【易错题】北师大九年级上《第四章图形的相似》单元试卷(学生用)
第四章 图形的相似数学九年级上册-单元测试卷-北师大版(含答案)
![第四章 图形的相似数学九年级上册-单元测试卷-北师大版(含答案)](https://img.taocdn.com/s3/m/fe8b1e8c8e9951e79a8927f7.png)
第四章图形的相似数学九年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,直线,直线分别交,,于点A,B,C,直线分别交,,于点D,E,F,若,则的值为()A. B. C. D.2、如图,点O是四边形ABCD内一点,A′、B′、C′、D′分别是OA、OB、OC、OD上的点,且OA′:A′A=OB′:B′B=OC′:C′C=OD′:D′D=2:1,若四边形A′B′C′D′的面积为12cm2,则四边形ABCD的面积为()A.18cm 2B.27cm 2C.36cm 2D.54cm 23、如图,在▱ABCD中,E为CD的中点,AE交BD于点O,S△DOE=12cm2,则S△AOB等于()A.24cm 2B.36cm 2C.48cm 2D.60cm 24、如图,下面图形及各个选项均是由边长为1的小方格组成的网格,三角形的顶点均在小方格的顶点上。
下列四个选项中哪一个阴影部分的三角形与已知△ABC相似。
( )A. B. C. D.5、已知△ABC∽△DEF,面积比为9:4,则△ABC与△DEF的对应边之比为()A.3:4B.2:3C.9:16D.3:26、如图,Rt△ABC中,∠B=90◦, BC=12,tanC=.如果一质点P开始时在AB边的P0处,BP0=3.P第一步从P0跳到AC边的P1(第1次落点)处,且=;第二步从P1跳到BC边的P2(第2次落点)处,且=;第三步从P2跳到AB边的P3(第3次落点)处,且=;…;质点P按照上述规则一直跳下去,第n次落点为P n(n为正整数),则点P2014与点P2015之间的距离为()A.6B.5C.4D.37、如图,在中,是边上一点,在边上求作一点,使得.甲的作法:过点作,交于点,则点即为所求.乙的作法:经过点,,作,交于点,则点即为所求.对于甲、乙的作法,下列判断正确的是()A.甲错误,乙正确B.甲正确,乙错误C.甲、乙都错误D.甲、乙都正确8、如图,在△ABC中,点D在AB上,BD=2AD,DE∥BC交AC于E,则下列结论错误的是()A.BC=3DEB. =C.△ADE∽△ABCD.S△ADE = S△ABC9、如图所示,一般书本的纸张是原纸张多次对开得到矩形ABCD沿EF对开后,再把矩形EFCD沿MN对开,以此类推,若各种开本的矩形都相似,那么等于()A.0.618B.C.D.210、下列各组线段(单位:cm)中,成比例线段的是()A.1.2.3.4B.1 .2. 2. 4C.3. 5. 9. 13D.1. 2. 2. 311、一个三角形木架三边长分别是75cm,100cm,120cm,现要再做一个与其相似的三角形木架,而只有长为60cm和120cm的两根木条.要求以其中一根为一边,从另一根截下两段作为另两边(允许有余料),则不同的截法有()A.一种B.两种C.三种D.四种12、如图,下列图中小正方形的边长为1,阴影三角形的顶点均在格点上,与△ABC相似的是()A. B. C. D.13、如图,锐角△ABC的高CD和BE相交于点O,图中与△ODB相似的三角形有()A.4个B.3个C.2个D.1个14、如图,点G是△ABC的重心,下列结论:①;②;③△EDG∽△CGB;④.其中正确的个数有()A.1个B.2个C.3个D.4个15、若△ABC∽△DEF,且S△ABC:S△DEF=5:4,则△ABC与△DEF的周长比为()A.5:4B.4:5C.2:D. :2二、填空题(共10题,共计30分)16、如图,,直线,与这三条平行线分别交于点,,和点,,.若,,,则________.17、中,,,,将此三角形绕点旋转,当点落在直线上的点处时,点落在点处,此时点到直线的距离为________.18、如图,AB//CD,,E为BC上一点,且.若,,,则DE的长为________.19、如图坐标系中,Rt△BAC的直角顶点A在y轴上,顶点B在x轴上,且OA=4,OB=6,双曲线y=经过点和斜边BC的中点D,则k=________.20、在如图所示方格纸中,已知△DEF是由△ABC经相似变换所得的像,那么△DEF的每条边都扩大到原来的________ 倍.21、如图在四边形中,交于点,已知,则________.22、如图,在▱ABCD中,点E在DA的延长线上,且AE=AD,连接CE交BD于点F,则的值是________.23、已知,那么________.24、如图所示,线段AB与CD都是⊙O中的弦,其中=108°,AB=a,=36°,CD=b,则⊙O的半径R=________.25、如图是小明设计用手电来测量都匀南沙州古城墙高度的示意图,点P处放一水平的平面镜,光线从点A出发经过平面镜反射后刚好射到古城墙CD的顶端C处,已知AB⊥BD,CD⊥BD,且测得AB=1.2米,BP=1.8米,PD=12米,那么该古城墙的高度是________米(平面镜的厚度忽略不计).三、解答题(共5题,共计25分)26、已知,,求:代数式的值.27、如图,在△ABC中,DE ∥BC,DF∥AB,求证:△ADE∽△DCF.28、如图,方格纸中每个小正方形的边长都是单位1,△ABC在平面直角坐标系中的位置如图所示.(1)将△ABC绕点O顺时针方向旋转90°后得△A1B1C1,画出△A1B1C1并直接写出点C1的坐标为多少?(2)以原点O为位似中心,在第四象限画一个△A2B2C2,使它与△ABC位似,并且△A2B2C2与△ABC的相似比为2:1.29、已知:如图,△ABC中,AD是角平分线,点E在AC上,∠ADE=∠B求证:AD2=AE·AB30、如图,在△ADC中,点B是边DC上的一点,∠DAB=∠C,= .若△ADC的面积为18cm,求△ABC的面积.参考答案一、单选题(共15题,共计45分)1、C2、B3、C4、A5、D6、A7、A8、D9、C10、B11、B12、A13、B14、C15、D二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、28、29、。
第四章 图形的相似数学九年级上册-单元测试卷-北师大版(含答案)
![第四章 图形的相似数学九年级上册-单元测试卷-北师大版(含答案)](https://img.taocdn.com/s3/m/be20434e65ce050877321357.png)
