备战高考物理 电磁感应现象的两类情况 培优易错试卷练习(含答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

备战高考物理 电磁感应现象的两类情况 培优易错试卷练习(含答案)
一、电磁感应现象的两类情况
1.如图所示,足够长的光滑平行金属导轨MN 、PQ 倾斜放置,两导轨间距离为L ,导轨平面与水平面间的夹角θ,所处的匀强磁场垂直于导轨平面向上,质量为m 的金属棒
ab 垂直于导轨放置,导轨和金属棒接触良好,不计导轨和金属棒ab 的电阻,重力加速度为g .若在导轨的M 、P 两端连接阻值R 的电阻,将金属棒ab 由静止释放,则在下滑的
过程中,金属棒ab 沿导轨下滑的稳定速度为v ,若在导轨M 、P 两端将电阻R 改接成电容为C 的电容器,仍将金属棒ab 由静止释放,金属棒ab 下滑时间t ,此过程中电容器没有被击穿,求:
(1)匀强磁场的磁感应强度B 的大小为多少? (2)金属棒ab 下滑t 秒末的速度是多大? 【答案】(1)2sin mgR B L v
θ=2)sin sin t gvt v v CgR θθ=+ 【解析】
试题分析:(1)若在M 、P 间接电阻R 时,金属棒先做变加速运动,当加速度为零时做匀速运动,达到稳定状态.则感应电动势E BLv =,感应电流E
I R
=
,棒所受的安培力F BIL =
联立可得22B L v
F R
=,由平衡条件可得F mgsin θ=,解得2
mgRsin B L v θ (2)若在导轨 M 、P 两端将电阻R 改接成电容为C 的电容器,将金属棒ab 由静止释放,产生感应电动势,电容器充电,电路中有充电电流,ab 棒受到安培力. 设棒下滑的速度大小为v ',经历的时间为t 则电容器板间电压为 U E BLv ='=
此时电容器的带电量为
Q CU = 设时间间隔△t 时间内流经棒的电荷量为Q V
则电路中电流
Q C U CBL v i t t t ∆∆∆===∆∆∆,又v
a t
∆=∆,解得i CBLa = 根据牛顿第二定律得mgsin BiL ma θ-=,解得22mgsin gvsin a m B L C v CgRsin θθ
θ
=
=++
所以金属棒做初速度为0的匀加速直线运动,ts 末的速度gvtsin v at v CgRsin θ
θ
'==
+.
考点:导体切割磁感线时的感应电动势;功能关系;电磁感应中的能量转化
【名师点睛】本题是电磁感应与电路、力学知识的综合,关键要会推导加速度的表达式,通过分析棒的受力情况,确定其运动情况.
2.如图,垂直于纸面的磁感应强度为B ,边长为 L 、电阻为 R 的单匝方形线圈 ABCD 在外力 F 的作用下向右匀速进入匀强磁场,在线圈进入磁场过程中,求: (1)线圈进入磁场时的速度 v 。

(2)线圈中的电流大小。

(3)AB 边产生的焦耳热。

【答案】(1)22
FR v B L =;(2)F I BL
=;(3)4FL Q = 【解析】 【分析】 【详解】
(1)线圈向右匀速进入匀强磁场,则有
F F BIL ==安
又电路中的电动势为
E BLv =
所以线圈中电流大小为
=
=E BLv
I R R 联立解得
22
FR
v B L =
(2)根据有F F BIL ==安得线圈中的电流大小
F I BL
=
(3)AB 边产生的焦耳热
22(
)4AB F R L Q I R t BL v
==⨯⨯ 将22
FR
v B L =
代入得
4
FL Q =
3.如图所示,两根竖直固定的足够长的金属导轨ad 和bc ,相距为L=10cm ;另外两根水平金属杆MN 和EF 可沿导轨无摩擦地滑动,MN 棒的质量均为m=0.2kg ,EF 棒的质量M =0.5kg ,在两导轨之间两棒的总电阻为R=0.2Ω(竖直金属导轨的电阻不计);空间存在着垂直于导轨平面的匀强磁场,磁感应强度为B=5T ,磁场区域足够大;开始时MN 与EF 叠放在一起放置在水平绝缘平台上,现用一竖直向上的牵引力使MN 杆由静止开始匀加速上升,加速度大小为a =1m/s 2,试求:
(1)前2s 时间内流过MN 杆的电量(设EF 杆还未离开水平绝缘平台); (2)至少共经多长时间EF 杆能离开平台。

