x x x +-+-+ABCD AD BC ∥90A ∠=︒BD BC =CD BE AD CF(1)求证:四边形是菱形;(2)若,,求的长.22. 在平面直角坐标系中,一次函数的图象由的图象向上平移2个单位得到,反比例函数 的图象过点.(1)求一次函数表达式及m 的值;(2)过点平行于x 轴的直线,分别与反比例函数一次函数的图象相交于点M 、N ,当时,画出示意图并直接写出n 的值.23. 某市统计局为研究我国省会及以上城市发展水平与人均之间关系,收集了年个城市的人均数据(单位:万元)以及城市排名,进行了相关的数据分析,下面给出了部分信息..城市的人均的频数分布直方图(数据分成组:,,,,):频数(城市个数)的BCFD 1AD =2CF =BF xOy ()0y kx b k =+≠1y x =()20m y m x=≠()14A ,()0P n ,2m y x =y kx b =+PM MN =GDP 202331GDP GDP a GDP 558x <≤811x <≤1114x <≤1417x <≤1720x <≤.城市的人均(万元)的数值在这一组的是:;.以下是个城市年的人均(万元)和城市排名情况散点图:根据以上信息,回答下列问题(1)某城市的人均为万元,该城市排名全国第_____;(2)在个城市年的人均和城市排名情况散点图中,请用“”画出城市排名的中位数所表示的点;(3)观察散点图,请你写出一条正确结论.24. 如图,在中,,的平分线交于点,过点作交于点.(1)求证:直线是以点为圆心,为半径的的切线;(2)如果:,,求的半径.25. 如图是某跳台滑雪场的横截面示意图,一名运动员经过助滑、起跳从地面上点O 的正上方4米处的A 点滑出,滑出后的路径形状可以看作是抛物线的一部分,通过测量运动员第一次滑下时,在距所在直线水平距离为d 米的地点,运动员距离地面高度为h 米.获得如下数据:水平距离d /米02468垂直高度h /米488的b GDP 1114x <≤12.313.213.613.8,,,c 312023GD GDP GDP 13.8GDP 312023GDP GDP GDP ABC 90C ∠=︒CAB ∠CB D D OD CB ⊥AB O CD O OA O 3sin 5CAB ∠=3BC =O OA 132172请解决以下问题:(1)在网格中建立适当的平面直角坐标系,根据已知数据描点,并用平滑的曲线连接;(2)结合表中所给数据或所画图象,直接写出运动员滑行过程中距离地面的最大高度为_____米;(3)求h 关 于d 的函数表达式;(4)运动员第二次滑下时路径形状可表示为:,当第一次和第二次距离所在直线的水平距离分别为、,且时能成功完成空中动作,则该运动员_________(填写“能”或“不能”)完成空中动作.26. 在平面直角坐标系中,点,在抛物线上,设抛物线的对称轴为直线.(1)如果抛物线经过点,求的值;2C 215463h d d =-++OA 1d 2d 1223d d ≤≤-xoy ()1,A x m ()2,B x n ()240y ax bx a =++>x h =()2,4h(2)如果对于,,都有,求取值范围;(3)如果对于,或,存在,直接写出的取值范围.27. 如图,,,点在射线上,且,点在上且,连接,取的中点,连接并延长至,使,连接.(1)如图1,当点在线段上时.①用等式表示与的数量关系;②连接,,直接写出,的数量关系和位置关系;(2)如图2,当点在线段的延长线上时,依题意补全图形2,猜想②中的结论是否还成立,并证明.28. 在平面直角坐标系中,的半径为2,点P 、Q 是平面内的点,如果点P 关于点Q 的中心对称点在上,我们称圆上的点为点P 关于点Q 的“等距点”.(1)已知如图1点.①如图1,在点 中,上存在点P 关于点Q 的“等距点”的是________;②如图2,点 ,上存在点P 关于点Q 的“等距点”,则m 的取值范围是________;(2)如图3,已知点,点P 在的图象上,若上存在点P 关于点Q 的“等距点”,14x h =-23x h =m n >h 142h x h -≤≤+21x ≤212x ≥m n >h AB BC =90ABC ∠=︒P AB 90CEP ∠=︒F EP EF EC =AF AF G EG H GH GE =AH P AB AH CE BH BE BH BE P AB xOy O O 40(,)P ()()()12330,2,1,1,1Q Q Q -,O (),Q m n O ()1,1Q y x b =-+O求b的取值范围.。

2024年广东省深圳市盐田区初三一模数学试题含答案解析

2024年广东省深圳市盐田区初三一模数学试题含答案解析

2024年广东省深圳市盐田区中考一模数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题1.代数式3x -的意义可以是()A .3-与x 的和B .3-与x 的差C .3-与x 的积D .3-与x 的商【答案】C【分析】本题考查了代数式的意义,用语言表达代数式的意义,一定要理清代数式中含有的各种运算及其顺序.根据3x -中的运算关系解答即可.【详解】解:代数式3x -的意义可以是3-与x 的积.故选C .2.《国语》有云:“夫美也者,上下、内外、小大、远近皆无害焉,故曰美.”这是古人对于对称美的一种定义,这种审美法则在生活中体现得淋漓尽致.下列地铁图标中,是中心对称图形的是()A .武汉地铁B .重庆地铁C .成都地铁D .深圳地铁【答案】D【分析】本题考查中心对称图形,把一个图形绕某一点旋转180︒,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,由此即可判断.【详解】解:A 、该图案不是中心对称图形,故A 不符合题意;B 、该图案不是中心对称图形,故B 不符合题意;C 、该图案不是中心对称图形,故C 不符合题意;D 、图形是中心对称图形,故D 符合题意.故选:D .3.小梅沙海滨公园预计将于今年五一期间开放.园区占地面积约20.53万平方米,用水面积约100万平方米,开放后将成为滨海休息、沙滩活动及婚庆产业、活动赛事的重要承载空间.20.53万用科学记数法表示为()A .32.05310⨯B .42.05310⨯C .52.05310⨯D .62.05310⨯4.计算()323a 的结果是()A .63aB .527a C .69a D .627a 【答案】D【分析】本题主要考查积的乘方,熟练掌握运算法则是解题的关键.根据运算法则计算即可.【详解】解:()326327a a =,故选D .5.已知不等式组11x a x b->⎧⎨+<⎩的解集是10x -<<,则2024()a b +的值为()A .1-B .1C .0D .2024【答案】B【分析】本题主要考查解一元一次不等式组,熟练掌握运算法则是解题的关键.分别求出每个不等式的解集,根据不等式组的解集求出a b 、的值,再代入计算即可.【详解】解:11x a x b ->⎧⎨+<⎩①②,由①得:1x a >+,由②得:1x b <-,解集是10x -<<,11,10a b ∴+=--=,解得2,1a b =-=,则原式2024(21)1=-+=,故选B .6.“青年大学习”是共青团中央为组织引导广大青少年,深入学习贯彻习近平新时代中国特色社会主义思想的青年学习行动.某班为了解同学们某季度学习“青年大学习”的情况,从中随机抽取6位同学,经统计他们的学习时间(单位:分钟)分别为:78,85,80,90,80,82.则这组数据的众数和中位数分别为()A .80和81B .81和80C .80和85D .85和807.如图,将平行四边形ABCD 沿对角线BD 折叠,使点A 落在E 处.若156∠=︒,242∠=︒,则A ∠的度数为()A .108︒B .109︒C .110︒D .111︒8.《孙子算经》是中国古代重要的数学著作,是《算经十书》之一.书中记载了这样一个题目:今有木,不知长短.引绳度之,余绳四尺五寸;屈绳量之,不足一尺.木长几何?其大意是:用一根绳子去量一根长木,绳子还剩余4.5尺;将绳子对折再量长木,长木还剩余1尺.问木长多少尺?设木长x 尺,则可列方程为()A .1( 4.5)12x x +=-B .1( 4.5)12x x +=+C .1(1) 4.52x x +=-D .1(1) 4.52x x -=+9.一次函数y kx b =+的图象与与反比例函数my x=的图象交于(,2)A a ,(2,1)B -,则不等式mkx b x+>的解集是()A .10x -<<或2x >B .1x <-或1x >C .<2x -或02x <<D .1x <-或02x <<【答案】D【分析】本题是一次函数图象与反比例函数图象的交点问题,利用函数图象得到当一次函数∵反比例函数my x=的图象过(A a ∴22(1)m a =⨯=-,∴1a =-,∴()1,2A -,由函数图象可知,当一次函数y =10.在平面直角坐标系中,二次函数22y x mx m m =++-(m 为常数)的图象经过点(0,12),其对称轴在y 轴右侧,则该二次函数有()A .最大值394B .最小值394C .最大值8D .最小值8【答案】B【分析】本题主要考查了二次函数的性质以及二次函数的最值,正确得出m 的值是解题关键.依据题意,将(0,12)代入二次函数解析式,进而得出m 的值,再利用对称轴在y 轴右侧,得出23m =-,再利用二次函数的性质求得最值即可.【详解】解:由题意可得:212m m =-,解得:14m =,23m =-.二次函数22y x mx m m =++-,对称轴在y 轴右侧,二、填空题11.口袋中有红色、黄色、蓝色的玻璃球共80个,小华通过多次试验后,发现摸到红球、黄球的频率依次是45%、25%,则估计口袋中篮球的个数约为个.【答案】24【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手求解.【详解】∵红球、黄球的频率依次是45%、25%,∴估计口袋中篮球的个数≈(1﹣45%﹣25%)×80=24个.故答案为24.【点睛】解答此题关键是要先计算出口袋中篮球的比例再算其个数.部分的具体数目=总体数目×相应频率.12.若直线1y x =-向上平移2个单位长度后经过点()2,m ,则m 的值为.【答案】3【分析】本题考查的是一次函数的平移,解题的关键在于掌握平移的规律:左加右减,上加下减.根据平移的规律求出平移后的解析式,再将点()2,m 代入即可求得m 的值.【详解】解: 直线1y x =-向上平移2个单位长度,∴平移后的直线解析式为:1y x =+.平移后经过()2,m ,∴213m =+=.故答案为:3.13.如图,在ABC 中,6cm AB AC ==,60BAC ∠=︒,以AB 为直径作半圆,交BC 于点D ,交AC 于点E ,则弧DE 的长为.∵OD OB =,∴ABC ODB ∠=∠,∵AB AC =,∴ABC C ∠=∠,∴C ODB ∠=∠,14.如图,点,A a a ⎛⎫⎪⎝⎭和,B b b ⎛⎫ ⎪⎝⎭在反比例函数(0)y k x =>的图象上,其中0a b >>,若AOB 的面积为8,则ab=.15.如图,在ABC 中,AB AC =,点D 是边BC 的中点,过点D 作边AB 的垂线,交AB 于点E ,连接CE ,若2DE =,4AE =,则CE =.∴AD BC ⊥,DE ⊥ 90BDE ADE ∠+∠=∴∠=∠BDE DAE ,∴BED DEA ∽ ,DE BE三、解答题16.计算:22112sin 60|1|2-⎛⎫--︒++- ⎪⎝⎭17.先化简,再求值:2124x x ⎛⎫÷- ⎪+-,其中2x =.18.为了使同学们进一步了解中国航天科技的快速发展,某中学八年级组织了一场手抄报比赛,要求每位同学从A:“北斗”,B:“5G时代”,C:“东风快递”,D:“智轨快运”四个主题中任选一个自己喜爱的主题.比赛结束后,年级随机抽取了部分同学统计所选主题的频数,绘制成如图两种不完整的统计图,请根据统计图中的信息解答下列问题.(1)八年级共抽取了______名学生;并补全折线统计图;(2)该活动准备在七年级开展,七年级共有568人,根据八年级样本的数据统计估计七年级选取C、D两个主题共有______名学生;(3)若七年级的小林和小峰分别从A,B,C,D四个主题中任选一个主题,请用列表或画树状图的方法求出他们选择相同主题的概率.(2)解:510 56821340+⨯=名,∴根据八年级样本的数据统计估计七年级选取故答案为:213;(3)解:画树状图如下:由树状图可知共有16种等可能的结果,其中小林和小峰选择相同主题的结果有∴小林和小峰选择相同主题的概率为41 164=.19.尚品文具店长期销售甲、乙两种笔记本.2月份文具店花费3000元一次性购买了两种笔记本共170本,此时甲、乙两种笔记本的进价分别为15元和20元.(1)求2月份文具店购进甲、乙两种笔记本的数量;(2)3月份两种笔记本基本售完,文具店准备继续进货,此时两种笔记本进价有所调整.文具店花费1440元、1320元分别一次性购买甲、乙两种笔记本,已知购买甲种笔记本比乙种笔记本的数量多50%,甲种笔记本比乙种笔记本的进价少6元,求第二次购买乙种笔记本的数量.【答案】(1)购进甲种笔记本80本,乙种笔记本90本(2)第二次购买乙种笔记本60本20.如图,在ABC 中,AB AC =,以AB 为直径的O 分别交AC 、BC 于点D 、E .点F 在AC 的延长线上,且12∠=∠CBF CAB .(1)求证:直线BF 是O 的切线;(2)若3AB =,sin 5CBF ∠,求BF 的长.【答案】(1)见解析(2)4【分析】本题主要考查了切线的判定,等腰三角形的性质,三角函数的定义,熟练掌握各种性质是解题的关键.(1)连接AE ,利用直径所对的圆周角是直角,从而判定直角三角形,利用直角三角形两21.【项目式学习】项目主题:车轮的形状项目背景:在学习完圆的相关知识后,九年级某班同学通过小组合作方式开展项目式学习,深入探究车轮制作成圆形的相关原理.【合作探究】(1)探究A 组:车轮做成圆形的优点是:车轮滚动过程中轴心到地面的距离始终保持不变.另外圆形车轮在滚动过程中,最高点到地面的距离也是不变的.如图1,圆形车轮半径为4cm ,其车轮最高点到地面的距离始终为______cm ;(2)探究B 组:正方形车轮在滚动过程中轴心到地面的距离不断变化.如图2,正方形车轮的轴心为O ,若正方形的边长为6cm ,车轮轴心O 距离地面的最高点与最低点的高度差为______cm ;(3)探究C 组:如图3,有一个正三角形车轮,边长为6cm ,车轮轴心为O (三边垂直平分线的交点),车轮在地面上无滑动地滚动一周,求点O 经过的路径长.探究发现:车辆的平稳关键看车轮轴心是否稳定,即车轮的轴心是否在一条水平线上运动.【拓展延伸】如图4,分别以正三角形的三个顶点A ,B ,C 为圆心,以正三角形的边长为半径作60︒圆弧,这样形成的曲线图形叫做“莱洛三角形”.“莱洛三角形”在滚动时始终位于一组平行线之间,因此放在其上的物体也能够保持平衡,但其车轴中心O并不稳定.(4)探究D组:使“莱洛三角形”以图4为初始位置沿水平方向向右滚动.在滚动过程中,其“最高点”和“车轮轴心O”均在不断移动位置,那么在“莱洛三角形”滚动一周的过程中,其“最高点”和“车轮轴心O”所形成的图形按上、下放置,应大致为______.22.如图,等腰Rt ABC △中,90ACB ∠=︒,AC BC =,点D 为BC 边上一点,CE AD ⊥于点E ,延长BE 交AC 于点F .(1)求证:22AE AC ED CD=;(2)当EF 平分AEC ∠时,求BC DC的值;(3)当点D 为BC 的三等分点时,请直接写出AF FC 的值.(3)解:作DP BF∥交当23 CDBC=时,∴23CPCF=,tan ECD∠22AE ACED CD=,2 DE CD∴=,。

中考数学一模试题(含答案解析)

中考数学一模试题(含答案解析)