第四章图形的相似数学九年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、将直角三角形三边扩大同样的倍数,得到的新的三角形是()A.锐角三角形B.直角三角形C.钝角三角形D.任意三角形2、如图,四边形ABCD和A′B′C′D′是以点O为位似中心的位似图形,若OA:OA′=2:3,则四边形ABCD与四边形A′B′C′D′的面积比为()A.4:9B.2:5C.2:3D. :3、下列各组图形中相似的图形是()A.对应边成比例的多边形B.四个角都对应相等的两个梯形C.有一个角相等的两个菱形D.各边对应成比例的两个平行四边形4、如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△CMN的面积为y,则y关于x的函数图象大致形状是()A. B. C. D.5、正方形的边上有一动点,以为边作矩形且边过点.在点从点移动到点的过程中,矩形的面积()A.先变大后变小B.先变小后变大C.一直变小D.保持不变6、如图,在平面直角坐标系中,直线不经过第四象限,且与轴,轴分别交于两点,点为的中点,点在线段上,其坐标为,连结,,若,那么的值为()A. B.4 C.5 D.67、如图,正五边形FGHMN是由正五边形ABCDE经过位似变换得到的,若AB∶FG=2∶3,则下列结论正确的是()A.2DE=3MNB.3DE=2MNC.3∠A=2∠FD.2∠A=3∠F8、如图,正方形中,点是边上一点,连接,以为对角线作正方形,边与正方形的对角线相交于点,连接.以下四个结论:①;②;③;④.其中正确的个数为()A.1个B.2个C.3个D.4个9、以下A、B、C、D四个三角形中,与左图中的三角形相似的是()A. B. C. D.10、如图,点D在△ABC的边AC上,要判定△ADB与△ABC相似,添加一个条件,不正确的是()A.∠ABD=∠CB.∠ADB=∠ABCC.D.11、如图,在中,点D、E分别在、边上,,若,,则等于()A.10B.12C.16D.2012、如图,王华晚上由路灯A下的B处走到C处时,测得影子CD的长为1 m,继续往前走3 m 到达E处时,测得影子EF的长为2 m.已知王华的身高是1.5 m,那么路灯A的高度AB等于( )A.4.5 mB.6 mC.7.2 mD.8 m13、如图,AD,BC相交于点O,由下列条件仍不能判定△AOB与△DOC相似的是()A.AB∥CDB.∠C=∠BC.D.14、如图,正五边形ABCDE的边长为2,连结AC、AD、BE,BE分别与AC和AD相交于点F、G,连结DF,给出下列结论:①∠FDG=18°;②FG=3﹣;③(S四边形CDEF)2=9+2;④DF2﹣DG2=7﹣2 .其中结论正确的个数是()A.1B.2C.3D.415、已知图(1)、(2)中各有两个三角形,其边长和角的度数已在图上标注,图(2)中AB、CD交于O点,对于各图中的两个三角形而言,下列说法正确的是()A.只有(1)相似B.只有(2)相似C.都相似D.都不相似二、填空题(共10题,共计30分)16、如图,在Rt△ABC中,∠C=90°,AC=6,AD∥BC,DE与AB交于点F,已知AD =4,DF=2EF, sin∠DAB=,则线段DE=________.17、两个三角形相似,其中一个三角形的两个内角是40°、60°.那么另一个三角形的最大角是________度,最小角是________度.18、如图,在△ABC中,AB=AC=15,点D是BC边上的一动点(不与B,C重合),∠ADE=∠B=∠α,DE交AB于点E,且tan∠α=,有以下的结论:①△ADE∽△ACD;②当CD=9时,△ACD与△DBE全等;③△BDE为直角三角形时,BD为12或;④0<BE≤,其中正确的结论是________(填入正确结论的序号).19、已知,则=________.20、如图,在四边形ABCD中,以AB为直径的半圆O经过点C,D.AC与BD相交于点E,CD2=CE·CA,分别延长AB,DC相交于点P,PB=BO,CD=2 .则BO的长是________.21、如图,路灯点O到地面的垂直距离为线段OP的长.小明站在路灯下点A处,AP=4米,他的身高AB为1.6米,同学们测得他在该路灯下的影长AC为2米,路灯到地面的距离________米.22、秋天红透的枫叶,总能牵动人们无尽的思绪,所以诗人杜牧说:“停车坐爱枫林晚,霜叶红于二月花”如图是两片形状完全相同,大小不同的枫叶,则的值为________ .23、如图,梯形ABCD中,AD∥BC,∠D=90°,BC=CD=12,∠ABE=45°,点E在DC上,AE,BC的延长线相交于点F,若AE=10,则S△ADE+S△CEF的值是________ .24、如图,在平面直角坐标系中,已知△ABC与△DEF位似,原点O是位似中心,位似比,若AB=1.5,则DE=________.25、如图,在四边形ABCD中,∠ABC=90°,对角线AC、BD交于点O,AO=CO,CD⊥BD,如果CD=3,BC=5,那么AB=________.三、解答题(共5题,共计25分)26、已知x:y:z=2:3:4,求的值.27、如图,在平面直角坐标系中,四边形OABC是边长为1的正方形,顶点A、C分别在x,y轴的正半轴上.点Q在对角线OB上,且QO=OC,连接CQ并延长CQ交边AB于点P.求点P的坐标.28、如图,G是正方形ABCD对角线AC上一点,作GE⊥AD,GF⊥AB,垂足分别为点E,F.求证:四边形AFGE与四边形ABCD相似.29、如图,在矩形ABCD中,AB=3cm,AD=4cm,点E是BC上一动点(不与B、C重合),且DF⊥AE,垂足为F. 设AE=xcm,DF=ycm.(1)求证:△DFA∽△ABE;(2)试求y与x之间的函数关系式,并求出自变量x的取值范围.30、如图,要测量河宽,可在两岸找到相对的两点A、B,先从B出发与AB成90°方向向前走50米,到C处立一标杆,然后方向不变继续朝前走10米到D处,在D处转90°,沿DE方向走到E处,若A、C、E三点恰好在同一直线上,且DE=17米,你能根据题目提供的数据和图形求出河宽吗?参考答案一、单选题(共15题,共计45分)1、B2、A3、C4、A5、D6、D7、B8、D9、B10、C11、A12、B13、D14、B15、C二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)27、28、30、。
第四章 图形的相似数学九年级上册-单元测试卷-北师大版(含答案)
![第四章 图形的相似数学九年级上册-单元测试卷-北师大版(含答案)](https://img.taocdn.com/s3/m/109dbdb8336c1eb91b375ded.png)
