2018年中考安徽名校大联考试卷(一)数学试题
安徽合肥市2018届初三名校大联考试卷(一)数学试题
2018年中考安徽名校大联考试卷 (一)数学试题考生注意:本卷共八大题,计23小题,满分150分,考试时间120一、选择题(本题共10小题,每题4分,共40分•每小题有四个答,其中有且只有个答案是正确的,请把正确答案的代号,写在题后的括号内,答对的得4分,答错、不答或答案超过一个的 一律得0分)1.2018的相反数是A.-2018B.2018 C _丄D.12018 20182•如图,a // b ,含30°角的三角板的直角顶点在直线 b 上,一个锐角的顶点在直线 a 上, 若/仁20 °,则/ 2的度数是3.2017年11月8日-10日,美国总统特朗普对我国进行国事访向,访问期间 冲美两国企业签约 项目总金额达2500亿美元,这里“ 2500亿”用科学记数法表示为3 11 12 8 A.2.5 X 10B.2.5 X 10C.0.25 X 10 D2500 X 10 4.如图是由四个大小相同的正方体组成的几何体 ,它的主视图是5. 估计3 -2的值应该在x 1--^^6. —兀一次不等式组 2 的解集在数轴上表示正确的是x 2 1与众数是BnA.-1-0之间B.0-1之间C.1-2之间D.2-3之间17.如图是某班学生篮球运球成绩频数分布直方图 ,根据图中的信息,这组数据的中位数A.10 人、20 人B. 13 人、14 人的一元二次方程 ax 2+(b+1)x+c=0的根的情况是A.有两个不相等的实数根B.有两个相等的实数 C 没有实数根 D.以上结论都正确9•如图,圆内接四边形 ABCD 的边AB 过圆心0,过点C 的切线AD 的延长线交于点 E 若点D 是 弧AC 的中点,且/ ABC=70°,则/ AEC 等于A.80 °B.75 °C.70 °D.65 °10. 如图矩形ABCD 中,AB=4,BC=2把矩形ABCD 沿过点A 的直线AE 折叠点D 落在矩形 ABCD 内部的点D 处,则CD 的最小值是A.2B.5C. 2 -5 - 2D. 2、、5 2、填空题(本题有4小题海小题5分,共20分)11. ________________________ 计算:(-丄严= 23 212. __________________________ 因式分解:a -16ab =13. 如图,点A,B,C 都在O O 上,/ACB=6C ° ,O O 的直径是6,则劣弧AB 的长是14. 在厶ABC 中,AB=6cm,点P 在AB 上,且/ ACP=Z B 若点P 是AB 的三等分点,贝U AC的长是C.14 分、14 分D.135 分、14 分8•如图,一次函数另=-x 与二次函数为=ax 2+bx+c 的图象相交于点 M,N,则关于x ft三、(本题有2题,每题8分,共16分)32 x _ 1 x _ x15. 先化简,再求值:(x ) 2 ,其中x=-4 x x 16. 清朝数学家梅文鼎的著作 《方程论》中有这样一道题:山田三亩,场地六亩,共折实田四亩七 分;又山田五亩,场地三亩,共折实田五亩五分,问每亩山田折实田多少,每亩场地折实田多少?译文为:假如有山田3亩,场地6亩,其产粮相当于实田 4.7亩汉山田5亩,场地3亩,其产粮相 当于实田5.5亩,问每亩山田和每亩场地产粮各相当于实田多少亩 ?请你解答四、(本题有2题,每题8分,共16 分)(1)确定反比例函数的表达式;⑵结合图象,直接写出x 为何值时,y 1<y 218.在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系△ ABC是格点三角形(顶点在网格线的交点上) (1) 先作△ ABC 关于原点0成中心对称的△ A 1B 1C 1,再把△ A 1B 1C 1向上平移4个单位长度得到 △ A 2B 2C 2;(2) △ A 2B 2C 2与厶ABC 是否关于某点成中心对称 ?若是,直接写出对称中心的坐标;若不是,请说17.已知:如图,一次函数y 1=x+2与反比例函数y 2=k (x>0)的图象交于点 x A (a ,5)明理由五、(本题有2题,每题10分,共20分)19.观察下列图形,把一个三角形分别连接其三边中点 胸成4个小三角形,挖去中间的一个小三角形(如图1),对剩下的三个小三角形再分别重复以上做法,,,,据此 解答下面的问题(1)填写下表:图形挖去三角形的个数 图形11 图形21+3 图形31+3+9图形4(2)根据这个规律,求图n 中挖去三角形的个数 w n ;(用含n 的代数式表示)⑶若图n+1中挖去三角形的个数为 W n+1,求W n+1-W nm220. 如图,在一座小山上建有一座铁塔AD,小明站在C处测得小山顶A的仰角为30° ,铁塔顶端的D的仰角为45° ,若铁塔AD的高度是100m,试求小山的铅直高度AB(精确到六、(本题共2分)2•小明学习电学知识后,用四个开关按键(每个开关按键闭合的可能性相等)、一个电源和一个灯泡设计了一个电路图(1)若小明设计的电路图(四个开关按键都处于打开状态)如图所示,求任意闭合一个开关按键灯泡能发光的概率;=1.732)。
(完整版)2018年安徽中考数学试题与答案
数 学
本试卷共8大题,计23小题,满分150分,考试时间120分钟
题号
一
二
三
四
五
六
七
八
总分
得分
一、选择题<本题共10小题,每小题4分,满分40分)
每小题都给出代号为A、B、C、D的四个选项同,其中只有一个正确的,请把正确选项的代号写在题 后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的<不论是否写在括号内)一律得0分.L6OJgyk1v3
A.7 B.9
C.10 D. 11
7. 如图,⊙半径是1,A、B、C是圆周上的三点,∠BAC=36°,则劣弧 的长是…………………………………………………………………………………【 】L6OJgyk1v3
A. B. C. D.
8.一元二次方程 的根是………………【 】
A.-1B. 2C. 1和2D. -1和2
<1)请补充完成下面的成绩统计分析表:
<2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组.但乙组学生不同意甲组学生的说法,认为他们组的成绩要高于甲组.请你给出三条支持乙组学生观点的理由.L6OJgyk1v3
【解】
六、<本题满分12分)
21. 如图函数 的图象与函数 <x>0)的图象交于A、B两点,与y轴交于C点.已知A点的坐标为(2,1>,C点坐标为(0,3>.7N09uxu2uW
【解】
四、<本题共2小题,每小题8分,满分16分)
17. 如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△A1B1C1和△A2B2C2;
<1)把△ABC先向右平移4个单位,再向上平移1个单位,得到△A1B1C1;
┃精选3套试卷┃2018年安徽省名校中考多校联考数学试题
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.某居委会组织两个检查组,分别对“垃圾分类”和“违规停车”的情况进行抽查.各组随机抽取辖区内某三个小区中的一个进行检查,则两个组恰好抽到同一个小区的概率是()A.19B.16C.13D.23【答案】C【解析】分析:将三个小区分别记为A、B、C,列举出所有情况即可,看所求的情况占总情况的多少即可.详解:将三个小区分别记为A、B、C,列表如下:A B CA (A,A)(B,A)(C,A)B (A,B)(B,B)(C,B)C (A,C)(B,C)(C,C)由表可知,共有9种等可能结果,其中两个组恰好抽到同一个小区的结果有3种,所以两个组恰好抽到同一个小区的概率为31 = 93.故选:C.点睛:此题主要考查了列表法求概率,列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适用于两步或两步以上完成的事件;解题时还要注意是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.2.如图所示,在方格纸上建立的平面直角坐标系中,将△ABC绕点O按顺时针方向旋转90°,得到△A′B′O,则点A′的坐标为()A.(3 ,1)B.(3 ,2)C.(2 ,3)D.(1 ,3)【答案】D【解析】解决本题抓住旋转的三要素:旋转中心O,旋转方向顺时针,旋转角度90°,通过画图得A′.【详解】由图知A点的坐标为(-3,1),根据旋转中心O,旋转方向顺时针,旋转角度90°,画图,从而得A′点坐标为(1,3).故选D.3.如图,已知点E在正方形ABCD内,满足∠AEB=90°,AE=6,BE=8,则阴影部分的面积是()A.48 B.60C.76 D.80【答案】C【解析】试题解析:∵∠AEB=90°,AE=6,BE=8,∴2222++=AE BE6810∴S阴影部分=S正方形ABCD-S Rt△ABE=102-168⨯⨯2=100-24=76.故选C.考点:勾股定理.4.夏新同学上午卖废品收入13元,记为+13元,下午买旧书支出9元,记为()元.A.+4 B.﹣9 C.﹣4 D.+9【答案】B【解析】收入和支出是两个相反的概念,故两个数字分别为正数和负数.【详解】收入13元记为+13元,那么支出9元记作-9元【点睛】本题主要考查了正负数的运用,熟练掌握正负数的概念是本题的关键.5.“凤鸣”文学社在学校举行的图书共享仪式上互赠图书,每个同学都把自己的图书向本组其他成员赠送一本,某组共互赠了210本图书,如果设该组共有x名同学,那么依题意,可列出的方程是()A .x (x+1)=210B .x (x ﹣1)=210C .2x (x ﹣1)=210D .12x (x ﹣1)=210 【答案】B【解析】设全组共有x 名同学,那么每名同学送出的图书是(x−1)本; 则总共送出的图书为x(x−1); 又知实际互赠了210本图书, 则x(x−1)=210. 故选:B.6.已知抛物线y=ax 2+bx+c 的图象如图所示,顶点为(4,6),则下列说法错误的是( )A .b 2>4acB .ax 2+bx+c≤6C .若点(2,m )(5,n )在抛物线上,则m >nD .8a+b=0 【答案】C【解析】观察可得,抛物线与x 轴有两个交点,可得240b ac- ,即24b ac > ,选项A 正确;抛物线开口向下且顶点为(4,6)可得抛物线的最大值为6,即26ax bx c ++≤,选项B 正确;由题意可知抛物线的对称轴为x=4,因为4-2=2,5-4=1,且1<2,所以可得m<n ,选项C 错误; 因对称轴42bx a=-= ,即可得8a+b=0,选项D 正确,故选C.点睛:本题主要考查了二次函数y=ax 2+bx+c 图象与系数的关系,解决本题的关键是从图象中获取信息,利用数形结合思想解决问题,本题难度适中. 7.对于二次函数,下列说法正确的是( )A .当x>0,y 随x 的增大而增大B .当x=2时,y 有最大值-3C .图像的顶点坐标为(-2,-7)D .图像与x 轴有两个交点 【答案】B【解析】二次函数22114(2)344y x x x =-+-=---, 所以二次函数的开口向下,当x <2,y 随x 的增大而增大,选项A 错误; 当x=2时,取得最大值,最大值为-3,选项B 正确;顶点坐标为(2,-3),选项C 错误;顶点坐标为(2,-3),抛物线开口向下可得抛物线与x 轴没有交点,选项D 错误, 故答案选B.考点:二次函数的性质.8.反比例函数y=a x (a >0,a 为常数)和y=2x在第一象限内的图象如图所示,点M 在y=ax 的图象上,MC ⊥x 轴于点C ,交y=2x 的图象于点A ;MD ⊥y 轴于点D ,交y=2x的图象于点B ,当点M 在y=ax 的图象上运动时,以下结论: ①S △ODB =S △OCA ;②四边形OAMB 的面积不变;③当点A 是MC 的中点时,则点B 是MD 的中点. 其中正确结论的个数是( )A .0B .1C .2D .3【答案】D【解析】根据反比例函数的性质和比例系数的几何意义逐项分析可得出解. 【详解】①由于A 、B 在同一反比例函数y=2x图象上,由反比例系数的几何意义可得S △ODB =S △OCA =1,正确;②由于矩形OCMD 、△ODB 、△OCA 为定值,则四边形MAOB 的面积不会发生变化,正确; ③连接OM ,点A 是MC 的中点,则S △ODM =S △OCM =2a,因S △ODB =S △OCA =1,所以△OBD 和△OBM 面积相等,点B 一定是MD 的中点.正确; 故答案选D .考点:反比例系数的几何意义.9.中国幅员辽阔,陆地面积约为960万平方公里,“960万”用科学记数法表示为( ) A .0.96×107 B .9.6×106C .96×105D .9.6×102【答案】B【解析】试题分析:“960万”用科学记数法表示为9.6×106,故选B.考点:科学记数法—表示较大的数.10.如图所示,某公司有三个住宅区,A、B、C各区分别住有职工30人,15人,10人,且这三点在一条大道上(A,B,C三点共线),已知AB=100米,BC=200米.为了方便职工上下班,该公司的接送车打算在此间只设一个停靠点,为使所有的人步行到停靠点的路程之和最小,那么该停靠点的位置应设在()A.点A B.点B C.A,B之间D.B,C之间【答案】A【解析】此题为数学知识的应用,由题意设一个停靠点,为使所有的人步行到停靠点的路程之和最小,肯定要尽量缩短两地之间的里程,就用到两点间线段最短定理.【详解】解:①以点A为停靠点,则所有人的路程的和=15×100+10×300=1(米),②以点B为停靠点,则所有人的路程的和=30×100+10×200=5000(米),③以点C为停靠点,则所有人的路程的和=30×300+15×200=12000(米),④当在AB之间停靠时,设停靠点到A的距离是m,则(0<m<100),则所有人的路程的和是:30m+15(100﹣m)+10(300﹣m)=1+5m>1,⑤当在BC之间停靠时,设停靠点到B的距离为n,则(0<n<200),则总路程为30(100+n)+15n+10(200﹣n)=5000+35n>1.∴该停靠点的位置应设在点A;故选A.【点睛】此题为数学知识的应用,考查知识点为两点之间线段最短.二、填空题(本题包括8个小题)11.关于x的不等式组3515-12xx a->⎧⎨≤⎩有2个整数解,则a的取值范围是____________.【答案】8⩽a<13;【解析】首先确定不等式组的解集,先利用含a的式子表示,根据整数解的个数就可以确定有哪些整数解,根据解的情况可以得到关于a的不等式,从而求出a的范围.【详解】解不等式3x−5>1,得:x>2,解不等式5x−a⩽12,得:x⩽125a+,∵不等式组有2个整数解,∴其整数解为3和4,则4⩽125a+<5,解得:8⩽a<13,故答案为:8⩽a<13【点睛】此题考查一元一次不等式组的整数解,掌握运算法则是解题关键12.分解因式:ax2﹣2ax+a=___________.【答案】a(x-1)1.【解析】先提取公因式a,再对余下的多项式利用完全平方公式继续分解.【详解】解:ax1-1ax+a,=a(x1-1x+1),=a(x-1)1.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.13.一个圆锥的母线长为5cm,底面半径为1cm,那么这个圆锥的侧面积为_____cm1.【答案】10π【解析】分析:根据圆锥的侧面展开图为扇形,先计算出圆锥的底面圆的周长,然后利用扇形的面积公式求解.详解:∵圆锥的底面半径为5cm,∴圆锥的底面圆的周长=1π•5=10π,∴圆锥的侧面积=12•10π•1=10π(cm1).故答案为10π.点睛:本题考查了圆锥的侧面积的计算:圆锥的侧面展开图为扇形,扇形的弧长为圆锥的底面周长,扇形的半径为圆锥的母线长.也考查了扇形的面积公式:S=12•l•R,(l为弧长).14.如图,在正方形ABCD中,E是AB上一点,BE=2,AE=3BE,P是AC上一动点,则PB+PE的最小值是.【答案】10【解析】由正方形性质的得出B、D关于AC对称,根据两点之间线段最短可知,连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.【详解】如图,连接DE ,交AC 于P ,连接BP ,则此时PB+PE 的值最小. ∵四边形ABCD 是正方形, ∴B 、D 关于AC 对称, ∴PB=PD , ∴PB+PE=PD+PE=DE. ∵BE=2,AE=3BE , ∴AE=6,AB=8, ∴DE=2268+=10, 故PB+PE 的最小值是10. 故答案为10.15.如图,在ABC ∆中,5BC AC ==,8AB =,CD 为AB 边的高,点A 在x 轴上,点B 在y 轴上,点C 在第一象限,若A 从原点出发,沿x 轴向右以每秒1个单位长的速度运动,则点B 随之沿y 轴下滑,并带动ABC ∆在平面内滑动,设运动时间为t 秒,当B 到达原点时停止运动连接OC ,线段OC 的长随t 的变化而变化,当OC 最大时,t =______.当ABC ∆的边与坐标轴平行时,t =______. 【答案】2243255和 【解析】(1)由等腰三角形的性质可得AD=BD ,从而可求出OD=4,然后根据当O ,D ,C 共线时,OC 取最大值求解即可;(2)根据等腰三角形的性质求出CD ,分AC ∥y 轴、BC ∥x 轴两种情况,根据相似三角形的判定定理和性质定理列式计算即可.【详解】(1)15,,42BC AC CD AB AD BD AB ∴==⊥∴===, 190,,42AOB AD BD OD AB ︒∠==∴==, 当O ,D ,C 共线时,OC 取最大值,此时OD ⊥AB. ∵,4OD AB OD AD BD ⊥===, ∴△AOB 为等腰直角三角形,∴242OA t AD === ;(2)∵BC=AC ,CD 为AB 边的高, ∴∠ADC=90°,BD=DA=12AB=4, ∴CD=22AC AD -=3,当AC ∥y 轴时,∠ABO=∠CAB , ∴Rt △ABO ∽Rt △CAD ,∴AO AB CD AC =,即835t =, 解得,t=245,当BC ∥x 轴时,∠BAO=∠CBD , ∴Rt △ABO ∽Rt △BCD ,∴AO AB BD BC =,即845t =, 解得,t=325 , 则当t=245或325时,△ABC 的边与坐标轴平行.故答案为t=245或325.【点睛】本题考查的是直角三角形的性质,等腰三角形的性质,相似三角形的判定和性质,掌握相似三角形的判定定理和性质定理、灵活运用分情况讨论思想是解题的关键. 16.如图,已知,第一象限内的点A 在反比例函数y =2x的图象上,第四象限内的点B 在反比例函数y =kx的图象上.且OA ⊥OB ,∠OAB =60°,则k 的值为_________.【答案】-6【解析】如图,作AC ⊥x 轴,BD ⊥x 轴, ∵OA ⊥OB , ∴∠AOB=90°,∵∠OAC+∠AOC=90°,∠AOC+∠BOD=90°, ∴∠OAC=∠BOD ,∴△ACO∽△ODB,∴OA OC ACOB BD OD==,∵∠OAB=60°,∴33OAOB=,设A(x,2x),∴BD=3OC=3x,OD=3AC=23x,∴B(3x,-23),把点B代入y=kx得,-23=3x,解得k=-6,故答案为-6.17.关于x的一元二次方程24410x ax a+++=有两个相等的实数根,则581a aa--的值等于_____.【答案】3-【解析】分析:先根据根的判别式得到a-1=1a,把原式变形为23357a a a a+++--,然后代入即可得出结果.详解:由题意得:△=2(4)44(1)0a a-⨯+=,∴210a a--=,∴221,1a a a a=+-=,即a(a-1)=1,∴a-1=1a,5562232888()811a a a aa a a aaa--∴==-=--33232(1)8(1)33188357a a a a a a a a a=+-+=+++--=+--(1)3(1)57a a a a=+++--24a a=--143=-=-故答案为-3.点睛:本题考查了一元二次方程ax²+bx+c=0(a≠0)的根的判别式△=b²-4ac:当△>0, 方程有两个不相等的实数根;当△<0, 方程没有实数根;当△=0,方程有两个,相等的实数根,也考查了一元二次方程的定义. 18.如图,是用火柴棒拼成的图形,则第n个图形需_____根火柴棒.【答案】2n+1.【解析】解:根据图形可得出:当三角形的个数为1时,火柴棒的根数为3;当三角形的个数为2时,火柴棒的根数为5;当三角形的个数为3时,火柴棒的根数为7;当三角形的个数为4时,火柴棒的根数为9;……由此可以看出:当三角形的个数为n时,火柴棒的根数为3+2(n﹣1)=2n+1.故答案为:2n+1.三、解答题(本题包括8个小题)19.如图,在△ABC中,∠B=90°,AB=4,BC=1.在BC上求作一点P,使PA+PB=BC;(尺规作图,不写作法,保留作图痕迹)求BP的长.【答案】(1)见解析;(2)2.【解析】(1)作AC的垂直平分线与BC相交于P;(2)根据勾股定理求解.【详解】(1)如图所示,点P即为所求.(2)设BP=x,则CP=1﹣x,由(1)中作图知AP=CP=1﹣x,在Rt△ABP中,由AB2+BP2=AP2可得42+x2=(1﹣x)2,解得:x=2,所以BP=2.【点睛】考核知识点:勾股定理和线段垂直平分线.20.观察下列等式:22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③…第④个等式为;根据上面等式的规律,猜想第n个等式(用含n的式子表示,n是正整数),并说明你猜想的等式正确性.【答案】(1)52﹣2×4=42+1;(2)(n+1)2﹣2n=n2+1,证明详见解析.【解析】(1)根据①②③的规律即可得出第④个等式;(2)第n个等式为(n+1)2﹣2n=n2+1,把等式左边的完全平方公式展开后再合并同类项即可得出右边.【详解】(1)∵22﹣2×1=12+1①32﹣2×2=22+1②42﹣2×3=32+1③∴第④个等式为52﹣2×4=42+1,故答案为:52﹣2×4=42+1,(2)第n个等式为(n+1)2﹣2n=n2+1.(n+1)2﹣2n=n2+2n+1﹣2n=n2+1.【点睛】本题主要考查了整式的运算,熟练掌握完全平方公式是解答本题的关键.21.为了解中学生“平均每天体育锻炼时间”的情况,某地区教育部门随机调查了若干名中学生,根据调查结果制作统计图①和图②,请根据相关信息,解答下列问题:本次接受随机抽样调查的中学生人数为_______,图①中m的值是_____;求本次调查获取的样本数据的平均数、众数和中位数;根据统计数据,估计该地区250000名中学生中,每天在校体育锻炼时间大于等于1.5h的人数.【答案】(1)250、12;(2)平均数:1.38h;众数:1.5h;中位数:1.5h;(3)160000人;【解析】(1) 根据题意, 本次接受调查的学生总人数为各个金额人数之和, 用总概率减去其他金额的概率即可求得m值.(2) 平均数为一组数据中所有数据之和再除以这组数据的个数; 众数是在一组数据中出现次数最多的数; 中位数是将一组数据按大小顺序排列, 处于最中间位置的一个数据, 或是最中间两个数据的平均数, 据此求解即可.(3) 根据样本估计总体, 用“每天在校体育锻炼时间大于等于1.5h的人数” 的概率乘以全校总人数求解即可.【详解】(1)本次接受随机抽样调查的中学生人数为60÷24%=250人,m=100﹣(24+48+8+8)=12,故答案为250、12;(2)平均数为=1.38(h),众数为1.5h,中位数为=1.5h;(3)估计每天在校体育锻炼时间大于等于1.5h的人数约为250000×=160000人.【点睛】本题主要考查数据的收集、处理以及统计图表.22.某兴趣小组为了了解本校男生参加课外体育锻炼情况,随机抽取本校300名男生进行了问卷调查,统计整理并绘制了如下两幅尚不完整的统计图.请根据以上信息解答下列问题:课外体育锻炼情况扇形统计图中,“经常参加”所对应的圆心角的度数为______;请补全条形统计图;该校共有1200名男生,请估计全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数;小明认为“全校所有男生中,课外最喜欢参加的运动项目是乒乓球的人数约为1200×27300=108”,请你判断这种说法是否正确,并说明理由.【答案】(1)144°;(2)补图见解析;(3)160人;(4)这个说法不正确,理由见解析.【解析】试题分析:(1)360°×(1﹣15%﹣45%)=360°×40%=144°;故答案为144°;(2)“经常参加”的人数为:300×40%=120人,喜欢篮球的学生人数为:120﹣27﹣33﹣20=120﹣80=40人;补全统计图如图所示;(3)全校男生中经常参加课外体育锻炼并且最喜欢的项目是篮球的人数约为:1200×40300=160人; (4)这个说法不正确.