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________时间120分钟满分100分一.选择题(共8小题,满分16分,每小题2分)1.下面四个图形分别是可回收垃圾、其他垃圾、厨余垃圾、有害垃圾的标志,这四个标志中是轴对称图形的是()A.B.C.D.2.下列把2034000记成科学记数法正确的是()A.2.034×106B.20.34×105C.0.2034×106D.2.034×1033.如图,数轴上的点A所表示的数为x,则x的值为()A.B.+1C.﹣1D.1﹣4.若正多边形的内角和是1260°,则该正多边形的一个外角为()A.30°B.40°C.45°D.60°5.如图,AB∥CD,∠BAE=120°,∠DCE=30°,则∠AEC=()度.A.70B.150C.90D.1006.菲尔兹奖(FieldsMedal)是享有崇高声誉的数学大奖,每四年颁奖一次,颁给二至四名成就显著的年轻数学家.对截至2014年获奖者获奖时的年龄进行统计,整理成下面的表格.组别第一组第二组第三组第四组年龄段(岁)27<x≤3131<x≤3434<x≤3737<x≤40频数(人)8111720则这56个数据的中位数落在()A.第一组B.第二组C.第三组D.第四组7.如果a﹣b=5,那么代数式(﹣2)•的值是()A.﹣B.C.﹣5D.58.如图为某二次函数的部分图象,有如下四个结论:①此二次函数表达式为y=x2﹣x+9;②若点B(﹣1,n)在这个二次函数图象上,则n>m;③该二次函数图象与x轴的另一个交点为(﹣4,0);④当0<x<6时,m<y<8.所有正确结论的序号是()A.①③B.①④C.②③D.②④二.填空题(共8小题,满分16分,每小题2分)9.因式分解:4a3﹣16a=.10.设M=2x﹣3y,N=3x﹣2y,P=xy.若M=5,N=0,则P=.11.如图,已知点B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件,可以判断△ABF≌△DCE.12.如图,AB是⊙O的直径,C,D是圆上两点,∠AOC=50°,则∠D等于.13.在正方形网格中,A、B、C、D、E均为格点,则∠BAC﹣∠DAE=°.14.已知扇形的半径为6cm,弧长为5πcm,则扇形的圆心角为度.15.若关于x的一元二次方程x2+2x+k=0无实数根,则k的取值范围是.16.如图1,在△ABC中,AB>AC,D是边BC上一动点,设B,D两点之间的距离为x,A,D两点之间的距离为y,表示y与x的函数关系的图象如图2所示.则线段AC的长为,线段AB 的长为.三.解答题(共12小题,满分68分)17.(5分)计算:2sin45°+|﹣1|﹣tan60°+(π﹣2)0.18.(5分)解不等式:1﹣x≥﹣,并把它的解集在数轴上表示出来.19.(5分)已知x2﹣3x﹣1=0,求代数式(x+2)(x﹣2)﹣x(3x﹣6)的值.20.(5分)如图,AB为半圆O的直径,且AB=10,C为半圆上的一点,AC<BC.(1)请用尺规作图在BC上作一点D,使得BD=AC+CD;(不写作法,保留痕迹)(2)在(1)的条件下,连接OD,若OD=,求△ABC的面积.21.(6分)重庆是一个非常适合旅游打卡的城市,在渝中区有“洪崖洞”,南岸区有“南山一颗树”等等,为了解初三学生对重庆历史文化的了解程度,随机抽取了男、女各m名学生进行问卷测试,问卷共30道选择题,现将得分情况统计,并绘制了如图不完整的统计图(数据分组为A组:x<18,B组:18≤x<22,C组:22≤x<26,D组:26≤x≤30,x表示问卷测试的分数),其中男生得分处于C组的有14人,男生C组得分情况分别为:22,22,22,22,22,23,23,23,24,24,24,25,25,25.男生、女生得分的平均数、中位数、众数(单位:分)如表所示:组别平均数中位数众数男20n22女202320(1)直接写出m,n的值,并补全条形统计图;(2)通过以上数据分析,你认为成绩更好的是男生还是女生?说明理由(一条理由即可);(3)已知初三年级总人数为1800人,请估计参加问卷测试,成绩处于C组的人数.22.(5分)如图,在等边△ABC中,已知点E在直线AB上(不与点A、B重合),点D在直线BC上,且ED =EC.(1)若点E为线段AB的中点时,试说明DB=AE的理由;(2)若△ABC的边长为2,AE=1,求CD的长.23.(6分)探究一次函数y=kx+k﹣2(k是不为0的常数)图象的共同特点.(探究过程)小华尝试把x=﹣1代入时,发现可以消去k,竟然求出了y=﹣2.老师问:结合一次函数图象,这说明了什么?小组讨论得出:无论k取何值,一次函数y=kx+k﹣2的图象一定经过定点(﹣1,﹣2),老师:如果一次函数的图象是经过某一个定点的直线,那么我们把这样的一次函数图象称为“陀螺线”.若一次函数y=(k﹣1)x﹣(2k+3)的图象是“陀螺线”,(1)一次函数y=(k﹣1)x﹣(2k+3)的图象经过定点P的坐标是.(2)已知一次函数y=(k﹣1)x﹣(2k+3)的图象与x轴,y轴分别相交于点A、B.①若△OBP的面积为8,求k的值.②若S△AOB:S△OBP=3:2,求k的值.24.(6分)如图,P A、PB与⊙O相切于点A、B,过点B作BD∥AP交⊙O于点D.(1)求证:AD=AB;(2)若BD•BP=80,sin∠DAB=,求△ABP的面积.25.(5分)如图,已知△ABC中,BE平分∠ABC,且BE=BA,点F是BE延长线上一点,且BF=BC,过点F作FD⊥BC于点D.(1)求证:∠BEC=∠BAF;(2)判断△AFC的形状并说明理由.(3)若CD=2,求EF的长.26.(7分)如图,一次函数的图象y=ax+b(a≠0)与反比例函数y=(k≠0)的图象交于点A(,4),点B(m,1).(1)求这两个函数的表达式;(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,点P是反比例函数图象上的一点,当S△OCP:S△BCD=1:3时,请直接写出点P的坐标.27.(6分)已抛物线y=x2+2x+m的顶点在x轴上.(1)求m的值;(2)若P(n,y1),Q(n+2,y2)是该二次函数的图象上的两点,且y1>y2,求实数n的取值范围.28.(7分)在平面直角坐标系xOy中,对于△ABC,点P在BC边的垂直平分线上,若以点P为圆心,PB 为半径的⨀P与△ABC三条边的公共点个数之和不小于3,则称点P为△ABC关于边BC的“Math点”.如图所示,点P即为△ABC关于边BC的“Math点”.已知点P(0,4),Q(a,0).(1)如图1,a=4,在点A(1,0)、B(2,2)、C(,)、D(5,5)中,△POQ关于边PQ的“Math点”为.(2)如图2,,①已知D(0,8),点E为△POQ关于边PQ的“Math点”,请直接写出线段DE的长度的取值范围;②将△POQ绕原点O旋转一周,直线交x轴、y轴于点M、N,若线段MN上存在△POQ关于边PQ的“Math点”,求b的取值范围.参考答案一.选择题(共8小题,满分16分,每小题2分)1.下面四个图形分别是可回收垃圾、其他垃圾、厨余垃圾、有害垃圾的标志,这四个标志中是轴对称图形的是()A.B.C.D.【解答】解:A、不是轴对称图形,故此选项不合题意;B、是轴对称图形,故此选项符合题意;C、不是轴对称图形,故此选项不合题意;D、不是轴对称图形,故此选项不合题意;故选:B.2.下列把2034000记成科学记数法正确的是()A.2.034×106B.20.34×105C.0.2034×106D.2.034×103【解答】解:数字2034000科学记数法可表示为2.034×106.故选:A.3.如图,数轴上的点A所表示的数为x,则x的值为()A.B.+1C.﹣1D.1﹣【解答】解:根据题意得:x=﹣1=﹣1,故选:C.4.若正多边形的内角和是1260°,则该正多边形的一个外角为() A.30°B.40°C.45°D.60°【解答】解:设该正多边形的边数为n,根据题意列方程,得(n﹣2)•180°=1260°解得n=9.∴该正多边形的边数是9,∵多边形的外角和为360°,360°÷9=40°,∴该正多边形的一个外角为40°.故选:B.5.如图,AB∥CD,∠BAE=120°,∠DCE=30°,则∠AEC=()度.A.70B.150C.90D.100【解答】解:如图,延长AE交CD于点F,∵AB∥CD,∴∠BAE+∠EFC=180°,又∵∠BAE=120°,∴∠EFC=180°﹣∠BAE=180°﹣120°=60°,又∵∠DCE=30°,∴∠AEC=∠DCE+∠EFC=30°+60°=90°.故选:C.6.菲尔兹奖(FieldsMedal)是享有崇高声誉的数学大奖,每四年颁奖一次,颁给二至四名成就显著的年轻数学家.对截至2014年获奖者获奖时的年龄进行统计,整理成下面的表格.组别第一组第二组第三组第四组年龄段(岁)27<x≤3131<x≤3434<x≤3737<x≤40频数(人)8111720则这56个数据的中位数落在()A.第一组B.第二组C.第三组D.第四组【解答】解:题目中数据共有56个,故中位数是按从小到大排列后第28、第29两个数的平均数,而第28、第29两个数均在第三组,故这组数据的中位数落在第三组.故选:C.7.如果a﹣b=5,那么代数式(﹣2)•的值是()A.﹣B.C.﹣5D.5【解答】解:∵a﹣b=5,∴原式=•=•=a﹣b=5,故选:D.8.如图为某二次函数的部分图象,有如下四个结论:①此二次函数表达式为y=x2﹣x+9;②若点B(﹣1,n)在这个二次函数图象上,则n>m;③该二次函数图象与x轴的另一个交点为(﹣4,0);④当0<x<6时,m<y<8.所有正确结论的序号是()A.①③B.①④C.②③D.②④【解答】解:①从图象看,抛物线的顶点坐标为(2,9),抛物线和x轴的一个交点坐标为(8,0),则设抛物线的表达式为y=a(x﹣2)2+9,将(8,0)代入上式得:0=a(8﹣2)2+9,解得a=﹣,故抛物线的表达式为y=x2﹣x+8,故①错误,不符合题意;②从点A、B的横坐标看,点A距离抛物线对称轴远,故n>m正确,符合题意;③抛物线的对称轴为直线x=2,抛物线和x轴的一个交点坐标为(8,0),则另外一个交点为(﹣4,0),故③正确,符合题意;④从图象看,当0<x<6时,m<y≤9,故④错误,不符合题意;故选:C.二.填空题(共8小题,满分16分,每小题2分)9.因式分解:4a3﹣16a=4a(a+2)(a﹣2).【解答】解:原式=4a(a2﹣4)=4a(a+2)(a﹣2),故答案为:4a(a+2)(a﹣2)10.设M=2x﹣3y,N=3x﹣2y,P=xy.若M=5,N=0,则P=6.【解答】解:由题意得,①+②得5x﹣5y=5,即x﹣y=1③,①﹣③×2得﹣y=3,解得y=﹣3,把y=﹣3代入③得,x=﹣2,∴P=xy=﹣2×(﹣3)=6,故答案为6.11.如图,已知点B、E、F、C在同一直线上,BE=CF,AF=DE,则添加条件∠AFB=∠DEC或AB=DC,可以判断△ABF≌△DCE.【解答】解:∵BE=CF,∴BE+EF=CF+EF,即BF=CE,又∵AF=DE,∴若添加∠AFB=∠DEC,可以利用“SAS”证明△ABF≌△DCE,若添加AB=DC,可以利用“SSS”证明△ABF≌△DCE,所以,添加的条件为∠AFB=∠DEC或AB=DC.故答案为:∠AFB=∠DEC或AB=DC.12.如图,AB是⊙O的直径,C,D是圆上两点,∠AOC=50°,则∠D等于25°.【解答】解:∵∠AOC与∠D是同弧所对的圆心角与圆周角,∠AOC=50°,∴∠D=∠AOC=25°.故答案为25°.13.在正方形网格中,A、B、C、D、E均为格点,则∠BAC﹣∠DAE=45°.【解答】解:连接AF、EF,则∠CAB=∠F AD,∵∠F AD﹣∠DAE=∠F AE,∴∠BAC﹣∠DAE=∠F AE,设小正方形的边长为1,则AF=,EF=,AE=,∴AF2+EF2=AE2,∴△AFE是等腰直角三角形,∴∠F AE=45°,即∠BAC﹣∠DAE=45°,故答案为:45.14.已知扇形的半径为6cm,弧长为5πcm,则扇形的圆心角为150度.【解答】解:设扇形的圆心角为n°,∵扇形的半径为6cm,弧长为5πcm,∴5π=,解得n=150,故答案为:150.15.若关于x的一元二次方程x2+2x+k=0无实数根,则k的取值范围是k>1.【解答】解:根据题意得△=b2﹣4ac=22﹣4k<0,解得k>1.故答案为:k>1.16.如图1,在△ABC中,AB>AC,D是边BC上一动点,设B,D两点之间的距离为x,A,D两点之间的距离为y,表示y与x的函数关系的图象如图2所示.则线段AC的长为,线段AB的长为2.【解答】解:从图象看,当x=1时,y=,即BD=1时,AD=,当x=7时,y=,即BD=7时,C、D重合,此时y=AD=AC=,则CD=6,即当BD=1时,△ADC为以点A为顶点腰长为的等腰三角形,如下图:过点A作AH⊥BC于点H,在Rt△ACH中,AC=,CH=DH=CD=3,则AH===2,在Rt△ABH中,AB===2,故答案为:,2.三.解答题(共12小题,满分68分)17.(5分)计算:2sin45°+|﹣1|﹣tan60°+(π﹣2)0.【解答】解:原式=2×+﹣1﹣+1==.18.(5分)解不等式:1﹣x≥﹣,并把它的解集在数轴上表示出来.【解答】解:去分母得,6﹣4x≥3﹣(2x+1),去括号得,6﹣4x≥3﹣2x﹣1,移项、合并同类项得,﹣2x≥﹣4,把x的系数化为1得,x≤2.在数轴上表示此不等式的解集如下:19.(5分)已知x2﹣3x﹣1=0,求代数式(x+2)(x﹣2)﹣x(3x﹣6)的值.【解答】解:原式=x2﹣4﹣3x2+6x=﹣2x2+6x﹣4,∵x2﹣3x﹣1=0,∴x2﹣3x=1,∴原式=﹣2(x2﹣3x)﹣4=﹣2×1﹣4=﹣6.20.(5分)如图,AB为半圆O的直径,且AB=10,C为半圆上的一点,AC<BC.(1)请用尺规作图在BC上作一点D,使得BD=AC+CD;(不写作法,保留痕迹)(2)在(1)的条件下,连接OD,若OD=,求△ABC的面积.【解答】解:(1)如图,点D即为所求作.(2)连接AE,OD.∵OA=OB,DE=DB,∴AE=2OD=6,∵AB是直径,∴∠ACE=∠ACB=90°,在Rt△ACE中,AC=EC,∴AC=AE=6,∴BC===6,∴S△ABC=•AC•BC=×6×8=24.21.(6分)重庆是一个非常适合旅游打卡的城市,在渝中区有“洪崖洞”,南岸区有“南山一颗树”等等,为了解初三学生对重庆历史文化的了解程度,随机抽取了男、女各m名学生进行问卷测试,问卷共30道选择题,现将得分情况统计,并绘制了如图不完整的统计图(数据分组为A组:x<18,B组:18≤x<22,C组:22≤x<26,D组:26≤x≤30,x表示问卷测试的分数),其中男生得分处于C组的有14人,男生C组得分情况分别为:22,22,22,22,22,23,23,23,24,24,24,25,25,25.男生、女生得分的平均数、中位数、众数(单位:分)如表所示:组别平均数中位数众数男20n22女202320(1)直接写出m,n的值,并补全条形统计图;(2)通过以上数据分析,你认为成绩更好的是男生还是女生?说明理由(一条理由即可);(3)已知初三年级总人数为1800人,请估计参加问卷测试,成绩处于C组的人数.【解答】解:(1)m=14÷28%=50(人),50×(2%+24%)=12(人),∴男生中位数n=(25+25)÷2=25,女生C组人数=50﹣2﹣13﹣20=15(人),条形图如图所示:(2)男生的成绩比较好,因为男生的中位数比女生的中位数大(也可以根据众数的大小判断);(3)1800×=522(人),答:估计成绩处于C组的人数约为522人.22.(5分)如图,在等边△ABC中,已知点E在直线AB上(不与点A、B重合),点D在直线BC上,且ED =EC.(1)若点E为线段AB的中点时,试说明DB=AE的理由;(2)若△ABC的边长为2,AE=1,求CD的长.【解答】解:(1)∵△ABC是等边三角形,E为AB的中点,∴∠BCE=30°,BE=AE,∵ED=EC,∴∠EDB=∠BCE=30°,∵∠ABD=120°,∴∠DEB=30°,∴DB=EB,∴AE=DB;(2)如图1,E在线段AB上时,∵AB=2,AE=1,∴点E是AB的中点,由(1)知,BD=AE=1,∴CD=BC+BD=3;如图2,E在线段AB的反向延长线上时,∵AE=1,AB=2,∴BE=3,∵△ABC是等边三角形,∴∠BAC=∠BCA=60°,AB=BC=AC=2,过E作EH∥AC交BC的延长线于H,∴∠BEH=∠BHE=60°,∴△BEH是等边三角形,∴BE=EH=BH=3,∠B=∠H=60°,∵ED=EC,∴∠EDC=∠ECD,∴∠B+∠BED=∠H+∠HEC,∴∠BED=∠HEC,在△BDE和△HCE中,,∴△BDE≌△HCE(SAS),∴BD=HC=BH﹣BC=3﹣2=1,∴CD=BH﹣BD﹣HC=3﹣1﹣1=1.综上所述,CD的长为1或3.23.(6分)探究一次函数y=kx+k﹣2(k是不为0的常数)图象的共同特点.(探究过程)小华尝试把x=﹣1代入时,发现可以消去k,竟然求出了y=﹣2.老师问:结合一次函数图象,这说明了什么?小组讨论得出:无论k取何值,一次函数y=kx+k﹣2的图象一定经过定点(﹣1,﹣2),老师:如果一次函数的图象是经过某一个定点的直线,那么我们把这样的一次函数图象称为“陀螺线”.若一次函数y=(k﹣1)x﹣(2k+3)的图象是“陀螺线”,(1)一次函数y=(k﹣1)x﹣(2k+3)的图象经过定点P的坐标是(2,﹣5).(2)已知一次函数y=(k﹣1)x﹣(2k+3)的图象与x轴,y轴分别相交于点A、B.①若△OBP的面积为8,求k的值.②若S△AOB:S△OBP=3:2,求k的值.【解答】解:(1)当x=2时,y=(k﹣1)x﹣(2k+3)=2(k﹣1)﹣(2k+3)=﹣5;∴P (2,﹣5),故答案为:(2,﹣5);(2)解:①当x=0时,y=﹣(2k+3)∴OB=|2k+3|,∵P(2,﹣5),∴;∴2k+3=±8,解得:;②当y=0时,,∴,∴,∵S△OAB:S△OBP=3:2,∴,即,∴,解得:k=0或k=6,即k=0或k=6.24.(6分)如图,P A、PB与⊙O相切于点A、B,过点B作BD∥AP交⊙O于点D.(1)求证:AD=AB;(2)若BD•BP=80,sin∠DAB=,求△ABP的面积.【解答】(1)证明:连接AO,并延长交DB于点E,∵P A是⊙O的切线,∴OA⊥AP,∵BD∥AP,∴OA⊥BD于点E,∴DE=BE,即AE是BD的垂直平分线,∴AD=BD;(2)解:连接OB,OP交AB于点F,∵∠DAB=2∠OAB=∠EOB,且sin∠DAB=,∴sin∠EOB=,在Rt△EOB中,,设EB=4a,则OB=OA=5a,OE=3a,∴AE=8a,∴tan∠EAB=,又∵P A,PB与⊙O相切于点A,B,∴P A=PB,且OP平分∠APB,∴OP⊥AB,∴∠OP A+∠P AB=90°,∵∠OAB+∠P AB=90°,∴∠OAB=∠OP A,即tan∠OAB=tan∠OP A=,∴,即AP=BP=10a,又∵BD•BP=80,∴2BE•BP=80,即BE•BP=4a×10a=40a2=40,∴a=1,∴AE=8,BE=4,∴AB===4,设AF=b,则PF=2b,∴b2+(2b)2=102,∴b=2,∴FP=4,∴S△ABP=AB•FP==40.25.(5分)如图,已知△ABC中,BE平分∠ABC,且BE=BA,点F是BE延长线上一点,且BF=BC,过点F作FD⊥BC于点D.(1)求证:∠BEC=∠BAF;(2)判断△AFC的形状并说明理由.(3)若CD=2,求EF的长.【解答】解:(1)∵BE平分∠ABC,∴∠EBC=∠ABF,在△BEC和△BAF中,,∴△BEC≌△BAF(SAS),∴∠BEC=∠BAF;(2)△AFC是等腰三角形.证明:过F作FG⊥BA,与BA的延长线交于点G,如图,∵BA=BE,BC=BF,∠ABF=∠CBF,∴∠AEB=∠BCF,∵∠BEC=∠BAF,∴∠GAF=∠AEB=∠BCF,∵BF平分∠ABC,FD⊥BC,FG⊥BA,∴FD=FG,在△CDF和△AGF中,,∴△CDF≌△AGF(AAS),∴FC=F A,∵△ACF是等腰三角形;(3)设AB=BE=x,∵△CDF≌△AGF,CD=2,∴CD=AG=2,∴BG=BA+AG=x+2,在Rt△BFD和Rt△BFG中,,∴△BFD≌△BFG(HL),∴BD=BG=x+2,∴BF=BC=BD+CD=x+4,∴EF=BF﹣BE=x+4﹣x=4.26.(7分)如图,一次函数的图象y=ax+b(a≠0)与反比例函数y=(k≠0)的图象交于点A(,4),点B(m,1).(1)求这两个函数的表达式;(2)若一次函数图象与y轴交于点C,点D为点C关于原点O的对称点,点P是反比例函数图象上的一点,当S△OCP:S△BCD=1:3时,请直接写出点P的坐标.【解答】解:(1)把点A(,4)代入y=(k≠0)得:k=×4=2,∴反比例函数的表达式为:y=,∵点B(m,1)在y=上,∴m=2,∴B(2,1),∵点A(,4)、点B(2,1)都在y=ax+b(a≠0)上,∴,解得:,∴一次函数的表达式为:y=﹣2x+5;(2)∵一次函数图象与y轴交于点C,∴y=﹣2×0+5=5,∴C(0,5),∴OC=5,∵点D为点C关于原点O的对称点,∴D(0,﹣5),∴OD=5,∴CD=10,∴S△BCD=×10×2=10,设P(x,),∴S△OCP=×5×|x|=|x|,∵S△OCP:S△BCD=1:3,∴|x|=×10,∴|x|=,∴P的横坐标为或﹣,∴P(,)或(﹣,﹣).27.(6分)已抛物线y=x2+2x+m的顶点在x轴上.(1)求m的值;(2)若P(n,y1),Q(n+2,y2)是该二次函数的图象上的两点,且y1>y2,求实数n的取值范围.【解答】解:(1)∵抛物线y=x2+2x+m的顶点在x轴上,∴=0,解得,m=1.(2)(2)∵P(n,y1),Q(n+2,y2)是该二次函数的图象上的两点,且y1>y2,n2+2n+1>(n+2)2+2(n+2)+1,化简整理得,4n+8<0,∴n<﹣2,∴实数n的取值范围是n<﹣2.28.(7分)在平面直角坐标系xOy中,对于△ABC,点P在BC边的垂直平分线上,若以点P为圆心,PB 为半径的⨀P与△ABC三条边的公共点个数之和不小于3,则称点P为△ABC关于边BC的“Math点”.如图所示,点P即为△ABC关于边BC的“Math点”.已知点P(0,4),Q(a,0).(1)如图1,a=4,在点A(1,0)、B(2,2)、C(,)、D(5,5)中,△POQ关于边PQ的“Math点”为B,C.(2)如图2,,①已知D(0,8),点E为△POQ关于边PQ的“Math点”,请直接写出线段DE的长度的取值范围;②将△POQ绕原点O旋转一周,直线交x轴、y轴于点M、N,若线段MN上存在△POQ关于边PQ的“Math点”,求b的取值范围.【解答】解:(1)根据“Math点”的定义,观察图象可知,△POQ关于边PQ的“Math点”为B、C.故答案为:B,C.(2)如图2中,∵P(0,4),Q(4,0),∴OP=4,OQ=4,∴tan∠PQO=,∴∠PQO=30°,①当点E与PQ的中点K重合时,点E是△POQ关于边PQ的“Math点”,此时E(2,2),∵D(0,8),∴DE==4,当⊙E′与x轴相切于点Q时,E′(4,8),∴DE′=4,观察图象可知,当点E在线段KE′上时,点E为△POQ关于边PQ的“Math点”,∵E′Q⊥OQ,∴∠E′QO=90°,∴∠E′QK=60°,∴∠E′KQ=90°,∴∠EE′Q=30°,∵DE′∥OQ,∴∠DE′K=60°,∵DE′=DK,∴△DE′K是等边三角形,∵点D到E′K的距离的最小值为4•sin60°=6,∴.②如图3中,分别以O为圆心,4和4为半径画圆,当线段MN与图中圆环(包括小圆,不包据大圆)有交点时,线段MN上存在△POQ关于边PQ的“Math 点”,当直线MN与小圆交于(0,4)或(0,﹣4)时,b=±4,当直线MN与大圆相切时,b=±8,观察图象可知,满足条件的b的值为:4≤b<8或﹣8<b≤﹣4.。