第四章图形的相似数学九年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,已知∠1=∠2,若再增加一个条件不一定能使结论△ADE∽△ABC成立,则这个条件是()A. B. C. D.2、如图,在△ABC中,点D、E分别在边AB、AC上,AD:DB=2:3,∠B=∠ADE,则DE:BC 等于()A.1:2B.1:3C.2:3D.2:53、如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC,AE、CD相交于点O,若S△:S△COA=1:25,则的值为()DOEA. B. C. D.4、阳光通过窗口AB照射到室内,在地面上留下2.7米的亮区DE,(如图所示),已知亮区到窗口下的墙角的距离EC=8.7米,窗口高AB=1.8米,则窗口底边离地面的高BC为()A.4米B.3.8米C.3.6米D.3.4米5、比例尺为1:800的学校地图上,某条路的长度约为5cm,它的实际长度约为( )A.400cmB.40mC.200cmD.20m6、下列两个图形一定相似的是)A.任意两个矩形B.任意两个等腰三角形C.任意两个正方形D.任意两个菱形7、如图,△ABC中,点D,E分别在边AB,BC上,DE∥AC,若DB=4,AB=6,BE=3,则EC的长是()A.4B.2C.D.8、如果两个相似三角形的面积比是1:2,那么它们的周长比是()A.1:2B.1:4C.1:D.2:19、如图,△ABC是等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积是△ABC的面积的()A. B. C. D.10、如图,□ABCD,E在CD延长线上,AB=6,DE=4,EF=6,则BF的长为().A.7B.8C.9D.1011、下列条件不能判定△ADB∽△ABC的是()A.∠ABD=∠ACBB.∠ADB=∠ABCC.AB 2=AD•ACD.12、如图,点D是△ABC的边BC上一点,∠BAD=∠C,AC=2AD,如果△ACD的面积为15,那么△ABD的面积为( )A.5B.7.5C.10D.1513、如图,矩形的长和宽分别是4和3,等腰三角形的底和高分别是3和4,如果此三角形的底和矩形的宽重合,并且沿矩形两条宽的中点所在的直线自右向左匀速运动至等腰三角形的底与另一宽重合.设矩形与等腰三角形重叠部分(阴影部分)的面积为y,重叠部分图形的高为x,那么y关于x的函数图象大致应为A. B. C. D.14、如图,将正方形折叠,使顶点与边上的一点重合(不与端点,重合),折痕交于点,交于点,边折叠后与边交于点,设正方形的周长为,的周长为,则的值为()A. B. C. D.215、已知两个相似三角形周长分别为8和6,则它们的面积比为()。
北师大版数学九年级上册《第四章图形相似》单元测试(含答案)
![北师大版数学九年级上册《第四章图形相似》单元测试(含答案)](https://img.taocdn.com/s3/m/536f6a976c175f0e7dd1376c.png)
北师大版数学九年级上册《第四章图形相似》单元测试一.选择题(共12小题)1.若,则的值为()A.1 B.C.D.2.若△ABC∽△DEF,且对应中线比为2:3,则△ABC与△DEF 的面积比为()A.3:2 B.2:3 C.4:9 D.9:163.如图,为估算某河的宽度,在河对岸边选定一个目标点A,在近岸取点B,C,D,使得AB⊥BC,CD⊥BC,点E在BC上,并且点A,E,D在同一条直线上.若测得BE=30m,EC=15m,CD=30m,则河的宽度AB长为()A.90m B.60m C.45m D.30m 4.如图,已知点E(﹣4,2),F(﹣2,﹣2),以O为位似中心,按比例尺1:2,把△EFO缩小,则点E的对应点E′的坐标为()A.(2,﹣1)或(﹣2,1)B.(8,﹣4)或(﹣8,﹣4)C.(2,﹣1)D.(8,﹣4)5.如图,已知AD为△ABC的角平分线,DE∥AB交AC于E,如果=,那么等于()A.B.C.D.6.如图,直线l1∥l2∥l3,直线AC分别交l1,l2,l3于点A,B,C;直线DF分别交l1,l2,l3于点D、E、F,AC与DF相交于点H,且AH=2,HB=1,BC=5,则=()A.B.2 C.D.7.如图▱ABCD,E是BC上一点,BE:EC=2:3,AE交BD于F,则BF:FD等于()A.2:5 B.3:5 C.2:3 D.5:7 8.如图,在▱ABCD中,AC与BD相交于点O,E为OD的中点,连接AE并延长交DC于点F,则S△DEF:S△AOB的值为()A.1:3 B.1:5 C.1:6 D.1:11 9.如图,在△ABC中,∠C=90°,点D是BC边上一动点,过点B 作BE⊥AD交AD的延长线于E.若AC=6,BC=8,则的最大值为()A.B.C.D.[来源:学] 10.如图,△ABC中,D、E是BC边上的点,BD:DE:EC=3:2:1,M在AC边上,CM:MA=1:2,BM交AD,AE于H,G,则BH:HG:GM等于()A.3:2:1 B.5:3:1 C.25:12:5 D.51:24:10 11.如图为两正方形ABCD、BEFG和矩形DGHI的位置图,其中G、F两点分别在BC、EH上.若AB=5,BG=3,则△GFH的面积为何?()A.10 B.11 C.D.12.如图,,∠1=∠2,则对于结论:①△ABE∽△ACF;②△ABC∽△AEF;③;④.其中正确的结论的个数是()A.1 B.2 C.3 D.4二.填空题(共5小题)13.如图,△ABC中,AD是中线,BC=8,∠B=∠DAC,则线段AC的长为.14.已知直线a∥b∥c,直线m,n与直线a,b,c分别交于点A,C,E,B,D,F,AC=4,CE=6,BD=3,则BF=.15.如图,在斜边长为1的等腰直角三角形OAB中,作内接正方形A1B1D1C1;在等腰直角三角形OA1B1中作内接正方形A2B2D2C2;在等腰直角三角形OA2B2中作内接正方形A3B3D3C3;…;依次做下去,则第n个正方形A n B n D n C n的边长是.16.如图,在Rt△ABC中,∠ABC=90°,AB=3,BC=4,Rt△MPN,∠MPN=90°,点P在AC上,PM交AB于点E,PN交BC于点F,当PE=2PF时,AP=.17.如图,四边形DEFG是△ABC的内接矩形,其中D、G分别在边AB,AC上,点E、F在边BC上,DG=2DE,AH是△ABC的高,BC=20,AH=15,那么矩形DEFG的周长是.三.解答题(共6小题)18.已知,如图,△ABC中,AB=2,BC=4,D为BC边上一点,BD=1.(1)求证:△ABD∽△CBA;(2)在原图上作DE∥AB交AC与点E,请直接写出另一个与△ABD相似的三角形,并求出DE的长.19.如图,在正方形ABCD中,E、F分别是边AD、CD上的点,AE=ED,DF=DC,连接EF并延长交BC的延长线于点G.(1)求证:△AB E∽△DEF;(2)若正方形的边长为4,求BG的长.20.如图,正方形ABCD中,M为BC上一点,F是AM的中点,EF⊥AM,垂足为F,交AD的延长线于点E,交DC于点N.(1)求证:△ABM∽△EFA;(2)若AB=12,BM=5,求DE的长.21.如图,在平行四边形ABCD中,过点A作AE⊥BC,垂足为E,连接DE,F为线段DE上一点,且∠AFE=∠B.(1)求证:△ADF∽△DEC;(2)若AB=4,AD=,AE=3,求AF的长.22.已知:△ABC在直角坐标平面内,三个顶点的坐标分别为A(0,3)、B(3,4)、C(2,2)(正方形网格中每个小正方形的边长是一个单位长度).