【答案】(1)5C ;(2)4s 【解析】 【分析】 【详解】
解:(1)t=2s 内MN 杆上升的距离为
21 2
h at = 此段时间内MN 、EF 与导轨形成的回路内,磁通量的变化量为
BLh ∆Φ=
产生的平均感应电动势为
E t ∆Φ
=
产生的平均电流为
E I R
=
流过MN 杆的电量
q It =
代入数据解得
25C 2BLat q R
==
(2)EF 杆刚要离开平台时有
BIL Mg =
此时回路中的电流为
E I R
=
MN 杆切割磁场产生的电动势为
E BLv =
MN 杆运动的时间为
v t a
=
代入数据解得
22
4s MgR
t B L a
==
4.如图所示,光滑的水平平行金属导轨间距为 L ,导轨电阻忽略不计.空间存在垂直于导 轨平面竖直向上的匀强磁场,磁感应强度大小为 B ,轻质导体棒 ab 垂直导轨放置,导体棒 ab 的电阻为 r ,与导轨之间接触良好.两导轨之间接有定值电阻,其阻值为 R ,轻质导体棒中间系一轻细线,细 线通过定滑轮悬挂质量为 m 的物体,现从静止释放该物体,当物体速度达到最大时,下落的高度为 h , 在本问题情景中,物体下落过程中不着地,导轨足够长,忽略空气阻力和一切摩擦阻力,重力加速度 为 g .求:
(1)物体下落过程的最大速度 v m ;
(2)物体从静止开始下落至速度达到最大的过程中,电阻 R 上产生的电热 Q ; (3)物体从静止开始下落至速度达到最大时,所需的时间 t .
【答案】(1)22()mg R r B L + (2) 3244
()
2mghR m g R R r R r B L
+-+ (3) 2222()()m R r B L h B L mg R r +++ 【解析】
【分析】在物体加速下落过程中,加速度逐渐减小,当加速度为0时,下落速度达到最大,由平衡条件、闭合电路欧姆定律和电磁感应定律求出物体下落过程的最大速度;在物体下落过程中,物体重力势能减少,动能增加,系统电热增加,根据能量守恒定律求出电阻R 上产生的电热;在系统加速过程中,分别对导体棒和物体分析,根据动量定理可得所需的时间;
解:(1)在物体加速下落过程中,加速度逐渐减小,当加速度为0时,下落速度达到最大 对物体,由平衡条件可得mg=Fr 对导体棒Fr=BIL
对导体棒与导轨、电阻R 组成的回路,根据闭合电路欧姆定律E
I R r
=+ 根据电磁感应定律E=BLv m 联立以上各式解得m 22
()
v mg R r B L
+=
(2)在物体下落过程中,物体重力势能减少,动能增加,系统电热增加,根据能量守恒定律可得 mgh=
1
2
mv m 2+Q 总 在此过程中任一时刻通过R 和r 两部分电阻的电流相等,则电功率之比正比于电阻之比,故整个过程中回路中的R 与r 两部分电阻产生的电热正比于电阻,所以
Q R Q R r
=+总 联立解得3244
()
Q 2mghR m g R R r R r B L
+=-+ (3)在系统加速过程中,任一时刻速度设为v ,取一段时间微元Δt ,在此过程中分别对导
体棒和物体分析,根据动量定理可得22T F 0B L v t R r ⎛⎫
-∆= ⎪+⎝

()T m F m g t v -∆=∆
整理可得22m m B L v
g t t v R r ∆-∆=∆+
即22
m m B L g t x v R r ∆-∆=∆+
全过程叠加求和22
m m m B L gt h v R r
-=+
联方解得2222()t ()
m R r B L h
B L mg R r +=++
5.如图所示,在倾角θ=10°的绝缘斜面上固定着两条粗细均匀且相互平行的光滑金属导轨DE 和GH ,间距d =1m ,每条金属导轨单位长度的电阻r 0=0.5Ω/m ,DG 连线水平,且DG 两端点接了一个阻值R =2Ω的电阻。