理由如下:小明得到的108人是经常参加课外体育锻炼的男生中最喜欢的项目是乒乓球的人数,而全校偶尔参加课外体育锻炼的男生中也会有最喜欢乒乓球的,因此应多于108人. 考点:①条形统计图;②扇形统计图.23.太阳能光伏发电因其清洁、安全、便利、高效等特点,已成为世界各国普遍关注和重点发展的新兴产业,如图是太阳能电池板支撑架的截面图,其中的粗线表示支撑角钢,太阳能电池板与支撑角钢AB 的长度相同,均为300cm ,AB 的倾斜角为,BE=CA=50cm ,支撑角钢CD ,EF 与底座地基台面接触点分别为D ,F ,CD 垂直于地面,于点E .两个底座地基高度相同(即点D ,F 到地面的垂直距离相同),均为30cm ,点A 到地面的垂直距离为50cm ,求支撑角钢CD 和EF 的长度各是多少cm (结果保留根号)【答案】29033cm 【解析】过点A 作AG CD ⊥,垂足为G ,利用三角函数求出CG ,从而求出GD ,继而求出CD .连接FD 并延长与BA 的延长线交于点H ,利用三角函数求出CH ,由图得出EH ,再利用三角函数值求出EF.【详解】过点A 作AG CD ⊥,垂足为G .则30CAG ∠=︒,在Rt ACG 中,()1sin 3050252CG AC cm =︒=⨯=, 由题意,得()GD 503020cm =-=,∴()252045CD CG GD cm =+=+=,连接FD 并延长与BA 的延长线交于点H . 由题意,得30H ∠=︒.在Rt CDH 中,()290sin 30CD CH CD cm ===︒,∴()300505090290EH EC CH AB BE AC CH cm =+=--+=--+=.在Rt EFH 中,()32903tan 3029033EF EH cm =︒=⨯=. 答:支角钢CD 的长为45cm ,EF 的长为29033cm .考点:三角函数的应用24.2018年10月23日,港珠澳大桥正式开通,成为横亘在伶仃洋上的一道靓丽的风景线.大桥主体工程隧道的东、西两端各设置了一个海中人工岛,来衔接桥梁和海地隧道,西人工岛上的A 点和东人工岛上的B 点间的距离约为5.6千米,点C 是与西人工岛相连的大桥上的一点,A ,B ,C 在一条直线上.如图,一艘观光船沿与大桥AC 段垂直的方向航行,到达P 点时观测两个人工岛,分别测得PA ,PB 与观光船航向PD 的夹角18DPA ∠=︒,53DPB ∠=︒,求此时观光船到大桥AC 段的距离PD 的长(参考数据:180.31sin ︒≈,180.95cos ︒≈,180.33tan ︒≈,530.80sin ︒≈,530.60cos ︒≈,53 1.33tan ︒≈).【答案】5.6千米【解析】设PD 的长为x 千米,DA 的长为y 千米,在Rt △PAD 中利用正切的定义得到tan18°=y x ,即y=0.33x ,同样在Rt △PDB 中得到y+5.6=1.33x ,所以0.33x+5.6=1.33x ,然后解方程求出x 即可.【详解】设PD 的长为x 千米,DA 的长为y 千米,在Rt △PAD 中,tan ∠DPA=DA DP , 即tan18°=y x, ∴y=0.33x ,在Rt△PDB中,tan∠DPB=64 5.6g)56x⨯-(,即tan53°=5.6yx+,∴y+5.6=1.33x,∴0.33x+5.6=1.33x,解得x=5.6,答:此时观光船到大桥AC段的距离PD的长为5.6千米.【点睛】本题考查了解直角三角形的应用:根据题目已知特点选用适当锐角三角函数或边角关系去解直角三角形,得到数学问题的答案,再转化得到实际问题的答案.25.为了提高中学生身体素质,学校开设了A:篮球、B:足球、C:跳绳、D:羽毛球四种体育活动,为了解学生对这四种体育活动的喜欢情况,在全校随机抽取若干名学生进行问卷调查(每个被调查的对象必须选择而且只能在四种体育活动中选择一种),将数据进行整理并绘制成以下两幅统计图(未画完整).这次调查中,一共调查了________名学生;请补全两幅统计图;若有3名喜欢跳绳的学生,1名喜欢足球的学生组队外出参加一次联谊活动,欲从中选出2人担任组长(不分正副),求一人是喜欢跳绳、一人是喜欢足球的学生的概率.【答案】(1)200;(2)答案见解析;(3)12.【解析】(1)由题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);(2)根据题意可求得B占的百分比为:1-20%-30%-15%=35%,C的人数为:200×30%=60(名);则可补全统计图;(3)首先根据题意画出树状图,然后由树状图求得所有等可能的结果与一人是喜欢跳绳、一人是喜欢足球的学生的情况,再利用概率公式即可求得答案.【详解】解:(1)根据题意得:这次调查中,一共调查的学生数为:40÷20%=200(名);故答案为:200;(2)C组人数:200-40-70-30=60(名)B组百分比:70÷200×100%=35%如图(3)分别用A,B,C表示3名喜欢跳绳的学生,D表示1名喜欢足球的学生;画树状图得:∵共有12种等可能的结果,一人是喜欢跳绳、一人是喜欢足球的学生的有6种情况,∴一人是喜欢跳绳、一人是喜欢足球的学生的概率为:61.122【点睛】此题考查了列表法或树状图法求概率以及条形统计图与扇形统计图.用到的知识点为:概率=所求情况数与总情况数之比.26.赵亮同学想利用影长测量学校旗杆的高度,如图,他在某一时刻立1米长的标杆测得其影长为1.2米,同时旗杆的投影一部分在地面上,另一部分在某一建筑的墙上,分别测得其长度为9.6米和2米,则学校旗杆的高度为________米.【答案】10【解析】试题分析:根据相似的性质可得:1:1.2=x:9.6,则x=8,则旗杆的高度为8+2=10米.考点:相似的应用中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,扇形AOB 中,OA=2,C 为弧AB 上的一点,连接AC ,BC ,如果四边形AOBC 为菱形,则图中阴影部分的面积为( )A .233π-B .2233π-C .433π-D .4233π- 【答案】D【解析】连接OC ,过点A 作AD ⊥CD 于点D ,四边形AOBC 是菱形可知OA=AC=2,再由OA=OC 可知△AOC 是等边三角形,可得∠AOC=∠BOC=60°,故△ACO 与△BOC 为边长相等的两个等边三角形,再根据锐角三角函数的定义得出AD=OA•sin60°=2×3=3,因此可求得S 阴影=S 扇形AOB ﹣2S △AOC =21202360π⨯﹣2×12×2×3=43π﹣23. 故选D .点睛:本题考查的是扇形面积的计算,熟记扇形的面积公式及菱形的性质是解答此题的关键. 2.将抛物线()2y x 13=-+向左平移1个单位,再向下平移3个单位后所得抛物线的解析式为( ) A .()2y x 2=-B .()2y x 26=-+C .2y x 6=+D .2y x = 【答案】D【解析】根据“左加右减、上加下减”的原则,将抛物线()2y x 13=-+向左平移1个单位所得直线解析式为:()22y x 113y x 3=-++⇒=+; 再向下平移3个单位为:22y x 33y x =+-⇒=.故选D .3.下列四个几何体中,主视图与左视图相同的几何体有( )A .1个B .2个C .3个D .4个【答案】D【解析】解:①正方体的主视图与左视图都是正方形;②球的主视图与左视图都是圆;③圆锥主视图与左视图都是三角形;④圆柱的主视图和左视图都是长方形;故选D.4.已知x1,x2是关于x的方程x2+ax-2b=0的两个实数根,且x1+x2=-2,x1·x2=1,则b a的值是( ) A.B.-C.4 D.-1【答案】A【解析】根据根与系数的关系和已知x1+x2和x1•x2的值,可求a、b的值,再代入求值即可.【详解】解:∵x1,x2是关于x的方程x2+ax﹣2b=0的两实数根,∴x1+x2=﹣a=﹣2,x1•x2=﹣2b=1,解得a=2,b=,∴b a=()2=.故选A.5.如图,在平面直角坐标系中,已知点A(―3,6)、B(―9,一3),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A′的坐标是()A.(―1,2)B.(―9,18)C.(―9,18)或(9,―18)D.(―1,2)或(1,―2)【答案】D【解析】试题分析:方法一:∵△ABO和△A′B′O关于原点位似,∴△ ABO∽△A′B′O且OA'OA=13.∴A EAD=0E0D=13.∴A′E=13AD=2,OE=13OD=1.∴A′(-1,2).同理可得A′′(1,―2).方法二:∵点A(―3,6)且相似比为13,∴点A的对应点A′的坐标是(―3×13,6×13),∴A′(-1,2).∵点A′′和点A′(-1,2)关于原点O对称,∴A′′(1,―2).故答案选D.考点:位似变换.6.下面的几何体中,主视图为圆的是()A.B.C.D.【答案】C【解析】试题解析:A、的主视图是矩形,故A不符合题意;B、的主视图是正方形,故B不符合题意;C、的主视图是圆,故C符合题意;D、的主视图是三角形,故D不符合题意;故选C.考点:简单几何体的三视图.7.计算6m3÷(-3m2)的结果是()A.-3m B.-2m C.2m D.3m【答案】B【解析】根据单项式相除,把系数与同底数幂分别相除作为商的因式,对于只在被除式里含有的字母,则连同它的指数作为商的一个因式计算,然后选取答案即可.【详解】6m3÷(﹣3m2)=[6÷(﹣3)](m3÷m2)=﹣2m.故选B.8.下列每组数分别是三根小木棒的长度,用它们能摆成三角形的是()A.3cm,4cm,8cm B.8cm,7cm,15cmC.13cm,12cm,20cm D.5cm,5cm,11cm【答案】C【解析】根据三角形的三边关系“任意两边之和大于第三边,任意两边之差小于第三边”,进行分析.【详解】A、3+4<8,不能组成三角形;B、8+7=15,不能组成三角形;C、13+12>20,能够组成三角形;D、5+5<11,不能组成三角形.故选:C.【点睛】本题考查了三角形的三边关系,关键是灵活运用三角形三边关系.9.如图,在⊙O中,AE是直径,半径OC垂直于弦AB于D,连接BE,若AB=27,CD=1,则BE的长是()A.5 B.6 C.7 D.8【答案】B【解析】根据垂径定理求出AD,根据勾股定理列式求出半径,根据三角形中位线定理计算即可.【详解】解:∵半径OC垂直于弦AB,∴AD=DB=172在Rt△AOD中,OA2=(OC-CD)2+AD2,即OA2=(OA-1)27)2,解得,OA=4∴OD=OC-CD=3,∵AO=OE,AD=DB,∴BE=2OD=6故选B【点睛】本题考查的是垂径定理、勾股定理,掌握垂直于弦的直径平分这条弦是解题的关键10.如图,△ABC中,BC=4,⊙P与△ABC的边或边的延长线相切.若⊙P半径为2,△ABC的面积为5,则△ABC的周长为( )A.8 B.10 C.13 D.14 【答案】C【解析】根据三角形的面积公式以及切线长定理即可求出答案.【详解】连接PE、PF、PG,AP,由题意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=12BC•PE=12×4×2=4,∴由切线长定理可知:S△PFC+S△PBG=S△PBC=4,∴S四边形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切线长定理可知:S△APG=12S四边形AFPG=132,∴132=12×AG•PG,∴AG=132,由切线长定理可知:CE=CF,BE=BG,∴△ABC的周长为AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故选C.【点睛】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型.二、填空题(本题包括8个小题)11.分解因式a3﹣6a2+9a=_________________.【答案】a(a﹣3)1.【解析】a3﹣6a1+9a=a(a1﹣6a+9)=a(a﹣3)1.故答案为a(a﹣3)1.12.已知|x|=3,y2=16,xy<0,则x﹣y=_____.【答案】±3【解析】分析:本题是绝对值、平方根和有理数减法的综合试题,同时本题还渗透了分类讨论的数学思想.详解:因为|x|=1,所以x=±1.因为y2=16,所以y=±2.又因为xy<0,所以x、y异号,当x=1时,y=-2,所以x-y=3;当x=-1时,y=2,所以x-y=-3.故答案为:±3.点睛:本题是一道综合试题,本题中有分类的数学思想,求解时要注意分类讨论.13.已知关于x,y的二元一次方程组2321x y kx y+=⎧⎨+=-⎩的解互为相反数,则k的值是_________.【答案】-1【解析】∵关于x,y的二元一次方程组23{+2=1①②+=-x y kx y的解互为相反数,∴x=-y③,把③代入②得:-y+2y=-1,解得y=-1,所以x=1,把x=1,y=-1代入①得2-3=k,即k=-1.故答案为-114.将抛物线y=2x2平移,使顶点移动到点P(﹣3,1)的位置,那么平移后所得新抛物线的表达式是_____.【答案】y=2(x+3)2+1【解析】由于抛物线平移前后二次项系数不变,然后根据顶点式写出新抛物线解析式.【详解】抛物线y=2x2平移,使顶点移到点P(﹣3,1)的位置,所得新抛物线的表达式为y=2(x+3)2+1.故答案为:y=2(x+3)2+1【点睛】本题考查了二次函数图象与几何变换:由于抛物线平移后的形状不变,故a不变,所以求平移后的抛物线解析式通常可利用两种方法:一是求出原抛物线上任意两点平移后的坐标,利用待定系数法求出解析式;二是只考虑平移后的顶点坐标,即可求出解析式.15.如果53xx y=-,那么xy=______.【答案】52;【解析】先对等式进行转换,再求解.【详解】∵53 xx y-=∴3x=5x-5y ∴2x=5y∴5.2 xy=【点睛】本题考查的是分式,熟练掌握分式是解题的关键.16.已知甲、乙两组数据的折线图如图,设甲、乙两组数据的方差分别为S甲2、S乙2,则S甲2__S乙2(填“>”、“=”、“<”)【答案】>【解析】要比较甲、乙方差的大小,就需要求出甲、乙的方差;首先根据折线统计图结合根据平均数的计算公式求出这两组数据的平均数;接下来根据方差的公式求出甲、乙两个样本的方差,然后比较即可解答题目.【详解】甲组的平均数为:3626463+++++=4,S甲2=16×[(3-4)2+(6-4)2+(2-4)2+(6-4)2+(4-4)2+(3-4)2]=73,乙组的平均数为:4353465+++++=4,S 乙2=16×[(4-4)2+(3-4)2+(5-4)2+(3-4)2+(4-4)2+(5-4)2]=23,∵73>23, ∴S 甲2>S 乙2. 故答案为:>. 【点睛】本题考查的知识点是方差,算术平均数,折线统计图,解题的关键是熟练的掌握方差,算术平均数,折线统计图.17.某一时刻,测得一根高1.5m 的竹竿在阳光下的影长为2.5m .同时测得旗杆在阳光下的影长为30m ,则旗杆的高为__________m . 【答案】1.【解析】分析:根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可.详解:∵竹竿的高度竹竿的影长= 1.52.5∴旗杆的高度,旗杆的影长=30旗杆的高度,解得:旗杆的高度=1.52.5×30=1. 故答案为1.点睛:本题考查了相似三角形在测量高度时的应用,解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立数学模型来解决问题.18.如图,在平面直角坐标系中,菱形OABC 的面积为12,点B 在y 轴上,点C 在反比例函数y=kx的图象上,则k 的值为________.【答案】-6【解析】因为四边形OABC 是菱形,所以对角线互相垂直平分,则点A 和点C 关于y 轴对称,点C 在反比例函数上,设点C 的坐标为(x,k x ),则点A 的坐标为(-x,k x ),点B 的坐标为(0,2k x ),因此AC=-2x,OB=2K X,根据菱形的面积等于对角线乘积的一半得:()OABC 122122kS x x=⨯-⨯=菱形,解得 6.k =-三、解答题(本题包括8个小题)19.如图,以△ABC 的边AB 为直径的⊙O 与边AC 相交于点D ,BC 是⊙O 的切线,E 为BC 的中点,连接AE 、DE .。
2018年中考安徽名校大联考试卷一数学试题
数学试题一)2018年中考安徽名校大联考试卷(120150分,考试时间:考生注意本卷共八大题,计23小题,满分请把正确答每小题有四个答,其中有且只有个答案是正确的,每题4分,共40分.一、选择题(本题共10小题,) ,答错、不答或答案超过一个的一律得0分案的代号,写在题后的括号内,答对的得4分 1.2018的相反数是()11D.A.-2018B.2018C201820182程方的一元二次象相交于点M,N,则关于次8.如图,一函°角的三角板的直角顶点在直线30b上,一个锐角的顶点在直线a上,若∠1=20°,则∠2的数y=-x与二次函数为=axx+bx+c的图2.如图,a∥b,含2度数是()ax的根的情况是()+(b+1)x+c=0 A.20°B.40°C.50° D.60°以上结论都正确有两个相等的实数C.没有实数根 D.A.有两个不相等的实数根 B. 的中ACE,若点D是弧AB过圆心O,过点C的切线与AD的延长线交于点,9.如图圆内接四边形ABCD的边,中美两国企业签约项目总金额达美国总统特朗普对我国进行国事访向年3.201711月8日-10日,,访问期间,则∠AEC等于()点,且∠ABC=70° A.80°B.75°C.70°D.65°亿”用科学记数法表示为()这里“亿美元,25002500831112 B.2.5×10C.0.25×10A.2.5×10 D2500×10内部折叠,点D落在矩形ABCDBC=2,把矩形它的主视图是()4.如图是由四个大小相同的正方体组成的几何体, ABCD沿过点A的直线AE10.如图,矩形ABCD中,AB=4,则CDˊ的最小值是()的点Dˊ处,2525??225 C.A.2 B. D.)分每小题5分,共20小题二、填空题(本题有4,12?)?(;11.计算:= 23-2的值应该在()5.估计23-16ab:a;=12.因式分解AB的长是;的直径是C都在⊙O上,∠ACB=60°,⊙O6,则劣弧、 D.2-3 C.1-2 B.0-1A.-1-0之间之间之间之间13.如图,点A、B. 的长是的三等分点,则AC上,且∠ACP=∠B,若点P是ABAB14.在△ABC中,AB=6cm,点P在x?1???x?) 16分题,每题8分,共2三、(本题有2的解集在数轴上表示正确的是()6.一元一次不等式组??1?2?x3x2x?1x???)?(x x=-4 :15.先化简,再求值,其中2xx又山田五,根据图中的信息,17.如图是某班学生篮球运球成绩频数分布直方图这组数据的中位数与众数是();,共折实田四亩七分清朝数学家梅文鼎的著作《方程论》中有这样一道题16.:山田三亩,场地六亩, 分14分、C.14人人、 B. 13人人、A.102014,问每亩山田折实田多少亩,场地三亩, 分分、D.13.514共折实田五亩五分?每亩场地折实田多少其产粮相当于实田,3亩,;,,假如有山田3亩场地6亩其产粮相当于实田4.7亩又山田5亩场地:译文为请你解答,5.5亩问每亩山田和每亩场地产粮各相当于实田多少亩?)分16共,分8每题,题2本题有(四、.k A(a,5)=(x>0)一次函数y的图象交于点=x+2与反比例函数y17.已知:如图,21x六、(本题共2分)2.小明学习电学知识后,用四个开关按键(1)确定反比例函数的表达式;(每个开关按键闭合的可能性相等)、一个电源和一个灯泡设计了一个电路图直接写出x为何值时,y<y 结合图象(2),21(1)若小明设计的电路图(四个开关按键都处于打开状态)如图1所示,求任意闭合一个开关按键,灯泡能发光的概率;建立如图所示的,个单位长度的小正方形组成的网格中18.在边长为1 )是格点三角形(顶点在网格线的交点上平面直角坐标系△ABC(2)C向上平若小明设计的电路图(四个开关按键都处于打开状态)BB(1)先作△ABC关于原点O成中心对称的△AC,再把△A111111如图个单位长度得到△移4ABC;2所示,求同时闭合其中的两个开关按键,灯泡能发222光的概率.(与△(2)△ABCABC是否关于某点成中心对称?若是,直接写出对称用列表或树状图法). 222七、(. 中心的坐标;若不是,请说明理由本题共12分)2 +bx+C经过点B(0,3)抛物线y=-x和点A(3,0) 22已知:如图,()求该抛物线的函数表达式和直线AB的函数表达式;共每题本题有五、(2题,10分,20分)(2)若直线l⊥x轴,在第一象限内与抛物线交于点M,与直线AB交于点N,请在备用图上画出符合题意的图形,,,19.观察下列图形,把一个三角形分别连接其三边中点构成4个小三角形挖去中间的并求点M与点N之间的距离的最大值或最小值,对剩下的三个小三角形再分别重复以上做法……,据此解答下面的问题:,以及此时点M,N的坐标. 1),(一个小三角形如图: 填写下表(1)挖去三角形的个数图形1 1图形1+3 2图形1+3+9 3 图形 4图形八. )n(wn,(2)根据这个规律求图中挖去三角形的个数用含的代数式表示;(本题共14分)n23.如图,正方形ABCD、等腰Rt△BPQ的顶点P在对角线AC上(点P与. W?W求,中挖去三角形的个数为若图(3)n+1WA、C不重合),QP与BC交于E, QP nn+1n+1延长线与AD交于点F,连接CQ.(1)①求证:AP=CQ;2 =AF·:PAAD;②求证(2)°30的仰角为A处测得小山顶CAD,在一座小山上建有一座铁塔,20.如图小明站在若AP:PC=1:3,求的仰角为D,铁塔顶端的tan∠CBQ.32=1.732) :参考数据0.1m)(精确到AB(试求小山的铅直高度100m,AD若铁塔,°45的高度是=1.414.APAC?ACAB2 AB. ·=AP即AC : 分两种情况126=12, ×AP==2AB=2cm,AC (1)33212cm; =AC=226=24, AP==4AB=4cm,AC ×(2)3cm2624) 5分3=分,两个(填对又一个得AC=年中考安徽名校大联考试卷2018(一)数学参考答案)一、选择题(16分分,共(本题有2题,每题8请把正确每小题有四个答案共本题共10小题,每题4分,40分.,其中有且只有个答案是正确的,三、)21)?x?1)(xxx(xx C A AC BD C D A B 答案15.解225xx?1)(分)??(8?31)1)(xx?x(x?0, OCE=90,∵ABO的直径是⊙,OCE:9.B提示连接OC,∵是⊙的切线∴∠∠∴∠°∴°°∴∠∠ACB=90BAC=90-70°=20OA=OCOAC=OCA=20°亩每亩场地产粮相当于实田y设每亩山田产粮相当于实田x亩,16.解:, ∴∠内接于⊙∵四边形ABCDO,EDC=∠ABC=70是弧AC的中点D,°∵点4.7y?x3?6?(5分)可列方程组为?15.5?3y5x?? EDC=35°∠∠∴∠DAC=DCA=2x?0.9?, °°°∴∠ECD=90-20-35=35°1?.答:每亩山田相当于实田0.9亩,每亩场地相当于实田亩解得.(8分) 1?°-35=75°°°∴∠AEC=180-703?y?3?四、(本题有2题,每题8分,共16分)17.解(1)∵点A(a,5)在一次函数y=x+2的图象上1∴5=a+2,∴a=3,点A坐标为(3,5)'D点根据题意:提示10.C ,在以点AABCD为半径且在矩形为圆心,AD内部的圆kkk?15,?yx(?0)∵点A(3,5)在反比例函数∴∴5=,的图象上22252?24?所以,CD'由勾股定理得,D交圆弧于点连接,弧上AC'AC=3x225?15的最小值为=(x>0);(5y分) 反比例函数的表达式为2x) 每小题小题4本题有二、填空题(,分20共分5,11.4(2)由图象可知,当0<x<3时,y<y.(8分) 2112.a(a+4b)(a-4b) 解18.?2 13.cm3262或cm 14.ABC.∽△ACP可得△A,∠A=∠B,∠ACP=由∠:解析.16??) 分(12212)分七、(本题共122A(3,0),和点+bx+c经过点B(0,3)(1)∵抛物线y=-x3?c?,?0??c?9?3b?)分如图所示,(5(1)) (0,2).(8分是(2),对称中心的坐标是2?b?2,) y=-x解得分+2x+3;(2抛物线的函数表达式是) 共分,20分本题有五、(2题,每题10?3c?? 19.解23) 或+3+1;(40)(3图(1)4挖去三角形的个数为3分+33?m?2n-1n-2设直线AB:y=kx+m,根据题意得)(2)w=3+3+3+1;(6+ (3)?n0m??3k?2n?2n w1,??w?33w?3?.....???3n1?n1n?1k???2222?n1n?nnn?1?1)?3?3?...1)?(3(3???3?3?3??.....? 3?3)(3)分.(10 解得?3m??n3?)的函数表达式是y=-x+3;(4分Rt:20.解设AB=x(m),在△ABC中,直线AB2+2a+3),(a,-a则点l的横坐标为a,M的坐标为(2)如图,设直线AB22 tan30°=∵+3a 在第一象限, ∴|MN|=-a+2a+3-(-a+3)=-a点N的坐标是(a,-a+3),又点M,N BC)(7分x9399x3222??)?(a) =分(3BC= =|MN|=-a又-3a++3a=-(a)+34424393, 有最大值,当a=最大值为时,|MN|42x3BD x3??,BD?) (6°∵,中△在RtBCDtan45=分1BC9) ,(10分即点M与点N之间的距离有最大值34x,∵AD+AB=BD,100+x=∴)分136.6(m),(9≈x解得31533)(,) (此时点M坐标为分,点)N的坐标为(12) 分136.6m.(10约为AB:答小山的铅直高度2242 12(六、本题共分21.解1只有闭合开关按键,(1)一共有四个开关按键P(所以灯泡才会发光,K,)=灯泡发光24)(4分(2)用树状图分析如下) 分八、(本题共14 解23.,°ABP+∠PBC=90°∴(1)①∴正方形ABCD,AB=CB,∠ABC=90,∴∠,∴∠PBC+°∠CBQ=90°∠∴是等腰直角三角形∵△BPQ,BP=BQ,PBQ=90)分AP=CQ;(4∴CBQ,≌△ABP∴△CBQ,∠ABP=∴∠)灯泡发光P(所以,种情况下灯泡能发光6其中有,种不同的情况12一共有.②∵正方形ABCD,∴∠DAC=∠BAC=∠ACB=45°,∵∠PQB=45°,∠CEP=∠QEB,∴∠CBQ=∠CPQ,由①得△ABP≌△CBQ,∠ABP=∠CBQ∵∠CPQ=∠APF,∴∠APF=∠ABP,∴△APF∽△ABP,APAF2?AF?AB??APAF??AD;?,(9分) ABAP (本题也可以连接PD,证△APF∽△ADP)(2)由①得△ABP≌△CBQ,∴∠BCQ=∠BAC=45°,∵∠ACB=45°CQ CPQ=°∴tan∠°∠PCQ=45+45°=90CP AP=CQ由①得CQAP1??, AP:PC=1:3,又∴tan∠CPQ CPCP31(14分) 由②得∠CBQ=∠CPQ,∴tan∠CBQ=tan∠CPQ=3。