(1)画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是;(2)以点B为位似中心,在网格内画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是.23.如图,在矩形ABCD和矩形PEFG中,AB=8,BC=6,PE=2,PG=4.PE与AC交于点M,EF与AC交于点N,动点P从点A出发沿AB以每秒1个单位长的速度向点B匀速运动,伴随点P的运动,矩形PEFG在射线AB上滑动;动点K从点P出发沿折线PE﹣﹣EF 以每秒1个单位长的速度匀速运动.点P、K同时开始运动,当点K 到达点F时停止运动,点P也随之停止.设点P、K运动的时间是t 秒(t>0).(1)当t=1时,KE=,EN=;(2)当t为何值时,△APM的面积与△MNE的面积相等?(3)当点K到达点N时,求出t的值;(4)当t为何值时,△PKB是直角三角形?参考答案一.选择题1.C.2.C.3.B.4.A.5.B.6.A.7.A.8.C.9.B10.D.11.D.12.B.二.填空题13.]4.14.7.5.15.].16.3.17.36.三.解答题18.(1)证明:∵AB=2,BC=4,BD=1,∵∠ABD=∠CBA,∴△ABD∽△CBA;(2)解:∵DE∥AB,∴△CDE∽△C BA,∴△ABD∽△CDE,∴DE=1.5.19.(1)证明:∵ABCD为正方形,∴AD=AB=DC=BC,∠A=∠D=90°,∵AE=ED,∵DF=DC,∴△ABE∽△DEF;(2)解:∵ABCD为正方形,∴ED∥BG,又∵DF=DC,正方形的边长为4,∴ED=2,CG=6,∴BG=BC+CG=10.20.(1)证明:∵四边形ABCD是正方形,∴AB=AD,∠B=90°,AD∥BC,∴∠AMB=∠EAF,又∵EF⊥AM,∴∠AFE=90°,∴∠B=∠AFE,∴△ABM∽△EFA;(2)∵∠B=90°,AB=12,BM=5,∴AM==13,AD=12,∵F是AM的中点,∴AF=AM=6.5,∵△ABM∽△EFA,∴,即,∴AE=16.9,∴DE=AE﹣AD=4.9.21.解:(1)∵四边形ABCD是平行四边形,∴AB∥CD,AD∥BC,∴∠B+∠C=180°,∠ADF=∠DEC,∵∠AFD+∠AFE=180°,∠AFE=∠B,∴∠AFD=∠C,∴△ADF∽△DEC;(2)∵AE⊥BC,AD=3,AE=3,∴在Rt△DAE中,DE===6,由(1)知△ADF∽△DEC,得=,∴AF===2.22.解:(1)如图所示,画出△ABC向下平移4个单位长度得到的△A1B1C1,点C1的坐标是(2,﹣2);(2)如图所示,以B为位似中心,画出△A2B2C2,使△A2B2C2与△ABC位似,且位似比为2:1,点C2的坐标是(1,0),故答案为:(1)(2,﹣2);(2)(1,0)23.解:(1)当t=1时,根据题意得,AP=1,PK=1,∵PE=2,∴KE=2﹣1=1,∵四边形ABCD和PEFG都是矩形,∴△APM∽△ABC,△APM∽△NEM,∴MP=,ME=,∴NE=;故答案为:1;;(2)由(1)并结合题意可得,AP=t,PM=t,ME=2﹣t,NE=﹣t,∴t×t=(2﹣t)×(﹣t),解得,t=;(3)当点K到达点N时,则PE+NE=AP,由(2)得,﹣t+2=t,解得,t=;(4)①当K在PE边上任意一点时△PKB是直角三角形,即,0<t≤2;②当点k在EF上时,则KE=t﹣2,BP=8﹣t,∵△BPK∽△PKE,∴PK2=BP×KE,PK2=PE2+KE2,∴4+(t﹣2)2=(8﹣t)(t﹣2),解得t=3,t=4;③当点K运动6秒时,点K到点F,点P还没到点B,∴点K不可能在BC边上,.综上,当0<t≤2或t=3或t=4时,△PKB是直角三角形.。
北师大版九年级数学上册第四章图形的相似单元测试(含解析)
![北师大版九年级数学上册第四章图形的相似单元测试(含解析)](https://img.taocdn.com/s3/m/f6f4ba5fe87101f69f31950c.png)
1北师大版九年级数学上册第四章图形的相似单元测试(含解析)一、选择题1.已知x∶y=5∶2,则下列各式中不正确的是( ) A.=B.- =C.=D.- =答案 D A.由合比性质,得=,故A 正确;B.由分比性质,得- =,故B 正确;C.由反比性质,得y∶x=2∶5,由合比性质,得 = ,再由反比性质,得 =,故C 正确;D.由反比性质,得y∶x=2∶5,由分比性质,得- =- ,再由反比性质,得 - =-,故D 错误.故选D.2.如图,直线l 1∥l 2∥l 3,直线AC 分别交l 1,l 2,l 3于点A,B,C.直线DF 分别交l 1,l 2,l 3于点D,E,F,AC 与DF 相交于点H,且AH=2,HB=1,BC=5,则的值为( )A.B.2C.D.答案 D 由直线l 1∥l 2∥l 3,得 =.因为AH=2,HB=1,所以AB=3.因为BC=5,所以 =.所以 =. 3.如图,△ABC 中,点D 在线段BC 上,且△ABC ∽△DBA,则下列结论一定正确的是( )A.AB 2=BC ·BD B.AB 2=AC ·BD2C.AB ·AD=BD ·BCD.AB ·AD=AD ·CD答案 A 因为△ABC ∽△DBA,所以 = =,所以AB 2=BC ·BD,AB ·AD=AC ·DB.4.在比例尺为1∶10 000的地图上,一块面积为2 cm 2的区域表示的实际面积是( ) A.2 000 000 cm 2B.20 000 m 2C.4 000 000 m 2D.40 000 m 2答案 B 设实际面积是x cm2,则 =,解得x=200 000 000,∵1 m 2=10 000 cm 2,∴200 000 000 cm 2=20 000 m 2.故选B.5.如图,在△ABC 中,D 、E 分别为AB 、AC 边上的点,DE ∥BC,BE 与CD 相交于点F,则下列结论一定正确的是( )A. =B. =C. =D. =答案 A ∵DE∥BC,∴△ADE ∽△ABC, ∴ = = ,故选项A 正确,故选A.6.如图,点P 是▱ABCD 边AB 上的一点,射线CP 交DA 的延长线于点E,则图中相似的三角形有( )A.0对B.1对C.2对D.3对 答案 D ∵四边形ABCD 是平行四边形,∴AB∥DC,AD ∥BC,∴△EAP ∽△EDC,△EAP ∽△CBP,∴△EDC ∽△CBP,故有3对相似三角形.故选D.7.如图,在△ABC 中,中线BE 、CD 相交于点O,连接DE,下列结论:① = ;② △ △= ;③ = ;④ △ △=.其中正确的个数是( )3A.1B.2C.3D.4答案 C 由中线BE 、CD 知,DE 为△ABC 的中位线,所以DE= BC,DE ∥BC,所以 =,①正确;由DE ∥BC 可得△DOE ∽△COB,则△ △= =,②错误;由DE ∥BC 易得 = , = ,所以 = ,③正确;④△ △= =,设△DOE 的高为h,则△BOC 的高为2h,△ABC 的高为6h,则△ △ = = , △ △ = ,所以 △ △ =,④正确.