以DG 中点O 为坐标原点,沿斜面向上平行于GH 方向建立x 轴,在DG 连线沿斜面向上的整个空间存在着垂直于斜面向上的磁场,且磁感应强度大小B 与坐标x 满足关系B =(0.6+0.2x )T ,一根长l =2m ,电阻r =2Ω,质量m =0.1kg 的粗细均匀的金属棒MN 平行于DG 放置,在拉力F 作用下以恒定的速度v =1m/s 从x =0处沿x 轴正方向运动,金属棒与两导轨接触良好。

g 取10m/s 2,sin10°=0.18,不计其它电阻。

(提示:可以用F -x 图象下的“面积”代表力F 所做的功)求: (1)金属棒通过x =1m 处时的电流大小; (2)金属棒通过x =1m 处时两端的电势差U MN ;
(3)金属棒从x =0到x =2m 过程中,外力F 做的功。

【答案】(1)0.2A ;(2)1.4V ;(3)0.68J 【解析】 【分析】 【详解】
(1)金属棒连入电路部分产生的感应电动势为
11(0.60.21)11V=0.8V E B dv ==+⨯⨯⨯
根据闭合电路欧姆定律可得电流大小
1
10
0.2A
2E I d
R r xr l
=
=++
(2)解法一:根据欧姆定律可得金属棒通过1m x =处时两端的电势差
101(2)() 1.4V MN U I R xr B l d v =++-=
解法二:根据闭合电路欧姆定律可得金属棒通过1m x =处时两端的电势差
11
1
(0.60.21)210.22V 1.4V 2
MN d U B lv I r l =-=+⨯⨯⨯-⨯⨯= (3)金属棒做匀速直线运动,则有
sin F mg BdI θ=+
其中
0(0.60.2)11
A 0.2A
32Bdv x I d x R r xr l
+⨯⨯=
==+++ 可得
0.300.04F x =+
金属棒从x =0到x =2m 过程中,外力F 做的功
0.300.38
2J 0.68J 2
W Fx +==⨯=
6.如图,两足够长的平行金属导轨平面与水平面间夹角为=30θ︒,导轨电阻忽略不计,二者相距l =1m ,匀强磁场垂直导轨平面,框架上垂直放置一根质量为m =0.1kg 的光滑导体
棒ab ,并通过细线、光滑滑轮与一质量为2m
、边长为
2
l
正方形线框相连,金属框下方h =1.0m 处有垂直纸面方向的长方形有界匀强磁场,现将金属框由静止释放,当金属框刚进入磁场时,电阻R 上产生的热量为1Q =0.318J ,且金属框刚好能匀速通过有界磁场。

已知两磁场区域的磁感应强度大小相等。

定值电阻R =1Ω。

导体棒ab 和金属框单位长度电阻r =1Ω/m ,g =10m/s 2,求
(1)两磁场区域的磁感应强度为多大?
(2)金属框刚离开磁场时,系统损失的机械能是多大? (3)金属框下方没有磁场时,棒的最大速度是多少?
【答案】(1)1T(2)2.136J(3)3m/s 【解析】 【详解】
(1)由题意知,导体棒ab 接入电路的电阻为
11ΩR rl ==
与定值电阻R 相等,故金属框由静止释放到刚进入磁场过程重金属导轨回路产生的总热量为
120.636J Q Q ==
此过程由动能定理得
21
2sin 30(2)2
mgh mgh Q m m v ︒--=+
解得
v =2.4m/s
金属框的总电阻为
21
42Ω2
R l r =⨯⨯=
金属框在磁场中做匀速运动时导体棒ab 产生的电动势为1E Blv =,则有
1
11E I R R
=
+ 金属框产生的电动势
21 2
E Blv
=
2
2
2
E
I
R
=
金属框在磁场中做匀速运动时由平衡条件得
12
1
2sin300
2
mg mg BI l BI l