2018届安徽省合肥市、安庆市名校大联考中考数学模拟试卷(一)解析版
2018届安徽省合肥市、安庆市名校大联考中考数学模拟试卷(一)解析版数学试卷一、选择题(本大题共10小题,每小题4分,共40分)1. 在﹣1,﹣2,0,1四个数中最小的数是()A. -1B. -2C. 0D. 1【答案】B【解析】【分析】此题主要考查了有理数的比较大小,根据正数都大于0,负数都小于0,正数大于负数,两个负数绝对值大的反而小的原则解答.所以解答此题可以根据正数大于0,0大于负数,正数大于负数直接进行比较大小,再找出最小的数即可.【详解】∵﹣2<﹣1<0<1,∵最小的数是﹣2.故选B.2. 如图,a∥b,点B在直线b上,且AB∥BC,若∥1=36°,则∥2的大小为()A. 34°B. 54°C. 56°D. 66°【答案】B【解析】【详解】分析:根据a∵b求出∠3的度数,然后根据平角的定义求出∠2的度数.详解:∵a∵b∵ ∵∵3=∵1=36°∵ ∵∵ABC=90°∵ ∵∵2+∵3=90°∵∵∵2=90°∵36°=54°,故选B∵点睛:本题主要考查的是平行线的性质以及平角的性质,属于基础题型.明白平行线的性质是解决这个问题的关键.3. 如图,水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图是( )A. B. C. D.【答案】D【解析】【分析】根据俯视图的定义判断即可.【详解】水平的讲台上放置的圆柱形笔筒和正方体形粉笔盒,其俯视图左边是一个圆、右边是一个正方形,故选D∵【点睛】几何体的三视图,俯视图是从物体的上面看得到的视图,左视图是从物体的左面看得到的视图.4. 一个扇形的半径等于一个圆的半径的2倍,且扇形面积是圆的面积的一半,则这个扇形的圆心角度数是( )A. 45°B. 60°C. 90°D. 75°【答案】A【解析】【详解】分析:首先设圆的半径为r ,则扇形的半径为2r ,然后根据扇形和圆的面积计算法则得出答案.详解:设圆的半径为r ,则扇形的半径为2r ,则扇形的面积=212r π,即()22π213602n r r π=∵ 解得:n=45°,故选A∵点睛:本题主要考查的是扇形的面积计算法则,属于基础题型.明白扇形的面积计算公式是解决这个问题的关键.5. 下列说法正确的是( )A. 矩形都是相似图形B. 各角对应相等的两个五边形相似C. 等边三角形都是相似三角形D. 各边对应成比例的两个六边形相似【答案】C【解析】【详解】分析:根据相似多边形的判定法则即可得出答案.如果两个边数相同的多边形的对应角相等,对应边成比例,这两个或多个多边形叫做相似多边形∵ 详解:根据定义可知:要使多边形相似则需要满足对应角相等,还要满足对应边成比例,则故选C∵点睛:本题主要考查的是相似多边形的判定定理,属于基础题型.理解相似多边形的定义是解题的关键.6. 如果点A (x 1,y 1)和点B (x 2,y 2)是直线y=﹣kx+b 上的两点,且当x 1<x 2时,y 1<y 2,那么函数y=k x 的图象位于象限( ) A. 一、四B. 二、四C. 三、四D. 一、三 【答案】B【解析】【详解】分析:根据一次函数的增减性得出k 的取值范围,然后根据反比例函数的性质得出答案.详解:∵当12x x <时12y y <∵ ∵∵k∵0,则k∵0∵ ∴反比例函数y k x =在二、四象限,故选B∵点睛:本题主要考查的是一次函数和反比例函数的性质,属于基础题型.明白函数的增减性是解题的关键.7. 如图,在Rt∵ABC 中,CD 是斜边AB 上的高,则下列结论正确的是( )A. BD=12ADB. BC 2=AB•CDC. AD 2=BD•ABD. CD 2=AD•BD【答案】D【解析】【详解】分析:根据题意得出△ACD 和△CBD 相似,从而得出答案. 详解:∵∵ACD∵∵CBD∵ ∵=CD BD AD CD∵ 即2CD AD BD =⋅∵ 故选D∵ 点睛:本题主要考查的是相似三角形的判定与性质,属于基础题型.得出三角形相似是解决这个问题的关键.8. 一组从小到大排列的数据:a ∵3∵5∵5∵6∵∵a 为正整数),唯一的众数是5,则该组数据的平均数是( )A. 3.8B. 4C. 3.6或3.8D. 4.2或4【答案】D【解析】【分析】根据众数的定义得出正整数a 的值,再根据平均数的定义求解可得.【详解】解:∵数据:a ∵3∵5∵5∵6∵a 为正整数),唯一的众数是5∵ 1a ∴=或2∵ 当1a =时,平均数为1355645, 当2a =时,平均数为23556 4.25, 故选:D∵【点睛】本题主要考查了众数与平均数的定义,根据众数是一组数据中出现次数最多的数得出a 的值是解题的关键.9. 反比例函数y=21m x+图象上三点A (x 1,y 1),B (x 2,y 2),C (x 3,y 3),已知x 1<x 2<0<x 3,则y 1,y 2,y 3的大小关系是( )A. y 3>y 1>y 2B. y 3>y 2>y 1C. y 1>y 2>y 3D. y 2>y 1>y 3【答案】A【解析】【详解】分析:首先根据题意得出函数所在的象限,然后根据反比例函数的增减性得出答案.详解:∵210m +>∵ ∴函数在每一个象限内y 随着x 的增大而减小, 当x∵0时y∵0∵x∵0时y∵0∵ ∵312y y y >>,故选A∵点睛:本题主要考查的是反比例函数的增减性,属于基础题型.理解反比例函数的增减性是解题的关键.10. 如图,在正方形ABCD 对角线BD 上截取BE BC =,连接CE 并延长交AD 于点F ,连接AE ,过B 作BG AE ⊥于点G ,交AD 于点H ,则下列结论错误的是( )A. AH DF =B. DEF AGH EFHG S S S =+四边形C. 45AEF ∠=︒D. ABH DCF ≅△△【答案】B【解析】 【分析】根据正方形的性质和BE BC =,得出ADE 与CDE 全等,22.5DAE DCE ∠=∠=︒,ABH DCF ∠=∠,再判断Rt ABH △与Rt DCF △全等,即可判断A 、C 、D 三个选项是否符合题意;连接HE ,判断EFH S与EFD S 的面积关系,即可判断B 选项是否符合题意∵【详解】解:在正方形ABCD 中,∵45ABE ADE CDE ∠=∠=∠=︒,AB BC =,∵BE BC =∵AE BE =∵BH 是线段AE 的垂直平分线,22.5ABH DBH ∠=∠=︒,在Rt ABH △中,9067.5AHB ABH ∠=︒-∠=︒,∵90AGH ∠=︒,∵22.5DAE ABH ∠=∠=︒, ADE 和CDE 中45DE DE ADE CDE AD CD =⎧⎪∠=∠=︒⎨⎪=⎩,∵()SAS ADE CDE ≅,∵22.5DAE DCE ∠=∠=︒,∵ABH DCF ∠=∠,在Rt ABH △和Rt DCF △中BAH CDF AB CDABH DCF ∠=∠⎧⎪=⎨⎪∠=∠⎩, ∵()ASA Rt ABH Rt DCF ≅△△,∵AH DF =,67.5CFD AHB ∠=∠=︒∵CFD EAF AEF ∠=∠+∠,∵67.522.545AEF CFD EAF ∠=∠-∠=︒-︒=︒,故A ,C ,D 正确;如图,连接HE ,∵BH 是AE 垂直平分线,∵AG EG =,∵AGH HEG S S =△△,∵67.5EHG AHG ∠=∠=︒,∵45DHE ∠=︒,∵45ADE ∠=︒,∵90DEH ∠=︒,45DHE HDE ∠=∠=︒,∵EH ED =,∵DEH △是等腰直角三角形,∵EF 不垂直DH ,∵FH FD ≠,∵EFH EFD S S ≠△△,∵HEG EFH AGH EFH DEF AGH EFHG S S S S S S S =+=+≠+△△△△△△四边形,故B 错误, 故选B∵【点睛】本题考查了正方形的性质,全等三角形的判定和性质,三角形的内角和以及三角形的外角和,解答此题的关键是判断出ADE CDE ≅△△,难点是作辅助线.二、填空题(本大题共4小题,每小题5分,共20分)11. 因式分解:216x y xy -=__.【答案】()161xy x -【解析】【分析】先找出公因式,再提取公因式得出答案.【详解】216(161)x y xy xy x -=-.故答案为:(161)xy x -.【点睛】本题主要考查了提公因式法分解因式,掌握提公因式法的步骤是解题的关键.即先确定公因式,再提出公因式写成整式乘积的形式.12. 2017年安徽人口数量约为5950.05万人,其中城镇人口2674万人,乡村人口占安徽总人口的55.2%,其中数据5950.05万用科学记数法可表示为_____.【答案】5.95005×107【解析】【详解】分析:科学记数法是指a×10n ,且110a ≤<∵n 为原数的整数位数减一∵ 详解:5950.05万=59500500=75.9500510⨯∵点睛:本题主要考查的是科学记数法的表示方法,属于基础题型.明确科学记数法的方法是解题的关键.13. 如图,△ABC 绕C 点顺时针旋转37°后得到了△A ′B ′C ,A ′B ′⊥AC 于点D ,则∠A=______°.【答案】53【解析】【详解】分析:首先根据垂直得出∠A′DC=90°,根据旋转的性质得出∠A′CD=37°,根据三角形内角和定理得出∠A′的度数,从而得出∠A 的度数.详解:∵A′B′⊥AC, ∴∠A′DC=90°, ∵旋转角度为37°, ∴∠A′CD=37°, ∴根据△A′DC 的内角和定理可得:∠A′=90°-37°=53°,∴∠A=∠A′=53°.点睛:本题主要考查的是旋转图形的性质以及三角形内角和定理,属于中等难度的题型.明白旋转图形的性质是解题的关键.14. 已知关于x 的二次函数22423=-++-y ax ax a a 在13x -≤≤的范围内有最小值5,则a 的值为________.【答案】4或﹣8【解析】【详解】分析:根据题意得出函数的对称轴为直线x=2,然后分a∵0和a∵0两种情况分别求出a 的值.详解:根据函数解析式可得函数的对称轴为直线x=2∵当a∵0,则当x=2时函数的最小值为5∵ 即24a 8a 2a 35a -++-=∵ 解得:a=4或a=∵2(舍去)∵当a∵0时,则当x=∵1时函数的最小为5,即2a 4a 2a 35a +++-=∵ 解得:a=∵8或x=1(舍去)∵综上所述a=4或a=∵8∵点睛:本题主要考查的是二次函数的最值问题以及分类讨论思想的应用,属于中等难度的题型.理解二次函数的最值是解题的关键.三、解答题(本大题共2小题,每小题8分,满分16分)15. 计算:﹣22+tan60°﹣(3.14﹣π)0﹣|1.【答案】-4【解析】【详解】分析:首先根据幂的计算法则、绝对值以及特殊角的三角函数求出各式的值,然后进行求和得出答案.详解:原式=﹣4+﹣1﹣(﹣1)=﹣4+﹣1﹣+1=﹣4.点睛:本题主要考查的是实数的计算,属于基础题型.理解各种计算法则是解题的关键.16. 先化简:(21x x -﹣x ﹣1)÷22121x x x --+,然后求当﹣1时代数式的值.【解析】 【详解】分析:首先将括号里面的分式进通分,然后将分式的分子和分母进行因式分解,约分化简得出答案,最后将x 的值代入进行计算得出答案. 详解:原式=(﹣)•=•=, 当x=﹣1时,原式===. 点睛:本题主要考查的是分式的化简求值问题,属于基础题型.明白因式分解的方法是解决这个问题的关键.四、解答题(本大题共2小题,每小题8分,满分16分)17. 在12×12的网格中,每个小正方形的边长均为1,建立如图所示的平面直角坐标系,按照要求作图并解答相关问题.(1)将∥ABC围绕这原点O按顺时针方向旋转90°,得到∥A1B1C1;(2)以坐标原点O为位似中心,作出与∥A1B1C1位似且位似比为1:2的∥A2B2C2,并写出点A2的坐标.【答案】答案见解析【解析】【详解】分析:(1)、根据旋转图形的画法画出图形即可;(2)、根据位似图形的性质画出图形,根据坐标系得出点A2的坐标.详解:(1)如图所示,∥A1B1C1即为所求;(2)如图所示,∥A2B2C2即为所求,点A2的坐标为(2,2)或(﹣2,﹣2).点睛:本题主要考查的是旋转图形的性质以及位似图形的性质,属于基础题型.明确性质是解题的关键.18. 如图,在∵ABC中,∵B=45°∵∵C=60°∵AC=20∵∵1)求BC的长度;∵2)若∵ADC=75°,求CD的长.;(2)20【答案】(1)【解析】【详解】分析:(1)、分别根据Rt∵ACE和Rt∵ABE的性质求出CE和BE的长度,从而得出BC的长度;(2)、根据内角和定理求出∠BAC的度数,然后结合公共角得出△CDA和△CAB相似,从而得出CD的长度.详解:(1)作AE∥BC于E,如图,在Rt∥ACE中,∥∥C=60°,∥CE=AC=10,AE=CE=10,在Rt∥ABE中,∥∥B=45°,∥BE=AE=10,∥BC=BE+CE=10+10;(2)∥∥BAC=180°﹣45°﹣60°=75°,而∥ADC=75°,∥∥ADC=∥ABC,∥∥ACD=∥BCA,∥∥CDA∥∥CAB,∥=,即=,∥CD=20﹣20.点睛:本题主要考查的是直角三角形的性质以及三角形相似的判定与性质,属于中等难度的题型.明确特殊直角三角形的性质是解题的关键.五、解答题(本大题共2小题,每小题10分,满分20分)19. 某中学为了解七年级学生的体育成绩,从全年级学生中随机抽取部分学生进行“双飞”跳绳测试,结果分为A,B,C,D四个等级,请跟进两幅统计图中的信息回答下列问题:(1)本次抽样调查共抽取了多少名学生?(2)求测试结果为C等级的学生数,并补全条形图;(3)若该学校七年级共有400名学生,请你估计该学校七年级学生中“双飞”跳绳测试结果为D等级的学生有多少名.【答案】(1)本次抽样调查共抽取了50名学生;(2)16(3)估计该学校七年级学生中“双飞”跳绳测试结果为D等级的学生有32名【解析】【详解】分析:(1)、根据A等的人数和百分比求出样本容量;(2)、根据总人数减去各组的人数得出C等级的人数,从而补全图形;(3)、根据样本容量中的百分比得出全校的人数.详解:(1)10÷20%=50,所以本次抽样调查共抽取了50名学生;(2)测试结果为C等级的学生数为50﹣10﹣20﹣4=16(人);补全条形图如图所示:(3)400×=32,所以估计该学校七年级学生中“双飞”跳绳测试结果为D等级的学生有32名.点睛:本题主要考查的是条形统计图的实际应用,属于基础题型.明确频数、频率与样本容量之间的关系是解题的关键.20. “白马服饰城”某服装柜的某款裤子每条的成本是50元,经市场调查发现,当销售单价是100元时,每天可以卖掉50条,每降低1元,可多卖5条.(1)要使每天的利润为4000元,裤子的定价应该是多少元?(2)如何定价可以使每天的利润最大?最大利润是多少?【答案】(1)裤子的定价应该是70元或90元;(2)定价为每条80元可以使每天的利润最大,最大利润是4500元【解析】【详解】分析:(1)、首先设设裤子的定价为每条x元,根据题意列出一元二次方程,从而得出答案;(2)、根据题意得出关于x的函数解析式,然后根据二次函数的增减性得出最大值.详解:(1)设裤子的定价为每条x元,根据题意,得:(x﹣50)[50+5(100﹣x)]=4000,解得:x=70或x=90,答:裤子的定价应该是70元或90元;(2)销售利润y=(x﹣50)[50+5(100﹣x)]=(x﹣50)(﹣5x+550)=﹣5x2+800x ﹣27500,=﹣5(x﹣80)2+4500,∥a=﹣5<0,∥抛物线开口向下.∥50≤x≤100,对称轴是直线x=80,∥当x=80时,y最大值=4500;答:定价为每条80元可以使每天的利润最大,最大利润是4500元.点睛:本题主要考查的是一元二次方程的应用以及二次函数的应用,属于中等难度题型.列出方程是解决这个问题的关键.六、解答题(本大题满分12分)21. 在一个不透明的袋中装有5个只有颜色不同的球,其中3个黄球,2个黑球.(1)求从袋中同时摸出的两个球都是黄球的概率;(2)现将黑球和白球若干个(黑球个数是白球个数的2倍)放入袋中,搅匀后,若从袋中摸出一个球是黑球的概率是12,求放入袋中的黑球的个数.【答案】(1)310(2)2【解析】【分析】(1)、根据题意画出树状图,从而根据概率的计算法则得出答案;(2)∵设放入袋中的黑球的个数为x,根据概率列出方程从而得出答案.【详解】解:(1)画树状图为:共有20种等可能的结果数,其中从袋中同时摸出的两个球都是黄球的结果数为6,所以从袋中同时摸出的两个球都是黄球的概率=632010=; (2)设放入袋中的黑球的个数为x , 根据题意得211252x x x +=++, 解得x=2, 所以放入袋中的黑球的个数为2.【点睛】本题主要考查的是概率的计算法则,属于基础题型.画出树状图是解决概率问题的关键.七、解答题(本大题满分12分)22. 如图,抛物线2122y x bx =-++与x 轴交于A ,B 两点,与y 轴交于C 点,且点A 的坐标为(1,0).(1)求抛物线的解析式及顶点D 的坐标;(2)判断△ABC 的形状,并证明你的结论;(3)点M 是抛物线对称轴上的一个动点,当△ACM 的周长最小时,求点M 的坐标.【答案】(1)顶点D 的坐标为(﹣32,258);(2)△ABC 是直角三角形(3)当M 的坐标为(﹣32,54) 【解析】 【分析】(1)将点A 的坐标代入函数解析式求出b 的值,然后将二次函数进行配方从而得出顶点坐标;(2)根据二次函数的解析式分别得出点A 、B 、C 的坐标,然后分别求出AC 、BC和AB 的长度,然后根据勾股定理的逆定理得出答案;(3)由抛物线的性质可知,点A 与点B 关于对称轴对称,则BC 与对称轴的交点就是点M ,根据一次函数的交点求法得出点M 的坐标.【详解】解:(1)∵点A (1,0)在抛物线2122y x bx =-++上, ∴12-+b +2=0,解得,32b =-, 抛物线的解析式为22131325222228y x x x ⎛⎫=--+=-++ ⎪⎝⎭, 则顶点D 的坐标为325,28⎛⎫- ⎪⎝⎭; (2)△ABC 是直角三角形,证明:点C 的坐标为(0,2),即OC =2, 当213x x 2022--+=, 解得,x 1=﹣4,x 2=1,则点B 的坐标为(﹣4,0),即OB =4,OA =1,OB =4,∴AB =5,由勾股定理得,ACBC=∴ AC 2+BC 2=25=AB 2,∴△ABC 是直角三角形;(3)由抛物线的性质可知,点A 与点B 关于对称轴对称,连接BC 交对称轴于M ,此时△ACM 的周长最小,设直线BC 的解析式为:y =kx +b ,由题意得,402k b b -+=⎧⎨=⎩, 解得,122k b ⎧=⎪⎨⎪=⎩, 则直线BC 的解析式为:122y x =+, 当x =32-时,54y =,∴当M的坐标为35,24⎛⎫-⎪⎝⎭.【点睛】本题主要考查的是二次函数的性质以及一次函数的交点坐标,属于中等难度的题型.待定系数法求函数解析式是解决这个问题的关键.八、解答题(本大题满分14分)23. 如图1,在矩形ABCD中,AB=9,BC=12,点M从点A出发,以每秒2个单位长度的速度沿AB方向在AB上运动,以点M为圆心,MA长为半径画圆,如图2,过点M作NM∥AB,交∥M于点N,设运动时间为t秒.(1)填空:BD= ,BM=;(请用准确数值或含t的代数式表示)(2)当∥M与BD相切时,①求t的值;②求∥CDN的面积.(3)当∥CND为直角三角形时,求出t的值.【答案】(1)15,9﹣t;(2)①t=2②36;(3)t=4.5秒【解析】【详解】分析:(1)、根据Rt∵ABD的勾股定理求出BD的长度,根据AM=t得出BM的长度;(2)①、判断出△BME和△BDA相似,得出比例式建立方程即可得出答案;②、先求出MN∵CD边上的高,利用三角形的面积公式得出答案;(3)∵过点N作直线FG∥MN,分别交AD,BC于点F,G,分别求出2DN和2CN与t的关系式,然后分∥DNC=90°和∥DCN=90°两种情况求出t的值.详解:(1)∥四边形ABCD是矩形,∥AD=BC=12,∥BAD=90°,在Rt∥ABD中,AB=9,BC=12,根据勾股定理得,BD==15,由运动知,AM=t.∥BM=AB﹣AM=9﹣t;(2)①如图1,∥M且BD于E,∥ME∥BD,∥∥BEM=∥BAD=90°,∥∥EBM=∥ABD,∥∥BME∥∥BDA,∥,∥,∥t=2,②∥MN=AM=2t=4,∥CD边上的高为AD﹣MN=12﹣4=8,∥S△CDN=×9×8=36;(3)如图2,过点N作直线FG∥MN,分别交AD,BC于点F,G,∥FN=2t,GN=9﹣2t,DF=CG=12﹣2t,∥DN2=DF2+FN2=(12﹣2t)2+(2t)2,∥CN2=CG2+GN2=(12﹣2t)2+(9﹣2t)2,①当∥DNC=90°时,DN2+CN2=CD2,∥(12﹣2t)2+(2t)2+(12﹣2t)2+(9﹣2t)2=81,化简,得4t2﹣33t+72=0,∥∥=(﹣33)2﹣4×4×72<0,∥此方程无实数根;②当∥DCN=90°时,点N在BC上,BN=BA=2t=9,∥t=4.5,综上所述,t=4.5秒.点睛:本题主要考查的是直角三角形的勾股定理、圆的切线的性质以及三角形相似的应用,综合性比较强.解决这个问题的关键就是切线的性质的应用.。
2018年3月2018届九年级第一次模拟大联考(安徽卷)数学卷(考试版)
1.本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分。答卷前,考生务势必自己的姓名、准考据号
填写在答题卡上。
2.回答第Ⅰ卷时,选出每题答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。如需变动,用橡
皮擦洁净后,再选涂其余答案标号。写在本试卷上无效。
A.95°B.105°C.115°D.125°
⋯⋯
⋯⋯⋯⋯
⋯
⋯
⋯
⋯
(1)求∠B的度数;(3)当这条旅行线路的旅行报价为多少时,可获取最大收益?最大收益是多少?
⋯
○
⋯
○
(2)若OD⊥AB,BC=5,求AD的长.八、(此题满分14分)
⋯
⋯
⋯
⋯
23.如图,把两个边长相等的等边△ABC和△ACD拼成菱形ABCD,点E、F分别是射线CB、DC上的动
⋯⋯⋯⋯
2?x6=x12B.(-6x6)÷(-2x2)=3x3
9.寒假结束了,开学后小明对本校七年级部分同学寒假阅读总时间(结果保存整10小时)进行了抽样调
查,所得数据整理后制作成以下图的频数散布直方图,察看这个频数散布直方图,给出以下结论,正
⋯⋯⋯⋯⋯⋯
⋯⋯
Evaluation Only. Created with Aspose.PDF. Copyright 2002-2020 Aspose Pty Ltd.
8B.1295104C.106D.107
A.10
3.如图是一个由4个同样的长方体构成的立体图形,它的左视图是
-
1
在同一坐标系内的大概图象是
函数y=abx
A.B.
⋯
⋯
⋯
⋯
A.B.C.D.
C.D.