故选C.8.如图,点E,点F 分别在菱形ABCD 的边AB,AD 上,且AE=DF,BF 交DE 于点G,延长BF 交CD 的延长线于H,若=2,则的值为( )A.B.C.D.答案 B 设菱形ABCD 的边长为3a.因为四边形ABCD 是菱形,=2,AE=DF,所以AE=DF=a,AF=BE=2a,AB ∥CD,所以 = = =,所以HD= AB= a,HF=HB.因为AB ∥CD,所以 = ==,所以BG= HB.所以 == . 9.如图,在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且CF=CD.下列结论:①∠BAE=30°,②△ABE ∽△AEF,③AE⊥EF,④△ADF ∽△ECF.其中正确的个数为( )A.1B.2C.3D.4答案 B ∵在正方形ABCD 中,E 是BC 的中点,F 是CD 上一点,且4CF=CD,∴∠B=∠C=90°,AB∶EC=BE∶CF=2∶1.∴△ABE ∽△ECF,∴AB∶EC=AE∶EF,∠AEB=∠EFC.∵BE=CE,∠FEC+∠EFC=90°,∴AB∶AE=BE∶EF,∠AEB+∠FEC=90°. ∴∠AEF=∠B=90°.∴△ABE ∽△AEF,AE ⊥EF.∴②③正确. 由已知条件推不出①④正确.故选B.10.如图,△ABC 中,AB=AC=18,BC=12,正方形DEFG 的顶点E,F 在△ABC 内,顶点D,G 分别在AB,AC 上,AD=AG,DG=6,则点F 到BC 的距离为( )A.1B.2C.12 -6D.6 -6答案 D 如图,过点A 作AM ⊥BC 于点M,交DG 于点N,延长GF 交BC 于点H.∵AB=AC,AD=AG,∴AD∶AB=AG∶AC, ∵∠BAC=∠DAG,∴△ADG ∽△ABC, ∴∠ADG=∠B,∴DG∥BC,∴AN⊥DG.∵四边形DEFG 是正方形,∴FG⊥DG,∴FH⊥BC, ∵AB=AC=18,BC=12,∴BM=BC=6, ∴AM= - =12 .∵△ADG ∽△ABC,∴ =,∴=,∴AN=6 ,∴MN=AM-AN=6,∴FH=MN-GF=6-6.即点F到BC的距离为6-6.故选D.二、填空题11.若△ABC与△DEF相似且面积之比为25∶16,则△ABC与△DEF的周长之比为.答案5∶4解析相似三角形的面积比等于相似比的平方,相似三角形的周长比等于相似比.因为△ABC与△DEF相似且面积比为25∶16,所以△ABC与△DEF的周长比为5∶4.12.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1∶,点A的坐标为(1,0),则点E的坐标为.答案(,)解析∵点A的坐标为(1,0),∴点B的坐标为(1,1).又∵正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1∶,∴点E的坐标为(,).13.如图,矩形ABCD中,F是DC上一点,BF⊥AC,垂足为E,=,△CEF的面积为S1,△AEB的面积为S2,则的值等于.答案解析∵BF⊥AC,∴∠CFB+∠FCE=90°,又∠CFB+∠CBF=90°,∴∠FCE=∠CBF.5∵AB∥CD,∴∠FCE=∠BAE.∴∠EAB=∠CBF.∵∠BCF=∠ABC,∴△FCB∽△CBA.∴CF∶CB=CB∶AB=1∶2.∴FC∶AB=1∶4.∵FC∥AB,∴△FCE∽△BAE.∴==.14.如图,小明把手臂水平向前伸直,手持小尺竖直,瞄准小尺的两端E、F,不断调整站立的位置,使在点D处恰好能看到铁塔的顶部B和底部A,设小明的手臂长l=45cm,小尺长a=15cm,点D到铁塔底部的距离AD=42m,则铁塔的高度是m.答案14解析作CH⊥AB于H,交EF于P,如图,则CH=DA=42m,由题意知,CP=45cm=0.45m,EF=15cm=0.15m.∵EF∥AB,∴△CEF∽△CBA,∴=,即=,∴AB=14m,即铁塔的高度为14m.15.如图,直线l1,l2,…,l6是一组等距离的平行线,过直线l1上的点A作两条射线,分别与直线l3,l6相交于点B,E,C,F.若BC=2,则EF的长是.答案56解析∵直线l1,l2,…,l6是一组等距离的平行线,∴=,∵BC∥EF,∴△ABC∽△AEF,∴==,又∵BC=2,∴EF=5.16.如图,E、F分别是平行四边形ABCD的边AD、BC的中点,若四边形AEFB与四边形ABCD相似,AB=4,则AD 的长度为.答案4解析设AE=x(x>0),则AD=2x,∵四边形ABCD与四边形ABFE相似,∴=,∴AB2=2x2,∴AB=x=4,∴x=2,∴AD=4.17.如图,平面内有16个格点,每个格点小正方形的边长为1,则图中阴影部分的面积为.答案解析如图,∵GF∥HC,∴△AGF∽△AHC,∴==,∴GF=HC=,7∴OF=OG-GF=2-=.同理,MN=,∴ON=,∴S阴影=1-××=.18.如图,矩形DEFG的边EF在△ABC的边BC上,点D在边AB上,点G在边AC上,△ADG的面积是40,△ABC 的面积是90,AM⊥BC于M交DG于N,则AN∶AM=.答案2∶3解析∵四边形DEFG是矩形,∴DG∥BC,∴△ADG∽△ABC.∵△ADG的面积是40,△ABC的面积是90,==,∴△△∴=,∵AM⊥BC于M交DG于N,DG∥BC,∴AN⊥DG,∴==.三、解答题19.如图,在平面直角坐标系内有两点A(-2,0),B,CB所在直线的方程为y=2x+b,连接AC,求证:△AOC∽△COB.8证明∵C、B在直线y=2x+b上,∴把点B的坐标代入,求得直线方程为y=2x-1,∴C(0,-1),易证OC∶OB=OA∶OC=2∶1,又∠AOC=∠COB=90°,∴△AOC∽△COB.20.如图,△ABC的三个顶点的坐标分别为A(-2,4)、B(-3,1)、C(-1,1),以坐标原点O为位似中心,2为相似比,在第二象限内将△ABC放大,放大后得到△A'B'C'.(1)画出放大后的△A'B'C',并写出点A'、B'、C'的坐标;(点A、B、C的对应点分别为A'、B'、C')(2)求△A'B'C'的面积.答案(1)如图所示,△A'B'C'即为所求.910A'(-4,8),B'(-6,2),C'(-2,2). (2)∵S △ABC =×2×3=3,又∵△A'B'C'与△ABC 的相似比为2∶1,∴△ △=4,∴S △A'B'C'=4S △ABC =12.21.如图,在矩形ABCD 中,AB=6,BC=8,沿直线MN 对折,使A 、C 重合,直线MN 交AC 于O. (1)求证:△COM ∽△CBA; (2)求线段OM 的长度.答案 (1)证明:由题意知A 与C 关于直线MN 对称, ∴AC⊥MN,∴∠COM=90°.在矩形ABCD 中,∠B=90°, ∴∠COM=∠B,又∵∠ACB=∠MCO,∴△COM ∽△CBA. (2)∵在Rt △CBA 中,AB=6,BC=8, ∴AC=10,∴OC=5,∵△COM ∽△CBA,∴ =, ∴OM=.22.