---=

B=1T
(2)由于金属框刚好能做匀速通过有界磁场,说明磁场宽度与线框边长相等
0.5
2
l
d m
==
根据能量守恒得
2
1
2(2)(2)sin30(2)
2
mg h d mg h d E m m v

+-+=∆++

2.136J
E
∆=
(3)金属框下没有磁场,棒的速度达到最大后做匀速运动,设此时速度为m v,则
m
1
Blv
I
R R
=
+
根据平衡条件得
2sin300
mg mg BIl

--=
解得
m
3m/s
v=。

7.在如图甲所示区域(图中直角坐标系Oxy的一、三象限)内有匀强磁场,磁感应强度方向垂直于纸面向里,大小为B,半径为l,圆心角为60°的扇形导线框OPQ以角速度ω绕O 点在纸面内沿逆时针方向匀速转动,导线框回路电阻为R.
(1)求线框中感应电流的最大值I0和交变感应电流的频率f;
(2)在图乙中画出线框在一周的时间内感应电流I随时间t变化的图象(规定与图中线框的位置相应的时刻为t=0)
【答案】(1)2012I bl R ω=
,f ω
π
= (2)
【解析】 【详解】
(1)在从图1中位置开始t =0转过60°的过程中,经△t ,转角△θ=ω△t ,回路的磁通增量为
△Φ=
1
2
△θ l 2B 由法拉第电磁感应定律,感应电动势为:
ε=
t
Φ
V V 因匀速转动,这就是最大的感应电动势.由欧姆定律可求得:
I 0=1 2R
ωBl 2
前半圈和后半圈I (t )相同,故感应电流周期为:
T = πω