初三数学综合复习题

初三数学综合复习题

初三数学综合复习题一、选择题1. 已知直角三角形的斜边长为5cm,一个锐角的角度为30°,求此三角形的周长。

A. 10cmB. 15cmC. 20cmD. 25cm2. 若正方形的周长等于矩形的周长的一半,且正方形的边长为6cm,则矩形的长是多少?A. 3cmB. 6cmC. 9cmD. 12cm3. 若已知一个角的补角是60°,则这个角的大小是多少?A. 30°B. 60°C. 90°D. 120°二、填空题1. 一辆汽车以每小时60km的速度行驶,若行驶2小时,则汽车行驶的距离为__________km。

2. 一个多边形有6个顶点,其中一个内角是120°,其他内角是90°,那么这个多边形的边数是__________。

3. 一个水桶中装有25升的水,每小时流出5升的水,水桶中的水会在__________小时内流干。

三、解答题1. 一个三角形的两边分别为8cm和12cm,夹角的度数为60°,求此三角形的面积。

2. 一间教室的长和宽比是5:3,若教室的面积是120平方米,求教室的长和宽各是多少米。

3. 一本书原价150元,现在打8折出售,求打折后的价格。

四、应用题1. 小明从家到学校骑自行车需要15分钟,如果小明骑电动车到学校只需10分钟,那么他骑电动车比骑自行车快了多少分钟?2. 一辆汽车以每小时50km的速度行驶,已知汽车行驶的时间为4小时,求汽车行驶的距离。

3. 甲乙两人进行比赛,甲比乙跑得快8分钟,乙总共花了40分钟完成比赛,求甲完成比赛所用的时间。

以上是初三数学综合复习题的一部分,希望能对你的数学复习有所帮助。

祝你取得好成绩!。

初三数学初中数学综合库试题答案及解析

初三数学初中数学综合库试题答案及解析

初三数学初中数学综合库试题答案及解析1.已知:m, n是两个连续自然数(m<n),且q=mn,设则p( )A.总是奇数B.总是偶数C.有时奇数,有时偶数D.有时有理数,有时无理数【答案】A【解析】略2.如图,将一把两边都带有刻度的直尺放在半圆形纸片上,使其一边经过圆心,另一边所在直线与半圆相交于点,量出半径,弦,则直尺的宽度.【答案】3cm【解析】略3.(2011贵州安顺,27,12分)如图,抛物线y=x2+bx-2与x轴交于A、B两点,与y轴交于C点,且A(一1,0).27⑴求抛物线的解析式及顶点D的坐标;⑵判断△ABC的形状,证明你的结论;⑶点M(m,0)是x轴上的一个动点,当CM+DM的值最小时,求m的值.【答案】(1)∵点A(-1,0)在抛物线y=x2 + bx-2上,∴× (-1 )2 + b× (-1) –2 = 0,解得b =∴抛物线的解析式为y=x2-x-2. y=x2-x-2 = ( x2 -3x- 4 ) =(x-)2-,∴顶点D的坐标为 (, -).(2)当x = 0时y =" -2, " ∴C(0,-2),OC = 2。

当y = 0时,x2-x-2 = 0,∴x1 =" -1," x2=" 4, " ∴B (4,0)∴OA =" 1, " OB =" 4, " AB = 5.∵AB2 =" 25, " AC2 = OA2 + OC2 =" 5, " BC2 = OC2 + OB2 = 20,∴AC2 +BC2 = AB2. ∴△ABC是直角三角形.(3)作出点C关于x轴的对称点C′,则C′(0,2),OC′=2,连接C′D交x轴于点M,根据轴对称性及两点之间线段最短可知,MC + MD的值最小。

解法一:设抛物线的对称轴交x轴于点E.∵ED∥y轴, ∴∠OC′M=∠EDM,∠C′OM=∠DEM∴△C′OM∽△DEM.∴∴,∴m =.解法二:设直线C′D的解析式为y = kx + n ,则,解得n =" 2," .∴ .∴当y = 0时,,. ∴.【解析】略4.【答案】2-【解析】略5.(2011•淮安)如图,直线a、b被直线c所截,a∥b,∠1=70°,则∠2=_________【答案】110°.【解析】∵a∥b,∴∠3=∠1=70°,∵∠2+∠3=180°,∴∠2=110°.故答案为:110°.6.解不等式组,并把它的解集在数轴上表示出来.【答案】解:由①得:x<8 (2分)由②得x≥6(4分)∴不等式的解集是:6≤x<8 (6分)【解析】略7.(2015山东省德州市,15,4分)在射击比赛中,某运动员的6次射击成绩(单位:环)为:7,8,10,8,9,6.计算这组数据的方差为.【答案】【解析】先计算平均数所以方差为【考点】方差;平均数8.下列图形中,既是中心对称图形又是轴对称图形的是()【答案】D【解析】A、既不是中心对称图形也不是轴对称图形;B、中心对称图形;C、既不是中心对称图形也不是轴对称图形;D、既是中心对称图形又是轴对称图形;故选D.【考点】1.轴对称图形;2.中心对称图形.9.如图,已知抛物线y=ax2+bx+c与x轴交于A、B两点,顶点C的纵坐标为﹣2,现将抛物线向右平移2个单位,得到抛物线y=a1x2+b1x+c1,则下列结论正确的是.(写出所有正确结论的序号)①b>0②a﹣b+c<0③阴影部分的面积为4④若c=﹣1,则b2=4a.【答案】③④【解析】①首先根据抛物线开口向上,可得a>0;然后根据对称轴为x=﹣>0,可得b<0,据此判断即可.②根据抛物线y=ax2+bx+c的图象,可得x=﹣1时,y>0,即a﹣b+c>0,据此判断即可.③首先判断出阴影部分是一个平行四边形,然后根据平行四边形的面积=底×高,求出阴影部分的面积是多少即可.④根据函数的最小值是,判断出c=﹣1时,a、b的关系即可.∵抛物线开口向上,∴a>0,又∵对称轴为x=﹣>0,∴b<0,∴结论①不正确;∵x=﹣1时,y>0,∴a﹣b+c>0,∴结论②不正确;∵抛物线向右平移了2个单位,∴平行四边形的底是2,∵函数y=ax2+bx+c的最小值是y=﹣2,∴平行四边形的高是2,∴阴影部分的面积是:2×2=4,∴结论③正确;∵,c=﹣1,∴b2=4a,∴结论④正确.【考点】二次函数图象与几何变换;二次函数图象与系数的关系10.如图,OA⊥OB,∠1=35°,则∠2的度数是()A.35°B.45°C.55°D.70°【答案】C【解析】∵OA⊥OB,∴∠AOB=90°,所以∠2+∠1=90°,∵∠1=35°,∴∠2=55°,故选:C.【考点】1.余角和补角;2.垂线.11.一条弦AB把圆的直径分成3和11两部分,弦和直径相交成300角,则AB的长为.【答案】.【解析】如图,过点O作OF⊥AB于点F,设弦AB与直径CD相交于点E,连接OB,∵分直径成3和11两部分,∴CD=14,∴OC=CD=7,∴OE=OC﹣CE=4,∵∠OEF=30°,∴OF=OE=2(cm),∴BF==,∴AB=2BF=.故答案为:.【考点】1.垂径定理;2.含30度角的直角三角形;3.勾股定理.12.先化简:先化简,再求值:,其中是方程的解.【答案】.【解析】首先将括号里面分式进行通分,然后将分式的分子和分母进行因式分解,最后进行约分化简,根据一元二次方程利用整体代入的思想来进行解答.试题解析:原式∵,∴∴原式【考点】分式的化简求值.13.已知关于x的函数y=k(x+1)和y=-(k≠0),它们在同一坐标系中的图象大致是()【答案】C.【解析】试题解析:当k>0时,反比例函数的系数-k<0,反比例函数过二、四象限,一次函数过一、二、三象限,C图象符合;当k<0时,反比例函数的系数-k>0,所以反比例函数过一、三象限,一次函数过二、三、四象限,没有符合图象.故选C.【考点】1。

初三数学综合试题精选

初三数学综合试题精选

14.已知等腰 ABC 的两条边长分别为 5 、 2 , AD 是底边上的高,⊙ A 的半径为 4 ,⊙ A 与⊙ D 相
15.边长为 a、b 的矩形,它的周长为 16,面积为 8,则 a2+b2= ▲ .
-1-x≤0, x 并写出它的正整数解.17.计算 12+| 3-2|+2-1-sin30° 16.解不等式组x+1 . - 1 < . 2 3
初三数学中考复习题选 1.已知四边形的对角线互相垂直,则顺次连接该四边形各边中点所得的四边形是(▲) A.梯形 B.矩形 C.菱形 D.正方形
2.人体最小的细胞 是血小板.5 000 000 个血小板紧密排成一直线长约 1m,则 1 个血小板 的直径用科学计数法表示为(▲) A.5×106 m B.5×107 m C.2×10 7 m D.2×10 6 m. 3.若干桶方便面摆放在桌面上,它的三个视图如下,则这一堆方便面共有(▲)
22. 多年来,许多船只、飞机都在大西洋的一个区域内神秘失踪,这个区域被称为百 慕大三角.根据图中标出的百慕大三角的位置及相关数据计算: (1)∠BAC 的度数; (2)百慕大三角的面积. (参考数据:sin64°≈0.90,cos64°≈0.44,tan64°≈2.05)
23. (7)如图,一张矩形纸片 ABCD 中,AD>AB.将矩形纸片 ABCD 沿过点 A 的直线折 叠,使点 D 落到 BC 边上的点 D′,折痕 AE 交 DC 于点 E. (1)试用尺规在图中作出点 D′和折痕 AE(不写作法,保留作图痕迹) ; (2)连接 DD′、A D′、E D′,则当∠E D′C= ▲ °时,△A D′D 为等边三角形; (3)若 AD=5,AB=4,求 ED 的长. A D
y 9 2
-1 O

