五年级杯数学竞赛试题word百度文库
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
五年级杯数学竞赛试题word百度文库
一、拓展提优试题
1.由120个棱长为1的正方体,拼成一个长方体,表面全部涂色,只有一面染色的小正方体,最多有块
2.(7分)棱长都是1厘米的63个白色小正方体和1个黑色小正方体,可以拼成一个大正方体,问:一共可以拼成种不同的含有64个小正方体的大正方体.
3.数学家维纳是控制论的创始人.在他获得哈佛大学博士学位的授予仪式上,有人看他一脸稚气的样子,好奇地询问他的年龄.维纳的回答很有趣,他说:“我的年龄的立方是一个四位数,年龄的四次方是一个六位数,这两个数刚好把0﹣9这10个数字全都用上了,不重也不漏,”那么,维纳这一年
岁,(注:数a的立方等于a×a×a,数a的四次方等于a×a×a×a)
4.有白球和红球共300个,纸盒100个.每个纸盒里都放3个球,其中放1个白球的纸盒有27个,放2个或3个红球的纸盒共有42个,放3个白球和3个红球的纸盒数量相同.那么,白球共有个.
5.(8分)在长方形ABCD中,BE=5,EC=4,CF=4,FD=1,如图所示,那么△AEF的面积是;
6.请从1、2、3、…、9、10中选出若干个数,使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.那么,至少需要选出个数.
7.小猫咪A、B、C、D、E、F排队依次从猫妈妈手中领鱼干,每只小猫咪每次领一条,领完后在道队尾继续排队领,直到鱼干发完.若猫妈妈有278条鱼干,则最后一个领到鱼干的小猫咪是.
8.(8分)图中所示的图形是迎春小学数学兴趣小组的标志,其中,ABCDEF 是正六边形,面积为360,那么四边形AGDH的面积是.
9.一次数学竞赛中,某小组10个人的平均分是84分,其中小明得93分,则其他9个人的平均分是分.
10.从1、2、3、4、5中任取3个组成一个三位数,其中不能被3整除的三位数有个.
11.(8分)一个大于1的正整数加1能被2整除,加2能被3整除,加3能被4整除,加4能被5整除,这个正整数最小是.
12.同学们去春游,带水壶的有80人,带水果的有70人,两样都没带的有6人.若既带水壶又带水果的人数是所有参加春游人数的一半,则参加春游的同学共有人.
13.某场考试共有7道题,每道题问的问题都只与这7道题的答案有关,且答案只能是1、2、3、4中的一个.已知题目如下:
①有几道题的答案是4?
②有几道题的答案不是2也不是3?
③第⑤题和第⑥题的答案的平均数是多少?
④第①题和第②题的答案的差是多少?
⑤第①题和第⑦题的答案的和是多少?
⑥第几题是第一个答案为2的?
⑦有几种答案只是一道题的答案?
那么,7道题的答案的总和是.
14.(7分)如图,按此规律,图4中的小方块应为个.
15.(7分)对于a、b,定义运算“@”为:a@b=(a+5)×b,若x@1.3=11.05,则x=.
【参考答案】
一、拓展提优试题
1.64
≥≥),容易知道只有[解答]设长方体的长、宽、高分别为,,
l m n(不妨设l m n
一面染色的小正方体只有每个面上可能有一些。
要使得其最多,那么2n =(否则内部有太多的小正方体都是所有面没有染色的)。
由于12060lmn lm =⇒=。
此时一面染色的小正方体的个数为
()()()()()22222242602242644l m lm l m l m l m --=--+=--+=⨯-+。
要使得()2644l m ⨯-+最大,那么就是要使l m +最小。
考虑到60lm =,容易知道当10,6l m ==时,l m +最小。
所以只有一面染色的小正方体最多有
()264410664⨯-⨯+=
2.【分析】一共64个,4×4×4,①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;然后把几种情况的种数相加即可.
解:①把黑色正方体放在顶点处,1种;②把黑色正方体放在棱中间,任选一个,2种;③把正方体放在每个面的中间4个,任选一个,4种;④把黑色正方体放在里面,从外边看不到,8种;
共:1+2+4+8=15(种);
答:一共可以拼成15种不同的含有64个小正方体的大正方体.
故答案为:15.
3.解:先用估值的方法大概确定一下维纳的年龄范围.根据174=83521,184=104976,194=130321,根据题意可得:他的年龄大于或等于18岁;
再看,183=5832,193=6859,213=9261,223=10648,说明维纳的年龄小于22岁.
根据这两个范围可知可能是18、19、20、21的一个数.