频率为:
1f T =
ωπ
=. 故感应电流的最大值为
I 0=1 2R
ωBl 2,
频率为
f =
ωπ
. (2)由题可知当线框开始转动
3
π
过程中,有感应电流产生,全部进入时,无感应电流,故当线框全部进入磁场接着再旋转6
π
过程中无电流,然后出磁场时,又有感应电流产生.故图线如图所示:
【点睛】
本题考查了法拉第电磁感应定律的应用,注意公式=E t
V V 和E =BLv 的区别以及感应电流产生条件,并记住旋转切割产生感应电动势的公式E =
1
2
BωL 2.
8.如图,两根相距l =0.4m 、电阻不计的平行光滑金属导轨水平放置,一端与阻值R =0.15Ω的电阻相连.导轨x >0一侧存在沿x 方向均匀增大的稳恒磁场,其方向与导轨平面垂直,变化率k =0.5T/m ,x =0处磁场的磁感应强度B 0=0.5T .一根质量m =0.1kg 、电阻r =0.05Ω的金属棒置于导轨上,并与导轨垂直.棒在外力作用下从x =0处以初速度v 0=2m/s 沿导轨向右运动,运动过程中电阻上消耗的功率不变.求:
(1)同路中的电流;
(2)金属棒在x =2m 处的速度;
(3)金属棒从x =0运动到x =2m 过程中安培力做功的大小; (4)金属棒从x =0运动到x =2m 过程中外力的平均功率. 【答案】(1)2(2)(3)1.6(4)0.71 【解析】 【分析】 【详解】
(1)因为运动过程中电阻上消耗的功率不变,所以回路中电流不变,感应电动势不变 x =0处导体棒切割磁感线产生电动势
电流
(2) x =2m 处
解得
(3)
F-X图像为一条倾斜的直线,图像围成的面积就是二者的乘积即
x=0时,F=0.4N x=2m时,F=1.2N
(4)从x=0运动到x=2m,根据动能定理
解得
解得
所以
【点睛】
(1)由法拉第电磁感应定律与闭合电路欧姆定律相结合,来计算感应电流的大小;(2)由因棒切割产生感应电动势,及电阻的功率不变,即可求解;(3)分别求出x=0与x=2m 处的安培力的大小,然后由安培力做功表达式,即可求解;(4)依据功能关系,及动能定理可求出外力在过程中的平均功率.
9.“801所”设计的磁聚焦式霍尔推进器可作为太空飞船的发动机,其原理如下:系统捕获宇宙中大量存在的等离子体(由电量相同的正、负离子组成)经系统处理后,从下方以恒定速率v1向上射入有磁感应强度为B1、垂直纸面向里的匀强磁场区域Ⅰ内.当栅极MN、PQ 间形成稳定的电场后,自动关闭区域Ⅰ系统(关闭粒子进入通道、撤去磁场B1).区域Ⅱ内有磁感应强度大小为B2、垂直纸面向外的匀强磁场,磁场右边界是直径为D、与上下极板相切的半圆(圆与下板相切于极板中央A).放在A处的放射源能够向各个方向均匀发射速度大小相等的氙原子核,氙原子核经过该区域后形成宽度为D的平行氙粒子束,经过栅极MN、PQ之间的电场加速后从PQ喷出,在加速氙原子核的过程中探测器获得反向推力(不计氙原子核、等离子体的重力,不计粒子之间相互作用于相对论效应).已知极板长
RM=2D,栅极MN和PQ间距为d,氙原子核的质量为m、电荷量为q,求:
(1)氙原子核在A 处的速度大小v 2; (2)氙原子核从PQ 喷出时的速度大小v 3;