中考模拟测试《数学试题》含答案解析

中考模拟测试《数学试题》含答案解析

数学中考综合模拟检测试题学校________ 班级________ 姓名________ 成绩________一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-7的绝对值是( )A. 7B. -7C. 17D. -172.把如图所示的几何体组合中的正方体放到正方体的上面,则下列说法正确的是()A 主视图不变B. 俯视图不变C 左视图不变D. 三种视图都不变3.如图,DE 与ABC 的底边AB 平行,OF 是COE ∠的角平分线,若62,B ∠=︒则1∠的度数为()A. 54B. 59C. 62D. 644.已知正比例函数(0)y kx k =≠的图象经过点()2,3,-则的值为() A. 32 B. 23- C. 32- D. 235.下列运算正确是() A. 428a a a ⋅= B. 221a a -= C. 2222a a a -+= D. ()325x x =6.如图,在ABC 中,//,,30DE BC AF BC ADE ⊥∠=︒,2,33,DE BC BF ==则DF 的长为()A.B. 23C. 33D.7.在平面直角坐标系中,函数2(0)y kx k =≠的图象如图所示,则函数232y kx k =-+的图象大致是()A. B.C. D.8.如图,,AB BC 为O 中异于直径的两条弦,OA 交BC 于点,D 若50,35,AOC C ∠=︒∠=︒则A ∠的度数为()A. 35B. 50C. 60D. 709.如图,是矩形ABCD 中AD 边的中点,BE 交AC 于点,F ABF 的面积为,则四边形CDEF 的面积为()A.B.C.D.10.已知抛物线2221)0(y ax ax a a =-++≠.当3x ≥时,随的增大而增大;当20x -≤≤时,的最大值为.那么与抛物线2221y ax ax a =-++关于轴对称的抛物线在23x -≤≤内的函数最大值为()A. B. C. D. 二、填空题(每题3分,满分12分,将答案填在答题纸上)11.5_.12.如图,在正六边形ABCDEF 中,CAD ∠的度数为____.13.如图,在同一平面直角坐标系中,若一个反比例函数的图象与正方形ABEC 交于,E F 两点,且,A C 两点在轴上,点的坐标为()2,4,则点的坐标为_____.14.如图,在平行四边形ABCD 中,10,16,60,AB AD A P ==∠=︒为AD 的中点,是边AB 上不与点,A B 重合的一个动点,将APF 沿PF 折叠,得到',A PF 连接',BA 则'BA F 周长的最小值为___.三、解答题(本大题共11小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.计算:()1082 3.146012cos π-⎛⎫+⎭- ⎪⎝︒. 16.化简:2222111a a a a a--⎛⎫-÷ ⎪-+⎝⎭ 17.如图,在ABC 中,90,BAC ∠=︒请用尺规作图法,作ABC 绕点逆时针旋转45︒后的11AB C △.(不写作法,保留作图痕迹)18.如图,在ABC 中,为BC 边上一点,过点作//,FD AC 且,FD AC =延长BC 至点,E 使,BF CE =连接DE .求证://AB DE .19.某校为了解该校初三学生居家学习期间参加”网络自习室”自主学习的情况,随机抽查了部分学生在两周内参加”网络自习室”自主学习的天数,并用得到的数据绘制了如下两幅不完整的统计图.请根据图中提供的信息,回答下列问题.(1)补全条形统计图.(2)部分学生在两周内参加”网络自习室”自主学习天数的众数为______,中位数为________;(3)如果该校初三年级约有1500名学生,请你估计在这两周内全校初三年级可能有多少名学生参加”网络自习室”自主学习的天数不少于天.20.如图1所示的是宝鸡市文化景观标志”天下第一灯”,它由国际2.0不锈钢板整体锻造,表面涂有仿古金色漆,以仿青铜纹饰雕刻的柱体四盏灯分层布置.一天上午,数学兴趣小组的同学们带着测量工具来测量”天下第一灯”的高度,由于有围栏保护,他们无法到达灯的底部,O 他们制定了一种测量方案,图2所示的是他们测量方案的示意图,先在周围的广场上选择一点,A 并在点处安装了测量器,AB 在点处测得该灯的顶点P 的仰角为60︒;再在OA 的延长线上确定一点,C 使15AC =米,在点处测得该灯的顶点的仰角为45︒.若测量过程中测量器的高度始终为1.6米,求”天下第一灯”的高度.2 1.414,31(.732≈≈,最后结果取整数)21.陕西省相关文件规定,西安市实行居民阶梯水价制度,对居民用水的基本水价实行1:1.5:3三级价差,各阶梯水价均为用户终端水价,具体如下:第一阶梯:年用水量3162m 及以下,终端水价为3.80元/3m .第二阶梯:年用水量33162275m m -(含),终端水价为4.65元/3m .第三阶梯:年用水量3275m 以上,终端水价为7.18元/3m .城区居民阶梯水价计量结算周期以年为单位,年用水量累计达到各阶梯水量上限后,超出部分执行下一阶梯水价;年度周期之间水量不结转,不累计.设某户居民2019年的年用水量为()3x m ,应缴水费为 (元). (1)写出该户居民2019年的年用水量为331622(75m m -含)的与之间的函数表达式.(2)若该户居民2019年的应缴水费为1320.55元,则该户居民2019年的年用水量为多少.22.现有四个外观与质地完全相同的小球,小球上分别标有数字3,4,5,6.将四个小球放置于不透明的盒子中,摇匀后,甲从中随机抽取一个小球,记录数字后放回摇匀,乙再随机抽取一个.(1)请用列表法或画树状图方法,求两人抽取相同数字的概率.(2)若两人抽取的数字和为的倍数,则甲获胜;若抽取的数字和为的倍数,则乙获胜,否则为平局.这个游戏公平吗?请用所学的概率的知识加以解释.23.如图,O 与Rt ABF 的边,BF AF 分别交于点,C D ,连接,,AC CD 90,BAF ∠=︒点在CF 上,且DEC BAC ∠=∠.(1)试判断DE 与O 的位置关系,并说明理由.(2)若,4,6,AB AC CE EF ===求O 的直径. 24.如图,抛物线2y x bx c =-++与轴交于点和点()3,0B ,与轴交于点()0,3C ,点是抛物线的顶点,过点作轴的垂线,垂足为,E 连接DB .(1)求此抛物线的解析式.(2)点M 是抛物线上的动点,设点M 的横坐标为.当MBA BDE ∠=∠时,求点M 的坐标.25.[问题发现]如图1,半圆的直径10,AB P =是半圆上的一个动点,则PAB △面积的最大值是_.[问题解决]如图2所示的是某街心花园的一角.在扇形OAB 中,90,12AOB OA ∠=︒=米,在围墙OA 和OB 上分别有两个入口和,D 且4AC =米,是OB 的中点,出口在AB 上.现准备沿,CE DE 从入口到出口铺设两条景观小路,在四边形CODE 内种花,在剩余区域种草.①出口设在距直线OB 多远处可以使四边形CODE 面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE 所用的普通石材每米的造价是200元,铺设小路DE 所用的景观石材每米的造价是400元问:在AB 上是否存在点,使铺设小路CE 和DE 的总造价最低?若存在,请求出最低总造价和出口距直线OB 的距离;若不存在,请说明理由.答案与解析一、选择题:本大题共10个小题,每小题3分,共30分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.-7的绝对值是( )A. 7B. -7C. 17D. -17【答案】A【解析】【分析】根据绝对值的性质解答,当a是负有理数时,a的绝对值是它的相反数﹣a.【详解】|﹣7|=7.故选A.【点睛】本题考查了绝对值的性质①当a是正数时,a的绝对值是它本身a;②当a是负数时,a的绝对值是它的相反数﹣a;③当a是零时,a的绝对值是零.2.把如图所示的几何体组合中的正方体放到正方体的上面,则下列说法正确的是()A. 主视图不变B. 俯视图不变C. 左视图不变D. 三种视图都不变【答案】C【解析】【分析】分别得到将正方体A移动前后的三视图,依次即可作出判断.【详解】将正方体放到正方体的上面后,主视图改变,左视图不变,俯视图改变.故选:C .【点睛】此题主要考查立体组合体的三视图,熟练画立体图形的三视图是解题关键.3.如图,DE 与ABC 的底边AB 平行,OF 是COE ∠的角平分线,若62,B ∠=︒则1∠的度数为()A. 54B 59C. 62D. 64【答案】B【解析】【分析】先根据平行线的性质求出62,BOE ∠=︒再根据邻补角求得118,COE ∠=︒然后根据角平分线即可求解.【详解】解:∵DE AB∴62,BOE B ∠=∠=︒∴118,COE ∠=︒∵OF 是COE ∠的角平分线∴1∠=59︒故选:B【点睛】此题主要考查平行线的性质、邻补角的性质和角平分线的定义,熟练掌握性质定理是解题关键. 4.已知正比例函数(0)y kx k =≠的图象经过点()2,3,-则的值为() A. 32 B. 23- C. 32- D. 23【答案】C直接把()2,3-代入(0)y kx k =≠即可求解.【详解】解:把()2,3-代入(0)y kx k =≠ 解得:3k 2=-故选:C【点睛】此题主要考查待定系数法求正比例函数解析式中的参数k ,正确理解函数的图象和性质是解题关键. 5.下列运算正确的是()A. 428a a a ⋅=B. 221a a -=C. 2222a a a -+=D. ()325x x =【答案】C【解析】【分析】直接根据同底数幂的乘法法则、合并同类项法则和幂的乘方法则即可求解.【详解】解:A. 426a a a ⋅=,此选项错误B. 22a a -=-,此选项错误C. 2222a a a -+=,此选项正确D. ()326x x =,此选项错误 故选:C【点睛】此题主要考查同底数幂的乘法法则、合并同类项法则和幂的乘方法则,熟练掌握法则是解题关键. 6.如图,在ABC 中,//,,30DE BC AF BC ADE ⊥∠=︒,2,33,DE BC BF ==则DF 的长为()A.B. 3C. 33D.【分析】先利用相似三角形的相似比证明点D 是AB 的中点,再解直角三角形求得AB ,最后利用直角三角形斜边中线性质求出DF .【详解】解:∵//DE BC ,∴ADE ~ABC ,∵2DE BC =,∴点D 是AB 的中点,∵,30AF BC ADE ⊥∠=︒,33BF =,∴∠B =30°,∴AB 6cos30BF ==︒, ∴DF=3,故选:D .【点睛】此题主要考查相似三角形的判定与性质、解直角三角形和直角三角形斜边中线性质,熟练掌握性质的运用是解题关键.7.在平面直角坐标系中,函数2(0)y kx k =≠的图象如图所示,则函数232y kx k =-+的图象大致是()A. B.C. D.【分析】根据函数图象易知k 0<,可得32k 0-+<,所以函数图象沿y 轴向下平移可得.【详解】解:根据函数图象易知k 0<,∴32k 0-+<,故选:C .【点睛】此题主要考查一次函数的性质与图象,正确理解一次函数的性质与图象是解题关键. 8.如图,,AB BC 为O 中异于直径的两条弦,OA 交BC 于点,D 若50,35,AOC C ∠=︒∠=︒则A ∠的度数为()A. 35B. 50C 60D. 70【答案】C【解析】【分析】根据同弧所对的圆心角等于圆周角的2倍,可得出∠B=25︒,然后根据三角形的内角和为180︒即可求解.【详解】解:∵50AOC ∠=︒,∴∠B=25︒,∵35C ∠=︒,∠ADB=∠CDO ,∴A ∠+∠B=∠C+∠AOC ,即∠A=355025︒+︒-︒=60︒,故选:C .【点睛】此题主要考查同弧所对的圆心角与圆周角之间的关系及三角形的内角和,熟练掌握性质是解题关键.9.如图,是矩形ABCD 中AD 边的中点,BE 交AC 于点,F ABF 的面积为,则四边形CDEF 的面积为()A.B.C.D.【答案】B【解析】【分析】设AEF S x =△,根据相似三角形的面积比等于相似比的平方,得出4BCF Sx =,求出x 即可解答. 【详解】解:∵AD ∥BC ,是矩形ABCD 中AD 边的中点,∴AEF ~CBF ,设AEF S x =△,那么4BCF Sx =, ∵2ABF S =, ∴()1x 2422x +=+, 解得:x 1=,∴325CDEF S x =+=四边形,故选:B.【点睛】此题主要考查相似三角形的相似比与面积比之间的关系,灵活运用关系是解题关键. 10.已知抛物线2221)0(y ax ax a a =-++≠.当3x ≥时,随的增大而增大;当20x -≤≤时,的最大值为.那么与抛物线2221y ax ax a =-++关于轴对称的抛物线在23x -≤≤内的函数最大值为()A.B. C. D. 【答案】B【解析】【分析】由题意,得抛物线2221y ax ax a =-++的对称轴是直线1x =,根据当3x ≥时,随的增大而增大,得到0,a >且1x ≤时,随的增大而减小,再根据当20x -≤≤时,的最大值为,得到当2x =-时,28110a a ++=,求出1a =,那么2(1)1y x =-+关于轴对称的抛物线为()211y x =++,即可求解. 【详解】解:由题意,得抛物线2221y ax ax a =-++的对称轴是直线1x =.当3x ≥时,随的增大而增大,0,a ∴>且1x ≤时,随的增大而减小.当20x -≤≤时,的最大值为10,当2x =-时,28110,a a ++= 1a 或9a =-(舍去),2222()11y x x x ∴=-+=-+关于轴对称的抛物线为()211,y x =++函数()211y x =++在23x -≤≤内的最大值在3x =处取得,最大值为17,y =故选.【点睛】此题主要考查二次函数的性质,熟练掌握二次函数的图象和性质是解题关键. 二、填空题(每题3分,满分12分,将答案填在答题纸上)11._.【答案】2【解析】【分析】估算得出所求即可.【详解】解:∵459,∴23<<,2,故答案为:2.【点睛】此题主要考查无理数的估算,熟练掌握估算方法是解题关键.12.如图,在正六边形ABCDEF中,CAD∠的度数为____.【答案】30【解析】【分析】根据正六边形得到∠ABC=∠BCD=∠CDE=120︒,AB=BC=CD,进而得到∠ACB=30,∠ACD=90︒,∠ADC=60︒,即可求解.【详解】解:在正六边形ABCDEF中,∠ABC=∠BCD=∠CDE=120︒,AB=BC,∴∠ACB=30,∠ACD=90︒,∠ADC=60︒,∴∠CAD=30,故答案为:30.【点睛】此题主要考查正六边形的性质,灵活运用性质是解题关键.13.如图,在同一平面直角坐标系中,若一个反比例函数的图象与正方形ABEC交于,E F两点,且,A C两点在轴上,点的坐标为()2,4,则点的坐标为_____.【答案】4 6,3⎛⎫ ⎪⎝⎭【解析】【分析】先根据待定系数法求得8y x =,再根据OA=6即可求解. 【详解】解:令y k x =,E (2,4), ∴k=8,即8y x=, ∵OA =OC+AC =2+4=6,∴F(6,43), 故答案为:46,3⎛⎫ ⎪⎝⎭.【点睛】此题主要考查待定系数法求反比例函数解析式,然后根据函数解析式确定点的坐标,熟练掌握待定系数法是解题关键.14.如图,在平行四边形ABCD 中,10,16,60,AB AD A P ==∠=︒为AD 的中点,是边AB 上不与点,A B 重合的一个动点,将APF 沿PF 折叠,得到',A PF 连接',BA 则'BA F 周长的最小值为___.【答案】2212+【解析】【分析】BFA'的周长=FA'+BF+BA'=AF+BF+BA'=AB+BA'=10+BA',推出当BA'最小时,BFA'的周长最小,由此即可求解.【详解】解:如图,作BH AD ⊥于点,连接BP ,∵10,16,60AB AD A ==∠=︒,8,5PA AH ==,853PH ∴=-=, 5BH =PB ∴===由翻折可知'8,'PA PA FA FA ===,'BFA ∴的周长''''10'FA BF BA AF BF BA AB BA BA =++=++=+=+, 当'BA 的长度最小时,'BFA 的周长最小,''BA PB PA ∴≥-,'8BA ∴≥,'BA ∴的最小值为8,'BFA ∴的周长的最小值为1082+=.故答案为:2.【点睛】此题主要考查平行四边形的性质,翻折不变性,勾股定理,含30度直角三角形的性质等,灵活运用性质是解题关键.三、解答题(本大题共11小题,共78分.解答应写出文字说明、证明过程或演算步骤.)15.