⋯⋯
安徽省2018年中考数学试题及答案解析
学霸推荐学习七法一、听视并用法上课听和看注意力集中一、听思并用法上课听老师讲并思考问题三、符号助记法在笔记本上课本上做记号标记四、要点记取法重点要点要在课堂上认真听讲记下五、主动参与法课堂上积极主动的参与老师的讲题互动六、听懂新知识法听懂老师讲的新知识并做好标记七、目标听课法课前预习不懂得标记下,在课堂上不会的标记点认真听讲做笔记带着求知的好奇心听课,听不明白的地方就标记下来,并且课后积极的询问并弄懂这些知识,听明白的知识点也要思考其背后的知识点,打牢基础。
2018年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每小题4分,满分40分)1. 的绝对值是()A. B. 8 C. D.【答案】B【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.2. 2017年我赛粮食总产量为635.2亿斤,其中635.2亿科学记数法表示()A. B. C. D.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】635.2亿=63520000000,63520000000小数点向左移10位得到6.352,所以635.2亿用科学记数法表示为:6.352×108,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3. 下列运算正确的是()A. B. C. D.【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得. 【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.4. 一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A. (A)B. (B)C. (C)D. (D)【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【详解】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.5. 下列分解因式正确的是()A. B.C. D.【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. =(x-2)2,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.6. 据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.7. 若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8. 为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8类于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,,=4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,,=6.4,所以只有D选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.9. □ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A. BE=DFB. AE=CFC. AF//CED. ∠BAE=∠DCF【答案】B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.10. 如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC 在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()A. B. C. D.【答案】A【解析】【分析】由已知易得AC=2,∠ACD=45°,分0≤x≤1、1<x≤2、2<x≤3三种情况结合等腰直角三角形的性质即可得到相应的函数解析式,由此即可判断.【详解】由正方形的性质,已知正方形ABCD的边长为,易得正方形的对角线AC=2,∠ACD=45°,如图,当0≤x≤1时,y=2,如图,当1<x≤2时,y=2m+2n=2(m+n)= 2,如图,当2<x≤3时,y=2,综上,只有选项A符合,故选A.【点睛】本题考查了动点问题的函数图象,涉及到正方形的性质,等腰直角三角形的性质,勾股定理等,结合图形正确分类是解题的关键.二、填空题(本大共4小题,每小题5分,满分30分)11. 不等式的解集是___________.【答案】x>10【解析】【分析】按去分母、移项、合并同类项的步骤进行求解即可得.【详解】去分母,得x-8>2,移项,得x>2+8,合并同类项,得x>10,故答案为:x>10.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤及注意事项是解题的关键.12. 如图,菱形ABOC的AB,AC分别与⊙O相切于点D、E,若点D是AB的中点,则∠DOE__________.【答案】60°【解析】【分析】由AB,AC分别与⊙O相切于点D、E,可得∠BDO=∠ADO=∠AEO=90°,根据已知条件可得到BD=OB,在Rt△OBD中,求得∠B=60°,继而可得∠A=120°,再利用四边形的内角和即可求得∠DOE 的度数.【详解】∵AB,AC分别与⊙O相切于点D、E,∴∠BDO=∠ADO=∠AEO=90°,∵四边形ABOC是菱形,∴AB=BO,∠A+∠B=180°,∵BD=AB,∴BD=OB,在Rt△OBD中,∠ODB=90°,BD=OB,∴cos∠B=,∴∠B=60°,∴∠A=120°,∴∠DOE=360°-120°-90°-90°=60°,故答案为:60°.【点睛】本题考查了切线的性质,菱形的性质,解直角三角形的应用等,熟练掌握相关的性质是解题的关键.13. 如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是_________ .【答案】y=x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2时,y==3,∴A(2,3),B(2,0),∵y=kx过点A(2,3),∴3=2k,∴k=,∴y=x,∵直线y=x平移后经过点B,∴设平移后的解析式为y=x+b,则有0=3+b,解得:b=-3,∴平移后的解析式为:y=x-3,故答案为:y=x-3.【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.14. 矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.【答案】3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.三、解答题15. 计算:【答案】7【解析】【分析】先分别进行0次幂的计算、二次根式的乘法运算,然后再按运算顺序进行计算即可.【详解】=1+2+=1+2+4=7.【点睛】本题考查了实数的运算,熟练掌握实数的运算法则、0次幂的运算法则是解题的关键. 16. 《孙子算经》中有过样一道题,原文如下: “今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.【答案】城中有75户人家.【解析】【分析】设城中有x户人家,根据今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,可得方程x+x=100,解方程即可得.【详解】设城中有x户人家,由题意得x+x=100,解得x=75,答:城中有75户人家.【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列方程进行求解是关键.17. 如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点. (1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;(2)将线段绕点逆时针旋转90°得到线段.画出线段;(3)以为顶点的四边形的面积是个平方单位.【答案】(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1 B1 A2是正方形,AA1=,所以四边形AA1 B1 A2的在面积为:=20,故答案为:20.【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.18. 观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证. 【详解】(1)观察可知第6个等式为:,故答案为:;(2)猜想:,证明:左边====1,右边=1,∴左边=右边,∴原等式成立,∴第n个等式为:,故答案为:.【点睛】本题考查了规律题,通过观察、归纳、抽象出等式的规律与序号的关系是解题的关键. 19. 为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)【答案】旗杆AB高约18米.【解析】【分析】如图先证明△FDE∽△ABE,从而得,在Rt△FEA中,由tan∠AFE=,通过运算求得AB的值即可.【详解】如图,∵FM//BD,∴∠FED=∠MFE=45°,∵∠DEF=∠BEA,∴∠AEB=45°,∴∠FEA=90°,∵∠FDE=∠ABE=90°,∴△FDE∽△ABE,∴,在Rt△FEA中,∠AFE=∠MFE+∠MFA=45°+39.3°=84.3°,tan84.3°=,∴,∴AB=1.8×10.02≈18,答:旗杆AB高约18米.【点睛】本题考查了解直角三角形的应用,相似三角形的判定与性质,得到是解题的关键.20. 如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【答案】(1)画图见解析;(2)CE=【解析】【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AB、AC有交点,再分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧交于一点,过点A与这点作射线,与圆交于点E ,据此作图即可;(2)连接OE交BC于点F,连接OC、CE,由AE平分∠BAC,可推导得出OE⊥BC,然后在Rt△OFC中,由勾股定理可求得FC的长,在Rt△EFC中,由勾股定理即可求得CE的长.【详解】(1)如图所示,射线AE就是所求作的角平分线;(2)连接OE交BC于点F,连接OC、CE,∵AE平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在Rt△OFC中,由勾股定理可得FC==,在Rt△EFC中,由勾股定理可得CE==.【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC是解题的关键.21. “校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.【答案】(1)50,30%;(2)不能,理由见解析;(3)P=【解析】【分析】(1)由直方图可知59.5~69.5分数段有5人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,然后求出89.5~99.5这一分数段所占的百分比,用1减去其他分数段的百分比即可得到分数段69.5~79.5所占的百分比;(2)观察可知79.5~99.5这一分数段的人数占了60%,据此即可判断出该选手是否获奖;(3)画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可.【详解】(1)本次比赛选手共有(2+3)÷10%=50(人),“89.5~99.5”这一组人数占百分比为:(8+4)÷50×100%=24%,所以“69.5~79.5”这一组人数占总人数的百分比为:1-10%-24%-36%=30%,故答案为:50,30%;(2)不能;由统计图知,79.5~89.5和89.5~99.5两组占参赛选手60%,而78<79.5,所以他不能获奖;(3)由题意得树状图如下由树状图知,共有12种等可能结果,其中恰好选中1男1女的8结果共有种,故P==.【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键.22. 小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【答案】(1)W1=-2x²+60x+8000,W2=-19x+950;(2)当x=10时,W总最大为9160元.【解析】【分析】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉(50-x)盆,根据盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元,②花卉的平均每盆利润始终不变,即可得到利润W1,W2与x的关系式;(2)由W总=W1+W2可得关于x的二次函数,利用二次函数的性质即可得.【详解】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉[100-(50+x)]=(50-x)盆,由题意得W1=(50+x)(160-2x)=-2x²+60x+8000,W2=19(50-x)=-19x+950;(2)W总=W1+W2=-2x²+60x+8000+(-19x+950)=-2x²+41x+8950,∵-2<0,=10.25,故当x=10时,W总最大,W总最大=-2×10²+41×10+8950=9160.【点睛】本题考查了二次函数的应用,弄清题意,找准数量关系列出函数解析式是解题的关键.23. 如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【答案】(1)证明见解析;(2)∠EMF=100°;(3)证明见解析.【解析】【分析】(1)在Rt△DCB和Rt△DEB中,利用直角三角形斜边中线等于斜边一半进行证明即可得;(2)根据直角三角形两锐角互余可得∠ABC=40°,根据CM=MB,可得∠MCB=∠CBM,从而可得∠CMD=2∠CBM,继而可得∠CME=2∠CBA=80°,根据邻补角的定义即可求得∠EMF的度数;【详解】(1)∵M为BD中点,Rt△DCB中,MC=BD,Rt△DEB中,EM=BD,∴MC=ME;(2)∵∠BAC=50°,∠ACB=90°,∴∠ABC=90°-50°=40°,∵CM=MB,∴∠MCB=∠CBM,∴∠CMD=∠MCB+∠CBM=2∠CBM,同理,∠DME=2∠EBM,∴∠CME=2∠CBA=80°,∴∠EMF=180°-80°=100°;(3)∵△DAE≌△CEM,CM=EM,∴AE=EM,DE=CM,∠CME=∠DEA=90°,∠ECM=∠ADE,∵CM=EM,∴AE=ED,∴∠DAE=∠ADE=45°,∴∠ABC=45°,∠ECM=45°,又∵CM=ME=BD=DM,∴DE=EM=DM,∴△DEM是等边三角形,∴∠EDM=60°,∴∠MBE=30°,∵CM=BM,∴∠BCM=∠CBM,∵∠MCB+∠ACE=45°,∠CBM+∠MBE=45°,∴∠ACE=∠MBE=30°,∴∠ACM=∠ACE+∠ECM=75°,连接AM,∵AE=EM=MB,∴∠MEB=∠EBM=30°,∠AME=∠MEB=15°,∵∠CME=90°,∴∠CMA=90°-15°=75°=∠ACM,∴AC=AM,∵N为CM中点,∴AN⊥CM,∵CM⊥EM,∴AN∥CM.【点睛】本题考查了三角形全等的性质、直角三角形斜边中线的性质、等腰三角形的判定与性质、三角形外角的性质等,综合性较强,正确添加辅助线、灵活应用相关知识是解题的关键.。
安徽省2018届九年级数学上学期第一次联考试题
安徽省2018届九年级数学上学期第一次联考试题1.A.2. •选择题(共10小题,每小题4分,满分40分) 下列各式中,y 是x 的二次函数的是( ) 2 2 2(m^ 0) B. y=ax +bx+c C . y= ( x - 2) - xA. C. 3. A. 4. y=mx+1 二次函数 向左平移 向左平移 已知函数 k v 4D . y=3x - 1 ) 1个单位,再向上平移 1个单位,再向下平移 k 的取值范围是( D. k < 4 且 k 工 3 y= - 2 (x - 1) 2+3的图象如何平移就得到 y=- 2x 2的图象( 1个单位,再向上平移 3个单位B .向右平移 1个单位,再向下平移 3个单位D .向右平移 y= (k - 3) x +2x+1的图象与x 轴有交点,贝UB . k w 4C . k v 4 且 k z 33个单位 3个单位 ) x 3.23 3.24 3.25 3.26 y -0.06 -0.02 0.03 0.09根据下表中二次函数 y=ax 2+bx+c (a 丰0)的对应值: 2z A. 3.23 v x v 3.24 B. 3.24 v x v 3.25 C. 3.25 v x v 3.26 D.不能确定 5. 已知二次函数y=ax 2+bx+c ( a z 0)的图象如图,则下列说法:①c=0;②该抛物线的对称 轴是直线x= - 1;③当x=1时,y=3a ;④am 2+bm+a> 0( m z- 1),其中正确的个数是() A. 4 B . 3 C . 2 6. 如图,用若干个全等的正五边形可以拼成一个环状, 接情况,要完全拼成一个圆环还需要的正五边形个数是A. 5 B . 6 C . 7D . 1 图中所示的是前 ( ) D . 8 3个正五边形的拼 7. 如图,一次函数 y 1=kx+n (k z 0)与二次函数 y 2=ax+bx+c (a z 0)5)、B (9,2)两点,则关于 x 的不等式kx+n >ax 2+bx+c 的解集为( A. - 1 w x < 9 B.- 1 w x v 9 C. - 1 v x < 9的图象相交于 A (- 1, ) D. x <- 1 或 x >9 (第5题) (第6题) &如图,在宽为20m,长为32m 的矩形地面上修筑同样宽的道路(图中阴影部分) 部分种上草坪.要使草坪的面积为 列方程正确的是( ) A. (20 - x ) ( 32 - x ) =540 C. ( 20+x ) ( 32 - x ) =540 540mf ,,余下的 求道路的宽. 如果设小路宽为x ,根据题意,所 .(20 - x ) (32 - x ) =100 .(20+x ) (32 - x ) =100 9.在10X 10的网格中,每个小方格都是边长为 1的小正方形,每个小正方形的顶点称为格 点.若抛物线经过图中的三个格点, 则以这三个格点为顶点的三角形称为抛物线的“内接格 点三角形”.以 O 为坐标原点建立如图所示的平面直角坐标系,若抛物线与网格对角线 OB的两个交点之间的距离为 匚,且这两个交点与抛物线的顶点是抛物线的内接格点三角形 的三个顶点,则满足上述条件且对称轴平行于 y 轴的抛物线条数是( ) A. 16 B . 15 C . 14 D . 1310. 如图,已知:正方形 ABCD 边长为1, E 、F 、G H 分别为各边上的点,且 AE=BF=CG=DH设小正方形EFGH 的面积为s ,AE 为x ,则s 关于x 的函数图象大致是()二•填空题(共 4小题,每小题5分) 11. 规定:如果10n =M 则称n 是M 的常用对数,记作:lgM=n .如102=100,所以lg100=2 .那 么以下选项正确的有 ________ (填写序号).① lg1000=3 ; ② Ig10+Ig100=lg110 ; ③ lg1 +lg0.1= - 1;④ 10叫M ( M 是正数). 12. 已知二次函数 y=x 2+bx+3,其中b 为常数,当x >2时,函数值y 随着x 的增大而增大, 则b 的取值范围是 ________ . 13.如图,一段抛物线:y= - x (x - 3) (0< x w 3),记为G,它与x轴交于点O, A; 将C 绕点A 旋转180°得C 2,交x 轴于点A 2; 将C 2绕点A 旋转180°得G,交x 轴于点A a ;如此进行下去,直至得 C 13.若P (37, m 在第13段抛物线C 13上,贝U m= _________ . 14.如图,抛物线的顶点为 P (- 2, 2),与y 轴交于点A (0, 3).若平移该抛物线使其顶 点P 沿直线移动到点 P' ( 2, - 2),点A 的对应点为A',则抛物线上PA 段扫过的区域(阴影部分)的面积为 ________(第13题)(第14题)三. 解答题(共4小题,每题8分,满分32分)15.如图、四边形 ABCD 中, AB=AD=6 / A=60°,/ ADC=150,已知四边形的周长为 30,求四边形ABCD 勺面积.(第15题)JD.OU(第 8 题) (第 9 题) (第 10 题)16. (1)观察下列图形与等式的关系,并填空勤行325 62 3 (2)观察下图,根据(1)中结论,计算图中黑球的个数,用含有n 的代数式填空:• ••• Mnfr....... 第n —匝• e • •第 0*2 行_ 217.如图,二次函数 y=ax +bx 的图象经过点 A ( 2,4)与B ( 6,0). (1 )求a , b 的值; (2)点C 是该二次函数图象上 A, B 两点之间的一动点,横坐标为x (2 v x v 6),写出四边形0ACB 勺面积S 关于点C 的横坐标x 的函数表达式,并求 S 的最大值.1+3+5+…+ ( 2n - 1) + ( _____ ) + (2n - 1) + …+5+3+1 =1+3+5+7= O O O• • O O• •• o• o oo 01+3*5+7-^•■+ ( 2n-l )=o o oo …18. 已知抛物线y=- • .■ - x+4,2 x(1) 用配方法确定它的顶点坐标、对称轴;(2) x取何值时,y随x增大而减小?(3) x取何值时,抛物线在x轴上方?四、(共2题,每题10分,满分共20分)19. 2015年全球葵花籽产量约为4200万吨,比2014年上涨2.1%,某企业加工并销售葵花籽,假设销售量与加工量相等,在图中,线段AB折线CDB分别表示葵花籽每千克的加工成本y1 (元)、销售价y2 (元)与产量x (kg)之间的函数关系;(1 )请你解释图中点B的横坐标、纵坐标的实际意义;(2)求线段AB所表示的y1与x之间的函数解析式;(3)当0 v x< 90时,求该葵花籽的产量为多少时,该企业获得的利润最大?最大利润是多少?(第19 题)20. 2015年励志中学荣获广德县首届“皖新杯”汉字听写大赛团体第一名。
精品解析:安徽省2018年中考数学试题(解析版)
2018 年安徽省初中学业水平考试数学一、选择题(本大题共10 小题,每题 4 分,满分 40 分)1.的绝对值是()A. C. D.【答案】 B【分析】【剖析】依据绝对值的定义“一个数的绝对值是数轴上表示这个数的点到原点的距离”进行解答即可 . 【详解】数轴上表示数 -8 的点到原点的距离是 8,因此 -8 的绝对值是8,应选 B.【点睛】此题观察了绝对值的观点,熟记绝对值的观点是解题的重点.2. 2017 年我省粮食总产量为635.2 亿斤,此中 635.2 亿科学记数法表示()A. B. C. D.【答案】 C【分析】【剖析】科学记数法的表示形式为a×10n的形式,此中 1≤|a|<10, n 为整数.确立n 的值时,要看把原数变为 a 时,小数点挪动了多少位,n 的绝对值与小数点挪动的位数相同.当原数绝对值>1 时,n 是正数;当原数的绝对值<1 时, n 是负数.【详解】 635.2 亿 =63520000000 ,63520000000 小数点向左移10 位获取,因此 635.2 亿用科学记数法表示为: 6.352 ×1010,应选 C.【点睛】此题观察科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,此中 1≤|a|<10, n为整数,表示时重点要正确确立 a 的值以及n 的值.3. 以下运算正确的选项是()A. B. C. D.【答案】 D【分析】【剖析】依据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法例逐项进行计算即可得. 【详解】 A.,故A选项错误;B.,故 B 选项错误;C.,故 C 选项错误;D.,正确,应选 D.【点睛】此题观察了有关幂的运算,娴熟掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法例是解题的重点.4. 一个由圆柱和圆锥构成的几何体如图水平搁置,其主(正)视图为()【答案】 A【分析】【剖析】依据主视图是从几何体正面看获取的图形,仔细察看实物,可得这个几何体的主视图为长方形上边一个三角形,据此即可得.【详解】察看实物,可知这个几何体的主视图为长方体上边一个三角形,只有 A 选项切合题意,应选 A.【名师点睛】此题观察了几何体的主视图,明确几何体的主视图是从几何体的正面看获取的图形是解题的重点.5. 以下分解因式正确的选项是()A. B.C. D.【答案】 C【分析】【剖析】依据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要完全.【详解】 A. ,故 A 选项错误;B. ,故 B 选项错误;C. ,故 C 选项正确;D. =( x-2 )2,故 D 选项错误,应选 C.【点睛】此题观察了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要完全.6. 据省统计局公布,2017年我省有效发明专利数比2016 年增添22.1%假设2018 年的均匀增添率保持不变,2016 年和2018 年我省有效发明专利分别为 a 万件和 b 万件,则()A. B.C. D.【答案】 B学* 科* 网...学*科 *网...学* 科*网...学*科*网...学*科*网 ...学*科* 网...学* 科*网...学* 科*网...学* 科*网...学*科*网 ...【详解】由题意得:2017 年我省有效发明专利数为(1+22.1%) a 万件,2018 年我省有效发明专利数为(1+22.1% )?( 1+22.1%) a 万件,即b=( 1+22.1%)2a 万件,应选 B.【点睛】此题观察了增添率问题,弄清题意,找到各量之间的数目关系是解题的重点.7. 若对于的一元二次方程x(x+1)+ax=0 有两个相等的实数根,则实数 a 的值为()A. B. 1 C. D.【答案】 A【分析】【剖析】整理成一般式后,依据方程有两个相等的实数根,可得△=0 ,获取对于 a 的方程,解方程即可得 .【详解】 x(x+1)+ax=0 ,x2+(a+1)x=0 ,由方程有两个相等的实数根,可得△=( a+1)2-4 ×1×0=0 ,解得: a1=a2=-1,应选 A.【点睛】此题观察一元二次方程根的状况与鉴别式△的关系:(1)△> 0? 方程有两个不相等的实数根;(2)△=0? 方程有两个相等的实数根;(3)△< 0? 方程没有实数根.8. 为观察两名实习工人的工作状况,质检部将他们工作第一周每日生产合格产品的个数整理成甲,乙两组数据,以下表:甲 2 6 7 7 8乙 2 3 4 8 8对于以上数据,说法正确的选项是()A.甲、乙的众数相同B.甲、乙的中位数相同C. 甲的均匀数小于乙的均匀数D.甲的方差小于乙的方差【答案】 D【分析】【剖析】分别依据众数、中位数、均匀数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7 出现了 2 次,次数最多,因此众数为7,排序后最中间的数是7,因此中位数是7,,,乙:数据8 出现了 2 次,次数最多,因此众数为8,排序后最中间的数是4,因此中位数是4,,,因此只有 D 选项正确,应选 D.9.□ ABCD 中,E、 F 是对角线 BD 上不一样的两点,以下条件中,不可以得出四边形 AECF 必定为平行四边形的是()A. BE=DFB. AE=CFC. AF//CED. ∠ BAE= ∠ DCF【答案】 B【分析】【剖析】依据平行线的判断方法联合已知条件逐项进行剖析即可得.【详解】 A 、如图,∵四边形ABCD 是平行四边形,∴OA=OC , OB=OD ,∵ BE=DF ,∴ OE=OF ,∴四边形A ECF 是平行四边形,故不切合题意;B 、以下图, AE=CF ,不可以获取四边形AECF 是平行四边形,故切合题意;C、如图,∵四边形ABCD 是平行四边形,∴OA=OC ,∵AF//CE ,∴∠ FAO= ∠ ECO,又∵∠ AOF= ∠ COE,∴△ AOF ≌ △COE,∴AF=CE ,∴ AF CE,∴四边形AECF 是平行四边形,故不切合题意;D 、如图,∵四边形ABCD 是平行四边形,∴AB=CD , AB//CD ,∴∠ ABE= ∠ CDF ,又∵∠ BAE= ∠ DCF,∴△ ABE ≌ △CDF ,∴ AE=CF ,∠AEB= ∠CFD ,∴∠ AEO= ∠CFO,∴AE//CF ,∴AE CF,∴四边形 AECF 是平行四边形,故不切合题意,应选 B.【点睛】此题观察了平行四边形的性质与判断,娴熟掌握平行四边形的判断定理与性质定理是解题的重点 .10. 如图,直线都与直线l 垂直,垂足分别为M ,N ,MN=1 ,正方形 ABCD 的边长为,对角线AC 在直线 l 上,且点 C 位于点 M 处,将正方形ABCD 沿 l 向右平移,直到点 A 与点 N 重合为止,记点 C 平移的距离为x,正方形 ABCD 的边位于之间部分的长度和为y,则 y 对于 x 的函数图象大概为()A. B. C. D.【答案】 A【分析】【剖析】由已知易得AC=2 ,∠ACD=45°,分 0≤x≤1、1<x≤2、 2<x≤3三种状况联合等腰直角三角形的性质即可获取相应的函数分析式,由此即可判断.【详解】由正方形的性质,已知正方形ABCD 的边长为,易得正方形的对角线AC=2 ,∠ ACD=45°,如图,当0≤x≤1时, y=2,如图,当1<x≤2时, y=2 m+2 n=2 (m+n)= 2,如图,当2<x≤3时, y=2,综上,只有选项 A 切合,应选 A.【点睛】此题观察了动点问题的函数图象,波及到正方形的性质,等腰直角三角形的性质,勾股定理等,联合图形正确分类是解题的重点.二、填空题 (本大共 4 小题,每题 5 分,满分 30 分)11. 不等式的解集是___________.【答案】 x> 10【分析】【剖析】按去分母、移项、归并同类项的步骤进行求解即可得.