又因为20、21无论是三次方还是四次方,它们的尾数分别都是:0、1,与“10个数字全都用上了,不重也不漏”不符,所以不用考虑了.
只剩下18、19这两个数了.一个一个试,
18×18×18=5832,18×18×18×18=104976;
19×19×19=6859,19×19×19×19=130321;
符合要求是18.
故答案为:18.
4.解:根据题干分析可得:
3个红球的盒子数是:42﹣27=15(个),
所以放3个白球的盒子数也是15(个),
则放2白一红的盒子数是:100﹣15﹣15﹣27=43(个),
所以白球的总数有:15×3+43×2+27=158(个),
答:白球共有158个.
故答案为:158.
5.解:根据分析,AD=BE+EC=5+4=9,
AB=1+4=5,S△EFC=×EC×FC=×4×4=8;
S△ABE=×AB×BE=×5×5=12.5;
S△ADF=×AD×DF=×9×1=4.5;
S长方形ABCD=AB×AD=5×9=45,
要求的△AEF的面积等于整体长方形的面积减去三个三角形的面积.
S△AEF=S长方形ABCD﹣S△EFC﹣S△ABE﹣S△ADF=45﹣8﹣12.5﹣4.5=20.
故答案是:20.
6.解:列举如下:
1=1;2=2;3=1+2;4=2+2;5=5;6=1+5;7=2+5;8=8;9=9;10=10;11=1+10;12=2+10;13=5+8;14=7+7;15=5+10;16=8+8;17=8+9;18=8+10;19=9+10;
通过观察,可看出从1、2、3、…、9、10中选出若干个数分别为{1,2,5,8,9,10};就能使得1、2、3、…、19、20这20个数中的每个数都等于某个选出的数或某两个选出的数(可以相等)的和.
故至少需要选出6个数.
故答案为6.
7.解:共有6只小猫咪,每发6条鱼重复出现,而278÷6=46…2,余数是2,则最后一个领到鱼干的小猫咪是B.
故答案为:B.
8.解:根据分析,(1)△ABC面积等于六边形面积的,连接AD,
四边形ABCD是正六边形面积的,故△ACD面积为正六边形面积的
(2)S
△ABC :S
△ACD
=1:2,根据风筝模型,BG:GD=1:2;
(3)S
△BGC
:S CGD=BG:GD=1:2,故;
故AGDH面积=六边形总面积﹣(S
△ABC +S
△CGD
)×2=360﹣(+40)×
2=160.
故答案是:160
9.解:(84×10﹣93)÷(10﹣1)
=747÷9
=83(分)
答:其他9个人的平均分是83分.
故答案为:83.
10.解:1+2+3=6,1+2+4=7,1+2+5=8,2+3+4=9,2+3+5=10,3+4+5=12,
其中不能被3整除的数的和是7、8、10,即有三组(1、2、4),(1、2、5)(2、3、5),
每一组可以组成3×2×1=6个,三组共可以组成6×3=18个,
即不能被3整除的数共有18个.
故答案为:18.
11.解:根据分析:
这个数除以2,3,4,5均余1,那么这个数减去1后就能同时被2,3,4,5整除;
2,3,4,5的最小公倍数是60,则这个数为60的倍数加1.
又因为这个数大于1,所以这个数最小是61.
故答案为:61.
12.解:设既带水壶又带水果的为x人,则参加春游的同学共有2x人,
由题意可得:
80+70﹣x+6=2x
156﹣x=2x
3x=156
x=52
则2x=2×52=104
答:则参加春游的同学共有104人.
故答案为:104.
13.解:因为每道题的答案都是1、2、3、4的一个,
所以①的答案不宜太大,不妨取1,
此时②的答案其实就是7个答案中1和4的个数,显然只能取2、3、4中的一个,
若取2,则意味着剩余的题目只能有一道题答案为1,这是④填1,⑦填2,⑤填3,⑥填2,而③无法填整数,与题意矛盾;
所以②的答案取3,则剩余的题目答案为1和4各有1道,此时④填2,显然⑦只能填1,那么⑤填2,则4应该是⑥的答案,从而③填3,
此时7道题的答案如表;
它们的和是1+3+3+2+2+4+1=16.
14.解:因为图1中小方块的个数为1+2×3=7个,
图2中小方块的个数为1+(1+2)+3×4=16个,
图3中小方块的个数为1+(1+2)+(1+2+3)+4×5=30个,
所以图4中小方块的个数为1+(1+2)+(1+2+3)+(1+2+3+4)+5×6=50个,
故答案为:50.
15.解:由定义可知:x@1.3=11.05,
(x+5)1.3=11.05,
x+5=8.5,
x=8.5﹣5=3.5故答案为:3.5。