计算:()103.146012cos π-⎛⎫+⎭- ⎪⎝︒. 【答案】12-【解析】【分析】 根据负整数指数幂、二次根式的乘法、零指数幂和特殊角的三角函数值即可求解.【详解】解:原式12412=-++ 12=- 【点睛】此题主要考查负整数指数幂、二次根式的乘法、零指数幂和特殊角的三角函数值,熟练掌握法则是解题关键.16.化简:2222111a a a a a--⎛⎫-÷ ⎪-+⎝⎭ 【答案】a【解析】【分析】 根据分式的加减乘除混合运算法则即可求解.【详解】解:原式()()()()()22211122111111a a a a a a a a a a a a a -+--+-÷=⋅=-++--. 【点睛】此题主要考查分式的加减乘除运算,熟练掌握运算法则是解题关键.17.如图,在ABC 中,90,BAC ∠=︒请用尺规作图法,作ABC 绕点逆时针旋转45︒后的11AB C △.(不写作法,保留作图痕迹)【答案】见解析【解析】【分析】作CAB ∠的平分线,在平分线上截取1,AB AB =分别以1A B 、为圆心,AC BC 、的长为半径作弧,两弧交于点111,C AB C 即为所求.【详解】解:如图,作CAB ∠的平分线,在平分线上截取1,AB AB =分别以1A B 、为圆心,AC BC 、的长为半径作弧,两弧交于点111,C AB C 即为所求.【点睛】此题主要考查旋转的性质,尺规作图,正确理解作图依据是解题关键.18.如图,在ABC 中,为BC 边上一点,过点作//,FD AC 且,FD AC =延长BC 至点,E 使,BF CE =连接DE .求证://AB DE .【答案】见解析【解析】【分析】根据//FD AC ,得到ACB DFE ∠=∠,再根据BF CE =,得到BC EF =,加上AC FD =,得到ACB DFE △≌△,进而得到B E ∠=∠,即可证明.【详解】证明://FD AC ,ACB DFE ∴∠=∠,BF CE =,BF FC CE FC ∴+=+BC EF ∴=.,AC FD =,ACB DFE ∴≌,B E ∴∠=∠//∴.AB DE【点睛】此题主要考查全等三角形的判定和性质、平行线的性质和判定,灵活运用判定定理和性质定理是解题关键.19.某校为了解该校初三学生居家学习期间参加”网络自习室”自主学习的情况,随机抽查了部分学生在两周内参加”网络自习室”自主学习的天数,并用得到的数据绘制了如下两幅不完整的统计图.请根据图中提供的信息,回答下列问题.(1)补全条形统计图.(2)部分学生在两周内参加”网络自习室”自主学习天数的众数为______,中位数为________;(3)如果该校初三年级约有1500名学生,请你估计在这两周内全校初三年级可能有多少名学生参加”网络自习室”自主学习的天数不少于天.【答案】(1)见解析;(2)5天,6天;(3)600人【解析】【分析】(1)根据9天和9天以上的3人,占5,可求得总人数为60人,求出8天的人数即可补全条形统计图;(2)根据众数和中位数的概念即可求解.(3)先求出7天、8天、9天和9天以上的人数的比例,再用样本估计总体即可求解.÷=(人),【详解】解:()135%60----=(人),6024121536补全统计图如图所示:()2参加”网络自习室”自主学习天的人数最多,所以众数是天;60人中,按照参加”网络自习室”自主学习的天数从少到多排列,第人和人都是天,所以中位数是天; ()15633150060060++⨯=(人) 答:估计全校初三可能有600名学生参加”网络的自习室”自主学习的天数不少于天.【点睛】此题主要考查条形统计图与扇形统计图的综合应用,众数、中位数和用样本估计总体,正确理解概念是解题关键.20.如图1所示是宝鸡市文化景观标志”天下第一灯”,它由国际2.0不锈钢板整体锻造,表面涂有仿古金色漆,以仿青铜纹饰雕刻的柱体四盏灯分层布置.一天上午,数学兴趣小组的同学们带着测量工具来测量”天下第一灯”的高度,由于有围栏保护,他们无法到达灯的底部,O 他们制定了一种测量方案,图2所示的是他们测量方案的示意图,先在周围的广场上选择一点,A 并在点处安装了测量器,AB 在点处测得该灯的顶点P 的仰角为60︒;再在OA 的延长线上确定一点,C 使15AC =米,在点处测得该灯的顶点的仰角为45︒.若测量过程中测量器的高度始终为1.6米,求”天下第一灯”的高度.231.732≈≈,最后结果取整数)【答案】37米【解析】【分析】根据题意,得BD OP ⊥于点','60O PBO ∠=︒,'45PDO ∠=︒,15BD AC ==米,' 1.6OO AB ==米,在'Rt PO B 中,'90,'60PO B PBO ∠=︒∠=︒,得到3''3O B P =,在'Rt PO D 中,'90,'45PO B PDO ∠=︒∠=︒,得到''O D O P =,进而得到3''1'15BD O D O B O P ⎛=-== ⎝⎭米,'35.4931O P =≈-米,最后根据''OP OO O P =+即可求解.【详解】解:根据题意,得BD OP ⊥于点','60O PBO ∠=︒,'45PDO ∠=︒,15BD AC ==米,' 1.6OO AB ==米.在'Rt PO B 中,'90,'60,PO B PBO ∠=︒∠=︒3''3O B P ∴= 在'Rt PO D 中,'90,'45PO B PDO ∠=︒∠=︒,''O D O P ∴=, 3''1'153BD O D O B O P ⎛∴=-=-= ⎝⎭米,'35.49O P ∴=≈米,''37.09OP OO O P ∴=+=米37≈米,答:”天下第一灯”的高度约为37米.【点睛】此题主要考查解直角三角形的应用,正确地构造直角三角形和解直角三角形是解题关键. 21.陕西省相关文件规定,西安市实行居民阶梯水价制度,对居民用水的基本水价实行1:1.5:3三级价差,各阶梯水价均为用户终端水价,具体如下:第一阶梯:年用水量3162m 及以下,终端水价为3.80元/3m .第二阶梯:年用水量33162275m m -(含),终端水价为4.65元/3m .第三阶梯:年用水量3275m 以上,终端水价为7.18元/3m .城区居民阶梯水价计量结算周期以年为单位,年用水量累计达到各阶梯水量上限后,超出部分执行下一阶梯水价;年度周期之间水量不结转,不累计.设某户居民2019年的年用水量为()3x m ,应缴水费为 (元). (1)写出该户居民2019年的年用水量为331622(75m m -含)的与之间的函数表达式.(2)若该户居民2019年的应缴水费为1320.55元,则该户居民2019年的年用水量为多少.【答案】(1) 4.65137.7y x =-;(2)3300m【解析】【分析】(1)根据实际问题列出函数表达式即可.(2)先判断用水量在哪一阶梯,再计算.详解】解:()()1 3.80162 4.65162y x =⨯+-,即 4.65137.7y x =-.()2由()1知,当162275x <≤时, 4.65137.7,y x =-当275x =时,1141.05y =.1141.051320.55y =<,该户居民2019年的年用水量在3275m 以上,终端水价为7.18元/3m .当275x >时,()1141.057.18275,y x =+-即7.18 833.45,y x =-7.18 833.451320.55,x∴-=解得300x=.答:该户居民2019年的年用水量为3300m.【点睛】此题主要考查根据实际问题列函数解析式,找出实际问题中的等量关系是解题关键.22.现有四个外观与质地完全相同的小球,小球上分别标有数字3,4,5,6.将四个小球放置于不透明的盒子中,摇匀后,甲从中随机抽取一个小球,记录数字后放回摇匀,乙再随机抽取一个.(1)请用列表法或画树状图的方法,求两人抽取相同数字的概率.(2)若两人抽取的数字和为的倍数,则甲获胜;若抽取的数字和为的倍数,则乙获胜,否则为平局.这个游戏公平吗?请用所学的概率的知识加以解释.【答案】(1)图表见解析,14;(2)不公平,理由见解析【解析】【分析】(1)先用列表法列出所有可能的结果,再求概率.(2)比较两种结果的概率即可求解.【详解】解:()1列表如下从表格可以看出,总共有种结果,每种结果出现的可能性相同,其中两人抽取相同数字的结果有种,所以两人抽取相同数字的概率为1 4()2不公平.从()1中表格可以看出,两人抽取数字和为的倍数的结果有种,两人抽取数字和为的倍数的结果有种, 所以甲获胜的概率为38,乙获胜的概率为31633816> 甲获胜的概率大,游戏不公平.【点睛】此题主要考查列表法或画树状图法求概率,正确理解概率的概念是解题关键.23.如图,O 与Rt ABF 的边,BF AF 分别交于点,C D ,连接,,AC CD 90,BAF ∠=︒点在CF 上,且DEC BAC ∠=∠.(1)试判断DE 与O 的位置关系,并说明理由.(2)若,4,6,AB AC CE EF ===求O 的直径. 【答案】(1)相切,理由见解析;(2)35【解析】【分析】(1)连接BD ,根据90BAD ∠=︒,得出点在BD 上,即BD 是直径,进而得到90BCD ∠=︒,90DEC CDE ∠+∠=︒,再根据DEC BAC ∠=∠,得出90BAC CDE ∠+∠=︒,由同弧所对的圆周角相等,得到90BDC CDE ∠+∠=︒,即可求证.(2)根据90BAF BDE ∠=∠=︒,得到90F ABC FDE ADB ∠+∠=∠+∠=,由AB AC =,得到A ABC CB =∠∠,再根据ADB ACB ∠=∠,得到,ABC ADB F EDF ∠=∠∠=∠,进而得到6DE EF ==,再根据4,90CE BCD =∠=︒,得到2290,25DCE CD DE CE ∠=︒=-=90,BDE CD BE ∠=︒⊥,得到CDECBD ,最后根据对应边成比例即可求解. 【详解】解:()1DE 与O 相切.理由:如图,连接BD .90,BAD ∠=︒点在BD 上,即BD 是直径,90BCD ∴∠=︒,90DEC CDE ∴∠+∠=︒.,DEC BAC ∠=∠90BAC CDE ∴∠+∠=︒.,BAC BDC ∠=∠90,BDC CDE ∴∠+∠=︒90,BDE ∴∠=︒即BD DE ⊥.点在O 上,DE ∴是O 的切线.()290BAF BDE ∠=∠=︒.90F ABC FDE ADB ∴∠+∠=∠+∠=.,AB AC =ABC ACB ∴∠=∠.,ADB ACB ∠=∠,,ABC ADB F EDF ∴∠=∠∠=∠6.DE EF ∴==4,90CE BCD =∠=︒,2290,2 5.DCE CD DE CE ∴∠=︒=-=90,BDE CD BE ∠=︒⊥,,CDE CBD ∴ CD BD CE DE ∴= O ∴的直径256354BD ⨯== 【点睛】此题主要考查圆周角定理,勾股定理,切线的判定和相似三角形的判定及性质,熟练掌握判定定理和性质定理是解题关键.24.如图,抛物线2y x bx c =-++与轴交于点和点()3,0B ,与轴交于点()0,3C ,点是抛物线的顶点,过点作轴的垂线,垂足为,E 连接DB .(1)求此抛物线的解析式.(2)点M 是抛物线上的动点,设点M 的横坐标为.当MBA BDE ∠=∠时,求点M 的坐标.【答案】(1)2y x 2x 3=-++;(2)点M 的坐标为17,24⎛⎫-⎪⎝⎭或39,24⎛⎫-- ⎪⎝⎭【解析】【分析】(1)利用待定系数法即可解决问题; (2)根据223tan 3m m MG MBA BG m-++∠==-,1tan 2BE BDE DE ∠==,由∠MBA=∠BDE ,构建方程即可解决问题.【详解】解:()1把点()()3,0,0,3B C 代入2,y x bx c =-++ 得到930,3,b c c -++=⎧⎨=⎩解得2,3,b c =⎧⎨=⎩抛物线的解析式为2y x 2x 3=-++.()2如图,作MG x ⊥轴于点,G 连接,BM 则90MGB ∠=︒.()2,23,M m m m -++223,3,MG m m BG m ∴=-++=-2233m m MG tan MBA BG m-++∴∠==- ()222314y x x x =-++=--+,顶点的坐标为()1,4 DE x ⊥∵轴,90,4,1DEB DE OE ∴∠=︒==()3,0B ,2BE ∴=12BE tan BDE DE ∴∠== ,MBA BDE ∠=∠223132m m m -++∴=-当点M 在轴上方时223132m m m -++=- 解得112m =-,23m =(舍弃), 17,24M ⎛⎫∴- ⎪⎝⎭当点M 在轴下方时,223132m m m -++=-- 解得123,32m m ==-(舍弃),点39,24M ⎛⎫-- ⎪⎝⎭综上所述,满足条件的点M 的坐标为17,24⎛⎫- ⎪⎝⎭或39,24⎛⎫-- ⎪⎝⎭ 【点睛】此题主要考查待定系数法求二次函数解析式和利用三角函数解直角三角形,熟练掌握二次函数的性质是解题关键.25.[问题发现]如图1,半圆的直径10,AB P =是半圆上的一个动点,则PAB △面积的最大值是_.[问题解决]如图2所示的是某街心花园的一角.在扇形OAB 中,90,12AOB OA ∠=︒=米,在围墙OA 和OB 上分别有两个入口和,D 且4AC =米,是OB 的中点,出口在AB 上.现准备沿,CE DE 从入口到出口铺设两条景观小路,在四边形CODE 内种花,在剩余区域种草.①出口设在距直线OB 多远处可以使四边形CODE 的面积最大?最大面积是多少?(小路宽度不计)②已知铺设小路CE 所用的普通石材每米的造价是200元,铺设小路DE 所用的景观石材每米的造价是400元问:在AB 上是否存在点,使铺设小路CE 和DE 的总造价最低?若存在,请求出最低总造价和出口距直线OB 的距离;若不存在,请说明理由.【答案】[问题发现]25;[问题解决]①出口设在距直线7.2OB 米处可以使四边形CODE 的面积最大,最大为60平方米;②总造价的最小值为160010元,出口距直线OB 的距离为36665-米 【解析】【分析】 [问题发现]PAB 的底边一定,面积最大也就是P 点到AB 的距离最大,故当OP AB ⊥时底边AB 上的高最大,再计算此时PAB 面积即可.[问题解决]①根据四边形CODE 面积=CDO CDE S S +,求出CDE S △最大时即可,然后作'E H OB ⊥,证明COD OHE ',利用相似三角形的性质求出E H '即可;②先利用相似三角形将费用问题转化为CE+2DE=CE+QE ,求CE+QE 的最小值问题,然后利用相似三角形性质和勾股定理求解即可.【详解】解:[问题发现]:如图1,点运动至半圆中点时,底边AB 上的高最大,即' 5.P O r ==此时PAB △的面积最大,最大值为1105252⨯⨯=; [问题解决]①如图2,连接,CD 作OG CD ⊥,垂足为,G 延长OG 交AB 于点,则此时CDE △的面积最大.12,4,OA OB AC D ===为OB 的中点,8,6OC OD ∴==,在Rt COD 中,10, 4.8CD OG ==,'12 4.87.2GE ∴=-=,四边形CODE 面积的最大值为1168107.26022CDO CDE SS '+=⨯⨯+⨯⨯=, 作',E H OB ⊥垂足为, ''90,'90,E OH OE H E OH ODC ∠+∠=︒∠+∠='OE H ODC ∴∠=∠.又'90COD E HO ∠=∠=︒,CODOHE '∴, ''OD E H CD OE ∴= 6'1012E H ∴= '7.2E H ∴=,出口设在距直线7.2OB 米处可以使四边形CODE 的面积最大,最大为60平方米;②铺设小路CE 和DE 的总造价为()2004002002.CE DE CE DE +=+如图3,连接,OE 延长OB 到点,Q 使12BQ OB ==,连接EQ在EOD △与QOE 中,EOD QOE =∠,且12OD OE OE OQ ==, ,EOD QOE ∴故2,QE DE =2CE DE CE QE ∴+=+,问题转化为求CE QE +的最小值,连接,CQ 交AB 于点,此时CE QE +取得最小值为CQ .在Rt COQ 中,8,24CO OQ ==,810CQ ∴= 故总造价的最小值为10作',E H OB ⊥垂足为,连接'OE .设',E H x =则3QH x =.在'Rt E OH 中,222'OH HE OE '+=,()22224312,x x ∴-+= 解得13666x -=,23666x +=舍去), 总造价的最小值为10OB 的距离为36665-米. 【点睛】此题考查圆的综合问题,涉及圆的基本性质,相似三角形的判定和性质,勾股定理等知识,综合程度较高,需要灵活运用知识,解题关键是:利用对称或相似灵活地将折线和转化为线段长,从而求折线段的最值.。