(3)因区域Ⅱ内磁场发生器故障,导致区域Ⅱ中磁感应强度减半并分布在整个区域Ⅱ中,求能进入区域Ⅰ的氙原子核占A 处发射粒子总数的百分比.
【答案】(1)22B Dq m (2222
1122
84B v qdm B D q m
+(3)090FAN ∠= 13 【解析】 【分析】 【详解】
(1)离子在磁场中做匀速圆周运动时:2
2
22v B qv m r
=
根据题意,在A 处发射速度相等,方向不同的氙原子核后,形成宽度为D 的平行氙原子核束,即2
D r = 则:222B Dq
v m
=
(2)等离子体由下方进入区域I 后,在洛伦兹力的作用下偏转,当粒子受到的电场力等于洛伦兹力时,形成稳定的匀强电场,设等离子体的电荷量为q ' ,则11Eq B v q ='' 即11E B v =
氙原子核经过区域I 加速后,离开PQ 的速度大小为3v ,根据动能定理可知:
22321122
Uq mv mv =
- 其中电压11U Ed B v d ==
联立可得222
11232
84B v qdm B D q
v m
+=(3)根据题意,当区域Ⅱ中的磁场变为2
B '之后,根据2
mv
r B q =''可知,2r r D '==
①根据示意图可知,沿着AF 方向射入的氙原子核,恰好能够从M 点沿着轨迹1进入区域I ,而沿着AF 左侧射入的粒子将被上极板RM 挡住而无法进入区域I .
该轨迹的圆心O 1,正好在N 点,11AO MO D ==,所以根据几何关系关系可知,此时
090FAN ∠=;
②根据示意图可知,沿着AG 方向射入的氙原子核,恰好从下极板N 点沿着轨迹2进入区域I ,而沿着AG 右侧射入的粒子将被下极板SN 挡住而无法进入区域I .
22AO AN NO D ===,所以此时入射角度030GAN ∠=.
根据上述分析可知,只有060FAG ∠=这个范围内射入的粒子还能进入区域I .该区域的
粒子占A 处总粒子束的比例为00601
==1803
η
10.如图所示,水平面上有一个高为d 的木块,木块与水平面间的动摩擦因数为μ=0.1.由均匀金属材料制成的边长为2d 、有一定电阻的正方形单匝线框,竖直固定在木块上表面,它们的总质量为m .在木块右侧有两处相邻的边长均为2d 的正方形区域,正方形底边离水平面高度为2d .两区域各有一水平方向的匀强磁场穿过,其中一个方向垂直于纸面向里,另一个方向垂直于纸面向外,区域Ⅱ中的磁感应强度为区域Ⅰ中的3倍.木块在水平外力作用下匀速通过这两个磁场区域.已知当线框右边MN 刚进入Ⅰ区时,外力大小恰好为0320
F g m =
,此时M 点电势高于N 点,M 、N 两点电势差U MN =U .试求:
(1)区域Ⅰ中磁感应强度的方向怎样?
(2)线框右边MN 在Ⅰ区运动过程中通过线框任一横截面的电量q . (3)MN 刚到达Ⅱ区正中间时,拉力的大小F . (4)MN 在Ⅱ区运动过程中拉力做的功W .
【答案】(1)向外 (2)340mgd q U = (3)
4750mg (4)47
25
mgd 【解析】 【详解】
(1)因为线框从左向右匀速通过这两个磁场区域,所以拉力方向向右,安培力方向向左。