如图,在△ABC中,BA=BC=20cm,AC=30cm,点P从A点出发,沿着AB边以每秒4cm的速度向B点运动;同时点Q从C点出发,沿CA边以每秒3cm的速度向A点运动,当P点到达B点时停止运动,Q点随之停止运动.设运动的时间为x s.(1)当x为何值时,PQ∥BC?(2)△APQ与△CQB能否相似?若能,求出AP的长;若不能,说明理由.答案(1)由题意得AP=4x cm,CQ=3x cm,AQ=(30-3x)cm,0≤x≤5.当PQ∥BC时,有=,即=-,解得x=,∴当x=时,PQ∥BC.(2)能.∵AB=CB,∴∠A=∠C,分两种情况讨论.①若△APQ∽△CBQ,则=,即=-,解得x=5或x=-10(舍去),此时AP=20cm.②若△APQ∽△CQB,则=,即=-.解得x=,此时AP=cm.综上,当AP=20cm或AP=cm时,△APQ与△CQB相似.23.请你认真阅读下面的小探究系列,完成所提出的问题.(1)如图,将角尺放在正方形ABCD上,使角尺的直角顶点E与正方形ABCD的顶点D重合,角尺的一边交CB于点F,另一边交BA的延长线于点G.求证:EF=EG;(2)如图,移动角尺,使角尺的顶点E始终在正方形ABCD的对角线BD上,其余条件不变,请你思考后直接回答EF和EG的数量关系:EF EG(用“=”或“≠”填空);11(3)运用(1)(2)解答中所积累的活动经验和数学知识,完成下题:如图,将(2)中的“正方形ABCD”改成“矩形ABCD”,使角尺的一边经过点A(即点G、A重合),其余条件不变,若AB=4,AD=3,求的值.答案(1)证明:∵∠AEF+∠AEG=90°,∠AEF+∠CEF=90°,∴∠AEG=∠CEF,又∵EA=EC,∠GAE=∠C=90°,∴△EAG≌△ECF(ASA),∴EG=EF.(2)=.(3)过点E作EM⊥AB于点M,作EN⊥BC于点N,则∠MEN=90°,EM∥BC,EN∥AB,∴==,∴==,∵∠GEM+∠MEF=90°,∠FEN+∠MEF=90°,∴∠FEN=∠GEM,又∠FNE=∠GME=90°,12∴Rt△FNE∽Rt△GME,∴==.13。
北师大九年级数学上《第四章图形的相似》单元测试含答案
![北师大九年级数学上《第四章图形的相似》单元测试含答案](https://img.taocdn.com/s3/m/4d2cffdb941ea76e58fa04fd.png)
第四章 图形的相似一、选择题(本大题共7小题,共28分)1.已知x y =32,那么下列等式中,不一定正确的是( )A .x +2y +2=32B .2x =3yC .x +y y =52 D .x x +y =352.如图4-Z -1,l 1∥l 2∥l 3,已知AB =6 cm ,BC =3 cm ,A 1B 1=4 cm ,则线段B 1C 1的长为( )A .6 cmB .4 cmC .3 cmD .2 cm图4-Z -1图4-Z -23.如图4-Z -2所示,在△ABC 中,D ,E 分别为AC ,BC 边上的点,AB ∥DE ,CF 为AB 边上的中线.若AD =5,CD =3,DE =4,则BF 的长为( )A .323B .163C .103D .83图4-Z -34.如图4-Z -3,在△ABC 中,中线BE ,CD 相交于点O ,连接DE ,下列结论:①DE BC =12;②S △DOE S △COB =12;③AD AB =OE OB ;④S △ODB S △BDC =13.其中正确的个数为( ) A .1 B .2 C .3 D .45.在Rt △ABC 和Rt △DEF 中,∠C =∠F =90°,下列条件中不能判定这两个三角形相似的是( )A .∠A =55°,∠D =35°B .AC =9,BC =12,DF =6,EF =8 C .AC =3,BC =4,DF =6,DE =8D .AB =10,AC =8,DE =15,EF =96.在中华经典美文阅读中,小明同学发现自己的一本书的宽与长之比为黄金比.已知这本书的长为20 cm ,则它的宽约为( )A .12.36 cmB .13.64 cmC .32.36 cmD .7.64 cm7.如图4-Z -4,在Rt △ABC 中,∠C =90°,AC =BC =6 cm ,点P 从点A 出发,沿AB 方向以每秒 2 cm 的速度向终点B 运动;同时,动点Q 从点B 出发沿BC 方向以每秒1 cm 的速度向终点C 运动,将△PQC 沿BC 翻折,点P 的对应点为点P ′.设点Q 运动的时间为t s ,若四边形QPCP ′为菱形,则t 的值为( )图4-Z -4A . 2B .2C .2 2D .3二、填空题(本大题共6小题,共24分)8.有一块三角形的草地,它的一条边长为25 m .在图纸上,这条边的长为5 cm ,其他两条边的长都为4 cm ,则其他两边的实际长度都是________ m .9.若a 5=b 7=c8,且3a -2b +c =3,则2a +4b -3c =________.10.已知甲、乙两个相似三角形对应中线之比为1∶2,甲三角形的面积为5 cm 2,则乙三角形的面积为__________.11.如图4-Z -5,在两个直角三角形中,∠ACB =∠ADC =90°,AC =6,AD =2.当AB =________时,△ABC ∽△ACD.4-Z-54-Z-612.如图4-Z-6,数学兴趣小组想测量电线杆AB的高度,他们发现电线杆的影子恰好落在土坡的坡面CD和地面BC上,量得CD=4 m,BC=10 m,CD与地面成30°角,且此时测得高1 m的标杆的影长为2 m,则电线杆的高度为________m(结果保留根号).图4-Z-713.如图4-Z-7,将边长为6 cm的正方形ABCD折叠,使点D落在AB边的中点E处,折痕为FH,点C 落在点Q处,EQ与BC相交于点G,则△EBG的周长是________ cm.三、解答题(共48分)14.(10分)如图4-Z-8,矩形ABCD是台球桌面,AD=260 cm,AB=130 cm,球目前在E的位置,AE =60 cm,如果小宝瞄准BC边上的点F将球打过去,经过反弹后,球刚好弹到点D的位置.(1)求证:△BEF∽△CDF;(2)求CF的长.图4-Z-815.(12分)如图4-Z-9,△ABC三个顶点的坐标分别为A(1,2),B(3,1),C(2,3),以原点O为位似中心,将△ABC放大为原来的2倍得到△A′B′C′.(1)在图中的第一象限内画出符合要求的△A′B′C′(不要求写画法);(2)求△A′B′C′的面积.图4-Z-916.(12分)如图4-Z-10,一块材料的形状是锐角三角形ABC,边BC=12 cm,高AD=8 cm.把它加工成正方形零件,使正方形的一边在BC上,其余两个顶点分别在AB,AC上,这个正方形零件的边长是多少?图4-Z-1017.(14分)如图4-Z-11,在▱ABCD中,对角线AC,BD相交于点O,M为AD的中点,连接CM交BD于点N,且ON=1.(1)求BD的长;(2)若△CND的面积为2,求四边形ABNM的面积.