初三数学一模试题及答案

初三数学一模试题及答案

初三数学一模试题及答案一、选择题(每题3分,共30分)1. 下列各数中,是无理数的是()。

A. 0.1010010001…(每两个1之间依次多一个0)B. 0.1010010001…(每两个1之间依次多一个1)C. πD. 0.33333(3无限循环)2. 已知一个等腰三角形的两边长分别为3和4,那么这个三角形的周长是()。

A. 7B. 10C. 11D. 143. 如果一个数的平方根是它本身,那么这个数是()。

A. 0B. 1C. -1D. 0或14. 函数y=2x+1的图象不经过第几象限()。

A. 第一象限B. 第二象限C. 第三象限D. 第四象限A. 0B. 1C. -1D. 任意数6. 已知一个角的余角是30°,那么这个角的补角是()。

A. 60°B. 90°C. 120°D. 150°7. 一个数的绝对值是它本身,这个数是()。

A. 正数B. 负数C. 非负数D. 非正数8. 一个二次函数的顶点坐标是(2,3),那么这个函数的解析式可以是()。

A. y=(x-2)^2+3B. y=-(x-2)^2+3C. y=(x+2)^2-3D. y=-(x+2)^2-39. 一个数的立方根是它本身,这个数是()。

A. 0B. 1C. -1D. 0或1或-1A. 0B. 1C. -1D. 1或-1二、填空题(每题3分,共30分)1. 一个数的绝对值是5,这个数可以是______。

2. 一个数的相反数是-2,这个数是______。

3. 一个数的平方是25,这个数可以是______。

4. 一个数的立方是-8,这个数是______。

5. 一个角的补角是120°,这个角的度数是______。

6. 一个角的余角是60°,这个角的度数是______。

7. 一个等腰三角形的底边长为6,腰长为5,那么这个三角形的周长是______。

8. 函数y=3x-2与x轴的交点坐标是______。

北京市东城区2015年中考一模数学试题和答案

北京市东城区2015年中考一模数学试题和答案

东城区2014—2015学年第二学期初三综合练习(一) 数学试题 2015.5学校 班级 姓名 考号一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1.与2-的和为0的数是 A .2- B .12-C .12D .22.2015年元旦期间,北京各大公园接待游客达245 000万人次。

其中, “冰雪乐园”吸引了大批游客亲身感受冰雪带来的快乐,一起为北京申办2022年冬奥会助力加油.用科学记数法表示245 000 ,正确的是A .424.510⨯ B .52.4510⨯C .62.4510⨯ D .60.24510⨯ 3.一个几何体的三视图如图所示,则这个几何体是 A .圆柱 B .球 C .圆锥 D . 棱柱4.在某校初三年级古诗词比赛中,初三(1)班42名学生的成绩统计如下,则该班学生成绩的中位数和众数分别是5. 在六张卡片上分别写有1π,, 1.5,3,0,3-,从中任意抽取一张,卡片上的数为无理数的概率是6.正五边形的每个外角等于A. 36︒B. 60︒C. 72︒D. 108︒ 7.如图,AB 是O 的直径,点C 在O 上,过点C 作O 的切线交AB 的延长线于点D ,连接OC ,AC . 若50D ∠=︒,则A ∠的度数是A. 20︒ B .25︒C .40︒D .50︒8.小李驾驶汽车以50千米/小时的速度匀速行驶1小时后,途中靠边停车接了半小时电话,然后继续匀速行驶.已知行驶路程y (单位:千米)与行驶时间t (单位:小时)的函数图象大致如图所示,则接电话后小李的行驶速度为 A. 43.5 B. 50 C. 56 D . 589. 如图,已知∠MON =60°,OP 是∠MON 的角平分线 ,点A 是OP 上一点,过点A 作ON 的平行线交OM 于点B,AB=4.则直线AB 与ON 之间的距离是A.B.2C.D.410. 如图1, ABC △和DEF △都是等腰直角三角形,其中90C EDF ∠=∠=︒,点A 与点D 重合,点E 在AB 上,4AB =,2DE =.如图2,ABC △保持不动,DEF △沿着线段AB 从点A 向点B 移动, 当点D 与点B 重合时停止移动.设AD x =,DEF △与ABC △重叠部分的面积为S ,则S 关于x 的函数图象大致是A B C D二、填空题(本题共18分,每小题3分)11.分解因式:224mx my -= . 12的结果为 .13. 关于x 的一元二次方程230x x m +-=有两个不相等的实数根,则实数m 的取值范围 是 .14. 北京的水资源非常匮乏,为促进市民节水,从2014年5月1日起北京市居民用水实行阶梯水价,实施细则如下表:北京市居民用水阶梯水价表 单位: 元/立方米某户居民从2015年1月1日至4月30日,累积用水190立方米,则这户居民4个月共需缴纳水费 元.15.已知女排赛场球网的高度是2.24米,某排球运动员在一次扣球时,球恰好擦网而过,落在对方场地距离球网4米的位置上,此时该运动员距离球网1.5米,假设此次排球的运行路线是直线,则该运动员击球的高度是 米.图1 图216.在平面直角坐标系xOy 中,记直线1y x =+为l .点1A 是直线l 与y 轴的交点,以1A O 为 边做正方形111A OC B ,使点1C 落在在x 轴正半轴上,作射线11C B 交直线l 于点2A ,以 21A C 为边作正方形2122A C C B ,使点2C 落在在x 轴正半轴上,依次作下去,得到如图所示的图形.则点4B 的坐标是 ,点n B 的坐标是 .三、解答题(本题共30分,每小题5分)17.如图,AC 与BD 交于点O ,OA OC =,OB OD =.求证:DC AB ∥.18. 计算:()1136043-⎛⎫-︒+-+- ⎪⎝⎭π.19.解不等式组:()2131,5 4.2x x x x --⎧⎪⎨-+⎪⎩><20.先化简,再求值:222442111a a a a a a -+-+÷+--,其中1a =. 21.列方程或方程组解应用题:2015年“植树节”前夕,某小区为绿化环境,购进200棵柏树苗和120棵枣树苗,且两种树苗所需费用相同.每棵枣树苗的进价比每棵柏树苗的进价的2倍少5元,每棵柏树苗的进价是多少元?F(1)求反比例函数的解析式; (2)求△BOD 的面积. 四、解答题(本题共20分,每小题5分)23. 如图,ABC △中,90BCA ∠=︒,CD 是边AB 上的中线,分别过点C ,D 作BA ,BC 的平行线交于点E ,且DE 交AC 于点O ,连接AE . (1)求证:四边形ADCE 是菱形; (2)若2AC DE =,求sin CDB ∠的值.24.为弘扬中华传统文化,某学校决定开设民族器乐选修课.为了更贴合学生的兴趣,对学生最喜爱的一种民族乐器进行随机抽样调查,收集整理数据后,绘制出以下两幅未完成的统计图,请根据图1和图2提供的信息,解答下列问题: (1)在这次抽样调查中,共调查 名学生; (2)请把条形图(图1)补充完整;(3)求扇形统计图(图2)中,二胡部分所对应的圆心角的度数; (4)如果该校共有学生1500名,请你估计最喜爱古琴的学生人数.25. 如图,在⊙O 中,AB 为直径,OC AB ⊥,弦CD 与OB 交于点F ,过点,D A 分别作⊙O 的切线交于点G ,且GD 与AB 的延长线交于点E .(1)求证:12∠=∠;(2)已知::1:3OF OB =,⊙O 的半径为3,求AG 的长.26. 在四边形ABCD 中,对角线AC 与BD 交于点O ,E 是OC 上任意一点,AG BE ⊥于点G ,交BD 于点F .(1)如图1,若四边形ABCD 是正方形,判断AF 与BE 的数量关系;明明发现,AF 与BE 分别在AOF △和BOE △中,可以通过证明AOF △和BOE △全等,得到AF 与BE 的数量关系;请回答:AF 与BE 的数量关系是 .(2) 如图2,若四边形ABCD 是菱形, 120ABC ∠=︒,请参考明明思考问题的方法,求AFBE的值.图1 图2五、解答题(本题共22分,第23题7分,第24题7分,第25题8分)27.在平面直角坐标系xOy 中,抛物线()210y ax bx a =++≠过点()1,0A -,()1,1B ,与y轴交于点C .(1)求抛物线()210y ax bx a =++≠的函数表达式;(2)若点D 在抛物线()210y ax bx a =++≠的对称轴上,当ACD △的周长最小时,求点D 的坐标;(3)在抛物线()210y ax bx a =++≠的对称轴上是否存在点P ,使ACP △成为以AC为直角边的直角三角形?若存在,求出点P 的坐标;若不存在,请说明理由.BAC28. 已知:Rt △A ′BC ′和 Rt △ABC 重合,∠A ′C ′B =∠ACB =90°,∠BA ′C ′=∠BAC =30°,现将Rt △A ′BC ′ 绕点B 按逆时针方向旋转角α(60°≤α≤90°),设旋转过程中射线C ′C 和线段AA ′相交于点D ,连接BD .(1)当α=60°时,A ’B 过点C ,如图1所示,判断BD 和A ′A 之间的位置关系,不必证明; (2)当α=90°时,在图2中依题意补全图形,并猜想(1)中的结论是否仍然成立,不必证明;(3)如图3,对旋转角α(60°<α<90°),猜想(1)中的结论是否仍然成立;若成立,请证明你的结论;若不成立,请说明理由.29.定义符号{}min a b ,的含义为:当a b ≥时, {}min a b b =,;当a b <时,{}min a b a =,.如:{}min 122-=-,,{}min 121-=-,.(1)求{}2min x -1,-2;(2)已知2min{2,3}3x x k -+-=-, 求实数k 的取值范围;(3) 已知当23x -≤≤时,22min{215,(1)}215x x m x x x --+=--.直接写出实数m 的取值范围.东城区2014-2015学年第二学期初三综合练习(一)数学试题参考答案及评分标准 2015.5三、解答题(本题共30分,每小题5分) 17. 证明:∵在ODC △和OBA △中,∵,,,OD OB DOC BOA OC OA =⎧⎪∠=∠⎨⎪=⎩∴ODC OBA △≌△. …………3分 ∴C A ∠=∠. …………4分 ∴DC AB ∥. …………5分()()1118.36043134415-⎛⎫-︒+-+- ⎪⎝⎭=-+=-解:π分分19. ()2131,8x x x x --⎧⎪⎨-+⎪⎩①②>解:5<2,2x 由①得,<, …………2分 1x -由②得,>, …………4分所以,不等式组的解集为12x -<<. …………5分()()()22224421112211112221131a a a a a a a a a a a a a a a a a -+-+÷+----=+⋅++---=+++=+20.解:分当1a =时,2=原式.…………5分 21.解:设每棵柏树苗的进价是x 元,则每棵枣树苗的进价是()25x -元. …………1分 根据题意,列方程得:200=120(25)x x -, …………3分解得: 15x =. …………5分 答:每棵柏树苗的进价是15元. 22. 解:(1)过点C 向x 轴作垂线,垂足为E .∵CE x ⊥轴,AB x ⊥轴,()4,2A-,∴CE AB ∥,()4,0B -. ∴12OE OC CE OB OA AB ===. ∵4OB =,2AB =, ∴2OE =,1CE =.∴()2,1C -. …………2分 ∵双曲线ky x=经过点C , ∴2k =-.∴反比例函数的解析式为2y x=-. …………3分 (2)∵点D 在AB 上,∴点D 的横坐标为4-. ∵点D 在双曲线2y x=-上, ∴点D 的纵坐标为12. …………4分∴BOD S △11141222OB BD =⋅⋅=⨯⨯=.…………5分 四、解答题(本题共20分,每小题5分)23.(1)证明:∵DE BC ∥,CE AB ∥, ∴四边形DBCE 是平行四边形. ∴CE BD =.又∵CD 是边AB 上的中线, ∴BD AD =. ∴CE DA =. 又∵CE DA ∥,∴四边形ADCE 是平行四边形.∵90BCA ∠=︒,CD 是斜边AB 上的中线, ∴AD CD =.∴四边形ADCE 是菱形. …………3分(2)解:作CFAB ⊥于点F .由(1) 可知, .BC DE =设BC x =,则2AC x =.在Rt ABC △中,根据勾股定理可求得AB =.∵1122AB CF AC BC ⋅=⋅,∴5AC BC CF x AB ⋅==.∵122CD AB x ==, ∴4sin 5CF CDB CD ∠==.…………5分 24.解:(1)20÷10%=200(名),…………1分 答:一共调查了200名学生; (2)最喜欢古筝的人数:200×25%=50(名), 最喜欢琵琶的人数:200×20%=40(名); 补全条形图如图; …………3分 (3)二胡部分所对应的圆心角的度数为:60200×360°=108°; …………4分 (4)1500×30200=225(名). …………5分答:1500名学生中估计最喜欢古琴的学生人数为225. 25.(1)证明:连结OD ,如图.∵DE 为⊙O 的切线,OD 为半径, ∴OD DE ⊥.∴90ODE ∠=︒,即290ODC ∠+∠=︒.26. 解:(1)AF =BE ; …………1分(2)AF BE=. …………2分 理由如下:∵四边形ABCD 是菱形,120ABC ∠=︒,∴AC BD ⊥,60ABO ∠=︒.∴90FAO AFO ∠+∠=︒.∵AG BE ⊥,∴90EAG BEA ∠+∠=︒.∴AFO BEA ∠=∠.又∵90AOF BOE ∠=∠=︒,∴AOF BOE △∽△. …………3分∴AF AO BE OB= . ∵60ABO ∠=︒,AC BD ⊥,∴tan 60AO OB=︒=.∴AF BE = …………5分 五、解答题(本题共22分,第27题7分,第28题7分,第29题8分)27.解:(1)∵抛物线()210y ax bx a =++≠过点()1,0A -,()1,1B ,∴10,1 1.a b a b -+=⎧⎨++=⎩∴1,21.2a b ⎧=-⎪⎪⎨⎪=⎪⎩ ∴抛物线的函数关系式为211122y x x =-++. …………2分 (2)∵122b x a =-=,()0,1C ∴抛物线211122y x x =-++的对称轴为直线12x =. 设点E 为点A 关于直线12x =的对称点,则点E 的坐标为()2,0. 连接EC 交直线12x =于点D ,此时ACD △的周长最小. 设直线EC 的函数表达式为y kx m =+,代入,E C 的坐标,则2m 0,1.k m +=⎧⎨=⎩解得1,21.k m ⎧=-⎪⎨⎪=⎩所以,直线EC 的函数表达式为112y x =-+. 当12x =时,34y =. ∴ 点D 的坐标为13,24⎛⎫⎪⎝⎭. …………4分 (3)存在.①当点A 为直角顶点时,过点A 作AC 的垂线交y 轴于点M ,交对称轴于点1P . ∵AO OC ⊥,1AC AP ⊥,∴90AOM CAM ∠=∠=︒.∵()0,1C ,()1,0A -,∴1OA OC ==.∴45CAO ∠=︒.∴45OAM OMA ∠=∠=︒.∴1OA OM ==.∴点M 的坐标为()0,1-.设直线AM 对应的一次函数的表达式为11y k x b =+,代入,A M 的坐标, 则1110,1.k b b -+=⎧⎨=-⎩ 解得111,1.k b =-⎧⎨=-⎩ 所以,直线AM 的函数表达式为1y x =--. 令12x =,则32y =-. ∴点1P 的坐标为13,22⎛⎫-⎪⎝⎭. …………5分 ②当点C 为直角顶点时,过点C 作AC 的垂线交对称轴于点2P ,交x 轴于点N . 与①同理可得Rt CON △是等腰直角三角形,∴1OC ON ==.∴点N 的坐标为()1,0.∵2CP AC ⊥,1AP AC ⊥,∴21CP AP ∥.∴直线2CP 的函数表达式为1y x =-+. 令12x =,则12y =. ∴点2P 的坐标为11,22⎛⎫ ⎪⎝⎭. …………6分 综上,在对称轴上存在点1P 13,22⎛⎫-⎪⎝⎭,2P 11,22⎛⎫ ⎪⎝⎭,使ACP △成为以AC 为直角边的直角三角形.…………7分28.解:(1) 当60α=︒时, BD A A '⊥. ------------1分(2)补全图形如图1,B D A A'⊥仍然成立;------------3分 (3)猜想BD A A '⊥仍然成立. 证明:作AE C C '⊥,A F C C ''⊥,垂足分别为点,E F ,如图2,则90AEC A FC ''∠=∠=︒. ∵BC BC '=,∴BCC BC C ''∠=∠. ∵90ACB A C B ''∠=∠=︒,∴90ACE BCC '∠+∠=︒,'90A C F BC C ''∠+∠=︒. ∴ACE A C F ''∠=∠.在AEC △和A FC ''△中, 图2 图190,,,AEC A FC ACE A C F AC A C ''∠=∠=︒⎧⎪''∠=∠⎨⎪''=⎩∴AEC A FC ''△≌△.∴AE A F '=.在AED △和A FD '△中,90,,,AEC A FD ADE A DF AE A F '∠=∠=︒⎧⎪'∠=∠⎨⎪'=⎩∴AED A FD '△≌△.∴AD A D '=.∵AB A B '=,∴'ABA △为等腰三角形.∴BD A A '⊥------------7分29.解:(1)∵20x ≥,∴2x -1≥-1.∴2-x -1>2.∴{}2min 2x =--1,-2. ┉┉2分(2) ∵()2211x x k x k -+=-+-2, ∴()2111x k k -+--≥.∵2min{2,3}3x x k -+-=-, ∴13k --≥.∴2k -≥. ┉┉5分(3) 37m -≤≤. ┉┉8分。