【详解】去分母,得x-8 > 2,移项,得x> 2+8,归并同类项,得x> 10,故答案为: x> 10.【点睛】此题观察认识一元一次不等式,娴熟掌握解一元一次不等式的基本步骤及注意事项是解题的重点 .12.如图,菱形 ABOC 的 AB , AC 分别与⊙ O 相切于点 D、 E,若点 D 是 AB 的中点,则∠DOE=__________.【答案】 60°【分析】【剖析】由AB , AC 分别与⊙ O 相切于点D、 E,可得∠ BDO= ∠ADO= ∠ AEO=90°,依据已知条件可获取 BD= OB,在 Rt△OBD 中,求得∠ B=60°,既而可得∠ A=120°,再利用四边形的内角和即可求得∠DOE 的度数 .【详解】∵ AB,AC分别与⊙ O相切于点D、 E,∴∠ BDO= ∠ ADO= ∠ AEO=90°,∵四边形ABOC 是菱形,∴ AB=BO ,∠A+ ∠B=180°,∵BD=AB ,∴BD= OB,在 Rt △OBD 中,∠ ODB=90°, BD=OB ,∴ cos∠ B= ,∴∠B=60°,∴∠ A=120°,∴∠ DOE=360° -120 °-90 °-90 °=60°,故答案为: 60°.【点睛】此题观察了切线的性质,菱形的性质,解直角三角形的应用等,娴熟掌握有关的性质是解题的重点 .13. 如图,正比率函数y=kx 与反比率函数y=kx 使其经过点B,获取直线l,则直线y= 的图象有一个交点l 对应的函数表达式是A(2 , m), AB ⊥ x 轴于点 _________ .B,平移直线【答案】 y= x-3【分析】【剖析】由已知先求出点 A 、点 B 的坐标,既而求出y=kx 点 B ,可设平移后的分析式为y=kx+b ,将 B 点坐标代入求解即可得的分析式,再依据直线.y=kx 平移后经过【详解】当x=2 时, y= =3,∴ A(2 ,3), B ( 2, 0),∵y=kx 过点 A(2 , 3),∴ 3=2k ,∴k= ,∴ y= x,∵直线 y= x 平移后经过点B,∴设平移后的分析式为y= x+b,则有 0=3+b,解得: b=-3 ,∴平移后的分析式为:y= x-3 ,故答案为: y= x-3.【点睛】此题观察了一次函数与反比率函数的综合应用,波及到待定系数法,一次函数图象的平移等,求出k 的值是解题的重点.14. 矩形ABCD 中, AB=6 , BC=8. 点P 在矩形ABCD 的内部,点 E 在边BC 上,知足△PBE∽△ DBC ,若△APD 是等腰三角形,则 PE 的长为数___________.【答案】3或【分析】【剖析】由△PBE∽△ DBC ,可得∠ PBE=∠ DBC ,既而可确立点P 在 BD 上,而后再依据△APD 是等腰三角形,分DP=DA 、 AP=DP 两种状况进行议论即可得.【详解】∵四边形ABCD 是矩形,∴∠BAD= ∠ C=90°, CD=AB=6 ,∴ BD=10 ,∵ △PBE∽△ DBC ,∴∠ PBE=∠DBC ,∴点 P 在 BD 上,如图 1,当 DP=DA=8 时, BP=2 ,∵ △PBE∽△ DBC ,∴PE:CD=PB :DB=2 : 10,∴PE:6=2: 10,∴;如图 2,当 AP=DP 时,此时 P 为 BD 中点,∵ △PBE∽△ DBC ,∴PE:CD=PB :DB=1 : 2,∴PE:6=1: 2,∴PE=3;综上, PE 的长为 1.2 或 3,故答案为: 1.2 或 3.【点睛】此题观察了相像三角形的性质,等腰三角形的性质,矩形的性质等,确立出点P 在线段BD 上是解题的重点.三、解答题15.计算:【答案】 7【分析】【剖析】先分别进行0 次幂的计算、二次根式的乘法运算,而后再按运算次序进行计算即可.【详解】=1+2+=1+2+4=7.【点睛】此题观察了实数的运算,娴熟掌握实数的运算法例、0 次幂的运算法例是解题的重点. 16.《孙子算经》中有过样一道题,原文以下:“今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?”粗心为:今有 100 头鹿进城,每家取一头鹿,没有取完,剩下的鹿每 3 家共取一头,恰巧取完,问城中有多少户人家?请解答上述问题.【答案】城中有 75 户人家 .【分析】【剖析】设城中有x 户人家,依据今有 100 头鹿进城,每家取一头鹿,没有取完,剩下的鹿每 3 家共取一头,恰巧取完,可得方程x+ x=100 ,解方程即可得 .【详解】设城中有x 户人家,由题意得x+ x=100 ,解得 x=75,答:城中有75 户人家 .【点睛】此题观察了一元一次方程的应用,弄清题意,找出等量关系列方程进行求解是重点.17. 如图,在由边长为 1 个单位长度的小正方形构成的10×10 网格中,已知点O,A ,B 均为网格线的交点. ( 1)在给定的网格中,以点O 为位似中心,将线段AB 放大为本来的2倍,获取线段(点A,B 的对应点分别为) .画出线段;( 2)将线段绕点逆时针旋转90°获取线段.画出线段;( 3)以为极点的四边形的面积是个平方单位.【答案】(1)绘图看法析;( 2)绘图看法析;( 3) 20【分析】【剖析】( 1)联合网格特色,连结OA 并延伸至 A 1,使 OA 1=2OA ,相同的方法获取B1 ,连结 A 1B 1 即可得;( 2)联合网格特色依据旋转作图的方法找到A2点,连结 A 2B1即可得;( 3)依据网格特色可知四边形AA1B1 A 2 是正方形,求出边长即可求得面积.【详解】(1)以下图;( 2 )以下图;( 3 )联合网格特色易得四边形AA1B1 A 2 是正方形,AA 1= ,因此四边形AA 1 B1 A2的面积为:=20,故答案为:20.【点睛】此题观察了作图 -位似变换,旋转变换,能依据位似比、旋转方向和旋转角获取重点点的对应点是作图的重点 .18.察看以低等式:第 1个等式:,第 2个等式:,第 3个等式:,第 4个等式:,第 5个等式:,依据以上规律,解决以下问题:( 1 )写出第 6 个等式:;( 2 )写出你猜想的第 n 个等式:(用含 n 的等式表示 ),并证明 .【答案】(1);( 2),证明看法析 .【分析】【剖析】( 1)依据察看到的规律写出第 6 个等式即可;( 2)依据察看到的规律写出第n 个等式,而后依据分式的运算平等式的左侧进行化简即可得证. 【详解】(1)察看可知第 6 个等式为:,故答案为:;(2)猜想:,证明:左侧 ====1,右侧 =1,∴左侧 =右侧,∴原等式建立,∴第 n 个等式为:,故答案为:.【点睛】此题观察了规律题,经过察看、概括、抽象出等式的规律与序号的关系是解题的重点.19. 为了丈量竖直旗杆 AB 的高度,某综合实践小组在地面 D 处竖直搁置标杆 CD ,并在地面上水平搁置个平面镜 E,使得 B , E, D 在同一水平线上,以下图 .该小组在标杆的 F 处经过平面镜 E 恰巧观察到旗杆顶A( 此时∠ AEB= ∠ FED). 在 F 处测得旗杆顶 A 的仰角为°,平面镜 E 的俯角为 45°, FD=1.8 米,问旗杆AB 的高度约为多少米 ? (结果保存整数 )( 参照数据:°≈,0.82tan84.3 °≈ 10.02)【答案】旗杆AB 高约 18 米.【分析】【剖析】如图先证明△FDE ∽ △ABE ,进而得,在Rt△FEA中,由tan∠ AFE=,经过运算求得 AB 的值即可 .【详解】如图,∵FM//BD ,∴∠ FED= ∠ MFE=45°,∵∠ DEF= ∠BEA ,∴∠ AEB=45°,∴∠ FEA=90°,∵∠ FDE= ∠ABE=90°,∴△ FDE∽△ABE ,∴,在 Rt △FEA 中,∠ AFE= ∠ MFE+ ∠ MFA=45° +39.3 °=84.3 °, tan84.3 °=,∴,∴×10.02 ≈18,答:旗杆 AB 高约 18 米 .【点睛】此题观察认识直角三角形的应用,相像三角形的判断与性质,获取是解题的重点 .20.如图,⊙ O 为锐角△ABC 的外接圆,半径为 5.( 1)用尺规作图作出∠BAC 的均分线,并标出它与劣弧BC 的交点 E(保存作图印迹,不写作法 );( 2)若( 1)中的点 E 到弦 BC 的距离为3,求弦 CE 的长 .【答案】(1)绘图看法析;( 2) CE=【分析】【剖析】( 1)以点 A 为圆心,以随意长为半径画弧,分别与AB 、AC 有交点,再分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧交于一点,过点此作图即可;( 2)连结 OE 交 BC 于点 F,连结 OC、CE,由 AEA 与这点作射线,与圆交于点 E ,据均分∠ BAC ,可推导得出OE⊥ BC,而后在Rt△OFC 中,由勾股定理可求得FC 的长,在Rt△EFC 中,由勾股定理即可求得CE的长 . 【详解】(1)以下图,射线AE 就是所求作的角均分线;(2)连结 OE 交 BC 于点 F,连结 OC、CE,∵AE 均分∠ BAC ,∴,∴OE⊥ BC, EF=3,∴OF=5-3=2 ,在 Rt △OFC 中,由勾股定理可得FC= =,在 Rt △EFC 中,由勾股定理可得CE= =.【点睛】此题观察了尺规作图——作角均分线,垂径定理等,娴熟掌握角均分线的作图方法、推导得出OE⊥BC 是解题的重点 .21. “”,张老师和李老师将全部参赛选手的竞赛成绩(得分均为整数)进行整理,并分别校园诗歌大赛结束后绘制成扇形统计图和频数直方图部分信息以下:( 1)本次竞赛参赛选手共有人,扇形统计图中“69.~”这一组人数占总参赛人数的百分比为;(2)赛前规定,成绩由高到低前 60%的参赛选手获奖 .某参赛选手的竞赛成绩为 78 分,试判断他可否获奖,并说明原因 ;( 3)成绩前四名是 2 名男生和 2 名女生,若从他们中任选 2 人作为获奖代表讲话,试求恰巧选中 1 男 1 女的概率 .【答案】(1) 50,30%;( 2)不可以,原因看法析;(3)P=【分析】【剖析】( 1)由直方图可知59.5~69.5 分数段有 5 人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,而后求出89.5~99.5 这一分数段所占的百分比,用 1 减去其余分数段的百分比即可获取分数段 69.5~79.5 所占的百分比;( 2)察看可知79.5~99.5 这一分数段的人数占了60%,据此即可判断出该选手能否获奖;( 3)画树状图获取全部可能的状况,再找出切合条件的状况后,用概率公式进行求解即可.【详解】(1)本次竞赛选手共有(2+3)÷10%=50 (人),“ 89.~5 99.5 ”这一组人数占百分比为:( 8+4)÷50×100%=24% ,因此“~ 79.5 ”这一组人数占总人数的百分比为:1-10%-24%-36%=30% ,故答案为:50, 30%;( 2)不可以;由统计图79.5~89.5 和 89.5~99.5 两组占参赛选手60%,而78<,因此他不可以知,获奖;( 3)由题意得树状图以下由树状图知,共有12 种等可能结果,此中恰巧选中 1 男 1 女的共有8 种结果,故P= = .【点睛】此题观察了直方图、扇形图、概率,联合统计图找到必需信息进行解题是重点.22. 小明大学毕业回家乡创业,第一期培养盆景与花卉各50 盆售后统计,盆景的均匀每盆收益是160 元,花卉的均匀每盆收益是19 元,调研发现:①盆景每增添 1 盆,盆景的均匀每盆收益减少 2 元;每减少 1 盆,盆景的均匀每盆收益增添 2 元 ;②花卉的平均每盆收益一直不变.小明计划第二期培养盆景与花卉共100 盆,设培养的盆景比第一期增添x 盆,第二期盆景与花卉售完后的收益分别为W 1, W 2(单位:元)( 1)用含 x 的代数式分别表示W 1, W 2;( 2)当x 取何值时,第二期培养的盆景与花卉售完后获取的总收益W 最大,最大总收益是多少?【答案】(1) W 1=-2x2+60x+8000 ,W 2=-19x+950 ;( 2)当x=10 时, W 总最大为9160 元 .【分析】【剖析】( 1)第二期培养的盆景比第一期增添x 盆,则第二期培养盆景(50+x)盆,花卉(50-x )盆,依据盆景每增添 1 盆,盆景的均匀每盆收益减少 2 元 ;每减少 1 盆,盆景的均匀每盆收益增添 2 元,②花卉的均匀每盆收益一直不变,即可获取收益W1,W 2与 x 的关系式;( 2)由W 总=W 1+W 2可得对于x 的二次函数,利用二次函数的性质即可得.【详解】(1)第二期培养的盆景比第一期增添x 盆,则第二期培养盆景(50+x )盆,花卉[100-(50+x)]= ( 50-x )盆,由题意得W 1 =(50+x)(160-2x)=-2x2 +60x+8000 ,W 2 =19(50-x)=-19x+950 ;(2) W 总 =W 1+W 2=-2x2+60x+8000+ (-19x+950 )=-2x2+41x+8950 ,∵ -2< 0,,故当 x=10 时, W 总最大,W 总最大 =-2 ×102+41×10+8950=9160.【点睛】此题观察了二次函数的应用,弄清题意,找准数目关系列出函数分析式是解题的重点 .23.如图 1, Rt△ABC 中,∠ ACB=90°,点 D 为边 AC 上一点, DE⊥ AB 于点 E,点 M 为 BD 中点, CM 的延伸线交 AB 于点 F.(1)求证: CM=EM ;(2)若∠ BAC=50°,求∠ EMF 的大小;(3)如图 2,若△DAE ≌△ CEM ,点 N 为 CM 的中点,求证:AN∥ EM.【答案】(1)证明看法析;( 2)∠EMF=100°;( 3)证明看法析.【分析】【剖析】( 1)在 Rt△DCB 和 Rt△DEB 中,利用直角三角形斜边中线等于斜边一半进行证明即可得;( 2)依据直角三角形两锐角互余可得∠ABC=40°,依据 CM=MB ,可得∠ MCB= ∠ CBM ,进而可得∠ CMD=2 ∠CBM ,既而可得∠ CME=2 ∠ CBA=80°,依据邻补角的定义即可求得∠EMF 的度数;( 3)由△DAE ≌△ CEM , CM=EM ,∠ DEA=90°,联合 CM=DM 以及已知条件可得△DEM 是等边三角形,进而可得∠ EDM=60°,∠ MBE=30°,既而可得∠ ACM=75°,连结 AM ,联合AE=EM=MB ,可推导得出 AC=AM ,依据 N 为 CM 中点,可得 AN ⊥CM ,再依据 CM ⊥ EM ,即可得出 AN ∥ EM.【详解】(1)∵ M 为 BD 中点,Rt△DCB 中, MC=BD ,Rt△DEB 中, EM=BD ,∴MC=ME ;(2)∵∠ BAC=50°,∠ACB=90°,∴∠ ABC=90° -50 °=40°,∵CM=MB ,∴∠ MCB= ∠ CBM ,∴∠ CMD= ∠ MCB+ ∠CBM=2 ∠ CBM ,同理,∠ DME=2 ∠ EBM ,∴∠ CME=2 ∠ CBA=80°,∴∠ EMF=180° -80 °=100°;(3)∵△ DAE ≌△ CEM , CM=EM ,∴AE=EM ,DE=CM ,∠CME= ∠ DEA=90°,∠ ECM= ∠ADE ,∵ CM=EM ,∴ AE=ED ,∴∠ DAE= ∠ ADE=45°,∴∠ ABC=45°,∠ECM=45°,又∵ CM=ME=BD=DM ,∴DE=EM=DM ,∴△ DEM 是等边三角形,∴∠ EDM=60°,∴∠ MBE=30°,∵CM=BM ,∴∠ BCM= ∠ CBM ,∵∠ MCB+ ∠ ACE=45°,∠CBM+ ∠ MBE=45°,∴∠ ACE= ∠ MBE=30°,∴∠ ACM= ∠ACE+ ∠ECM=75°,连结 AM ,∵AE=EM=MB ,∴∠ MEB= ∠EBM=30°,∠AME= ∠MEB=15°,∵∠ CME=90°,∴∠ CMA=90° -15 °=75°=∠ ACM ,∴AC=AM ,∵N为CM中点,∴AN ⊥CM,∵CM ⊥EM,∴AN ∥ CM.【点睛】此题观察了三角形全等的性质、直角三角形斜边中线的性质、等腰三角形的判断与性质、三角形外角的性质等,综合性较强,正确增添协助线、灵巧应用有关知识是解题的重点.。
2018年中考安徽名校大联考试卷(一)
安徽第一卷.2018年中考安徽名校大联考试卷(一)物理试题(word版附详解)温馨提示:1.物理试卷共四大题23小题,满分90分。
物理与化学的考试时间共 1 20分钟。
2.本试卷中的g-律取lON/kg。
3.计算题要有必要的公式和计算过程,只写答案的不能得分;回答问题语言要完整、简洁。
一、填空题(每空2分,共26分)将答案直接填写在横线上,不必写解题过程)1.如图所示,小明用刻度尺测量物体的长度,则测量结果为m。
2.听漏工是城市自来水管理中一个特殊职业。
如图所示,听漏工用“听漏杆”判断地下自来水管是否漏水。
他们只要将杆一端贴在地下自来水管上,一端贴在耳旁,就能听到自来水管道里的动静,从而初步判断水管是否漏水和漏水位置。
听漏工通过听漏杆听自来水管道里的“动静”利用的物理原理是。
3.单位面积上受到的大气压力,就是大气压强,已知大气压强约为l.Oxl05Pa,则手掌掌心(面积约ldm2)上所受大气压力约为 N。
4.分子很小,看不见摸不着,但我们可以通过一些直观的现象,经过合理的推测来认识分子。
例如通过“注射器内的水很难被压缩”可以推知。
5.某同学骑自行车从甲地到乙地,他先以4m/s的速度骑行,当驶完一半路程后改用6m/s的速度行驶到乙地,则该同学在全程中的平均速度为 m/s。
6.如图所示,定值电阻R1= 2Ω,R3= 4Ω,电压表V l示数为2V,电压表V2示数为14V,则电阻R2=____ Ω2018年中考安徽名校大联考试卷(一).物理试题第1页共6页7.如图所示是蹦极过程的示意图,其中A点为弹性绳上端的固定点,B点为弹性绳下端没有人的时候自然下垂时下端的位置,C点为弹性绳下端有人的时候自然下垂静止时的位置,D点为蹦极过程中人能够达到的最低点,则蹦极过程中速度最大的位置是(选填“A”、“B”、“C”或“D”),从B到C的过程中的能量转化情况是。
(不计空气阻力)8.用滑轮组匀速提升重为2000N的物体,作用在绳子自由端的拉力大小为625N,滑轮组的机械效率为80%,不计摩擦和绳重,则动滑轮的重为 N,并根据上述条件画出如图所示的滑轮组的绳子的绕法。
【精选3份合集】2018-2019学年安徽省名校中考数学联考试卷
中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,若∠2=40°,则图中∠1的度数为()A.115°B.120°C.130°D.140°【答案】A【解析】解:∵把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处,∴∠BFE=∠EFB',∠B'=∠B=90°.∵∠2=40°,∴∠CFB'=50°,∴∠1+∠EFB'﹣∠CFB'=180°,即∠1+∠1﹣50°=180°,解得:∠1=115°,故选A.2.如图是一个小正方体的展开图,把展开图折叠成小正方体后,有“我”字的一面相对面上的字是()A.国B.厉C.害D.了【答案】A【解析】正方体的表面展开图,相对的面之间一定相隔一个正方形,根据这一特点作答.【详解】∴有“我”字一面的相对面上的字是国.故答案选A.【点睛】本题考查的知识点是专题:正方体相对两个面上的文字,解题的关键是熟练的掌握正方体相对两个面上的文字.3.一元二次方程mx2+mx﹣12=0有两个相等实数根,则m的值为()A.0 B.0或﹣2 C.﹣2 D.2【答案】C【解析】由方程有两个相等的实数根,得到根的判别式等于0,求出m的值,经检验即可得到满足题意m 的值.【详解】∵一元二次方程mx1+mx﹣12=0有两个相等实数根,∴△=m1﹣4m×(﹣12)=m1+1m=0,解得:m =0或m =﹣1, 经检验m =0不合题意, 则m =﹣1. 故选C . 【点睛】此题考查了根的判别式,根的判别式的值大于0,方程有两个不相等的实数根;根的判别式的值等于0,方程有两个相等的实数根;根的判别式的值小于0,方程没有实数根. 4.若数a ,b 在数轴上的位置如图示,则( )A .a+b >0B .ab >0C .a ﹣b >0D .﹣a ﹣b >0【答案】D【解析】首先根据有理数a ,b 在数轴上的位置判断出a 、b 两数的符号,从而确定答案. 【详解】由数轴可知:a <0<b ,a<-1,0<b<1, 所以,A.a+b<0,故原选项错误; B. ab <0,故原选项错误; C.a-b<0,故原选项错误; D. 0a b -->,正确. 故选D . 【点睛】本题考查了数轴及有理数的乘法,数轴上的数:右边的数总是大于左边的数,从而确定a ,b 的大小关系. 5.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x ,则根据题意可列方程为( )A .144(1﹣x )2=100B .100(1﹣x )2=144C .144(1+x )2=100D .100(1+x )2=144 【答案】D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可. 解:2012年的产量为100(1+x ),2013年的产量为100(1+x )(1+x )=100(1+x )2, 即所列的方程为100(1+x )2=144, 故选D .点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.6.如图,将△ABC 沿BC 边上的中线AD 平移到△A'B'C'的位置,已知△ABC 的面积为9,阴影部分三角形的面积为1.若AA'=1,则A'D 等于( )A.2 B.3 C .23D.32【答案】A【解析】分析:由S△ABC=9、S△A′EF=1且AD为BC边的中线知S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,根据△DA′E∽△DAB知2A DEABDSA DAD S''=(),据此求解可得.详解:如图,∵S△ABC =9、S△A′EF=1,且AD为BC边的中线,∴S△A′DE=12S△A′EF=2,S△ABD=12S△ABC=92,∵将△ABC沿BC边上的中线AD平移得到△A'B'C',∴A′E∥AB,∴△DA′E∽△DAB,则2A DEABDSA DAD S''=(),即22912A DA D'='+(),解得A′D=2或A′D=-25(舍),故选A.点睛:本题主要平移的性质,解题的关键是熟练掌握平移变换的性质与三角形中线的性质、相似三角形的判定与性质等知识点.7.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x 元,则下面所列方程中正确的是( ) A .1200012000100 1.2x x =+B .12000120001001.2x x =+ C .1200012000100 1.2x x=-D .12000120001001.2x x=- 【答案】B【解析】首先设文学类图书平均每本的价格为x 元,则科普类图书平均每本的价格为1.2x 元,根据题意可得等量关系:学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,根据等量关系列出方程,【详解】设学校购买文学类图书平均每本书的价格是x 元,可得:12000120001001.2x x=+ 故选B . 【点睛】此题主要考查了分式方程的应用,关键是正确理解题意,找出题目中的等量关系,列出方程. 8.如图,如果从半径为9cm 的圆形纸片剪去13圆周的一个扇形,将留下的扇形围成 一个圆锥(接缝处不重叠),那么这个圆锥的高为A .6cmB .35cmC .8cmD .53【答案】B【解析】试题分析:∵从半径为9cm 的圆形纸片上剪去13圆周的一个扇形, ∴留下的扇形的弧长=()2293π⨯=12π,根据底面圆的周长等于扇形弧长, ∴圆锥的底面半径r=122ππ=6cm , ∴2296-5故选B.考点: 圆锥的计算.9.如图,△ABC 中,BC =4,⊙P 与△ABC 的边或边的延长线相切.若⊙P 半径为2,△ABC 的面积为5,则△ABC 的周长为( )A.8 B.10 C.13 D.14 【答案】C【解析】根据三角形的面积公式以及切线长定理即可求出答案.【详解】连接PE、PF、PG,AP,由题意可知:∠PEC=∠PFA=PGA=90°,∴S△PBC=12BC•PE=12×4×2=4,∴由切线长定理可知:S△PFC+S△PBG=S△PBC=4,∴S四边形AFPG=S△ABC+S△PFC+S△PBG+S△PBC=5+4+4=13,∴由切线长定理可知:S△APG=12S四边形AFPG=132,∴132=12×AG•PG,∴AG=132,由切线长定理可知:CE=CF,BE=BG,∴△ABC的周长为AC+AB+CE+BE=AC+AB+CF+BG=AF+AG=2AG=13,故选C.【点睛】本题考查切线长定理,解题的关键是画出辅助线,熟练运用切线长定理,本题属于中等题型.10.根据下表中的二次函数2y ax bx c=++的自变量x与函数y的对应值,可判断该二次函数的图象与x 轴().x…1-012…y…1-74-2-74-…A .只有一个交点B .有两个交点,且它们分别在y 轴两侧C .有两个交点,且它们均在y 轴同侧D .无交点【答案】B【解析】根据表中数据可得抛物线的对称轴为x=1,抛物线的开口方向向上,再根据抛物线的对称性即可作出判断.【详解】解:由题意得抛物线的对称轴为x=1,抛物线的开口方向向上 则该二次函数的图像与x 轴有两个交点,且它们分别在y 轴两侧 故选B. 【点睛】本题考查二次函数的性质,属于基础应用题,只需学生熟练掌握抛物线的对称性,即可完成. 二、填空题(本题包括8个小题)11.如图,在△ABC 中,AB=AC ,BE 、AD 分别是边AC 、BC 上的高,CD=2,AC=6,那么CE=________.【答案】43【解析】∵AB=AC ,AD ⊥BC , ∴BD=CD=2,∵BE 、AD 分别是边AC 、BC 上的高, ∴∠ADC=∠BEC=90°, ∵∠C=∠C , ∴△ACD ∽△BCE ,∴AC CDBC CE =, ∴624CE =, ∴CE=43,故答案为43.1220n n 的最小值为___【答案】1【解析】因为20n是整数,且20=25n n,则1n是完全平方数,满足条件的最小正整数n为1.【详解】∵20=25n n,且20n是整数,∴25n是整数,即1n是完全平方数;∴n的最小正整数值为1.故答案为:1.【点睛】主要考查了二次根式的定义,关键是根据乘除法法则和二次根式有意义的条件.二次根式有意义的条件是被开方数是非负数进行解答.13.函数y=22xx-+中,自变量x的取值范围是_________.【答案】x≤1且x≠﹣1【解析】由二次根式中被开方数为非负数且分母不等于零求解可得结论.【详解】根据题意,得:2020xx-≥⎧⎨+≠⎩,解得:x≤1且x≠﹣1.故答案为x≤1且x≠﹣1.【点睛】本题考查了函数自变量的取值范围,函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(1)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.14.如图,点P(3a,a)是反比例函kyx=(k>0)与⊙O的一个交点,图中阴影部分的面积为10π,则反比例函数的表达式为______.【答案】y=12 x【解析】设圆的半径是r,根据圆的对称性以及反比例函数的对称性可得:14πr2=10π解得:r=210.∵点P(3a ,a)是反比例函y=kx(k>0)与O 的一个交点, ∴3a 2=k.22(3)a a r +=∴a 2=21(210)10⨯=4. ∴k=3×4=12,则反比例函数的解析式是:y=12x. 故答案是:y=12x. 点睛:本题主要考查了反比例函数图象的对称性,正确根据对称性求得圆的半径是解题的关键.15.如图,四边形ABCD 是菱形,∠A =60°,AB =2,扇形EBF 的半径为2,圆心角为60°,则图中阴影部分的面积是_____.【答案】233π- 【解析】连接BD ,易证△DAB 是等边三角形,即可求得△ABD 的高为3,再证明△ABG ≌△DBH ,即可得四边形GBHD 的面积等于△ABD 的面积,由图中阴影部分的面积为S 扇形EBF ﹣S △ABD 即可求解. 【详解】如图,连接BD .∵四边形ABCD 是菱形,∠A =60°, ∴∠ADC =120°, ∴∠1=∠2=60°, ∴△DAB 是等边三角形, ∵AB =2,∴△ABD 3,∵扇形BEF 的半径为2,圆心角为60°, ∴∠4+∠5=60°,∠3+∠5=60°, ∴∠3=∠4,设AD 、BE 相交于点G ,设BF 、DC 相交于点H ,在△ABG 和△DBH 中,234A AB BD ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△ABG ≌△DBH (ASA ),∴四边形GBHD 的面积等于△ABD 的面积,∴图中阴影部分的面积是:S 扇形EBF ﹣S △ABD =2602360π⨯﹣12×2×3=233π-. 故答案是:233π-. 【点睛】本题考查了扇形的面积计算以及全等三角形的判定与性质等知识,根据已知得出四边形GBHD 的面积等于△ABD 的面积是解题关键.16.某商品原价100元,连续两次涨价后,售价为144元.若平均每次增长率为,则__________.【答案】20%.【解析】试题分析:根据原价为100元,连续两次涨价x 后,现价为144元,根据增长率的求解方法,列方程求x .试题解析:依题意,有:100(1+x )2=144, 1+x=±1.2,解得:x=20%或-2.2(舍去). 考点:一元二次方程的应用.17.如图,将一个长方形纸条折成如图的形状,若已知∠2=55°,则∠1=____.【答案】1【解析】由折叠可得∠3=180°﹣2∠2,进而可得∠3的度数,然后再根据两直线平行,同旁内角互补可得∠1+∠3=180°,进而可得∠1的度数.【详解】解:由折叠可得∠3=180°﹣2∠2=180°﹣1°=70°, ∵AB ∥CD , ∴∠1+∠3=180°, ∴∠1=180°﹣70°=1°, 故答案为1.18.若a m =5,a n =6,则a m+n =________. 【答案】1.【解析】根据同底数幂乘法性质a m ·a n =a m+n ,即可解题. 【详解】解:a m+n = a m ·a n =5×6=1. 【点睛】本题考查了同底数幂乘法计算,属于简单题,熟悉法则是解题关键. 三、解答题(本题包括8个小题)19.如图,点E 、F 在BC 上,BE=CF ,AB=DC ,∠B=∠C ,AF 与DE 交于点G ,求证:GE=GF .【答案】证明见解析.【解析】求出BF=CE ,根据SAS 推出△ABF ≌△DCE ,得对应角相等,由等腰三角形的判定可得结论. 【详解】∵BE=CF ,∴BE+EF=CF+EF , ∴BF=CE ,在△ABF 和△DCE 中AB DCB C BF CE =⎧⎪∠=∠⎨⎪=⎩, ∴△ABF ≌△DCE (SAS ), ∴∠GEF=∠GFE , ∴EG=FG .