图4-Z-11详解1.A2.D [解析] ∵l 1∥l 2∥l 3,∴A 1B 1B 1C 1=AB BC. ∵AB =6 cm ,BC =3 cm ,A 1B 1=4 cm , ∴4B 1C 1=63,∴B 1C 1=2(cm).故选D. 3.B 4.C5.C [解析] A 项,∵∠A =55°,∴∠B =90°-55°=35°.∵∠D =35°,∴∠B =∠D .又∵∠C =∠F ,∴△ABC ∽△EDF ;B 项,∵AC =9,BC =12,DF =6,EF =8,∴AC DF =BC EF =32.又∵∠C =∠F ,∴△ABC ∽△DEF ;C 项,有一组角相等、两边对应成比例,但该组角不是这两边的夹角,故不相似;D 项,易得AB =10,AC =8,BC =6,DE =15,DF =12,EF =9,∴AC DF =BC EF =23.又∵∠C =∠F ,∴△ABC ∽△DEF .故选C.6.A7.B [解析] 连接PP ′交BC 于点O ,∵四边形QPCP ′为菱形,∴PP ′⊥QC ,∴∠POQ =90°.∵∠ACB =90°,∴PO ∥AC ,∴AP AB =CO CB .∵点Q 运动的时间为t s ,∴AP =2t ,QB =t ,∴QC =6-t ,∴CO =3-t2.∵AC =CB =6,∠ACB =90°,∴AB =6 2,∴2t6 2=3-t26,解得t =2.8.20 [解析] 设其他两边的实际长度都是x m ,由题意,得x 4=255,解得x =20.即其他两边的实际长度都是20 m.9.143 [解析] 设a 5=b 7=c8=x ,则a =5x ,b =7x ,c =8x .因为3a -2b +c =3,所以15x -14x +8x =3,解得x =13,所以2a +4b -3c =10x +28x -24x =14x =143.10.20 cm 211.312.(7+3)[解析] 如图,过点D 作DE ⊥BC 交其延长线于点E ,连接AD 并延长交BC 的延长线于点F ,∵CD =4 m ,CD 与地面成30°角,∴DE =12CD =12×4=2(m),CE =CD 2-DE 2=2 3 m .∵高1 m 的标杆的影长为2 m ,∴DE EF =12,AB BF =12,∴EF =2DE =2×2=4(m),∴BF =BC +CE +EF =10+2 3+4=(14+2 3)m ,∴AB =12×(14+2 3)=(7+3)m.13.[全品导学号:52652189]12 [解析] 根据折叠的性质可得∠FEG =90°,设AF =x cm ,则EF =(6-x )cm.在Rt △AEF 中,AF 2+AE 2=EF 2,即x 2+32=(6-x )2,解得x =94,所以AF =94 cm ,EF =154 cm ,根据△AFE ∽△BEG ,可得AF BE =AE BG =EF EG ,即943=3BG =154EG,所以BG =4 cm ,EG =5 cm ,所以△EBG 的周长为3+4+5=12(cm).14.解:(1)证明:由题意,得∠EFG =∠DFG .∵∠EFG +∠BFE =90°,∠DFG +∠CFD =90°,∴∠BFE =∠CFD . 又∵∠B =∠C =90°, ∴△BEF ∽△CDF . (2)∵△BEF ∽△CDF ,∴BE CD =BF CF ,即70130=260-CF CF, ∴CF =169(cm).15.解:(1)△A ′B ′C ′如图所示.(2)图中每个小正方形的边长为1个单位长度,由勾股定理可得AC =2,AB =CB =5,AC 边上的高=(5)2-⎝ ⎛⎭⎪⎫222=322,所以△ABC 的面积S =12×2×32 2=32.设△A ′B ′C ′的面积为S ′,因为△ABC ∽△A ′B ′C ′,所以S S ′=⎝ ⎛⎭⎪⎫122,得S ′=4S =4×32=6,即△A ′B ′C ′的面积为6.16.解:如图,∵四边形EFHG 是正方形, ∴EF ∥BC ,∴△AEF ∽△ABC ,而AD ⊥BC , ∴EF BC =AK AD.设正方形EFHG 的边长为x cm ,则AK =(8-x )cm ,∴x 12=8-x 8,解得x =4.8. 答:这个正方形零件的边长为4.8 cm.17.解:(1)∵在▱ABCD 中,AD ∥BC ,AD =BC ,OB =OD , ∴∠DMN =∠BCN ,∠MDN =∠NBC , ∴△MND ∽△CNB , ∴MD CB =DN BN. ∵M 为AD 的中点,∴MD =12AD =12BC ,即MD CB =12,∴DN BN =12,即BN =2DN . 设OB =OD =x ,则BD =2x ,BN =OB +ON =x +1,DN =OD -ON =x -1,∴x +1=2(x -1),解得x =3, ∴BD =2x =6.(2)∵△MND ∽△CNB ,且相似比为1∶2, ∴MN ∶CN =DN ∶BN =1∶2,∴S △MND =12S △CND =1,S △CNB =2S △CND =4,∴S △ABD =S △BCD =S △CNB +S △CND =4+2=6, ∴S 四边形ABNM =S △ABD -S △MND =6-1=5.。
北师大版九年级数学上 第四章 图形的相似 单元练习卷 (含解析)
![北师大版九年级数学上 第四章 图形的相似 单元练习卷 (含解析)](https://img.taocdn.com/s3/m/0e4fc46a4a7302768f99391a.png)
第四章图形的相似一.选择题(共14小题)1.下列图形一定相似的是()A.两个矩形B.两个等腰梯形C.有一个内角相等的两个菱形D.对应边成比例的两个四边形2.已知=,那么的值为()A.B.C.D.﹣3.已知线段a=2cm,b=8cm,它们的比例中项c是()A.16cm B.4cm C.±4cm D.±16cm4.如图,如果AB∥CD∥EF,那么下列结论正确的是()A.=B.=C.=D.=5.如图,AB与CD相交于点E,AD∥BC,,CD=16,则DE的长为()A.3 B.6 C.D.106.如图,已知在△ABC中,点D、E分别在边AB、AC上,DE∥BC,AD:BD=2:1,点F在AC上,AF:FC=1:2,联结BF,交DE于点G,那么DG:GE等于()A.1:2 B.1:3 C.2:3 D.2:5.7.如图,已知直线a∥b∥c,直线m分别交直线a、b、c于点A、B、C,直线n分别交直线a、b、c于点D、E、F,若AB=2,AD=BC=4,则的值应该()A.等于B.大于C.小于D.不能确定8.如图,一张矩形纸片ABCD的长AB=a,宽BC=b.将纸片对折,折痕为EF,所得矩形AFED与矩形ABCD相似,则a:b=()A.2:1 B.:1 C.3:D.3:29.如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b10.如图,已知△ABC和△PBD都是正方形网格上的格点三角形(顶点为网格线的交点),要使△ABC∽△PBD,则点P的位置应落在()A.点P1上B.点P2上C.点P3上D.