初三数学初中数学综合库试题答案及解析

初三数学初中数学综合库试题答案及解析

初三数学初中数学综合库试题答案及解析1.如图,数轴上两点分别对应实数,则下列结论正确的是()A.B.C.D.【答案】C【解析】略2.下面四个几何体中,左视图是四边形的几何体共有(▲ )A.1个B.2个C.3个D.4个【答案】B【解析】略3.若点A的坐标为(6,3),O为坐标原点,将OA绕点O按顺时针方向旋转900得到OA',则点A'的坐标为▲ .【答案】(3,-6)【解析】略4.(2010湖北孝感,17,3分)对实数a、b,定义运算★如下:a★b=,例如2★3=2-3=.计算×【答案】1【解析】略5.如图,为半圆的直径,延长到点,使,切半圆于点,点是弧AC 上和点不重合的一点,则的度数为.(圆的性质、切线的性质、解三角形)【答案】【解析】略6.(11·西宁)如图9是三种化合物的结构式及分子式,则按其规律第4个化合物的分子式为_ ▲.【答案】C4H10【解析】略7.a2·a3等于A.a5B.a6C.a8D.a9【答案】A【解析】略8.小刚以400米/分的速度匀速骑车5分,在原地休息了6分,然后以500米/分的速度骑回出发地.下列函数图象能表达这一过程的是()A.B.C.D.【答案】C.【解析】小刚以400米/分的速度匀速骑车5分,路程为:400×5=2000米,在原地休息了6分,路程不变,然后以500米/分的速度骑回出发地,所用时间为:2000÷500=4(分).故选C.【考点】动点问题的函数图象.9.某校在开展读书交流活动中全体师生积极捐书.为了解所捐书籍的种类,对部分书籍进行了抽样调查,李老师根据调查数据绘制了如图所示不完整统计图.请根据统计图回答下面问题:(1)本次抽样调查的书籍有多少本?请补全条形统计图;(2)求出图1中表示文学类书籍的扇形圆心角度数;(3)本次活动师生共捐书1200本,请估计有多少本科普类书籍?【答案】(1)40;(2) 126°;(3) 360(本).【解析】(1)根据已知条件列式计算即可,如图2所示,先计算出其它类的频数,再画条形统计图即可;(2)根据已知条件列式计算即可;(3)根据已知条件列式计算即可.试题解析:解;(1)8÷20%=40(本),其它类;40×15%=6(本),补全条形统计图,如图2所示:(2)文学类书籍的扇形圆心角度数为:360×=126°;(3)普类书籍有:×1200=360(本).【考点】1.条形统计图;2.用样本估计总体;3.扇形统计图.10.如图所示,直线AB与x轴交于点A,与y轴交于点B,点A的坐标为(3,0),点B的坐标为(0,4),点P为双曲线y=(x>0)上的一点,过点P分别作x轴、y轴的垂线段PE、PF,当PE、PF分别与线段AB交于点C、D时,AD•BC的值为.【答案】.【解析】首先求得直线AB的解析式,然后设P的坐标是(m,),据此可求得线段AD、BC的长,从而求解.试题解析:设直线AB的解析式为:y=kx+b则解得:则直线的解析式为:设P的坐标是(m,),在中,令y=,解得:,故D点坐标是(,)在中,令x=m,解得:,则C点的坐标是:(m,)则AD=,BC=则AD·BC=.【考点】反比例综合题.11.小强和小华两人玩“剪刀、石头、布”游戏,随机出手一次,则两人平局的概率为()A.B.C.D.【答案】B.【解析】小强和小华玩“石头、剪刀、布”游戏,所有可能出现的结果列表如下:∵由表格可知,共有9种等可能情况.其中平局的有3种:(石头,石头)、(剪刀,剪刀)、(布,布).∴小明和小颖平局的概率为:=.故选B.【考点】列表法与树状图法.12. 2014年3月14日,“玉兔号”月球车成功在距地球约384400远的月球上自主唤醒,把384400用科学记数法表示为________________.【答案】.【解析】根据科学记数法的定义可知,384400=.故答案为:.【考点】科学记数法.13.如图,四边形ABCD中,E点在AD上,其中∠BAE=∠BCE=∠ACD=90°,且BC=CE,求证:△ABC与△DEC全等.【答案】见解析【解析】根据同角的余角相等可得到∠3=∠5,结合条件可得到∠1=∠D,再加上BC=CE,可证得结论试题解析:∵∠BCE=∠ACD=90°,∴∠3+∠4=∠4+∠5,∴∠3=∠5,在△ACD中,∠ACD=90°,∴∠2+∠D=90°,∵∠BAE=∠1+∠2=90°,∴∠1=∠D,在△ABC和△DEC中,,∴△ABC≌△DEC(AAS).【考点】全等三角形的判定14.计算:(﹣1)0+|﹣4|﹣= .【答案】5﹣2.【解析】原式=1+4﹣2=5﹣2,【考点】1.实数的运算;2.零指数幂.15.解方程:-2x-3=0.【答案】=3,=-1【解析】本题利用十字相乘法进行求解.试题解析:(x-3)(x+1)=0 解得:=3,=-1【考点】解一元二次方程16.某水果批发商场经销一种高档水果,如果每千克盈利10元,每天可售出500千克,经市场调查发现,在进货价不变的情况下,若每千克涨价1元,日销售量将减少20千克,现该商场要保证每天盈利6000元,设每千克应涨价x元,则可列方程为.【答案】(10+x)(500﹣20x)=6000.【解析】设每千克水果涨了x元,由题意得(10+x)(500﹣20x)=6000;【考点】一元二次方程的应用.17.计算:【答案】6.【解析】原式第一项利用负整数指数幂法则计算,第二项利用零指数幂法则计算,最后一项利用乘方的意义计算即可得到结果.试题解析:原式=-3+1-(-8)=-3+1+8=6.【考点】1.实数的运算;2.零指数幂;3.负整数指数幂.18.如图,AB 是半圆的直径,D 是的中点,∠ABC=50°,则∠DAB 等于A.55°B.60°C.65°D.75°【答案】C.【解析】试题解析:连结BD,如图,∵点D是的中AC点,即弧CD=弧AD,∴∠ABD=∠CBD,而∠ABC=50°,∴∠ABD=×50°=25°,∵AB是半圆的直径,∴∠ADB=90°,∴∠DAB=90°-25°=65°.故选C.【考点】1.圆周角定理;2.圆心角、弧、弦的关系.19.今年我区高效课堂建设以“信息技术与课堂教学深度融合”为抓手,加强对教师队伍建设的投入,计划从今年起三年共投入3640万元,已知2015年已投入1000万元,设投入经费的年平均增长率为x,根据题意,下面所列方程正确的是()A.1000(1+x)2=3640B.1000(x2+1)=3640C.1000+1000x+1000x2=3640D.1000(1+x)+1000(1+x)2=2640【答案】D【解析】第一年投入1000万元,第二年投入1000(1+x)万元,第三年投入有1000万元,则根据题意可得:1000+1000(1+x)+1000=3640.【考点】一元二次方程的应用20.从全校1200名学生中随机选取一部分学生进行调查,调查情况:A 上网时间小时;B 1小时<上网时间小时;C 4小时<上网时间小时;D 上网时间>7小时.统计结果制成了如图统计图:(1)参加调查的学生有人;(2)请将条形统计图补全;(3)请估计全校上网不超过7小时的学生人数.【答案】(1)200人;(2)见解析;(3)960人.【解析】(1)根据A类的频数和频率求出总数;(2)根据总人数求出C类的人数;(3)根据样本求出不超过7小时的频率,然后进行计算.试题解析:(1)参加调查的学生有20÷=200(人);(2)C的人数是:200﹣20﹣80﹣40=60(人),补图如下:(3)根据题意得:1200×=960(人),【考点】频数、频率、样本容量之间的关系.21.小明与甲、乙两人一起玩“手心手背”的游戏.他们约定:如果三人中仅有一人出“手心”或“手背”,则这个人获胜;如果三人都出“手心”或“手背”,则不分胜负,那么在一个回合中,如果小明出“手心”,则他获胜的概率是多少?(请用“画树状图”或“列表”等方法写出分析过程)【答案】.【解析】根据题意画出树状图,再由树状图求得所有等可能的结果与他获胜的情况,再利用概率公式求解即可求得答案.试题解析:画树状图得:∵共有4种等可能的结果,在一个回合中,如果小明出“手心”,则他获胜的有1种情况,∴他获胜的概率是.【考点】用列表法或画树状图法求概率.22.若x1,x2是方程x2+2x﹣3=0的两根,则x1+x2= .【答案】-2.【解析】由一元二次方程根与系数关系得x1+x2=,这里a=1,b=2,代入得x1+x2=-2.【考点】一元二次方程根与系数关系.23.(2015秋•宜城市期末)某种植物的主干长出若干个数目的支干,每个支干又长出同样数目的小分支,主干、支干和小分支的总数是111,每个支干长出的小分支是多少?【答案】10【解析】由题意设每个支干长出的小分支的数目是x个,每个小分支又长出x个分支,则又长出x2个分支,则共有x2+x+1个分支,即可列方程求得x的值.解:设主干长出x个支干,由题意得1+x+x•x=111,即x2+x﹣110=0,解得:x1=10,x2=﹣11(舍去)答:每个支干长出的小分支是10.【考点】一元二次方程的应用.24.写出一个在三视图中俯视图与主视图完全相同的几何体.【答案】球或正方体【解析】主视图、俯视图是分别从物体正面和上面看,所得到的图形.解:球的俯视图与主视图都为圆;正方体的俯视图与主视图都为正方形.故答案为:球或正方体(答案不唯一).【考点】简单几何体的三视图.25.(1)计算:(2)解不等式组并写出它的所有整数解【答案】(1);(2)-5,-4,-3.【解析】试题解析:(1)先分别计算有理数的乘方和特殊角的三角函数值,然后再计算出结果;(2)先求出不等式组的解集,再在解集范围内写出所有整数解即可.(1)原式==(2)解不等式①得:x<-2;解不等式②得:x≥-5;∴不等式组的解集为:-5≤x<-2∴整数解为:-5,-4,-3.【考点】1.实数的混合运算;2.一元一次不等式组的解集;3.一元一次不等式的解.26.解不等式组【答案】1≤x<4【解析】分别求出两个不等式的解,然后得出不等式组的解.试题解析:解不等式(1)可得:x≥1解不等式(2)可得:x<4∴不等式组的解为1≤x<4.【考点】解一元一次不等式组27.如图,△ABC为⊙O的内接三角形,∠AOB=100°,则∠ACB的度数为()A.100°B.130°C.150°D.160°【答案】B.【解析】试题解析:在优弧AB上取点D,连接AD,BD,∵∠AOB=100°,∴∠D=∠AOB=50°,∴∠ACB=180°-∠D=130°.故选B.【考点】圆周角定理.28.下列事件中,必然事件是()A.a是实数,|a|≥0B.掷一枚硬币,正面朝上C.某运动员跳高的最好成绩是20.1mD.从车间刚生产的产品中任意抽取一个,是次品【答案】A【解析】A、a是实数,|a|≥0是必然事件,故选项正确;B、掷一枚硬币,正面朝上是随机事件,故选项错误;C、某运动员跳高的最好成绩是20.1m是不可能事件,故选项错误;D、从车间刚生产的产品中任意抽取一个,是次品是随机事件,故选项错误.故选:A.【考点】随机事件.29.某种生物细胞的直径约为0.00056m,将0.00056用科学记数法表示为()A.0.56×10-3B.5.6×10-4C.5.6×10-5D.56×10-5【答案】B.【解析】试题解析:将0.00056用科学记数法表示为5.6×10-4.故选B.【考点】科学记数法—表示较小的数.30.已知点P(a-1,a+2)在平面直角坐标系的第二象限内,则a的取值范围在数轴上可表示为(阴影部分)()【答案】C.【解析】试题解析:∵点P(a-1,a+2)在平面直角坐标系的第二象限内,则有解得-2<a<1.故选C.【考点】1.在数轴上表示不等式的解集;2.点的坐标.31.如图1,AB为半圆O的直径,D为BA的延长线上一点,DC为半圆O的切线,切点为C.(1)求证:∠ACD=∠B;(2)如图2,∠BDC的平分线分别交AC,BC于点E,F;①求tan∠CFE的值;②若AC=3,BC=4,求CE的长.【答案】(1)详见解析;(2).【解析】(1)连接OC,根据切线的性质、直径所对的圆周角是直角及等角的余角相等即可证明结论.(2)①由∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,∠CDE=∠FDB,∠ECD=∠B,即可得∠CEF=∠CF,再由∠ECF=90°,可得∠CEF=∠CFE=45°,即可得结论.②由勾股定理可求得AB=5,根据已知易证△DCA∽△DBC,得,设DC=3k,DB=4k,由CD2=DA•DB,得9k2=(4k﹣5)•4k,由此求出DC,DB,再由△DCE∽△DBF,得,设EC=CF=x,列出方程即可解决问题.试题解析:(1)证明:如图1中,连接OC.∵OA=OC,∴∠1=∠2,∵CD是⊙O切线,∴OC⊥CD,∴∠DCO=90°,∴∠3+∠2=90°,∵AB是直径,∴∠1+∠B=90°,∴∠3=∠B.(2)解:①∵∠CEF=∠ECD+∠CDE,∠CFE=∠B+∠FDB,∵∠CDE=∠FDB,∠ECD=∠B,∴∠CEF=∠CFE,∵∠ECF=90°,∴∠CEF=∠CFE=45°,∴tan∠CFE=tan45°=1.②在RT△ABC中,∵AC=3,BC=4,由勾股定理得AB=5,∵∠CDA=∠BDC,∠DCA=∠B,∴△DCA∽△DBC,∴,设DC=3k,DB=4k,∵CD2=DA•DB,∴9k2=(4k﹣5)•4k,∴k=,∴CD=,DB=,∵∠CDE=∠BDF,∠DCE=∠B,∴△DCE∽△DBF,∴,设EC=CF=x,∴,∴x=.∴CE=.【考点】切线的性质;相似三角形的判定和性质;勾股定理.32.某大型企业为了保护环境,准备购买A、B两种型号的污水处理设备共8台,用于同时治理不同成分的污水,若购买A型2台、B型3台需54万,购买A型4台、B型2台需68万元.(1)求出A型、B型污水处理设备的单价;(2)经核实,一台A型设备一个月可处理污水220吨,一台B型设备一个月可处理污水190吨,如果该企业每月的污水处理量不低于1565吨,请你为该企业设计一种最省钱的购买方案.【答案】(1)A型污水处理设备的单价为12万元,B型污水处理设备的单价为10万元;(2)购进2台A型污水处理设备,购进6台B型污水处理设备最省钱.【解析】(1)根据题意结合购买A型2台、B型3台需54万,购买A型4台、B型2台需68万元分别得出等式求出答案;(2)利用该企业每月的污水处理量不低于1565吨,得出不等式求出答案.试题解析:(1)设A型污水处理设备的单价为x万元,B型污水处理设备的单价为y万元,根据题意可得:,解得:.答:A型污水处理设备的单价为12万元,B型污水处理设备的单价为10万元;(2)设购进a台A型污水处理器,根据题意可得:220a+190(8﹣a)≥1565,解得:a≥1.5,∵A型污水处理设备单价比B型污水处理设备单价高,∴A型污水处理设备买越少,越省钱,∴购进2台A型污水处理设备,购进6台B型污水处理设备最省钱.【考点】一元一次不等式的应用;二元一次方程组的应用.33.今年“五•一”黄金周,我省实现社会消费的零售总额约为94亿元.若用科学记数法表示,则94亿可写为()元A.0.94×109B.9.4×109C.9.4×107D.9.4×108【答案】B.【解析】试题解析:一亿=108,∴94亿元=9.4×109.故选B.【考点】科学记数法—表示较大的数.34.先化简,再求值:,其中.【答案】【解析】先通分,再把分子相加减,最后把x的值代入进行计算即可.解:原式=﹣==,当x=﹣3时,原式==.点评:本题考查的是分式的化简求值,在解答此类题目时要注意把分式化为最简形式,再代入求值.35.如图1,在Rt△ABC中,∠ACB=90°,点P以每秒1cm的速度从点A出发,沿折线AC﹣CB运动,到点B停止,过点P作PD⊥AB,垂足为D,PD的长y(cm)与点P的运动时间x (秒)的函数图象如图2所示,当点P运动5秒时,PD的长是()A.1.5cm B.1.2cm C.1.8cm D.2cm【答案】B【解析】由图2可得,AC=3,BC=4,当t=5时,如图所示:,此时AC+CP=5,故BP=AC+BC﹣AC﹣CP=2,∵sin∠B==,∴PD=BPsin∠B=2×==1.2cm.故选B.【考点】动点问题的函数图象.36.函数y=中自变量x的取值范围是 .【答案】x≤3.【解析】根据题意得:3-x≥0,解得:x≤3.【考点】二次根式的性质.37.如图,二次函数的图象与x轴相交于点(﹣1,0)和(3,0),则它的对称轴是_________.【答案】直线x=1【解析】在二次函数中,到对称轴距离相等的点所对应的函数值也相等,本题中说明点-1和点3到对称轴的距离相等,则对称轴为直线x=(-1+3)÷2=1.【考点】二次函数图象的性质.38.分解因式:a2﹣9= .【答案】(a+3)(a﹣3)【解析】直接利用平方差公式分解因式进而得出答案. a2﹣9=(a+3)(a﹣3).【考点】因式分解-运用公式法.39.若二次根式有意义,则x的取值范围是 .【答案】x≥2.【解析】【考点】二次根式有意义的条件.根据二次根式有意义的条件,可得x﹣2≥0,解不等式得x≥2.故答案为:x≥2.40.已知四边形ABCD为菱形,连接BD,点E为菱形ABCD外任一点.(1)如图(1),若∠A=45°,AB=,点E为过点B作AD边的垂线与CD边的延长线的交点,BE,AD交于点F,求DE的长.(2)如图(2),若2∠AEB=180°﹣∠BED,∠ABE=60°,求证:BC=BE+DE(3)如图(3),若点E在的CB延长线上时,连接DE,试猜想∠BED,∠ABD,∠CDE三个角之间的数量关系,直接写出结论【答案】(1)2﹣.(2)证明参见解析;(3)2∠ABD=∠BED+∠CDE.【解析】(1)首先证明△AFB与△EFD为等腰直角三角形,然后在△ABF中依据勾股定理可求得BF和AF的长,从而得到DF的长,然后在Rt△EDF中,可求得DE的长;(2)延长DE至K,使EK=EB,连结AK.首先证明∠AEB=∠AEK,然后依据SAS证明△AEB≌△AEK,由全等三角形的性质及等边三角形的判断定理可证明△AKD为等边三角形,于是得到KD=BC,通过等量代换可得到问题的答案;(3)记AB与DE的交点为O.首先证明依据菱形的性质可得到∠ABC=2∠ABD,然后依据平行四边形的性质可证明∠CDE=∠BOE,最后依据三角形外角的性质可得到问题的答案.试题解析:(1)如图1所示:∵四边形ABCD为菱形,∴AD=AB=,AB∥CD.∴∠A=∠ADE=45°.∵AD⊥BE,∴∠AFB=DFE=90°.∴△AFB与△EFD为等腰直角三角形.∴BF2+AF2=AB2,即:2BF2=6,∴BF=AF=.∵△EFD为等腰直角三角形,∴EF=DF=AD﹣AF=﹣.∴DE=EF=(﹣)=2﹣.(2)如图2所示:延长DE至K,使EK=EB,联结AK.∵2∠AEB=180°﹣∠BED,∴∠BED=180°﹣2∠AEB=180°﹣∠AEB﹣∠AEK.∴∠AEB=∠AEK.在△AEB和△AEK中,∴△AEB≌△AEK.∴∠K=∠ABE=60°,Ak=AB.又∵AB=AD,∴AK=AD.∴△AKD为等边三角形.∴KD=AD.∴KD=BC.∵KD=KE+DE,∴CB=EB+DE.(3)如图3所示:记AB与DE 的交点为O.∵四边形ABCD为菱形,∴AB∥DC,∠ABC=2∠ABD.∴∠CDE=∠BOE.∵∠ABC=∠BED+∠EOB,∴2∠ABD=∠BED+∠CDE.【考点】四边形综合题.41.下列计算正确的是()A.|﹣2|=﹣2B.a2•a3=a6C.(﹣3)﹣2=D.【解析】A、原式=2≠﹣2,故本选项错误;B、原式=a5≠a6,故本选项错误;C、原式=,故本选项正确;D、原式=2≠3,故本选项错误.故选C.【考点】1.同底数幂的乘法;2.绝对值;3.算术平方根;4.负整数指数幂.42.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20cm,则它的宽约为 cm.(保留2位小数)【答案】12.36【解析】∵书的宽与长之比为黄金比,长为20cm,∴它的宽=20•=10(﹣1)≈12.36(cm).【考点】黄金分割.43.下列函数关系式中属于反比例函数的是()A.y="3x"B.y=﹣C.y=x2+3D.x+y=5【答案】B【解析】根据反比例函数的定义进行判断.A、该函数是正比例函数,故本选项错误;B、该函数符合反比例函数的定义,故本选项正确;C、该函数是二次函数,故本选项错误;D、该函数是一次函数,故本选项错误;故选:B.【考点】反比例函数的定义.44.已知,如图:在矩形ABCD中,点M、N在边AD上,且AM=DN,求证:BN=CM.【答案】证明见解析【解析】首先根据AM=DN得到AN=MD,再由矩形的性质得到AB=CD,∠A=∠D,进而得到△ABN≌△DCM,于是得出结论.试题解析:∵AM=DN,∴AM+MN=MN+ND,∴AN=MD,∵四边形ABCD是矩形,∴AB=CD,∠A=∠D,在△ABN和△DCM中,∵,∴△ABN≌△DCM,∴BN=CM.【考点】矩形的性质.45.某超市计划在“十周年”庆典当天开展购物抽奖活动,凡当天在该超市购物的顾客,均有一次抽奖的机会,抽奖规则如下:将如图所示的圆形转盘平均分成四个扇形,分别标上1,2,3,4四个数字,抽奖者连续转动转盘两次,当每次转盘停止后指针所指扇形内的数为每次所得的数(若指针指在分界线时重转);当两次所得数字之和为8时,返现金20元;当两次所得数字之和为7时,返现金15元;当两次所得数字之和为6时返现金10元.(1)试用树状图或列表的方法表示出一次抽奖所有可能出现的结果;(2)某顾客参加一次抽奖,能获得返还现金的概率是多少?【答案】(1)树状图详见解析;(2).【解析】(1)首先根据题意画出树状图,然后由树状图求得所有等可能的结果;(2)首先求得某顾客参加一次抽奖,能获得返还现金的情况,再利用概率公式即可求得答案.试题解析:(1)画树状图得:则共有16种等可能的结果;(2)∵某顾客参加一次抽奖,能获得返还现金的有6种情况,∴某顾客参加一次抽奖,能获得返还现金的概率是:=.【考点】列表法与树状图法.46.如图,在直角三角形ABC中,斜边上的中线CD=AC,则∠B等于______.【答案】30°.【解析】试题解析:∵CD是斜边AB上的中线,∴CD=AD,又CD=AC,∴△ADC是等边三角形,∴∠A=60°,∴∠B=90°-∠A=30°.【点睛】本题考查的是直角三角形的性质和等边三角形的性质,掌握直角三角形斜边上的中线等于斜边的一半是解题的关键.47.如图,是某几何体的三视图及相关数据,则该几何体的侧面积是A.10πB.15πC.20πD.30π【答案】B【解析】先根据几何体的三视图的特征判断出这个几何体是圆锥,再根据圆锥的侧面积公式求解即可.由图可得该几何体的侧面积,故选B.【考点】几何体的三视图,圆锥的侧面积点评:解题的关键是熟练掌握圆锥的侧面积公式:圆锥的侧面积底面半径×母线.48.要反映2017年末温州市各个县(区)常住人口占温州市总人口的比例,宜采用…()A.条形统计图B.折线统计图C.扇形统计图D.频数直方图【答案】C【解析】由题意得,根据统计图的特点只有扇形统计图才能反映各部分占整体的百分比,故选C.49.在0 ,-2,1,5这四个数中,最小的数是()A.0B.-2C.1D.5【答案】B【解析】有理数的大小方法:正数大于负数;零大于负数;零小于正数;两个正数比较大小,绝对值大的数就大;两个负数比较大小,绝对值大的数反而小.50.分式方程的解是_________________.【答案】x=2【解析】解:去分母得:,3x=6,解得:x=2.经检验,x=2是原方程的解.故答案为:x=2.51.正六边形的边长为2,则它的内切圆的面积是__.【答案】3π【解析】52.下列运算正确的是()A.(2a2)3=6a6B.﹣x6÷x2=﹣x4C.2x+2y=4xy D.(x﹣1)2=x2﹣12【答案】B【解析】A.根据积的乘方法则,,则A错误;B.根据幂的除法法则,,则B正确;C.2x与2y不是同类项,不能合并,则C错误;D.由完全平方差公式,,则D错误.故选B.53.如图,在四边形ABCD中,已知AB∥DC, AB=DC,在不添加任何辅助线的前提下,要想该四边形成为矩形,只需再加上的一个条件是_____________.(填上你认为正确的一个答案即可)【答案】(或或)(说明:答案有三类:一是一个内角为直角;二是相邻两角相等;三是对角互补)【解析】根据平行四边形的判定先推出四边形是平行四边形,再根据矩形的定义即可得出答案.试题解析:添加的条件是∠A=90°,理由是:∵AB∥DC,AB=DC,∴四边形ABCD是平行四边形,∵∠A=90°,∴平行四边形ABCD是矩形,【考点】1.矩形的判定;2.平行四边形的判定.54.已知点A(x1,y1)B(x2,y2)是反比例函数图像上的点,若x1>0>x2,则一定成立的是()A.y1> y2>0B.y1>0>y2C.0>y1>y2D.y2>0>y1【答案】B【解析】∵1>0,∴函数图像过一、三象限.∵x1>0>x2,∴A(x1,y1)在第一象限,B(x2,y2)在第二象限;∴y1>0>y2故选B.55.如图,在4×4的正方形方格图形中,小正方形的顶点称为格点,△ABC的顶点都在格点上,则图中∠ABC的余弦值是()A.B.C.D.2【答案】A【解析】设小正方形的边长为1,∵AC=,BC=,AB=,∵AC²+BC²=,AB²=5²=25,∴AC²+BC²=AB²,∴∠ACB=90°,∴cos∠ABC=,故选A.56.我区某校举行了一次科技创新大赛,某班的学生成绩统计如下:则该班学生成绩的众数是_______,中位数是_______.【答案】 8分 8分【解析】众数是在一组数据中,出现次数最多的数据,这组数据中8出现11次,出现的次数最多,故这组数据的众数为8分;中位数是一组数据从小到大(或从大到小)排列后,最中间的那个数(最中间两个数的平均数).因此这组35个按大小排序的数据中,中间的数为8,故这组数据的中位数为8分.57.如图,在平面直角坐标系中有一菱形OABC且∠A=120°,点O、B在y轴上,OA=1,现在把菱形向右无滑动翻转,每次翻转60°,点B的落点依次为B1、B2、B3…,连续翻转2017次,则B2017的坐标为______.【答案】(1345.5,)【解析】连接AC,如图所示。

初三数学综合试题

初三数学综合试题

初三数学一、填空、 1、反比例函数y=xk与一次函数y=2x+k 的图象的一个交点的纵坐标是—4,则k= 2、若2+3是关于x 的方程x 2—4x+c=0的一个根,则c=3、R t △ABC 中,∠B=900,∠A=400,AC 的垂直平分线MN 与AB 交于D ,则∠BCD 的度数为 。

4、正方形ABCD 的边长为8,M 在DC 上,且DM=2,N 是AC 上的一动点,则DN+MN 的最小值为5、矩形的一个内角平分线把矩形的一条边分成3cm 和5cm,两部分,矩形的周长为 6中,AD=10,一对角线AC=12,另一对角线BD 的取值范围为 7、把3张不同花色的扑克牌分别对折,剪成大小一样的两张,随便抽出两张小纸片, 能凑成原来的一张扑克牌的概率为8、梯形ABCD 中AD ∥BC ,AB=CD=12,腰与底的一个夹角为1200,则两底角之差为9、y=—x 与y=—x4—图象交于A,B 两点,过A 作AC ⊥y 轴于C ,则S △BOC=10、一次函数y=kx+b 的图象过一、二、四象限,反比例函数y=xkx的图象过象限11、y=kx 与y=x4交于A(x 1,y 1)B(x 2,y 2)两点,则2x 1y 2—7x 2y 1=12、x 的方程x 2+(m 2—36)x+m+1=0的两个根互为相反数,则m= 13、一元二次方程x 2+mx+n=0的两个根是3,—4则m=14、斜边为10的直角三角形的两条边a,b 分别是方程x 2—kx+3k+6=0的两根,则k=15、某厂计划用两年的时间把上缴利税提高44%,若每年比前一年提高的百分数相同,这个百分数为 二、选择1、梯形上底长为a ,下底长是上底的3倍,则梯形的中位线长( ) A 4a B 2a C 15a D a2中,∠D=700,∠DAC=500,EF 垂直平分AB 交AC 于F ,则∠CBF 的度数为( )A 50 B 100 C 150 D 2003、正比例函数y=ax,的图象与反比例函数y=xa6的图象交于A ,B 两点,A 点的横坐标是2,则B 点的坐标为( )A (2,4)B (2,2)C (—2,4)D (—2,—4)4、梯形ABCD 中,A B ∥CD ,AB=6,AD=4,CD=3,设BC=x,则x 的取值范围为( ) A x>1 B x<7 C 3<x<7 D 1<x<7 5中,BE 平分∠ABC 交AD 于E ,若∠C=1100,则∠AEB=( ) A 300 B 350 C 400 D 450 5题2题CB EA DFEA BDC9题OABCD6、方程x 2—2x —1=0的两根为x 1,x 2则以x 1—1,x 2—1为根的一元二次方程是( )A y 2+2=0B y 2—2=0C y 2+2y —2=0D y 2+3=07、α,β是方程x 2+3x —5=0的两个根,则α2+2β2+3β=( )A 24B 26C —24D 528、等腰梯形的上底长为5cm,下底长为9cm,腰长为4cm,则S 梯形=( )9、梯形ABCD 中,AD ∥BC ,AC 与BD 交于O ,S △AOD=1,S △BOC=4,则S 梯形=( ) A 9 B 10 C 11 D 1210、y=kx+b 与y=xk交于A (x 1,y 1)B(x 2,y 2)两点,则x 1.x 2的值( )A 与k 有关,与b 无关B 与k 无关,与b 有关C 与k,b 都有关D 有k,b 都无关 三、解下列各题1、关于x 的一元二次方程—x 2+2kx —(k 2+2k —6)=0(k 为正整数)有两个异号根,求这两个根。