因为M 点电势高于N 点,由右手定制可判断区域Ⅰ中磁感应强度的方向向外。

(2)设线框的总电阻为R ,磁场Ⅰ区的磁感强度为B ,线框右边MN 在Ⅰ区运动过程中有一半长度切割磁感线产生感应电动势,有
Bdv I R
R
ε
=
=
,33
44U I R Bdv =⋅=
线框右边MN 在Ⅰ区运动过程中,木块与线框受力平衡,有
0A F F mg μ--=
解得
31
0.12020
A F BId mg mg mg ==
-= 通过线框任一横截面的电量q 为q It =,其中2d
t v
= 联立以上各式,解得
340mgd
q U
=
(3)MN 刚到达Ⅱ区正中间时,流过线框的电流为
34'4Bdv Bdv Bdv
I I R R
+=
== 线框左、右两条边均受到向左的安培力作用,总的安培力大小为
4
''3'165
A A F BI d BI d F mg =+==
由于线框上边各有一半处在磁场Ⅰ区、Ⅱ区中,所以分别受到向上与向下的安培力作用,此时木块受到的支持力N 为
7
3''85
A N mg BI d BI d mg F mg =+-=+=
木块与线框组成的系统受力平衡,因此拉力F 为
4747
'55050
A F F N mg mg mg μ=+=+=
(4)随着MN 在磁场Ⅱ区的运动,木块受到的支持力N x 随发生的位移x 而变化,有
3''(2)2'4'x N mg BI x BI d x mg BI d BI x =+--=-+
由于N x 随位移x 线性变化,因此MN 在Ⅱ区运动过程中木块受到的平均支持力为
4'27
2'2'25
BI d N mg BI d mg BI d mg ⋅=-+
=+= 此过程中拉力做的功W 为
4747
'222255025
A W F d N d mg d mg d mgd μ=⋅+⋅=⋅+⋅=
11.如图所示,两根电阻忽略不计、互相平行的光滑金属导轨竖直放置,相距L=1m ,在水平虚线间有与导轨所在平面垂直的匀强磁场,磁感应强度B=0.5T ,磁场区域的高度d=1m ,导体棒a 的质量m a =0.2kg 、电阻R a =1Ω;导体棒b 的质量m b =0.1kg 、电阻R b =1.5Ω.它们分别从图中M 、N 处同时由静止开始在导轨上无摩擦向下滑动,b 匀速穿过磁场区域,且当b 刚穿出磁场时a 正好进入磁场,重力加速度g=10m/s 2,不计a 、b 棒之间的相互作用,导体棒始终与导轨垂直且与导轨接触良好,求:
(1)b 棒穿过磁场区域过程中克服安培力所做的功; (2)a 棒刚进入磁场时两端的电势差;
(3)保持a 棒以进入时的加速度做匀变速运动,对a 棒施加的外力随时间的变化关系. 【答案】(1)b 棒穿过磁场区域过程中克服安培力所做的功为1J ;(2)a 棒刚进入磁场时两端的电势差为3.3V ;
(3)保持a 棒以进入时的加速度做匀变速运动,对a 棒施加的外力随时间的变化关系为F=0.45t ﹣1.1. 【解析】 【分析】
(1)b 在磁场中匀速运动,其安培力等于重力,根据重力做功情况求出b 棒克服安培力分别做的功.
(2)b 进入磁场做匀速直线运动,受重力和安培力平衡,根据平衡条件,结合闭合电路欧姆定律和切割产生感应电动势大小公式,求出b 做匀速直线运动的速度大小.a 、b 都在磁场外运动时,速度总是相等,b 棒进入磁场后,a 棒继续加速运动而进入磁场,根据运动学速度时间公式求解出a 进入磁场时的速度大小,由E=BLv 求出a 棒产生的感应电动势,即可求得a 棒刚进入磁场时两端的电势差.
(3)根据牛顿第二定律求出a 棒刚进入磁场时的加速度,再根据牛顿第二定律求出保持a 棒以进入时的加速度做匀变速运动时外力与时间的关系式. 【详解】
(1)b 棒穿过磁场做匀速运动,安培力等于重力,则有:BI 1L=m b g , 克服安培力做功为:W=BI 1Ld=m b gd=0.1×10×1=1J
(2)b 棒在磁场中匀速运动的速度为v 1,重力和安培力平衡,根据平衡条件,结合闭合电路欧姆定律得:
=m b g,v b===10m/s,
b棒在磁场中匀速运动的时间为t1,d=v b t1,t1===0.1s,a、b都在磁场外运动时,速度
总是相等的,b棒进入磁场后,a棒继续加速t1时间而进入磁场,a棒进入磁场的速度为
v a,v a=v b+gt1=10+10×0.1=11m/s.
电动势为:E=BLv a=0.5×1×11=5.5V,a棒两端的电势差即为路端电压为:
U===3.3V.
(3)a棒刚进入磁场时的加速度为a,根据牛顿第二定律得:m a g﹣BI2L=m a a,
a=g﹣=g﹣=10﹣=4.5m/s2,
要保持加速度不变,加外力F,根据牛顿第二定律得:F+m a g﹣BIL=m a a
得:F=t=×t=0.45t﹣1.1.
12.如图所示,一对光滑的平行金属导轨(电阻不计)固定在同一水平面内,导轨足够长且间距为L,左端接有阻值R的电阻,一质量m、长度L的金属棒MN放置在导轨上,棒的电阻为r,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度为B,棒在水平向右的外力作用下,由静止开始做加速运动,保持外力的功率为P不变,经过时间t导体棒最终做匀速运动.求:
(1)导体棒匀速运动时的速度是多少?
(2)t时间内回路中产生的焦耳热是多少?
【答案】(1);(2)
【解析】
【分析】
(1)金属棒在功率不变的外力作用下,先做变加速运动,后做匀速运动,此时受到的安培力与F二力平衡,由法拉第定律、欧姆定律和安培力公式推导出安培力与速度的关系式,再由平衡条件求解速度;
(2)t时间内,外力F做功为Pt,外力F和安培力对金属棒做功,根据动能定理列式求出金属棒克服安培力做功,即可得到焦耳热.
【详解】
(1)金属棒匀速运动时产生的感应电动势为 E=BLv
感应电流I=
金属棒所受的安培力 F安=BIL
联立以上三式得:F安=
外力的功率 P=Fv
匀速运动时,有F=F安
联立上面几式可得:v=
(2)根据动能定理:W F+W安=
其中 W F=Pt,Q=﹣W安
可得:Q=Pt﹣
答:
(1)金属棒匀速运动时的速度是.
(2)t时间内回路中产生的焦耳热是Pt﹣.
【点睛】
金属棒在运动过程中克服安培力做功,把金属棒的动能转化为焦耳热,在此过程中金属棒做加速度减小的减速运动;对棒进行受力分析、熟练应用法拉第电磁感应定律、欧姆定律、动能定理等正确解题.
13.一种可测速的跑步机的测速原理如图所示。