【点睛】本题考查了全等三角形的判定与性质,等腰三角形的判定,熟练掌握三角形全等的判定方法是解题的关键.20.如图,已知函数ky x=(x >0)的图象经过点A 、B ,点B 的坐标为(2,2).过点A 作AC ⊥x 轴,垂足为C ,过点B 作BD ⊥y 轴,垂足为D ,AC 与BD 交于点F .一次函数y=ax+b 的图象经过点A 、D ,与x 轴的负半轴交于点E .若AC=32OD ,求a 、b 的值;若BC ∥AE ,求BC 的长. 【答案】(1)a=34,b=2;(2)5 【解析】试题分析:(1)首先利用反比例函数图象上点的坐标性质得出k 的值,再得出A 、D 点坐标,进而求出a ,b 的值;(2)设A 点的坐标为:(m ,4m ),则C 点的坐标为:(m ,0),得出tan ∠ADF=42AF m DF m-=,tan ∠AEC=42AC m EC =,进而求出m 的值,即可得出答案.试题解析:(1)∵点B (2,2)在函数y=k x (x >0)的图象上, ∴k=4,则y=4x, ∵BD ⊥y 轴,∴D 点的坐标为:(0,2),OD=2,∵AC ⊥x 轴,AC=32OD ,∴AC=3,即A 点的纵坐标为:3, ∵点A 在y=4x 的图象上,∴A 点的坐标为:(43,3), ∵一次函数y=ax+b 的图象经过点A 、D , ∴43{32a b b +==, 解得:34a =,b=2; (2)设A 点的坐标为:(m ,4m ),则C 点的坐标为:(m ,0), ∵BD ∥CE ,且BC ∥DE ,∴四边形BCED 为平行四边形,∴CE=BD=2,∵BD ∥CE ,∴∠ADF=∠AEC ,∴在Rt △AFD 中,tan ∠ADF=42AF m DF m-=,在Rt △ACE 中,tan ∠AEC=42AC m EC =,∴42m m -=42m ,解得:m=1,∴C 点的坐标为:(1,0),则BC=5.考点:反比例函数与一次函数的交点问题.21.请根据图中提供的信息,回答下列问题:一个水瓶与一个水杯分别是多少元?甲、乙两家商场同时出售同样的水瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定:这两种商品都打八折;乙商场规定:买一个水瓶赠送两个水杯,另外购买的水杯按原价卖.若某单位想要买5个水瓶和n (n >10,且n 为整数)个水杯,请问选择哪家商场购买更合算,并说明理由.(必须在同一家购买)【答案】(1)一个水瓶40元,一个水杯是8元;(2)当10<n <25时,选择乙商场购买更合算.当n >25时,选择甲商场购买更合算.【解析】(1)设一个水瓶x 元,表示出一个水杯为(48﹣x )元,根据题意列出方程,求出方程的解即可得到结果;(2)计算出两商场得费用,比较即可得到结果.【详解】解:(1)设一个水瓶x 元,表示出一个水杯为(48﹣x )元,根据题意得:3x+4(48﹣x )=152,解得:x =40,则一个水瓶40元,一个水杯是8元;(2)甲商场所需费用为(40×5+8n )×80%=160+6.4n乙商场所需费用为5×40+(n ﹣5×2)×8=120+8n则∵n >10,且n 为整数,∴160+6.4n ﹣(120+8n )=40﹣1.6n讨论:当10<n <25时,40﹣1.6n >0,160+0.64n >120+8n ,∴选择乙商场购买更合算.当n >25时,40﹣1.6n <0,即 160+0.64n <120+8n ,∴选择甲商场购买更合算.【点睛】此题主要考查不等式的应用,解题的关键是根据题意找到等量关系与不等关系进行列式求解.22.嘉淇同学利用业余时间进行射击训练,一共射击7次,经过统计,制成如图12所示的折线统计图.这组成绩的众数是 ;求这组成绩的方差;若嘉淇再射击一次(成绩为整数环),得到这8次射击成绩的中位数恰好就是原来7次成绩的中位数,求第8次的射击成绩的最大环数.【答案】(1)10;(2)87;(3)9环 【解析】(1)根据众数的定义,一组数据中出现次数最多的数,结合统计图得到答案.(2)先求这组成绩的平均数,再求这组成绩的方差;(3)先求原来7次成绩的中位数,再求第8次的射击成绩的最大环数.【详解】解:(1)在这7次射击中,10环出现的次数最多,故这组成绩的众数是10;(2)嘉淇射击成绩的平均数为:()1107101098997++++++=, 方差为:()()()()22221[109791091097-+-+-+- ()()()2228998999]7+-+-+-=. (3)原来7次成绩为7 8 9 9 10 10 10,原来7次成绩的中位数为9,当第8次射击成绩为10时,得到8次成绩的中位数为9.5,当第8次射击成绩小于10时,得到8次成绩的中位数均为9,因此第8次的射击成绩的最大环数为9环.【点睛】 本题主要考查了折线统计图和众数、中位数、方差等知识.掌握众数、中位数、方差以及平均数的定义是解题的关键.23.两个全等的等腰直角三角形按如图方式放置在平面直角坐标系中,OA 在x 轴上,已知∠COD=∠OAB=90°,2,反比例函数y=k x 的图象经过点B .求k 的值.把△OCD 沿射线OB 移动,当点D 落在y=k x图象上时,求点D 经过的路径长.【答案】(1)k=2;(2)点D经过的路径长为6.【解析】(1)根据题意求得点B的坐标,再代入kyx=求得k值即可;(2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC 于点F,设CD交y轴于点M(如图),根据已知条件可求得点D的坐标为(﹣1,1),设D′横坐标为t,则OE=MF=t,即可得D′(t,t+2),由此可得t(t+2)=2,解方程求得t值,利用勾股定理求得DD′的长,即可得点D经过的路径长.【详解】(1)∵△AOB和△COD为全等三的等腰直角三角形,OC=2,∴AB=OA=OC=OD=2,∴点B坐标为(2,2),代入kyx=得k=2;(2)设平移后与反比例函数图象的交点为D′,由平移性质可知DD′∥OB,过D′作D′E⊥x轴于点E,交DC于点F,设CD交y轴于点M,如图,∵2,∠AOB=∠COM=45°,∴OM=MC=MD=1,∴D坐标为(﹣1,1),设D′横坐标为t,则OE=MF=t,∴D′F=DF=t+1,∴D′E=D′F+EF=t+2,∴D′(t,t+2),∵D′在反比例函数图象上,∴t(t+2)=2,解得t=31-或t=﹣3﹣1(舍去),∴D′(3﹣1,3+1),∴DD′=22(311)(311)6-+++-=,即点D经过的路径长为6.【点睛】本题是反比例函数与几何的综合题,求得点D′的坐标是解决第(2)问的关键.24.立定跳远是嘉兴市体育中考的抽考项目之一,某校九年级(1),(2)班准备集体购买某品牌的立定跳远训练鞋.现了解到某网店正好有这种品牌训练鞋的促销活动,其购买的单价y(元/双)与一次性购买的数量x(双)之间满足的函数关系如图所示.当10≤x<60时,求y关于x的函数表达式;九(1),(2)班共购买此品牌鞋子100双,由于某种原因需分两次购买,且一次购买数量多于25双且少于60双;①若两次购买鞋子共花费9200元,求第一次的购买数量;②如何规划两次购买的方案,使所花费用最少,最少多少元?【答案】(1)y=150﹣x;(2)①第一批购买数量为30双或40双.②第一次买26双,第二次买74双最省钱,最少9144元.【解析】(1)若购买x双(10<x<1),每件的单价=140﹣(购买数量﹣10),依此可得y关于x的函数关系式;(2)①设第一批购买x双,则第二批购买(100﹣x)双,根据购买两批鞋子一共花了9200元列出方程求解即可.分两种情况考虑:当25<x≤40时,则1≤100﹣x<75;当40<x<1时,则40<100﹣x<1.②把两次的花费与第一次购买的双数用函数表示出来.【详解】解:(1)购买x双(10<x<1)时,y=140﹣(x﹣10)=150﹣x.故y关于x的函数关系式是y=150﹣x;(2)①设第一批购买x双,则第二批购买(100﹣x)双.当25<x≤40时,则1≤100﹣x<75,则x(150﹣x)+80(100﹣x)=9200,解得x1=30,x2=40;当40<x<1时,则40<100﹣x<1,则x(150﹣x)+(100﹣x)[150﹣(100﹣x)]=9200,解得x =30或x =70,但40<x <1,所以无解;答:第一批购买数量为30双或40双.②设第一次购买x 双,则第二次购买(100﹣x )双,设两次花费w 元.当25<x≤40时w =x (150﹣x )+80(100﹣x )=﹣(x ﹣35)2+9225,∴x =26时,w 有最小值,最小值为9144元;当40<x <1时,w =x (150﹣x )+(100﹣x )[150﹣(100﹣x )]=﹣2(x ﹣50)2+10000,∴x =41或59时,w 有最小值,最小值为9838元,综上所述:第一次买26双,第二次买74双最省钱,最少9144元.【点睛】考查了一元二次方程的应用,根据实际问题列一次函数关系式,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.25.先化简:(1111x x --+)÷221x x ,再从﹣2,﹣1,0,1这四个数中选择一个合适的数代入求值. 【答案】22x ,1. 【解析】先算括号内的减法,同时把除法变成乘法,再根据分式的乘法进行计算,最后代入求出即可.【详解】原式=1111x x x x +--+-()()()()•112x x x +-+()() =211x x +-()()•112x x x +-+()() =22x +. ∵由题意,x 不能取1,﹣1,﹣2,∴x 取2.当x=2时,原式=22x +=202+=1. 【点睛】本题考查了分式的混合运算和求值,能正确根据分式的运算法则进行化简是解答此题的关键. 26.在第23个世界读书日前夕,我市某中学为了解本校学生的每周课外阅读时间(用t 表示,单位:小时),采用随机抽样的方法进行问卷调查,调查结果按0t 2≤<,2t 3≤<,3t 4≤<,t 4≥分为四个等级,并依次用A ,B ,C ,D 表示,根据调查结果统计的数据,绘制成了如图所示的两幅不完整的统计图,由图中给出的信息解答下列问题:1()求本次调查的学生人数;2()求扇形统计图中等级B所在扇形的圆心角度数,并把条形统计图补充完整;3()若该校共有学生1200人,试估计每周课外阅读时间满足3t4≤<的人数.【答案】()1本次调查的学生人数为200人;()2B所在扇形的圆心角为54,补全条形图见解析;()3全校每周课外阅读时间满足3t4≤<的约有360人.【解析】()1根据等级A的人数及所占百分比即可得出调查学生人数;()2先计算出C在扇形图中的百分比,用()1[A D C-++在扇形图中的百分比]可计算出B在扇形图中的百分比,再计算出B在扇形的圆心角;()3总人数⨯课外阅读时间满足3t4≤<的百分比即得所求.【详解】()1由条形图知,A级的人数为20人,由扇形图知:A级人数占总调查人数的10%,所以:1002010%20200(10÷=⨯=人),即本次调查的学生人数为200人;()2由条形图知:C级的人数为60人,所以C级所占的百分比为:60100%30% 200⨯=,B级所占的百分比为:110%30%45%15%---=,B级的人数为20015%30(⨯=人),D级的人数为:20045%90(⨯=人),B所在扇形的圆心角为:36015%54⨯=,补全条形图如图所示:;()3因为C 级所占的百分比为30%,所以全校每周课外阅读时间满足3t 4≤<的人数为:120030%360(⨯=人),答:全校每周课外阅读时间满足3t 4≤<的约有360人.【点睛】本题考查了扇形图和条形图的相关知识,从统计图中找到必要的信息进行解题是关键.扇形图中某项的百分比100%=⨯该项人数总人数,扇形图中某项圆心角的度数360=⨯该项在扇形图中的百分比.中考数学模拟试卷一、选择题(本题包括10个小题,每小题只有一个选项符合题意)1.如图,直线y =kx+b 与y =mx+n 分别交x 轴于点A (﹣1,0),B (4,0),则函数y =(kx+b )(mx+n )中,则不等式()()0kx b mx n ++>的解集为( )A .x >2B .0<x <4C .﹣1<x <4D .x <﹣1 或 x >4【答案】C 【解析】看两函数交点坐标之间的图象所对应的自变量的取值即可.【详解】∵直线y 1=kx+b 与直线y 2=mx+n 分别交x 轴于点A(﹣1,0),B(4,0),∴不等式(kx+b)(mx+n)>0的解集为﹣1<x <4,故选C .【点睛】本题主要考查一次函数和一元一次不等式,本题是借助一次函数的图象解一元一次不等式,两个图象的“交点”是两个函数值大小关系的“分界点”,在“分界点”处函数值的大小发生了改变.2.下列运算正确的是( )A .﹣(a ﹣1)=﹣a ﹣1B .(2a 3)2=4a 6C .(a ﹣b )2=a 2﹣b 2D .a 3+a 2=2a 5 【答案】B【解析】根据去括号法则,积的乘方的性质,完全平方公式,合并同类项法则,对各选项分析判断后利用排除法求解.【详解】解:A 、因为﹣(a ﹣1)=﹣a+1,故本选项错误;B 、(﹣2a 3)2=4a 6,正确;C 、因为(a ﹣b )2=a 2﹣2ab+b 2,故本选项错误;D 、因为a 3与a 2不是同类项,而且是加法,不能运算,故本选项错误.故选B .【点睛】本题考查了合并同类项,积的乘方,完全平方公式,理清指数的变化是解题的关键. 3.已知函数()()()()22113{513x x y x x --≤=-->,则使y=k 成立的x 值恰好有三个,则k 的值为( ) A .0 B .1 C .2 D .3。
安徽省2018年中考数学真题(word版含解析)
2018年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每小题4分,满分40分)1. 的绝对值是()A. B. 8 C. D.【答案】B【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.2. 2017年我赛粮食总产量为635.2亿斤,其中635.2亿科学记数法表示()A. B. C. D.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】635.2亿=63520000000,63520000000小数点向左移10位得到6.352,所以635.2亿用科学记数法表示为:6.352×108,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3. 下列运算正确的是()A. B. C. D.【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.4. 一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A. (A)B. (B)C. (C)D. (D)【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【详解】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.5. 下列分解因式正确的是()A. B.C. D.【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. =(x-2)2,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.6. 据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.7. 若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a 的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8. 为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:甲 2 6 7 7 8乙 2 3 4 8 8类于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得. 【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,,=4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,,=6.4,所以只有D选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.9. □ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A. BE=DFB. AE=CFC. AF//CED. ∠BAE=∠DCF【答案】B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.10. 如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A 与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()A. B. C. D.【答案】A【解析】【分析】由已知易得AC=2,∠ACD=45°,分0≤x≤1、1<x≤2、2<x≤3三种情况结合等腰直角三角形的性质即可得到相应的函数解析式,由此即可判断.【详解】由正方形的性质,已知正方形ABCD的边长为,易得正方形的对角线AC=2,∠ACD=45°,如图,当0≤x≤1时,y=2,如图,当1<x≤2时,y=2m+2n=2(m+n)= 2,如图,当2<x≤3时,y=2,综上,只有选项A符合,故选A.【点睛】本题考查了动点问题的函数图象,涉及到正方形的性质,等腰直角三角形的性质,勾股定理等,结合图形正确分类是解题的关键.二、填空题(本大共4小题,每小题5分,满分30分)11. 不等式的解集是___________.【答案】x>10【解析】【分析】按去分母、移项、合并同类项的步骤进行求解即可得.【详解】去分母,得x-8>2,移项,得x>2+8,合并同类项,得x>10,故答案为:x>10.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤及注意事项是解题的关键.12. 如图,菱形ABOC的AB,AC分别与⊙O相切于点D、E,若点D是AB的中点,则∠DOE__________.【答案】60°【解析】【分析】由AB,AC分别与⊙O相切于点D、E,可得∠BDO=∠ADO=∠AEO=90°,根据已知条件可得到BD=OB,在Rt△OBD中,求得∠B=60°,继而可得∠A=120°,再利用四边形的内角和即可求得∠DOE的度数.【详解】∵AB,AC分别与⊙O相切于点D、E,∴∠BDO=∠ADO=∠AEO=90°,∵四边形ABOC是菱形,∴AB=BO,∠A+∠B=180°,∵BD=AB,∴BD=OB,在Rt△OBD中,∠ODB=90°,BD=OB,∴cos∠B=,∴∠B=60°,∴∠A=120°,∴∠DOE=360°-120°-90°-90°=60°,故答案为:60°.【点睛】本题考查了切线的性质,菱形的性质,解直角三角形的应用等,熟练掌握相关的性质是解题的关键.13. 如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是_________ .【答案】y=x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2时,y==3,∴A(2,3),B(2,0),∵y=kx过点A(2,3),∴3=2k,∴k=,∴y=x,∵直线y=x平移后经过点B,∴设平移后的解析式为y=x+b,则有0=3+b,解得:b=-3,∴平移后的解析式为:y=x-3,故答案为:y=x-3.【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.14. 矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.【答案】3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.三、解答题15. 计算:【答案】7【解析】【分析】先分别进行0次幂的计算、二次根式的乘法运算,然后再按运算顺序进行计算即可.【详解】=1+2+=1+2+4=7.【点睛】本题考查了实数的运算,熟练掌握实数的运算法则、0次幂的运算法则是解题的关键.16. 《孙子算经》中有过样一道题,原文如下: “今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.【答案】城中有75户人家.【解析】【分析】设城中有x户人家,根据今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,可得方程x+x=100,解方程即可得.【详解】设城中有x户人家,由题意得x+x=100,解得x=75,答:城中有75户人家.【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列方程进行求解是关键.17. 如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点.(1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;(2)将线段绕点逆时针旋转90°得到线段.画出线段;(3)以为顶点的四边形的面积是个平方单位.【答案】(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积. 【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1 B1 A2是正方形,AA1=,所以四边形AA1 B1 A2的在面积为:=20,故答案为:20.【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.18. 观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证.【详解】(1)观察可知第6个等式为:,故答案为:;(2)猜想:,证明:左边====1,右边=1,∴左边=右边,∴原等式成立,∴第n个等式为:,故答案为:.【点睛】本题考查了规律题,通过观察、归纳、抽象出等式的规律与序号的关系是解题的关键.19. 为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)【答案】旗杆AB高约18米.【分析】如图先证明△FDE∽△ABE,从而得,在Rt△FEA中,由tan∠AFE=,【解析】通过运算求得AB的值即可.【详解】如图,∵FM//BD,∴∠FED=∠MFE=45°,∵∠DEF=∠BEA,∴∠AEB=45°,∴∠FEA=90°,∵∠FDE=∠ABE=90°,∴△FDE∽△ABE,∴,在Rt△FEA中,∠AFE=∠MFE+∠MFA=45°+39.3°=84.3°,tan84.3°=,∴,∴AB=1.8×10.02≈18,答:旗杆AB高约18米.【点睛】本题考查了解直角三角形的应用,相似三角形的判定与性质,得到是解题的关键.20. 如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【答案】(1)画图见解析;(2)CE=【解析】【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AB、AC有交点,再分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧交于一点,过点A 与这点作射线,与圆交于点E ,据此作图即可;(2)连接OE交BC于点F,连接OC、CE,由AE平分∠BAC,可推导得出OE⊥BC,然后在Rt△OFC中,由勾股定理可求得FC的长,在Rt△EFC中,由勾股定理即可求得CE的长.【详解】(1)如图所示,射线AE就是所求作的角平分线;(2)连接OE交BC于点F,连接OC、CE,∵AE平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在Rt△OFC中,由勾股定理可得FC==,在Rt△EFC中,由勾股定理可得CE==.【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC是解题的关键.21. “校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.【答案】(1)50,30%;(2)不能,理由见解析;(3)P=【解析】【分析】(1)由直方图可知59.5~69.5分数段有5人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,然后求出89.5~99.5这一分数段所占的百分比,用1减去其他分数段的百分比即可得到分数段69.5~79.5所占的百分比;(2)观察可知79.5~99.5这一分数段的人数占了60%,据此即可判断出该选手是否获奖;(3)画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可.【详解】(1)本次比赛选手共有(2+3)÷10%=50(人),“89.5~99.5”这一组人数占百分比为:(8+4)÷50×100%=24%,所以“69.5~79.5”这一组人数占总人数的百分比为:1-10%-24%-36%=30%,故答案为:50,30%;(2)不能;由统计图知,79.5~89.5和89.5~99.5两组占参赛选手60%,而78<79.5,所以他不能获奖;(3)由题意得树状图如下由树状图知,共有12种等可能结果,其中恰好选中1男1女的8结果共有种,故P==.【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键. 22. 小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【答案】(1)W1=-2x²+60x+8000,W2=-19x+950;(2)当x=10时,W总最大为9160元. 【解析】【分析】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉(50-x)盆,根据盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元,②花卉的平均每盆利润始终不变,即可得到利润W1,W2与x 的关系式;(2)由W总=W1+W2可得关于x的二次函数,利用二次函数的性质即可得.【详解】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉[100-(50+x)]=(50-x)盆,由题意得W1=(50+x)(160-2x)=-2x²+60x+8000,W2=19(50-x)=-19x+950;(2)W总=W1+W2=-2x²+60x+8000+(-19x+950)=-2x²+41x+8950,∵-2<0,=10.25,故当x=10时,W总最大,W总最大=-2×10²+41×10+8950=9160.【点睛】本题考查了二次函数的应用,弄清题意,找准数量关系列出函数解析式是解题的关键.23. 如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M为BD 中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【答案】(1)证明见解析;(2)∠EMF=100°;(3)证明见解析.【解析】【分析】(1)在Rt△DCB和Rt△DEB中,利用直角三角形斜边中线等于斜边一半进行证明即可得;(2)根据直角三角形两锐角互余可得∠ABC=40°,根据CM=MB,可得∠MCB=∠CBM,从而可得∠CMD=2∠CBM,继而可得∠CME=2∠CBA=80°,根据邻补角的定义即可求得∠EMF的度数;【详解】(1)∵M为BD中点,Rt△DCB中,MC=BD,Rt△DEB中,EM=BD,∴MC=ME;(2)∵∠BAC=50°,∠ACB=90°,∴∠ABC=90°-50°=40°,∵CM=MB,∴∠MCB=∠CBM,∴∠CMD=∠MCB+∠CBM=2∠CBM,同理,∠DME=2∠EBM,∴∠CME=2∠CBA=80°,∴∠EMF=180°-80°=100°;(3)∵△DAE≌△CEM,CM=EM,∴AE=EM,DE=CM,∠CME=∠DEA=90°,∠ECM=∠ADE,∵CM=EM,∴AE=ED,∴∠DAE=∠ADE=45°,∴∠ABC=45°,∠ECM=45°,又∵CM=ME=BD=DM,∴DE=EM=DM,∴△DEM是等边三角形,∴∠EDM=60°,∴∠MBE=30°,∵CM=BM,∴∠BCM=∠CBM,∵∠MCB+∠ACE=45°,∠CBM+∠MBE=45°,∴∠ACE=∠MBE=30°,∴∠ACM=∠ACE+∠ECM=75°,连接AM,∵AE=EM=MB,∴∠MEB=∠EBM=30°,∠AME=∠MEB=15°,∵∠CME=90°,∴∠CMA=90°-15°=75°=∠ACM,∴AC=AM,∵N为CM中点,∴AN⊥CM,∵CM⊥EM,∴AN∥CM.【点睛】本题考查了三角形全等的性质、直角三角形斜边中线的性质、等腰三角形的判定与性质、三角形外角的性质等,综合性较强,正确添加辅助线、灵活应用相关知识是解题的关键.。
(完整word)2018年安徽中考数学试题与答案1,推荐文档