北师大版九年级数学上第一二单元测试题

北师大版九年级数学上第一二单元测试题

A CAC(1)(2)初三数学第一二章综合测试班别____________ 姓名____________ 评分____________1、如图(1),△ABC 中,AB=A C ,∠A=040,则B=( ) A 、060 B 、070 C 、075 D 、0802、下列方程是关于x 的一元二次方程的是( )A 、0432=-+y xB 、05323=--x xC 、0212=-+xx D 、012=+x 3、如图(2),AB=AC ,BE=CE ,则图中全等的三角形有( )对 A 、1 B 、2 C 、3 D 、4 4、方程05622=--x x 的两根为1x 与2x ,则21x x +和2.1x x 的 值分别是( )A 、-3和-25B 、-3和25C 、3和25D 、3和25- 5、直角三角形的两条直角边分别是6和8,则这三角形斜 边上的高是( )A 、4.8B 、5C 、3D 、10 6、方程x x 22=的解是( )A 、0=xB 、2=xC 、01=x 22=xD 01=x 22=x 7、如图(3),△ABC 中,BC=10,DH 为AB 的中垂线,EF 垂直平分AC ,则△ADE 的周长是( )A 、6B 、8C 、10D 、12 8、若代数式65222--x x x 与代数式的值相等,则x 的值是( )A 、-1或6B 、1或-6C 、2或3D 、-2或-39、如图(4),△ABC 中,∠C=090,AD 平分∠BAC ,BC=10,BD=6,则点D 到AB 的距离是( ) A 、4 B 、5 C 、6 D 、7A BCD EH F(3) BD (4)10、关于x 的一元二次方程013)1(22=-++-m x x m 的一根为0,则m 的值是( ) A 、1± B 、2± C 、-1 D 、-2 二、填空题(每题3分,共30分)1、把方程x x 2)1(32=-化成一般形式是______________2、如图(5),△ABC 中,∠C=090,∠B=060,BC=4,则AB=________3、通过配方,把方程04422=--x x 配成n m x =-2)(的形式是______________ 4、如图(6),已知∠CAB=∠DBA ,要使△ABD ≌△BAC ,还需要添加的一个条件是_______________5、一元二次方程的求根公式是___________________6、如图(7),I 为△ABC 的内心,∠A=040,则∠BIC 的度数是________7、某超市今年一月份的营业额为200万元,三月份的营业额为288万元,如果平均每月的增长率为x ,由题意列出方程是______________________ 8、如图(8),△ABC 中,DE 垂直平分AB ,△BCD 的周长为50,BC=23,则AC 的长为_______ 9、如图(9),C 为AB 的黄金分割点(AC>BC ),若AB 的长为10,则AC 的长为_________ 10、如图(10),RT △ABC 中,分别以它的三边为边长向外作三个正方形。

数学初三综合试题及答案

数学初三综合试题及答案

数学初三综合试题及答案一、选择题(每题3分,共30分)1. 下列哪个数是无理数?A. 0B. 1C. πD. 2答案:C2. 一个数的平方根是它本身,这个数是:A. 0B. 1C. -1D. 2答案:A3. 一个等腰三角形的两边长分别为3和4,那么它的周长是:A. 7B. 10C. 11D. 14答案:C4. 一个二次函数的图象开口向上,且与x轴有两个交点,则它的判别式:A. >0B. =0C. <0D. 无法确定答案:A5. 计算(2x-3)(x+4)的结果是:A. 2x^2 + 5x - 12B. 2x^2 + x - 12C. 2x^2 - x - 12D. 2x^2 - 5x - 12答案:A6. 一个圆的直径是10cm,那么它的面积是:A. 25π cm^2B. 50π cm^2C. 100π cm^2D. 200π cm^2答案:B7. 如果一个角是直角的一半,那么这个角是:A. 30°B. 45°C. 60°D. 90°答案:C8. 一个数列的前三项是1,2,4,那么第四项是:A. 8B. 6C. 5D. 7答案:A9. 一个长方体的长、宽、高分别是2cm,3cm,4cm,那么它的体积是:A. 24 cm^3B. 26 cm^3C. 28 cm^3D. 30 cm^3答案:A10. 一个数的立方根是它本身,这个数是:A. 0B. 1C. -1D. 2答案:A二、填空题(每题4分,共20分)1. 一个数的相反数是-5,那么这个数是______。

答案:52. 一个数的绝对值是3,那么这个数可以是______。

答案:±33. 一个数的倒数是1/2,那么这个数是______。

答案:24. 一个数的平方是25,那么这个数是______。

答案:±55. 一个数的立方是-27,那么这个数是______。

答案:-3三、解答题(每题10分,共50分)1. 解方程:2x - 5 = 9。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

初三数学综合试题一一、在下列各题的四个备选答案中,只有一个是正确的。

1. -6 的倒数是( )A:-6 C:61-B:6 D:612. 8 的立方根是( )A:2 C:4B:-2 D:-43. 212)3(的计算结果是( )A:9 C:3 B:91 D:314. 菱形的对称轴共有( )A:1 条 C:3 条B:2 条 D:4 条5. 15000 用科学记数法表示为( )A:15×103 C:1.5×104B:1.5×103 D:0.15×104 6. 在函数31-=x y 中,自变量 x 的取值范围是( ) A:x 〈-3 C:x ≤3B:x ≤-3 D:x >37. 如果两个圆的半径分别为4cm 和5cm ,圆心距为1cm ,那么这两个圆的位置关系是( )A:相交 C:外切B:内切 D:外离B:100° D:50°9. 在△ABC 中,a 、b 分别是∠A 、∠B 的对边,如果 sin A∶sin B=2∶3,那么a ∶b 等于( )A:2∶3 C:4∶9B:3∶2 D:9∶410. 在△ABC 中,∠C =90°,sinA =53,那么cosB 的值等于( )8. 已知:如图,A、B、C三点在⊙O上,且∠AOB =100°,那么∠ACB 等于( )A:200° C:80°A:53 C:2516B:54 D:25911. 已知扇形的圆心角为120°,半径为3cm ,那么扇形的面积为( )A:3πcm 2 C:6πcm 2B:πcm 2 D:2πcm 212. 已知平行四边形ABCD 的周长为24,AB ∶AD =1∶2,那么 AB 的长是( ) A:4 C:8B:6 D:1613. 已知反比例函数 x ky = 的图象经过点(2,3),那么 k 等于( )A:32C:6B:23 D:6114. 已知梯形 ABCD ,AD 〃BC ,如果中位线EF 的长为6cm ,BC =2AD ,那么BC 的长是( )A:4cm C:8cmB:6cm D:12cm15. 不等式|x-1|<4 的解集是( )A:-3〈x 〈3 C:-4〈x 〈3B:3〈x 〈5 D:-3〈x 〈516. 在Rt △ABC 中,∠ACB =90°,CD ⊥AB 于 D ,如果 AC ∶BC =2∶3,那么 AD ∶DB 等于( )A:2∶3 C:2∶3B:3∶2 D:4∶9二、判断题:1. 分解因式: a 2-b 2-2b-1=(a+b+1) (a-b-1) ( )解:2. 计算: 22)12()12(1801=-+--- ( )解:三、四、选择:用换元法解方程135322+=+--x x x x ( ) A:x 1=4 x 2=-1 C:x 1=-1 x 2=3B:x 1=5 x 2=-1 D:x 1=0.1 x 2=0.4解:五、列方程或方程组解应用题:甲乙两个工程队合做一项工程,6 天可以完成。

如果单独工作,甲队比乙队少用 5 天完成,两队单独工作各需多少天完成? ( )A:甲需15天 乙需12天 C:甲需25天 乙需15天B:甲需10天 乙需15天 D:甲需15天 乙需10天解:已知: 如图,正方形ABCD 中,E 、F 分别是 AB 、AD 上的点,且 AE =AF.求证: CE =CF.六、已知: 如图,在⊙O中,直径 AB 与弦 CD 相交于点 M ,且 M 是 CD 的中点,点 P 在 DC 的延长线上,PE 是⊙O的切线,E 是切点,AE 与 CD 相交于点 F.求证: PF 2=PC ·PD.七、已知 x 1,x 2 是关于 x 的方程 4x 2-(3m-5)x-6m 2=0 的两个实数根,且 |21x x |=23,求 m 的值. ( )A:m =1 或 m =3 C:m =1B:m =0 D:m =1 或 m =5解:八、已知: 四边形 ABCD 是圆内接四边形,如果∠BAD =120°,AB ∶AD =3∶1,BD =13, 四边形 ABCD 的面积为4315,求 CD 和 CB 的长. ( )A:CD =4 CB =7 C:CD =4 CB =3 或 CD =3 CB =4B:CD =7 CB =4 D:CD =5 CB =6 或 CD =4 CB =7解:解:十、在△ABC 中,已知 AB =AC =3, sinA =23, E 是 BC 边上的点,EP ⊥AB 于P ,点P 在 AB 边上,EF ∥AB ,交 AC 边于 F ,设 BP =x ,梯形 APEF 的面积为 y ,求y 与x 之间的函数关系式,并写出自变量 x 的取值范围. ( )A:0<x <3 C:3<x <6B:-3<x <2 D:-3<x <0解:初三数学综合试题一参考答案一、1. C 2. A 3. C 4. B 5. C 6. D 7. B 8. D9. A 10. A 11. A 12. A 13. C 14. C 15. D 16. D二、1. 对解: a 2-b 2-2b-1= a 2-(b 2+2b+1)九、在直角坐标系XOY 中,一次函数232+=x y 的图象与 x 轴,y 轴分别交于点A 和点B ,点C 的坐标是(1,0),点D 在 x 轴上,且∠BCD 和∠ABD 是两个相等的钝角,求图象经过 B 、D 两点的一次函数的解析式.= a 2-(b+1) 2= (a+b+1) (a-b-1)2. 对解: 01)12()12(18-+---=112123+-- =1)12(23++-=11223+--=22三、证法一: ∵ 四边形ABCD 是正方形,∴ AB =AD , CB =CD , ∠B =∠D =90°.∵ AE =AF ,∴ BE =DF.∴ Rt △CBE ≌Rt △CDF.∴ CE =CF.四、A解: 设y x x =+-532, 则 x 2-3x+5=y 2 于是原方程变为 y 2-y-6=0解这个方程,得 y 1=-2,y 2=3.当 y =-2 时,2532-=+-x x ,根据算术平方根的定义,此方程无解. 当 y =3 时, 3532=+-x x , 解这个方程,得x 1=4,x 2=-1.经检验,x 1=4,x 2=-1 都是原方程的根.五、B解法一: 设甲队单独工作需 x 天完成,则乙队单独工作需(x+5) 天完成。

根据题意,得 1566=++x x 整理,得 x 2-7x-30=0解这个方程,得 x 1=10, x 2=-3.经检验,x 1=10,x 2=-3 都是原方程的根,但工作时间为负数不合题意, 所以只取 x =10,这时 x+5=15.答: 甲队单独工作需10 天完成,乙队单独工作需15 天完成.解法二: 设甲队单独工作需 x 天完成,乙队单独工作需 y 天完成。

证法二: 连结 AC∵ 四边形ABCD 是正方形.∴ ∠EAC =∠FAC.∵ AE =AF ,∴ AC 是 EF 的中垂线,∴ CE =CF.根据题意,得 x =y-5y x 66+=1 解这个方程组,得x 1=10, x 2=-3,y 1=15; y 2=2.经检验,x 1=10,x 2=-3,都是原方程组的解,但工作时间为负数y 1=15; y 2=2.不合题意, 所以只取 x =10, y =15.答: 甲队单独工作需10 天完成,乙队单独工作需15 天完成.证法一: 连结 BE.∵ AB 是⊙O的直径,∴ ∠AEB =90°. ∴ ∠A+∠B =90°.∵ M 是 CD 的中点,∵ AB ⊥CD.∴ ∠A+∠AFM =90°. ∴ ∠AFM =∠B.∵ ∠PFE =∠AFM , ∴ ∠PFE =∠B.∵ PE 切⊙O于 E , ∴ ∠PEF =∠B.∴ ∠PFE =∠PEF. ∴ PF =PE.∵ PE 2=PC ·PD. ∴ PF 2=PC ·PD.七、D解法一: ∵ △=(3m-5) 2+96m 2,∴ m 为任何实数,都有△>0. ∵ |21x x |=23, x 1·x 2=223m -≤0.∴21x x =23-. ∴ x 1·x 2=21x x m 2. ∴ x 2=±m.∵ x 1+x 2=453-m , x 1=223x -,∴223x -+x 2=453-m .∴ 当x 2=m 时,解得 m =5. 当x 2=-m 时,解得 m =1.∴ m =5, 或 m =1.六、 证法二: 连结 OE.∵ PE 切⊙O于 E. ∴ OE ⊥PE.∴ ∠PEF+∠AEO =90°.∵ OA =OE , ∴ ∠A=∠AEO.∵ AB 是⊙O的直径,M 是 CD 的中点,∴ AB ⊥CD. ∴ ∠A+∠AFM =90°.∴ ∠AFM =∠PEF. ∵ ∠AFM =∠PFE ,∴ ∠PFE =∠PEF. ∴ PF =PE.∵ PE 2=PC ·PD. ∴ PF 2=PC ·PD.解法二: 同解法一得2321-=x x . 设 x 1=3k , x 2=-2k.∵ x 1+x 2=453-m , x 1·x 2=223m -,∴ k =453-m , 4k 2=m 2化简,得 m 2-6m+5=0.∴ m =1, 或 m =5.八、C∵ ∠BCD+∠BAD =180°, ∴ ∠BCD =60°∴ S 四边形ABCD =21CB ·CD ·sin60°+21×3×1×sin120°.∴ 4315=43CB ·CD+433. ∴ CB ·CD =12. 在△BCD 中,∵ BD 2=CB 2+CD 2-2CB ·CD ·cos ∠BCD ,∴ 13=CB 2+CD 2-2CB ·CD ·cos60°. ∴ 13=CB 2+CD 2-12. ∴ CB 2+CD 2=25. ∵ (CB+CD) 2=CB 2+CD 2+2CB ·CD , ∴ (CB+CD) 2=25+24. ∴ CB+CD =7.解方程组 CB+CD =7, CB ·CD =12得 CD =4, 或 CD =3,CB =3; CB =4.∵ 在Rt △BED 中,ED 2=BD 2-BE 2,∴ ED =2313x -. ∵ S △BCD =21CD ·BE , ∴ x x x 3)313(21332∙-+=.解法一: 在△ABD 中,设 AB =3x ,则 AD =x.∵ BD 2=AB 2+AD 2-2AB ·AD ·cos ∠BAD ∴ 13=9x 2+x 2-2×3x ·x ·)21(-∴ 13=13x 2. ∴ x =1. ∴ AB =3, AD =1.解法二: 同解法一得 AB =3, AD =1. ∴ S △ABD =433, ∴ S 四边形ABCD =4315, ∴ S △ACD =33.过点 B 作 BE ⊥CD 于 E , 设 CE =x.∵∠BAD =120° ∴∠BCD =60°∴ BC =2x , BE =x 3.整理,得 4x 4-25x 2+36=0.∴ x 1=2,x 2=-2,x 3=23,x 4=23-.经检验, x 1=2, x 3=23是原方程的根,x 2=-2, x 4=23-是增根,∴ 当x =2 时, CD =3, CB =4.当x =23时, CD =4, CB =3.解法一: ∵ 点 A 、B 是直线与坐标轴的交点,∴ 点 A 、B 的坐标分别为(-3, 0), (0,2).∵ 点 C 的坐标是(1, 0), ∴ AC =4.∵ 点 D 在 x 轴上, ∠BCD 是钝角,∴ 点 D 在点 C 的右边(如图).∵∠BCD =∠ABD , ∠BDC =∠ADB ,∴△BCD ∽△ABD. ∴ AD BD BDCD = ∴ CD AC BD BD CD +=. ∴ BD 2=CD ·(4+CD). ∵ BD 2=BO 2+OD 2, ∴ 2+(1+CD) 2=CD ·(4+CD). ∴ CD =23.∴ 点 D 的坐标为 (25,0).∴ 所求的一次函数的解析式为2522+-=x y .解法二: 同解法一得 AC =4, BC =3, AB =11, 设点 D 的坐标为(x , 0). ∴ CD =|x-1|, BD =22+x .∵∠ABD =∠BCD , ∠BDA =∠CDB ,∴△ABD ∽△BCD. ∴BC AB CD BD =. ∴ 311122=-+x x . 整理, 得 8x 2-22x+5=0解这个方程, 得x 1=25, x 2=41.经检验,x 1=25, x 2=41都是原方程的根.∴ 点 D 的坐标为 (25,0) 或 (41, 0)∵ ∠BCD 是钝角,九、∴ 点 D (41, 0) 不合题意,舍去.∴ 点 D 的坐标为 (25, 0).∴ 所求的解析式为2522+=x y .十、A∵ EP ⊥AB , 在Rt △PBE 中, BP =x ,∴ PE =3x , BE =2x. ∴ AP =3-x.∵ EF ∥AB , ∴ △ECF 为等边三角形. ∴ EF =EC =3-2X.∵ S 梯形APEF =21(EF+AP)·PE , ∴ x x y 332332-=.∵ 点 P 在 AB 上, 点 E 在 BC 上,∴ 0<x <23. 当∠A =120°时,∵ AB =AC =3, ∴ ∠B =∠C =30°. ∴ C AB A BC sin sin =, ∴ BC =33. ∵ EP ⊥BP , 在Rt △PBE 中, BP =x ,∴ x PE 33=, x BE 323= , AP =3-x ,∵ EF ∥AB , ∴ △FEC ∽△ABC. ∴ BC EC ABFE =. ∴ FE =3-32x. ∵ S 梯形APEF =21(AP+FE)·PE. ∴ y =-x x 318532+. ∵ 点 P 在 AB 上, ∴ 0 < x < 3.解: 在△ABC 中, ∵ sinA =23,∴ ∠A =60°, 或∠A =120°.当∠A =60°时.∵ AB =AC =3, ∴ ∠B =∠C =60°,BC =3.。

相关文档
最新文档