该机底面固定有间距为L、宽度为d的平行金属电极。

电极间充满磁感应强度为B,方向垂直纸面向里的匀强磁场,左侧与电压表和电阻R相连接。

绝缘橡胶带上每隔距离d就嵌入一个电阻为r的平行细金属条,跑步过程中,绝缘橡胶带跟随脚步一起运动,金属条和电极之间接触良好且任意时刻仅有一根金属条处于磁场中。

现在测出t时间内电压表读数为恒为U,设人与跑步机间无相对滑动,求:
(1)判断电阻R的电流方向;
(2)该人跑步过程中,是否匀速?给出定性判断理由;
(3)求t时间内的平均跑步速度;
(4)若跑步过程中,人体消耗的能量有20%用于克服磁场力做功,求t时间内人体消耗的能量。

【答案】(1)电阻R 的电流方向向下;(2)是匀速;(3)R r v U BLR +=;(4)2
5()R r t
E UR
+= 【解析】 【分析】 【详解】
(1)由题意且根据右手定则可知,流经电阻R 的电流方向向下; (2)(3)金属条做切割磁感线运动产生的电动势大小为E BLv =, 回路中的电流大小为E
I R r
=
+, 伏特表的示数为U IR =, 解得
R r
v U BLR +=
由于伏特表示数恒定,所以速度也恒定,说明该人跑步过程中,是匀速;速度为
R r
v U BLR
+=
(4)金属条中的电流为
I r
BLv
R =
+ 金属条受的安培力大小为
A F BIL =
时间t 内金属条克服安培力做功为
22222
()A B L v t R r U t
W F vt R r R +===
+ 所以t 时间内人体消耗的能量
22
5()0.2W R r U t
E R +==
14.如图所示,足够长的光滑金属导轨 EF 、PQ 固定在竖直面内,轨道间距L =1m ,底部接入一阻值为R = 0.15Ω 的定值电阻,上端开口,处于垂直导轨面向内的磁感应强度为 B = 0.5T 的匀强磁场中一质量为m = 0.5kg 的金属棒 ab 与导轨接触良好,ab 连入导轨间的电阻r = 0.1Ω ,电路中其余电阻不计,不可伸长的轻质细绳绕过光滑的定滑轮与 ab 相连,在电键 S 打开的情况下,用大小为9N 的恒力 F 从静止开始向下拉绳子的自由端,当自由端下落
高度 h =1.0m 时细绳突然断了,此时闭合电键S.运动中ab 始终垂直导轨,并接触良好,不计空气阻力,取g =10m / s 2 试问:
(1)当绳子自由端下落高度大小h =1.0m 时,ab 上的电流方向如何?此时ab 棒速度的大小;
(2)请说明细绳突然断后 ab 棒的大致运动情况; (3)当 ab 棒速度最大时,定值电阻 R 的发热功率。

【答案】(1) 4m/s(2)ab 棒先向上做加速度减小的减速运动,当速度减为零时再向下做加速度减小的加速运动,最终匀速运动(3)15W 【解析】 【详解】
(1)由右手定则可知,ab 上的电流方向为b 到a ; 对于ab 棒在力F 作用下的运动过程,其受力图如图所示
根据牛顿第二定律有:
F mg ma -=
229-0.510
=
m/s =8m/s 0.5
F mg a m -⨯= 由速度位移公式得:
212v ah =,
12=281m/s=4m/s v ah =⨯⨯
(2)ab 棒先向上做加速度减小的减速运动,当速度减为零时再向下做加速度减小的加速运动,最终匀速运动。

(3)对于ab 棒向下作匀速运动的状态,其受力图如图所示
A F mg =
安培力为:
2222
A BLv
B L
v F BIL B L R r R r
==⋅=++
根据平衡条件有:
222
B L v mg R r
=+ ()()
222
22
0.5100.150.1m/s=5m/s 0.51mg R r v B L +⨯⨯+=
=

因为21v v >,所以ab 棒的最大运动速度为5m/s
2v 0.515
A=10A 0.15+0.1
BL I R r ⨯⨯=
=+, 22100.15W=15W P I R ==⨯;
15.如图(a )所示,一个电阻值为R 、匝数为n 的圆形金属线圈与阻值为2R 的电阻R 1连接成闭合回路,线圈的半径为r 1, 在线圈中半径为r 2的圆形区域存在垂直于线圈平面向里的匀强磁场,磁感应强度B 随时间t 变化的关系图线如图(b )所示,图线与横、纵轴的截距分别为t 0和B 0,导线的电阻不计.求
(1) 0~t 0时间内圆形金属线圈产生的感应电动势的大小E ; (2) 0~t 1时间内通过电阻R 1的电荷量q .
【答案】(1)2020n B r E t π=(2)2
0120
3n B t r q Rt π=
【解析】 【详解】
(1)由法拉第电磁感应定律E n t φ
∆=∆有2020
n B r B E n S t t π∆==∆ ① (2)由题意可知总电阻 R 总=R +2R =3 R ②。

相关文档
最新文档