2018年安徽省初中毕业学业考试数学本试卷共8大题,计23小题,满分150分,考试时间120分钟一、选择题<本题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C D的四个选项同,其中只有一个正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的<不论是否写在括号内)一律得0分.8pPgeoDkvT1. -2,0, 2,- 3这四个数中最大的是........................................... 【】A. —1B.0C.1D.22. 安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是........ 【]8pPgeoDkvTA.3804.2 X 103B.380.42 X 104C.3.842 X 106D.3.842 X 1058pPgeoDkvT3. 下图是五个相同的小正方体搭成的几体体,其左视图是.......................... 【]设二EE),a在两个相邻整数4.|第3题图■"-是........................ 【]A.1 和2B.2 和3C.3 和4D.4 和55.从下五边形的五个顶点中,任取四个顶点连成四边形,对于事件 M“这个四边形是等腰梯形”.下列推断正确的]8pPgeoDkvTA.事件M 是不可能事件B. 事件M 是必然事件C.事件M 发生的概率为1D.事件M 发生的概率为-556 如图,D 是厶 ABC 内一点,BDLCD AD=6 BD=4 CD=3 E 、F 、G H 分别是AB AC CD BD 的中点,则四边形EFG 啲周长9.如图,四边形 ABC □中, Z BAD 2 ADC=90,AB=AD=, 2,CD=2 7题图点P 在四边形ABCDt ,若P 到BD 的距离为3,则点P 的个数为2A.1B.2C.3D.410.如图所示,P 是菱形ABCD 勺对角线AC 上一动点,过P 垂直于AC 的直线题菱形ABCD 勺边于M N 两点,设AC=2 BD=1 AP=x 则厶AMN 勺面积为y ,则y 关疋 ....……【 ]8pPgeoDkvTA.7B.9C.10D. 117.如图, O 半径是 1, A B 、C 是圆周上的三点,Z是…【 ]A.—B.2C.3 D.5558. 一元二次方程x x :22 x 的根是……【 A.— 1B. 2C. 1 和2BAC=36,4 5] D. — 1 ]于x的函数图象的大致形状是 ..................................... 【] 8pPgeoDkvTE I0n ,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是 .8pPgeoDkvT13.如图,O O 的两条弦AB CD 互相垂直,垂足为 E ,且AB=CD 已知CE=1,ED=3 则O O 的半径是 __________ .8pPgeoDkvT号)三、<本题共2小题,每小题8分,满分16分15. 先化简,再求值:— 字,其中x 二一2x 1 x 2 1【解】16.江南生态食品加工厂收购了一批质量为 10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量 3倍还多2000千克.求粗加工的该种山货质量.8pPgeoDkvT 【解】四、<本题共2小题,每小题8分,满分16分)12.根据里氏震级的定义,地震所释放的相对能量 E 与地震级数n 的关系为:14.定义运算a b a 1 b ,①226②a b③若a b 0,贝卩a b) (b 其中正确结论序号是 _______下列给出了关于这种运算的几点结论:.<把在横线上填上你认为所有正确结论的序求隧道AB的长.8pPgeoDkvT 【解】17. 如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△AIBICfl^A A2B2C2<1)把厶ABC先向右平移4个单位,再向上平移1个单位,得到△ A1B1C1(2>以图中的0为位似中心,将△ A1B1C1作位似变换且放大到原来的两倍,得到△ A2B2C2.【解】18、在平面直角坐标系中…一蚂蚁从原点:Q出发,按向上、向右、向下、向右的方向依次不断移动,每次移动个单位.其行走路线如下图所示.8pPgeoDkvT【解】(3>指出蚂蚁从点A100到A101的移动方向.【解】五、<本题共2小题,每小题10分,满分20分)19. 如图,某高速公路建设中需要确定隧道AB的长度.已知在离地面1500m高度C处的飞机,测量人员测得正前方A、B两点处的俯角分别为60°和45°(1>填写下列各点的坐标:);8pPgeoDkv區4” 去i■*i IA1<__ ―1第1陀图T第18题图<2>写出点An的坐标(n是正整数>;),A12<ij —_),A3<20、一次学科测验,学生得分均为整数,满分 10分,成绩达到6分以上(包括6分〉为合格.成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的条形统计<2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组但乙组学生不同意甲组学生的说法,认为他们组的成绩要高于甲组 .请你给出三条支持乙组学生观点的理由.8pPgeoDkvT【解】 六、<本题满分12分)k i x b 的图象与函数y 邑<x > 0)的图象交于A 、B 两点,与yx<1)求函数y 1的表达式和B 点坐标;【解】21.如图函数y 轴交于C 点.已知A 点的坐标为(2,1>, C 点坐标为(0,3>.8pPgeoDkvT图如下 8pPgeoDkvT充完成下面的成绩统计分<2)观察图象,比较当x>0时,y1和y的大小.【解】七、<本题满分12分)22. 在厶ABC中,/ ACB=90,/ ABC=30,将△ ABC绕顶点C顺时针旋转,旋转角为0 <0°<0< 180°),得到△ A/B/C.8pPgeoDkvT(1>如图(1>,当AB// CB/时,设AB与CB/相交于D.证明:△ A/ CD是等边三角形;【解】<2)如图(2>,连接A/A、B/B,设厶ACA/和厶BCB的面积分S A ACA和S A BCB/.求证:S A ACA:S A BCB/=1: 3;【证】<3)如图(3>,设AC中点为E,A/ B/中点为P,AC=a连接时,EP长度最大,最大值为【解】八、<本题满分14分)第22题:8pPgeoDkvT日亓、23.如图,正方形ABCD勺四个顶点分别在四条平行线第122题图第>l3题图42>上,这四第23题图0, h3条直线中相邻两条之间的距离依次为hl、h2、h3<h1>0,h8pPgeoDkvT>0).(1>求证h1=h3;【解】(2>设正方形ABCD勺面积为S.求证S=vh2+h3 2+ h12;【解】(3>若3h1 h2 1,当h1变化时,说明正方形ABCD勺面积为S随h1的变化情况.2【解】2018年安徽省初中毕业学业考试数学参考答案1 〜5ACACB 410DBDBC11. b a 1 2;12. 100 ; 13. 14. ①③.15.原式=J D (x 1)(x 1)16. 设粗加工的该种山货质量为x千克, 根据题意,得x+(3x+2000>=10000.解得x=2000.答:粗加工的该种山货质量为2000千克.17. 如下图A3(1,0> A12(6,0>18. (1) A1(0,1>⑵ An(2n,0>⑶向上19. 简答:■■3•/ OA 1500 tan 30 1500 —500、3 , OB=OC=15O0二AB=500 500^3 1500 865 635 (m>.答:隧道AB的长约为635m.20. <1 )甲组:中位数7 ; 乙组:平均数7,中位数7<2)<答案不唯一)①因为乙组学生的平均成绩高于甲组学生的平均成绩,所以乙组学生的成绩好于甲组;②因为甲乙两组学生成绩的平均分相差不大,而乙组学生的方差低于甲组学生的方差,说明乙组学生成绩的波动性比甲组小,所以乙组学生的成绩好于甲组;8pPgeoDkvT③因为乙组学生成绩的最低分高于甲组学生的最低分,所以乙组学生的成绩好于甲组.21. (1> 由题意,得2k1 b 1,解得k11,y1x 3b 3. b 3.又A点在函数y2匹上,所以1冷,解得k22所以y2 -x 2 xy x 3, 1 2解方程组 2 得x1 1,x2 2,y —y1 2. y2 1.x所以点B的坐标为<1,2 )<2)当O v x v 1 或x>2 时,y1 v y2;当1 v x v 2 时,y1 > y2;当x=1或x=2时,y仁y2.22. <1 )易求得 A CD 60 , AC DC,因此得证.(2>易证得ACA s BCB ,且相似比为1:3,得证.<3)120°,3a223. <1 )过A点作AF丄13分别交12、13于点E、F,过C点作CH L12分别交12、l3 于点H、G 8pPgeoDkvT证厶ABE^A CDG!卩可.<2)易证△ ABE^A BCH^A CD QA DAF且两直角边长分别为h1、h1+h2,四边形EFGH是边长为h2的正方形,8pPgeoDkvT所以S4 Ah h2h222h12 2 2 22h1h2h2(h1h2)2 h1.(3>由题意,得h21 4 hi所以322 5 2S h1 1 -h1h1h1h1 124个人收集整理资料, 仅供交流学习, 勿作商业用途11 / 952 2 44 h1 55 h l 02 又3 解得0v hl < - 1 hh 0 3- .•.当0< h1< -时,S 随hl 的增大而减小;5当h 仁-时,S 取得最小值4 ;当-< h1< 2时,S 随hl 的增大而增大.5 5 5 3申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
2018年中考安徽名校大联考试卷(一)数学试题
2018年中考安徽名校大联考试卷(一)数学试题考生注意:本卷共八大题,计23小题,满分150分,考试时间120一、选择题(本题共10小题,每题4分,共40分.每小题有四个答,其中有且只有个答案是正确的,请把正确答案的代号,写在题后的括号内,答对的得4分,答错、不答或答案超过一个的一律得0分) 1.2018的相反数是() A.-2018B.2018C 12018-D.120182.如图,a ∥b,含30°角的三角板的直角顶点在直线b 上,一个锐角的顶点在直线a 上,若∠1=20°,则∠2的度数是()A.20°B.40°C.50°D.60°3.2017年11月8日-10日,美国总统特朗普对我国进行国事访向,访问期间,中美两国企业签约项目总金额达2500亿美元,这里“2500亿”用科学记数法表示为() A.2.5×103B.2.5×1011C.0.25×1012D2500×1084.如图是由四个大小相同的正方体组成的几何体,它的主视图是()5.-2的值应该在()A.-1-0之间B.0-1之间C.1-2之间D.2-3之间6.一元一次不等式组1221xx x ⎧-≥-⎪⎨⎪+>⎩的解集在数轴上表示正确的是()17.如图是某班学生篮球运球成绩频数分布直方图,根据图中的信息,这组数据的中位数与众数是() A.10人、20人 B. 13人、14人C.14分、14分 D.13.5分、14分8.如图,一次函数y=-x 与二次函数为=ax 2+bx+c 的图象相交于点M,N,则关于x 的一元二次方程ax 2+(b+1)x+c=0的根的情况是()A.有两个不相等的实数根B.有两个相等的实数C.没有实数根D.以上结论都正确9.如图,圆内接四边形ABCD 的边AB 过圆心O,过点C 的切线与AD 的延长线交于点E,若点D 是弧AC 的中点,且∠ABC=70°,则∠AEC 等于() A.80°B.75°C.70°D.65°10.如图,矩形ABCD 中,AB=4,BC=2,把矩形ABCD 沿过点A 的直线AE 折叠,点D 落在矩形ABCD 内部的点D ˊ处,则CD ˊ的最小值是()2D.2二、填空题(本题有4小题,每小题5分,共20分)11.计算:21()2--=;12.因式分解:a 3-16ab 2=;13.如图,点A 、B 、C 都在⊙O 上,∠ACB=60°,⊙O 的直径是6,则劣弧AB 的长是 ;14.在△ABC 中,AB=6cm ,点P 在AB 上,且∠ACP=∠B ,若点P 是AB 的三等分点,则AC 的长是. 三、(本题有2题,每题8分,共16分)15.先化简,再求值:3221()x x xx x x---÷,其中x=-416.清朝数学家梅文鼎的著作《方程论》中有这样一道题:山田三亩,场地六亩,共折实田四亩七分;又山田五亩,场地三亩,共折实田五亩五分,问每亩山田折实田多少, 每亩场地折实田多少?译文为:假如有山田3亩,场地6亩,其产粮相当于实田4.7亩;又山田5亩,场地3亩,其产粮相当于实田5.5亩,问每亩山田和每亩场地产粮各相当于实田多少亩?请你解答四、(本题有2题,每题8分,共16分)17.已知:如图,一次函数y1=x+2与反比例函数y2=kx(x>0)的图象交于点A(a,5)(1)确定反比例函数的表达式;(2)结合图象,直接写出x为何值时,y1<y218.在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系△ABC是格点三角形(顶点在网格线的交点上)(1)先作△ABC关于原点O成中心对称的△A1B1C1,再把△A1B1C1向上平移4个单位长度得到△A2B2C2;(2)△A2B2C2与△ABC是否关于某点成中心对称?若是,直接写出对称中心的坐标;若不是,请说明理由.五、(本题有2题,每题10分,共20分)19.观察下列图形,把一个三角形分别连接其三边中点,构成4个小三角形,挖去中间的一个小三角形(如图1),对剩下的三个小三角形再分别重复以上做法,……,据此解答下面的问题:(2)根据这个规律,求图n中挖去三角形的个数w n(用含n的代数式表示);(3)若图n+1中挖去三角形的个数为W n+1,求W n+1−W n.20.如图,在一座小山上建有一座铁塔AD,小明站在C处测得小山顶A的仰角为30°,铁塔顶端的D的仰角为45°,若铁塔AD的高度是100m,试求小山的铅直高度AB(精确到0.1m)(参考数据=1.732)六、(本题共2分)2.小明学习电学知识后,用四个开关按键(每个开关按键闭合的可能性相等)、一个电源和一个灯泡设计了一个电路图(1)若小明设计的电路图(四个开关按键都处于打开状态)如图1所示,求任意闭合一个开关按键,灯泡能发光的概率;(2)若小明设计的电路图(四个开关按键都处于打开状态)如图2所示,求同时闭合其中的两个开关按键,灯泡能发光的概率.(用列表或树状图法).七、(本题共12分)22已知:如图,抛物线y=-x2+bx+C经过点B(0,3)和点A(3,0)()求该抛物线的函数表达式和直线AB的函数表达式;(2)若直线l⊥x轴,在第一象限内与抛物线交于点M,与直线AB交于点N,请在备用图上画出符合题意的图形,并求点M与点N之间的距离的最大值或最小值,以及此时点M,N的坐标.八.(本题共14分)23.如图,正方形ABCD、等腰Rt△BPQ的顶点P在对角线AC上(点P与A、C不重合),QP与BC交于E, QP延长线与AD交于点F,连接CQ.(1)①求证:AP=CQ;②求证:PA2=AF·AD;(2)若AP:PC=1:3,求tan∠CBQ.2018年中考安徽名校大联考试卷(一)数学参考答案一、选择题(本题共10小题,每题4分,共40分.每小题有四个答案,其中有且只有个答案是正确的,请把正确9.B 提示:连接OC,∵CE 是⊙O 的切线,∴∠OCE=900,∵AB 是⊙O 的直径, ∠ACB=90°∴∠BAC=90°-70°=20°∴OA=OC ∴∠OAC=∠OCA=20° ∵四边形ABCD 内接于⊙O,∴∠EDC=∠ABC=70°,∵点D 是弧AC 的中点, ∴∠DAC=∠DCA=12∠EDC=35° ∴∠ECD=90°-20°-35°=35°, ∴∠AEC=180°-70°-35°=75°10.C 提示:根据题意,点D ’在以点A 为圆心,AD 为半径且在矩形ABCD 内部的圆弧上,连接AC交圆弧于点D ’,由勾股定理得=所以CD ’的最小值为2二、填空题(本题有4小题,每小题5分,共20分) 11.412.a(a+4b)(a-4b) 13.2π14.或解析:由∠ACP=∠B,∠A=∠A,可得△ACP ∽△ABC.AC APAB AC=即AC 2=AP ·AB. 分两种情况: (1) AP=13AB=2cm,AC 2=2×6=12, (2) AP=23AB=4cm,AC 2=4×6=24, =(填对又一个得3分,两个5分)三、(本题有2题,每题8分,共16分)15.解32222221(21)()(1)(1)(1)5(8(1)(1)3x x x x x x x x x x x x x x x x x x x -----÷=⋅+--=⋅=+-分)16.解:设每亩山田产粮相当于实田x 亩,每亩场地产粮相当于实田y 亩 可列方程组为36 4.753 5.5x y x y+=⎧⎨+=⎩(5分)解得0.913x y =⎧⎪⎨=⎪⎩.答:每亩山田相当于实田0.9亩,每亩场地相当于实田13亩.(8分) 四、(本题有2题,每题8分,共16分)17.解(1)∵点A(a,5)在一次函数y 1=x+2的图象上 ∴5=a+2,∴a=3,点A 坐标为(3,5) ∵点A(3,5)在反比例函数2(0)k y x x =>的图象上,∴5=3k∴15,k = 反比例函数的表达式为y 2=15x(x>0);(5分) (2)由图象可知,当0<x<3时,y 1<y 2.(8分) 18.解(1)如图所示,(5分)(2)是,对称中心的坐标是(0,2).(8分)五、(本题有2题,每题10分,共20分)19.解(1)图4挖去三角形的个数为33+32+3+1;(或40)(3分)(2)w n=3n-1+3n-2+…+32+3+1;(6分)(3)1122122221(333.....331)(33...331)333.....331,n nnnn nnnn nnw w w+-----+=+++∴-=++++++-+++++=++.(10分)20.解:设AB=x(m),在Rt△ABC中∵tan30°=AB BC(3分)在Rt△BCD中,∵tan45°=,BDBDBC∴==(6分)∵AD+AB=BD,∴解得x≈136.6(m),(9分)答:小山的铅直高度AB约为136.6m.(10分)六、(本题共12分21.解(1)一共有四个开关按键,只有闭合开关按键K2,灯泡才会发光,所以P(灯泡发光)=14(4分)(2)用树状图分析如下一共有12种不同的情况,其中有6种情况下灯泡能发光,所以P(灯泡发光)61122==(12分)七、(本题共12分)(1)∵抛物线y=-x2+bx+c经过点B(0,3)和点A(3,0),3,930cb c=⎧⎨-++=⎩解得2,3bc=⎧⎨=⎩抛物线的函数表达式是y=-x2+2x+3;(2分)设直线AB:y=kx+m,根据题意得330mk m=⎧⎨+=⎩解得13km=-⎧⎨=⎩,直线AB的函数表达式是y=-x+3;(4分)(2)如图,设直线l的横坐标为a,则点M的坐标为(a,-a2+2a+3),点N的坐标是(a,-a+3),又点M,N在第一象限, ∴|MN|=-a2+2a+3-(-a+3)=-a2+3a(7分)又|MN|=-a2+3a=-(a2-3a+94)+94=239()24a--+当a=32时,|MN|有最大值,最大值为94,即点M与点N之间的距离有最大值94,(10分)此时点M坐标为(32,154)点N的坐标为33(,)22(12分)八、(本题共14分)23.解(1)①∴正方形ABCD,∴AB=CB,∠ABC=90°,∴∠ABP+∠PBC=90°,∵△BPQ是等腰直角三角形,∴BP=BQ,∠PBQ=90°,∴∠PBC+∠CBQ=90°∴∠ABP=∠CBQ,∴△ABP≌△CBQ,∴AP=CQ;(4分)②∵正方形ABCD,∴∠DAC=∠BAC=∠ACB=45°,∵∠PQB=45°,∠CEP=∠QEB,∴∠CBQ=∠CPQ,由①得△ABP ≌△CBQ,∠ABP=∠CBQ ∵∠CPQ=∠APF,∴∠APF=∠ABP ,∴△APF ∽△ABP ,2,;AP AFAP AF AB AF AD AB AP∴=∴=⋅=⋅(9分) (本题也可以连接PD,证△APF ∽△ADP)(2)由①得△ABP ≌△CBQ,∴∠BCQ=∠BAC=45°,∵∠ACB=45° ∠PCQ=45°+45°=90°∴tan ∠CPQ=CQCP由①得AP=CQ又AP:PC=1:3,∴tan ∠CPQ13CQ AP CP CP ==, 由②得∠CBQ=∠CPQ,∴tan ∠CBQ=tan ∠CPQ=13(14分)。
2018年安徽中考数学试题与答案1,推荐文档
2018年安徽省初中毕业学业考试数学本试卷共8大题,计23小题,满分150分,考试时间120分钟一、选择题<本题共10小题,每小题4分,满分40分)每小题都给出代号为A、B、C D的四个选项同,其中只有一个正确的,请把正确选项的代号写在题后的括号内.每一小题,选对得4分,不选、选错或选出的代号超过一个的<不论是否写在括号内)一律得0分.8pPgeoDkvT1. -2,0, 2,- 3这四个数中最大的是........................................... 【】A. —1B.0C.1D.22. 安徽省2010年末森林面积为3804.2千公顷,用科学记数法表示3804.2千正确的是........ 【]8pPgeoDkvTA.3804.2 X 103B.380.42 X 104C.3.842 X 106D.3.842 X 1058pPgeoDkvT3. 下图是五个相同的小正方体搭成的几体体,其左视图是.......................... 【]设二EE),a在两个相邻整数4.|第3题图■"-是........................ 【]A.1 和2B.2 和3C.3 和4D.4 和55.从下五边形的五个顶点中,任取四个顶点连成四边形,对于事件 M“这个四边形是等腰梯形”.下列推断正确的]8pPgeoDkvTA.事件M 是不可能事件B. 事件M 是必然事件C.事件M 发生的概率为1D.事件M 发生的概率为-556 如图,D 是厶 ABC 内一点,BDLCD AD=6 BD=4 CD=3 E 、F 、G H 分别是AB AC CD BD 的中点,则四边形EFG 啲周长9.如图,四边形 ABC □中, Z BAD 2 ADC=90,AB=AD=, 2,CD=2 7题图点P 在四边形ABCDt ,若P 到BD 的距离为3,则点P 的个数为2A.1B.2C.3D.410.如图所示,P 是菱形ABCD 勺对角线AC 上一动点,过P 垂直于AC 的直线题菱形ABCD 勺边于M N 两点,设AC=2 BD=1 AP=x 则厶AMN 勺面积为y ,则y 关疋 ....……【 ]8pPgeoDkvTA.7B.9C.10D. 117.如图, O 半径是 1, A B 、C 是圆周上的三点,Z是…【 ]A.—B.2C.3 D.5558. 一元二 次方程x x :2 2 x 的根是……【A. —1B. 2C. 1和2BAC=36,贝序弧?C 的长4 5]D. — 1]于x的函数图象的大致形状是 ..................................... 【 ................................................................ ]8pPgeoDkvTE I0n ,那么9级地震所释放的相对能量是7级地震所释放的相对能量的倍数是 .8pPgeoDkvT13.如图,O O 的两条弦AB CD 互相垂直,垂足为 E ,且AB=CD 已知CE=1, ED=3 则O O 的半径是 __________ .8pPgeoDkvT号)三、<本题共2小题,每小题8分,满分16分15. 先化简,再求值:— 字,其中x 二一2x 1 x 2 1【解】16.江南生态食品加工厂收购了一批质量为 10000千克的某种山货,根据市场需求对其进行粗加工和精加工处理,已知精加工的该种山货质量比粗加工的质量 3倍还多2000千克.求粗加工的该种山货质量.8pPgeoDkvT 【解】四、<本题共2小题,每小题8分,满分16分)12.根据里氏震级的定义,地震所释放的相对能量 E 与地震级数n 的关系为:14.定义运算a b a 1 b ,①226②a b③若a b 0,贝卩a b) (b其中正确结论序号是 _______下列给出了关于这种运算的几点结论:b aa 2ab ④若 a b 0,贝U a=0..<把在横线上填上你认为所有正确结论的序求隧道AB 的长.8pPgeoDkvT 【解】17. 如图,在边长为1个单位长度的小正方形组成的网格中,按要求画出△ AIBICfl^A A2B2C2<1)把厶ABC 先向右平移4个单位,再向上平移1个单位,得到△ A1B1C1 (2>以图中的0为位似中心,将△ A1B1C1作位似变换且放大到原来的两倍,得到△ A2B2C2. 【解】18、在平面直角坐标系中…一蚂蚁从原点:Q 出发,按向上、向右、向下、向右的方向依次不断移动,每次移动个单位.其行走路线如下图所示.8pPgeoDkvT【解】(3>指出蚂蚁从点A100到A101的移动方向.【解】五、<本题共2小题,每小题10分,满分20分)19. 如图,某高速公路建设中需要确定隧道 AB 的长度.已知在离地面1500m高度C 处的飞机,测量人员测得正前方 A 、B 两点处的俯角分别为60°和45°(1>填写下列各点的坐标:);8pPgeoDkv區 4” 去 i■*iIA1<__ ―1第1陀图T 第18题图<2>写出点An 的坐标(n 是正整数>;),A12<ij —_),A3<20、一次学科测验,学生得分均为整数,满分 10分,成绩达到6分以上(包括6分〉为合格.成绩达到9分为优秀.这次测验中甲乙两组学生成绩分布的条形统计<2)甲组学生说他们的合格率、优秀率均高于乙组,所以他们的成绩好于乙组但乙组学生不同意甲组学生的说法,认为他们组的成绩要高于甲组 .请你给出三条支持乙组学生观点的理由.8pPgeoDkvT 【解】 六、<本题满分12分)k i x b 的图象与函数y 邑<x > 0)的图象交于A 、B 两点,与yx<1)求函数y 1的表达式和B 点坐标;【解】<2)观察图象,比较当x >0时,y 1和y 的大小.【解】七、<本题满分12分)22. 在厶ABC 中,/ ACB=90,/ ABC=30,将△ ABC 绕顶点C 顺时针旋转,旋转角为 0 <0°<0< 180°),得到△ A/B/C.8pPgeoDkvT21.如图函数y轴交于C 点.已知A 点的坐标为(2,1>, C 点坐标为(0,3>.8pPgeoDkvT图如下 8pPgeoDkvT充完成下面的成绩统计分第21题图(1>如图(1>,当AB// CB/时,设AB与CB/相交于D.证明:△ A/ CD是等边三角形;【解】<2)如图(2>,连接A/A、B/B,设厶ACA/和厶BCB的面积分S A ACA和S A BCB/.求证:S A ACA:S A BCB/=1: 3;【证】<3)如图(3>,设AC中点为E,A/ B/中点为P,AC=a连接时,EP长度最大,最大值为【解】八、<本题满分14分)第22题:8pPgeoDkvT日亓、23.如图,正方形ABCD勺四个顶点分别在四条平行线第122题图第>l3题图42>上,这四第23题图0, h3条直线中相邻两条之间的距离依次为hl、h2、h3<h1>0,h8pPgeoDkvT>0).(1>求证h1=h3;【解】(2>设正方形ABCD勺面积为S.求证S=vh2+h3 2+ h12;【解】(3>若3h1 h2 1,当h1变化时,说明正方形ABCD勺面积为S随h1的变化情况.2【解】2018年安徽省初中毕业学业考试数学参考答案1 〜5ACACB 410DBDBC11. b a 1 2;12. 100 ; 13. 14. ①③.15.原式=J D (x 1)(x 1)16. 设粗加工的该种山货质量为x千克, 根据题意,得x+(3x+2000>=10000.解得x=2000.答:粗加工的该种山货质量为2000千克.17. 如下图A3(1,0> A12(6,0>18. (1) A1(0,1>⑵ An(2n,0>⑶向上19. 简答:■■3•/ OA 1500 tan 30 1500 —500、3 , OB=OC=15O0二AB=500 500^3 1500 865 635 (m>.答:隧道AB的长约为635m.20. <1 )甲组:中位数7 ; 乙组:平均数7,中位数7<2)<答案不唯一)①因为乙组学生的平均成绩高于甲组学生的平均成绩,所以乙组学生的成绩好于甲组;②因为甲乙两组学生成绩的平均分相差不大,而乙组学生的方差低于甲组学生的方差,说明乙组学生成绩的波动性比甲组小,所以乙组学生的成绩好于甲组;8pPgeoDkvT③因为乙组学生成绩的最低分高于甲组学生的最低分,所以乙组学生的成绩好于甲组.21. (1> 由题意,得2k1 b 1,解得k11,y1x 3b 3. b 3.又A点在函数y2匹上,所以1冷,解得k22所以y2 -x 2 xy x 3, 1 2解方程组 2 得x1 1,x2 2,y —y1 2. y2 1.x所以点B的坐标为<1,2 )<2)当O v x v 1 或x>2 时,y1 v y2;当1 v x v 2 时,y1 > y2;当x=1或x=2时,y仁y2.22. <1 )易求得 A CD 60 , AC DC,因此得证.(2>易证得ACA s BCB ,且相似比为1:3,得证.<3)120°,3a223. <1 )过A点作AF丄13分别交12、13于点E、F,过C点作CH L12分别交12、l3 于点H、G 8pPgeoDkvT证厶ABE^A CDG!卩可.<2)易证△ ABE^A BCH^A CD QA DAF且两直角边长分别为h1、h1+h2,四边形EFGH是边长为h2的正方形,8pPgeoDkvT所以S4 Ah h2h222h12 2 2 22h1h2h2(h1h2)2 h1.(3>由题意,得h21 4 hi所以322 5 2S h1 1 -h1h1h1h1 1245 2 244h1 55h l 0 2又 3 解得0v hl < -1 hh 0 3-.•.当0< h1< -时,S随hl的增大而减小;5当h仁-时,S取得最小值4 ;当-< h1< 2时,S随hl的增大而增大.5 5 5 3申明:所有资料为本人收集整理,仅限个人学习使用,勿做商业用途。
2018年安徽省中考数学试卷含答案
10.如图,直线 l1 ,l2 都与直线 l 垂直,垂足分别为 M , N , MN 1 .正方形 ABCD 的边长 为 2 ,对角线 AC 在直线 l 上,且点 C 位于点 M 处,将正方形 ABCD 沿 l 向右平移,
直到点 A 与点 N 重合为止.记点 C 平移的距离为 x ,正方形 ABCD 的边位于 l1 , l2 之
五、解答题(本大题共 2 小题,共 20 分.解答应写出文字说明、证明过程或演算步骤)
19.(本小题满分 10 分) 为了测量竖直旗杆 AB 的高度,某综合实践小组在地面 D 处竖直放置标杆 CD ,并在 地面上水平放置个平面镜 E ,使得 B, E, D 在同 一水平线上,如图所示.该小组在标杆 的 F 处通过平面镜 E 恰好观测到旗杆顶 A (此时 AEB FED ).在 F 处测得旗杆
故选:B. 【考点】增长率问题. 7.【答案】A 【 解 析 】 原 方 程 可 变 形 为 x2 (a 1)x 0 . ∵ 该 方 程 有 两 个 相 等 的 实 数 根 , ∴
21.(本小题满分 9 分)
“校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)
上
进行整理,并分别绘制成扇形统计图和频数直方图.部分信息如下:
答
(第 21 题)
(1)本次比赛参赛选手共有
人,扇形统计图中“ 69.5~79.5 ”这一组人数占总
题
参赛人数的百分比为
.
(2)赛前规定,成绩由高到低前 60% 的参赛选手 获奖.某_______姓名________________ 考生号________________ ________________ _____________
------------- -------------------- -------------------- -------------------- -------------------- -------------------- -------------------- -----------------------------------
【真题】安徽省2018年中考数学试题含答案解析(Word版)
2018年安徽省初中学业水平考试数学一、选择题(本大题共10小题,每小题4分,满分40分)1. 的绝对值是()A. B. 8 C. D.【答案】B【详解】数轴上表示数-8的点到原点的距离是8,所以-8的绝对值是8,故选B.【点睛】本题考查了绝对值的概念,熟记绝对值的概念是解题的关键.2. 2017年我赛粮食总产量为635.2亿斤,其中635.2亿科学记数法表示()A. B. C. D.【答案】C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】635.2亿=63520000000,63520000000小数点向左移10位得到6.352,所以635.2亿用科学记数法表示为:6.352×108,故选C.【点睛】本题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a的值以及n的值.3. 下列运算正确的是()A. B. C. D.【答案】D【解析】【分析】根据幂的乘方、同底数幂乘法、同底数幂除法、积的乘方的运算法则逐项进行计算即可得.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项错误;D. ,正确,故选D.【点睛】本题考查了有关幂的运算,熟练掌握幂的乘方,同底数幂的乘法、除法,积的乘方的运算法则是解题的关键.4. 一个由圆柱和圆锥组成的几何体如图水平放置,其主(正)视图为()A. (A)B. (B)C. (C)D. (D)【答案】A【解析】【分析】根据主视图是从几何体正面看得到的图形,认真观察实物,可得这个几何体的主视图为长方形上面一个三角形,据此即可得.【详解】观察实物,可知这个几何体的主视图为长方体上面一个三角形,只有A选项符合题意,故选A.【详解】本题考查了几何体的主视图,明确几何体的主视图是从几何体的正面看得到的图形是解题的关键.5. 下列分解因式正确的是()A. B.C. D.【答案】C【解析】【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. =(x-2)2,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解要彻底.6. 据省统计局发布,2017年我省有效发明专利数比2016年增长22.1%假定2018年的平均增长率保持不变,2016年和2018年我省有效发明专利分别为a万件和b万件,则()A. B.C. D.【答案】B【解析】【分析】根据题意可知2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a,由此即可得.【详解】由题意得:2017年我省有效发明专利数为(1+22.1%)a万件,2018年我省有效发明专利数为(1+22.1%)•(1+22.1%)a万件,即b=(1+22.1%)2a万件,故选B.【点睛】本题考查了增长率问题,弄清题意,找到各量之间的数量关系是解题的关键.7. 若关于的一元二次方程x(x+1)+ax=0有两个相等的实数根,则实数a的值为()A. B. 1 C. D.【答案】A【解析】【分析】整理成一般式后,根据方程有两个相等的实数根,可得△=0,得到关于a的方程,解方程即可得.【详解】x(x+1)+ax=0,x2+(a+1)x=0,由方程有两个相等的实数根,可得△=(a+1)2-4×1×0=0,解得:a1=a2=-1,故选A.【点睛】本题考查一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.8. 为考察两名实习工人的工作情况,质检部将他们工作第一周每天生产合格产品的个数整理成甲,乙两组数据,如下表:类于以上数据,说法正确的是()A. 甲、乙的众数相同B. 甲、乙的中位数相同C. 甲的平均数小于乙的平均数D. 甲的方差小于乙的方差【答案】D【解析】【分析】分别根据众数、中位数、平均数、方差的定义进行求解后进行判断即可得.【详解】甲:数据7出现了2次,次数最多,所以众数为7,排序后最中间的数是7,所以中位数是7,,=4,乙:数据8出现了2次,次数最多,所以众数为8,排序后最中间的数是4,所以中位数是4,,=6.4,所以只有D选项正确,故选D.【点睛】本题考查了众数、中位数、平均数、方差,熟练掌握相关定义及求解方法是解题的关键.9. □ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是()A. BE=DFB. AE=CFC. AF//CED. ∠BAE=∠DCF【答案】B【解析】【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;C、如图,∵四边形ABCD是平行四边形,∴OA=OC,∵AF//CE,∴∠FAO=∠ECO,又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,∴AF CE,∴四边形AECF是平行四边形,故不符合题意;D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,∴∠ABE=∠CDF,又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,∴AE//CF,∴AE CF,∴四边形AECF是平行四边形,故不符合题意,故选B.【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.10. 如图,直线都与直线l垂直,垂足分别为M,N,MN=1,正方形ABCD的边长为,对角线AC 在直线l上,且点C位于点M处,将正方形ABCD沿l向右平移,直到点A与点N重合为止,记点C平移的距离为x,正方形ABCD的边位于之间分的长度和为y,则y关于x的函数图象大致为()A. B. C. D.【答案】A【解析】【分析】由已知易得AC=2,∠ACD=45°,分0≤x≤1、1<x≤2、2<x≤3三种情况结合等腰直角三角形的性质即可得到相应的函数解析式,由此即可判断.【详解】由正方形的性质,已知正方形ABCD的边长为,易得正方形的对角线AC=2,∠ACD=45°,如图,当0≤x≤1时,y=2,如图,当1<x≤2时,y=2m+2n=2(m+n)= 2,如图,当2<x≤3时,y=2,综上,只有选项A符合,故选A.【点睛】本题考查了动点问题的函数图象,涉及到正方形的性质,等腰直角三角形的性质,勾股定理等,结合图形正确分类是解题的关键.二、填空题(本大共4小题,每小题5分,满分30分)11. 不等式的解集是___________.【答案】x>10【解析】【分析】按去分母、移项、合并同类项的步骤进行求解即可得.【详解】去分母,得x-8>2,移项,得x>2+8,合并同类项,得x>10,故答案为:x>10.【点睛】本题考查了解一元一次不等式,熟练掌握解一元一次不等式的基本步骤及注意事项是解题的关键.12. 如图,菱形ABOC的AB,AC分别与⊙O相切于点D、E,若点D是AB的中点,则∠DOE__________.【答案】60°【解析】【分析】由AB,AC分别与⊙O相切于点D、E,可得∠BDO=∠ADO=∠AEO=90°,根据已知条件可得到BD=OB,在Rt△OBD中,求得∠B=60°,继而可得∠A=120°,再利用四边形的内角和即可求得∠DOE 的度数.【详解】∵AB,AC分别与⊙O相切于点D、E,∴∠BDO=∠ADO=∠AEO=90°,∵四边形ABOC是菱形,∴AB=BO,∠A+∠B=180°,∵BD=AB,∴BD=OB,在Rt△OBD中,∠ODB=90°,BD=OB,∴cos∠B=,∴∠B=60°,∴∠A=120°,∴∠DOE=360°-120°-90°-90°=60°,故答案为:60°.【点睛】本题考查了切线的性质,菱形的性质,解直角三角形的应用等,熟练掌握相关的性质是解题的关键.13. 如图,正比例函数y=kx与反比例函数y=的图象有一个交点A(2,m),AB⊥x轴于点B,平移直线y=kx使其经过点B,得到直线l,则直线l对应的函数表达式是_________ .【答案】y=x-3【解析】【分析】由已知先求出点A、点B的坐标,继而求出y=kx的解析式,再根据直线y=kx平移后经过点B,可设平移后的解析式为y=kx+b,将B点坐标代入求解即可得.【详解】当x=2时,y==3,∴A(2,3),B(2,0),∵y=kx过点A(2,3),∴3=2k,∴k=,∴y=x,∵直线y=x平移后经过点B,∴设平移后的解析式为y=x+b,则有0=3+b,解得:b=-3,∴平移后的解析式为:y=x-3,故答案为:y=x-3.【点睛】本题考查了一次函数与反比例函数的综合应用,涉及到待定系数法,一次函数图象的平移等,求出k的值是解题的关键.14. 矩形ABCD中,AB=6,BC=8.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD是等腰三角形,则PE的长为数___________.【答案】3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,继而可确定点P在BD上,然后再根据△APD是等腰三角形,分DP=DA、AP=DP两种情况进行讨论即可得.【详解】∵四边形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴点P在BD上,如图1,当DP=DA=8时,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如图2,当AP=DP时,此时P为BD中点,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;综上,PE的长为1.2或3,故答案为:1.2或3.【点睛】本题考查了相似三角形的性质,等腰三角形的性质,矩形的性质等,确定出点P在线段BD上是解题的关键.三、解答题15. 计算:【答案】7【解析】【分析】先分别进行0次幂的计算、二次根式的乘法运算,然后再按运算顺序进行计算即可.【详解】=1+2+=1+2+4=7.【点睛】本题考查了实数的运算,熟练掌握实数的运算法则、0次幂的运算法则是解题的关键. 16. 《孙子算经》中有过样一道题,原文如下: “今有百鹿入城,家取一鹿不尽,又三家共一鹿适尽,问城中家几何?” 大意为:今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,问城中有多少户人家?请解答上述问题.【答案】城中有75户人家.【解析】【分析】设城中有x户人家,根据今有100头鹿进城,每家取一头鹿,没有取完,剩下的鹿每3家共取一头,恰好取完,可得方程x+x=100,解方程即可得.【详解】设城中有x户人家,由题意得x+x=100,解得x=75,答:城中有75户人家.【点睛】本题考查了一元一次方程的应用,弄清题意,找出等量关系列方程进行求解是关键.17. 如图,在由边长为1个单位长度的小正方形组成的10×10网格中,已知点O,A,B均为网格线的交点. (1)在给定的网格中,以点O为位似中心,将线段AB放大为原来的2倍,得到线段(点A,B的对应点分别为).画出线段;(2)将线段绕点逆时针旋转90°得到线段.画出线段;(3)以为顶点的四边形的面积是个平方单位.【答案】(1)画图见解析;(2)画图见解析;(3)20【解析】【分析】(1)结合网格特点,连接OA并延长至A1,使OA1=2OA,同样的方法得到B1,连接A1B1即可得;(2)结合网格特点根据旋转作图的方法找到A2点,连接A2B1即可得;(3)根据网格特点可知四边形AA1 B1 A2是正方形,求出边长即可求得面积.【详解】(1)如图所示;(2)如图所示;(3)结合网格特点易得四边形AA1 B1 A2是正方形,AA1=,所以四边形AA1 B1 A2的在面积为:=20,故答案为:20.【点睛】本题考查了作图-位似变换,旋转变换,能根据位似比、旋转方向和旋转角得到关键点的对应点是作图的关键.18. 观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:,第5个等式:,……按照以上规律,解决下列问题:(1)写出第6个等式:;(2)写出你猜想的第n个等式:(用含n的等式表示),并证明.【答案】(1);(2),证明见解析.【解析】【分析】(1)根据观察到的规律写出第6个等式即可;(2)根据观察到的规律写出第n个等式,然后根据分式的运算对等式的左边进行化简即可得证. 【详解】(1)观察可知第6个等式为:,故答案为:;(2)猜想:,证明:左边====1,右边=1,∴左边=右边,∴原等式成立,∴第n个等式为:,故答案为:.【点睛】本题考查了规律题,通过观察、归纳、抽象出等式的规律与序号的关系是解题的关键. 19. 为了测量竖直旗杆AB的高度,某综合实践小组在地面D处竖直放置标杆CD,并在地面上水平放置个平面镜E,使得B,E,D在同一水平线上,如图所示.该小组在标杆的F处通过平面镜E恰好观测到旗杆顶A(此时∠AEB=∠FED).在F处测得旗杆顶A的仰角为39.3°,平面镜E的俯角为45°,FD=1.8米,问旗杆AB的高度约为多少米? (结果保留整数)(参考数据:tan39.3°≈0.82,tan84.3°≈10.02)【答案】旗杆AB高约18米.【解析】【分析】如图先证明△FDE∽△ABE,从而得,在Rt△FEA中,由tan∠AFE=,通过运算求得AB的值即可.【详解】如图,∵FM//BD,∴∠FED=∠MFE=45°,∵∠DEF=∠BEA,∴∠AEB=45°,∴∠FEA=90°,∵∠FDE=∠ABE=90°,∴△FDE∽△ABE,∴,在Rt△FEA中,∠AFE=∠MFE+∠MFA=45°+39.3°=84.3°,tan84.3°=,∴,∴AB=1.8×10.02≈18,答:旗杆AB高约18米.【点睛】本题考查了解直角三角形的应用,相似三角形的判定与性质,得到是解题的关键.20. 如图,⊙O为锐角△ABC的外接圆,半径为5.(1)用尺规作图作出∠BAC的平分线,并标出它与劣弧BC的交点E(保留作图痕迹,不写作法);(2)若(1)中的点E到弦BC的距离为3,求弦CE的长.【答案】(1)画图见解析;(2)CE=【解析】【分析】(1)以点A为圆心,以任意长为半径画弧,分别与AB、AC有交点,再分别以这两个交点为圆心,以大于这两点距离的一半为半径画弧,两弧交于一点,过点A与这点作射线,与圆交于点E ,据此作图即可;(2)连接OE交BC于点F,连接OC、CE,由AE平分∠BAC,可推导得出OE⊥BC,然后在Rt△OFC中,由勾股定理可求得FC的长,在Rt△EFC中,由勾股定理即可求得CE的长.【详解】(1)如图所示,射线AE就是所求作的角平分线;(2)连接OE交BC于点F,连接OC、CE,∵AE平分∠BAC,∴,∴OE⊥BC,EF=3,∴OF=5-3=2,在Rt△OFC中,由勾股定理可得FC==,在Rt△EFC中,由勾股定理可得CE==.【点睛】本题考查了尺规作图——作角平分线,垂径定理等,熟练掌握角平分线的作图方法、推导得出OE⊥BC是解题的关键.21. “校园诗歌大赛”结束后,张老师和李老师将所有参赛选手的比赛成绩(得分均为整数)进行整理,并分别绘制成扇形统计图和频数直方图部分信息如下:(1)本次比赛参赛选手共有人,扇形统计图中“69.5~79.5”这一组人数占总参赛人数的百分比为;(2)赛前规定,成绩由高到低前60%的参赛选手获奖.某参赛选手的比赛成绩为78分,试判断他能否获奖,并说明理由;(3)成绩前四名是2名男生和2名女生,若从他们中任选2人作为获奖代表发言,试求恰好选中1男1女的概率.【答案】(1)50,30%;(2)不能,理由见解析;(3)P=【解析】【分析】(1)由直方图可知59.5~69.5分数段有5人,由扇形统计图可知这一分数段人占10%,据此可得选手总数,然后求出89.5~99.5这一分数段所占的百分比,用1减去其他分数段的百分比即可得到分数段69.5~79.5所占的百分比;(2)观察可知79.5~99.5这一分数段的人数占了60%,据此即可判断出该选手是否获奖;(3)画树状图得到所有可能的情况,再找出符合条件的情况后,用概率公式进行求解即可.【详解】(1)本次比赛选手共有(2+3)÷10%=50(人),“89.5~99.5”这一组人数占百分比为:(8+4)÷50×100%=24%,所以“69.5~79.5”这一组人数占总人数的百分比为:1-10%-24%-36%=30%,故答案为:50,30%;(2)不能;由统计图知,79.5~89.5和89.5~99.5两组占参赛选手60%,而78<79.5,所以他不能获奖;(3)由题意得树状图如下由树状图知,共有12种等可能结果,其中恰好选中1男1女的8结果共有种,故P==.【点睛】本题考查了直方图、扇形图、概率,结合统计图找到必要信息进行解题是关键.22. 小明大学毕业回家乡创业,第一期培植盆景与花卉各50盆售后统计,盆景的平均每盆利润是160元,花卉的平均每盆利润是19元,调研发现:①盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元;②花卉的平均每盆利润始终不变.小明计划第二期培植盆景与花卉共100盆,设培植的盆景比第一期增加x盆,第二期盆景与花卉售完后的利润分别为W1,W2(单位:元)(1)用含x的代数式分别表示W1,W2;(2)当x取何值时,第二期培植的盆景与花卉售完后获得的总利润W最大,最大总利润是多少?【答案】(1)W1=-2x²+60x+8000,W2=-19x+950;(2)当x=10时,W总最大为9160元.【解析】【分析】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉(50-x)盆,根据盆景每增加1盆,盆景的平均每盆利润减少2元;每减少1盆,盆景的平均每盆利润增加2元,②花卉的平均每盆利润始终不变,即可得到利润W1,W2与x的关系式;(2)由W总=W1+W2可得关于x的二次函数,利用二次函数的性质即可得.【详解】(1)第二期培植的盆景比第一期增加x盆,则第二期培植盆景(50+x)盆,花卉[100-(50+x)]=(50-x)盆,由题意得W1=(50+x)(160-2x)=-2x²+60x+8000,W2=19(50-x)=-19x+950;(2)W总=W1+W2=-2x²+60x+8000+(-19x+950)=-2x²+41x+8950,∵-2<0,=10.25,故当x=10时,W总最大,W总最大=-2×10²+41×10+8950=9160.【点睛】本题考查了二次函数的应用,弄清题意,找准数量关系列出函数解析式是解题的关键.23. 如图1,Rt△ABC中,∠ACB=90°,点D为边AC上一点,DE⊥AB于点E,点M为BD中点,CM的延长线交AB于点F.(1)求证:CM=EM;(2)若∠BAC=50°,求∠EMF的大小;(3)如图2,若△DAE≌△CEM,点N为CM的中点,求证:AN∥EM.【答案】(1)证明见解析;(2)∠EMF=100°;(3)证明见解析.【解析】【分析】(1)在Rt△DCB和Rt△DEB中,利用直角三角形斜边中线等于斜边一半进行证明即可得;(2)根据直角三角形两锐角互余可得∠ABC=40°,根据CM=MB,可得∠MCB=∠CBM,从而可得∠CMD=2∠CBM,继而可得∠CME=2∠CBA=80°,根据邻补角的定义即可求得∠EMF的度数;【详解】(1)∵M为BD中点,Rt△DCB中,MC=BD,Rt△DEB中,EM=BD,∴MC=ME;(2)∵∠BAC=50°,∠ACB=90°,∴∠ABC=90°-50°=40°,∵CM=MB,∴∠MCB=∠CBM,∴∠CMD=∠MCB+∠CBM=2∠CBM,同理,∠DME=2∠EBM,∴∠CME=2∠CBA=80°,∴∠EMF=180°-80°=100°;(3)∵△DAE≌△CEM,CM=EM,∴AE=EM,DE=CM,∠CME=∠DEA=90°,∠ECM=∠ADE,∵CM=EM,∴AE=ED,∴∠DAE=∠ADE=45°,∴∠ABC=45°,∠ECM=45°,又∵CM=ME=BD=DM,∴DE=EM=DM,∴△DEM是等边三角形,∴∠EDM=60°,∴∠MBE=30°,∵CM=BM,∴∠BCM=∠CBM,∵∠MCB+∠ACE=45°,∠CBM+∠MBE=45°,∴∠ACE=∠MBE=30°,∴∠ACM=∠ACE+∠ECM=75°,连接AM,∵AE=EM=MB,∴∠MEB=∠EBM=30°,∠AME=∠MEB=15°,∵∠CME=90°,∴∠CMA=90°-15°=75°=∠ACM,∴AC=AM,∵N为CM中点,∴AN⊥CM,∵CM⊥EM,∴AN∥CM.【点睛】本题考查了三角形全等的性质、直角三角形斜边中线的性质、等腰三角形的判定与性质、三角形外角的性质等,综合性较强,正确添加辅助线、灵活应用相关知识是解题的关键.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2018年中考安徽名校大联考试卷(一)数学试题………○………………内………………○………………装………………2018年中考安徽名校大联考试卷(一)数学试题 考生注意:本卷共八大题,计23小题,满分150分,考试时间120一、选择题(本题共10小题,每题4分,共40分.每小题有四个答,其中有且只有个答案是正确的,请把正确答案的代号,写在题后的括号内,答对的得4分,答错、不答或答案超过一个的一律得0分) 1.2018的相反数是( ) A.-2018 B.2018 C12018-D.120182.如图,a ∥b,含30°角的三角板的直角顶点在直线b 上,一个锐角的顶点在直线a 上,若∠1=20°,则∠2的度数是( )A.20°B.40°C.50°D.60°3.2017年11月8日-10日,美国总统特朗普对我国进行国事访向,访问期间,中美两国企业签约项目总金额达2500亿美元,这里“2500亿”用科学记数法表示为( ) A.2.5×103B.2.5×1011C.0.25×1012D2500×1084.如图是由四个大小相同的正方体组成的几何体,它的主视图是( )5.3-2的值应该在( ) A.-1-0之间 B.0-1之间C.1-2之间D.2-3之间6.一元一次不等式组1221xx x ⎧-≥-⎪⎨⎪+>⎩ 的解集在数轴上表示正确的是( )17.如图是某班学生篮球运球成绩频数分布直方图,根据图中的信息,这组数据的中位数与众数是( )A.10人、20人B. 13人、14人C.14分、14分D.13.5分、14分………○………………内………………○………………装………………8.如图,一次函数y=-x 与二次函数为=ax 2+bx+c 的图象相交于点M,N,则关于x 的一元二次方程ax 2+(b+1)x+c=0的根的情况是( )A.有两个不相等的实数根B.有两个相等的实数C.没有实数根D.以上结论都正确9.如图,圆内接四边形ABCD 的边AB 过圆心O,过点C 的切线与AD 的延长线交于点E,若点D 是弧AC 的中点,且∠ABC=70°,则∠AEC 等于( ) A.80° B.75° C.70° D.65°10.如图,矩形ABCD 中,AB=4,BC=2,把矩形ABCD 沿过点A 的直线AE 折叠,点D 落在矩形ABCD 内部的点D ˊ处,则CD ˊ的最小值是( ) A.2 B.5 C. 52D. 252二、填空题(本题有4小题,每小题5分,共20分)11.计算:21()2-- = ; 12.因式分解:a 3-16ab 2= ;13.如图,点A 、B 、C 都在⊙O 上,∠ACB=60°,⊙O 的直径是6,则劣弧AB 的长是 ; 14.在△ABC 中,AB=6cm ,点P 在AB 上,且∠ACP=∠B ,若点P 是AB 的三等分点,则AC 的长是 . 三、(本题有2题,每题8分,共16分) 15.先化简,再求值:3221()x x x x x x---÷ ,其中x=-416.清朝数学家梅文鼎的著作《方程论》中有这样一道题:山田三亩,场地六亩,共折实田四亩七分;又山田五亩,场地三亩,共折实田五亩五分,问每亩山田折实田多少, 每亩场地折实田多少?译文为:假如有山田3亩,场地6亩,其产粮相当于实田………○………………内………………○………………装………………4.7亩;又山田5亩,场地3亩,其产粮相当于实田5.5亩,问每亩山田和每亩场地产粮各相当于实田多少亩?请你解答四、(本题有2题,每题8分,共16分) 17.已知:如图,一次函数y 1=x+2与反比例函数y 2=k x (x>0)的图象交于点A(a,5) (1)确定反比例函数的表达式;(2)结合图象,直接写出x 为何值时,y 1<y 218.在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系△ABC 是格点三角形(顶点在网格线的交点上) (1)先作△ABC 关于原点O 成中心对称的△A 1B 1C 1,再把△A 1B 1C 1向上平移4个单位长度得到△A 2B 2C 2;(2)△A 2B 2C 2与△ABC 是否关于某点成中心对称?若是,直接写出对称中心的坐标;若不是,请说明理由.五、(本题有2题,每题10分,共20分)19.观察下列图形,把一个三角形分别连接其三边中点,构成4个小三角形,挖去中间的一个小三角形(如图1),对剩下的三个小三角形再分别重复以上做法,……,据此解答下面的问题:(1) 填写下表:………○………………内………………○………………装………………(2)根据这个规律,求图n 中挖去三角形的个数w n (用含n 的代数式表示); (3)若图n+1中挖去三角形的个数为W n+1,求W n+1−W n .20.如图,在一座小山上建有一座铁塔AD,小明站在C 处测得小山顶A 的仰角为30°,铁塔顶端的D的仰角为45°,若铁塔AD 的高度是100m,试求小山的铅直高度AB(精确到0.1m)(参考数据:2=1.414.3=1.732)六、(本题共2分) 2.小明学习电学知识后,用四个开关按键(每个开关按键闭合的可能性相等)、一个电源和一个灯泡设计了一个电路图(1)若小明设计的电路图(四个开关按键都处于打开状态)如图1所示,求任意闭合一个开关按键,灯泡能发光的概率;(2)若小明设计的电路图(四个开关按键都处于打开状态)如图2所示,求同时闭合其中的两个开关按键,灯泡能发光的概率.(用列表或树状图法). 七、(本题共12分)22已知:如图,抛物线y=-x 2+bx+C 经过点B(0,3)和点A(3,0)图形 挖去三角形的个数图形1 1 图形2 1+3 图形3 1+3+9 图形4………○………………内………………○………………装………………()求该抛物线的函数表达式和直线AB 的函数表达式; (2)若直线l ⊥x 轴,在第一象限内与抛物线交于点M,与直线AB 交于点N,请在备用图上画出符合题意的图形,并求点M 与点N 之间的距离的最大值或最小值,以及此时点M,N 的坐标.八.(本题共14分)23.如图,正方形ABCD 、等腰Rt △BPQ 的顶点P 在对角线AC 上(点P 与A 、C 不重合),QP 与BC 交于E,QP 延长线与AD 交于点F,连接CQ. (1)①求证:AP=CQ ; ②求证:PA 2=AF ·AD;(2)若AP:PC=1:3,求tan ∠CBQ.2018年中考安徽名校大联考试卷(一)数学参考答案一、选择题(本题共10小题,每题4分,共40分.每小题有四个答案,其中有且只有个答案是正确的,请把正确答案的代号,写在题后的括号内)9.B提示:连接OC,∵CE是⊙O的切线,∴∠OCE=900,∵AB是⊙O的直径,∠ACB=90°∴∠BAC=90°-70°=20°∴OA=OC∴∠OAC=∠OCA=20°∵四边形ABCD内接于⊙O,∴∠EDC=∠ABC=70°,∵点D是弧AC的中点, ∴∠DAC=∠DCA=12∠EDC=35°∴∠ECD=90°-20°-35°=35°,∴∠AEC=180°-70°-35°=75°10.C 提示:根据题意,点D’在以点A为圆心,AD为半径且在矩形ABCD内部的圆弧上,连接AC交圆弧于点D’,由勾股定理得=所以CD’的最小值为2二、填空题(本题有4小题,每小题5分,共20分)11.412.a(a+4b)(a-4b)13.2π14.或解析:由∠ACP=∠B,∠A=∠A,可得△ACP∽△ABC.AC APAB AC=即AC2=AP·AB.分两种情况:(1) AP=13AB=2cm,AC 2=2×6=12,(2) AP=23AB=4cm,AC 2=4×6=24,= (填对又一个得3分,两个5分)三、(本题有2题,每题8分,共16分) 15.解32222221(21)()(1)(1)(1)5(8(1)(1)3x x x x x x x x x x x x x x x x x x x -----÷=⋅+--=⋅=+-分)16.解:设每亩山田产粮相当于实田x 亩,每亩场地产粮相当于实田y 亩可列方程组为36 4.753 5.5x y x y +=⎧⎨+=⎩(5分) 解得0.913x y =⎧⎪⎨=⎪⎩ .答:每亩山田相当于实田0.9亩,每亩场地相当于实田13亩.(8分)四、(本题有2题,每题8分,共16分) 17.解(1)∵点A(a,5)在一次函数y 1=x+2的图象上 ∴5=a+2,∴a=3,点A 坐标为(3,5)∵点A(3,5)在反比例函数2(0)kyx x =>的图象上,∴5=3k ∴15,k = 反比例函数的表达式为y 2=15x (x>0);(5分) (2)由图象可知,当0<x<3时,y 1<y 2.(8分) 18.解(1)如图所示,(5分)(2)是,对称中心的坐标是(0,2).(8分) 五、(本题有2题,每题10分,共20分) 19.解(1)图4挖去三角形的个数为33+32+3+1;(或40)(3分) (2)w n =3n-1+3n-2+…+32+3+1;(6分) (3)1122122221(333.....331)(33...331)333.....331,n nnn n n n n n n nw w w +-----+=+++∴-=++++++-+++++=++ .(10分)20.解:设AB=x(m),在Rt △ABC 中∵tan30°=ABBC(3分)…………在Rt △BCD 中,∵tan45°=,BD BD BC ∴== (6分)∵AD+AB=BD,∴解得x ≈136.6(m),(9分)答:小山的铅直高度AB 约为136.6m.(10分) 六、(本题共12分 21.解(1)一共有四个开关按键,只有闭合开关按键K 2,灯泡才会发光,所以P(灯泡发光)=14 (4分)(2)用树状图分析如下一共有12种不同的情况,其中有6种情况下灯泡能发光,所以P(灯泡发光)61122== (12分)七、(本题共12分)(1)∵抛物线y=-x 2+bx+c 经过点B(0,3)和点A(3,0),3,930c b c =⎧⎨-++=⎩解得2,3b c =⎧⎨=⎩抛物线的函数表达式是y=-x 2+2x+3;(2分)设直线AB:y=kx+m,根据题意得330m k m =⎧⎨+=⎩解得13k m =-⎧⎨=⎩,直线AB 的函数表达式是y=-x+3;(4分)(2)如图,设直线l 的横坐标为a,则点M 的坐标为(a,-a 2+2a+3),点N 的坐标是(a,-a+3),又点M,N 在第一象限, ∴|MN|=-a 2+2a+3-(-a+3)=-a 2+3a (7分)又|MN|=-a 2+3a=-(a 2-3a+94)+94=239()24a --+当a=32 时,|MN|有最大值,最大值为94, 即点M 与点N 之间的距离有最大值94,(10分) 此时点M 坐标为(32,154)点N 的坐标为33(,)22(12分)八、(本题共14分) 23.解(1)①∴正方形ABCD,∴AB=CB,∠ABC=90°,∴∠ABP+∠PBC=90°,∵△BPQ 是等腰直角三角形,∴BP=BQ,∠PBQ=90°,∴∠PBC+∠CBQ=90°∴∠ABP=∠CBQ,∴△ABP ≌△CBQ,∴AP=CQ;(4分) ②∵正方形ABCD,∴∠DAC=∠BAC=∠ACB=45°,∵∠PQB=45°,∠CEP=∠QEB,∴∠CBQ=∠CPQ,由①得△ABP ≌△CBQ,∠ABP=∠CBQ∵∠CPQ=∠APF,∴∠APF=∠ABP,∴△APF ∽△ABP,2,;AP AFAP AF AB AF AD AB AP∴=∴=⋅=⋅ (9分)(本题也可以连接PD,证△APF ∽△ADP)(2)由①得△ABP ≌△CBQ,∴∠BCQ=∠BAC=45°,∵∠ACB=45°∠PCQ=45°+45°=90°∴tan ∠CPQ=CQ CP 由①得AP=CQ又AP:PC=1:3,∴tan ∠CPQ 13CQAP CP CP == , 由②得∠CBQ=∠CPQ,∴tan ∠CBQ=tan ∠CPQ=13(14分)。