点P4上11.如图,正方形OABC的边长为8,点P在AB上,CP交OB于点Q.若S△BPQ=,则OQ长为()A.6 B.C.D.12.如图,D,E分别△ABC的边AB,AC的中点,给出下列结论:①BC=2DE;②△ADE∽△ABC;③AD:AE=AB:AC;④S△ADE:S四边形BCED=1:3.其中正确的结论有()A.4个B.3个C.2个D.1个13.△DEF和△ABC是位似图形,点O是位似中心,点D,E,F分别是OA,OB,OC的中点,若△DEF的面积是2,则△ABC的面积是()A.2 B.4 C.6 D.814.如图,在平面直角坐标系中,已知点O(0,0),A(6,0),B(0,8),以某点为位似中心,作出与△AOB的位似比为k的位似△CDE,则位似中心的坐标和k的值分别为()A.(0,0),2 B.(2,2),C.(2,2),2 D.(1,1),二.填空题(共7小题)15.如果,那么的值为.x2﹣3x=0的根是.16.如图,直线a∥b∥c,直线AC分别交a,b,c于点A,B,C,直线DF分别交a,b,c 于点D,E,F.若=,则=.17.如图,在△ABC中,AB:AC=7:3,∠BAC的平分线交BC于点E,过点B作AE的垂线段,垂足为D,则AE:ED=.18.如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为2,则平行四边形ABCD 的面积是.19.如图,AB∥CD,AD、BC相交于点E,过点E作EF∥CD交BD于点F,AB:CD=2:3,那么=.20.如图,D是等边△ABC的边BC上一动点,ED∥AC交AB于点E.DF⊥AC交AC于点F,DF=,若△DCF与E、F、D三点组成的三角形相似,则BD的长等于.21.如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4,则△CEF的周长为.三.解答题(共9小题)22.如图,在△ABC中,已知AB=AC,D、E、B、C在同一条直线上,且AB2=BD•CE,求证:△ABD∽△ECA.23.定义:顶点都在网格点上的四边形叫做格点四边形,端点都在网格点上的线段叫做格点线.如图1,在正方形网格中,格点线DE、CE将格点四边形ABCD分割成三个彼此相似的三角形.请你在图2、图3中分别画出格点线,将阴影四边形分割成三个彼此相似的三角形.24.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了两个格点△ABC和△DEF(顶点在网格线的交点上).(1)平移△ABC,使得△ABC和△DEF组成一个轴对称图形,在网格中画出这个轴对称图形;(2)在网格中画一个格点△A′B′C′,使△A′B′C′∽△ABC,且相似比不为1.25.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2)(1)画出△ABC关于点B成中心对称的图形△A1BC1;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧画出△ABC放大后的图形△A2B2C2,并直接写出C2的坐标.26.如图,在正三角形ABC中,D,E分别在AC,AB上,且=,AE=EB.求证:△AED ∽△CBD.27.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:△AFD∽△CFE.28.如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F,(Ⅰ)证明:△ABD≌△BCE;(Ⅱ)证明:△ABE∽△FAE;(Ⅲ)若AF=7,DF=1,求BD的长.29.如图,在△ABC中,D,E分别是AB,AC上的点,∠AED=∠ABC,∠BAC的平分线AF 交DE于点G,交BC于点F.(1)试写出图中所有的相似三角形,并说明理由(2)若=,求的值.30.如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.(1)如图①,在AB上取一点D,将纸片沿OD翻折,使点A落在BC边上的点E处,求D、E两点的坐标;(2)如图②,若OE上有一动点P(不与O,E重合),从点O出发,以每秒1个单位的速度沿OE方向向点E匀速运动,设运动时间为t秒(0<t<5),过点P作PM⊥OE交OD 于点M,连接ME,求当t为何值时,以点P、M、E为顶点的三角形与△ODA相似?参考答案一.选择题(共14小题)1.下列图形一定相似的是()A.两个矩形B.两个等腰梯形C.有一个内角相等的两个菱形D.对应边成比例的两个四边形【分析】根据相似图形的定义,四条边对应成比例,四个角对应相等,对各选项分析判断后利用排除法解答.【解答】解:A、两个矩形,对应角相等,都是直角,但四条边不一定对应成比例,故本选项错误;B、两个等腰梯形,四个角不一定对应相等,边也不一定对应成比例,所以不一定相似,故本选项错误;C、两个菱形,有一个角相等,则其它角也对应相等,而四条边都相等,所以对应成比例,所以相似,故本选项正确;D、对应边成比例,对应角不一定相等,所以不一定相似,故本选项错误.故选:C.2.已知=,那么的值为()A.B.C.D.﹣【分析】直接利用已知将原式变形进而得出答案.【解答】解:∵=,∴3a﹣3b=2b,则3a=5b,故=.故选:B.3.已知线段a=2cm,b=8cm,它们的比例中项c是()A.16cm B.4cm C.±4cm D.±16cm【分析】根据比例中项的定义,列出比例式即可得出中项,注意线段不能为负.【解答】解:根据比例中项的概念结合比例的基本性质,得比例中项的平方等于两条线段的乘积.即c2=ab,则c2=2×8,解得c=±4,(线段是正数,负值舍去).故选:B.4.如图,如果AB∥CD∥EF,那么下列结论正确的是()A.=B.=C.=D.=【分析】根据平行线分线段成比例定理列出比例式,判断即可.【解答】解:连接AF,交CD于H,∵AB∥CD∥EF,∴=,A错误;=,B正确;C错误;=,D错误;故选:B.5.如图,AB与CD相交于点E,AD∥BC,,CD=16,则DE的长为()A.3 B.6 C.D.10【分析】根据平行于三角形一边的直线截另两边或另两边的延长线所得三角形与原三角形相似,即可求得△CBE∽△AED,根据相似三角形的对应边成比例,即可求得DE的长.【解答】解:∵AD∥BC,∴△CBE∽△AED,∴BE:AE=CE:ED=3:5,∵CD=16.CE+ED=CD,∴DE=,故选:D.6.如图,已知在△ABC中,点D、E分别在边AB、AC上,DE∥BC,AD:BD=2:1,点F在AC上,AF:FC=1:2,联结BF,交DE于点G,那么DG:GE等于()A.1:2 B.1:3 C.2:3 D.2:5.【分析】首先证明AF=EF=EC,由题意=,=,设GE=m,求出DG即可解决问题;【解答】解:∵DE∥BC,∴==2,∴CE:CA=1:3,==,∵AF:FC=1:2,∴AF:AC=1:3,∴AF=EF=EC,∴EG:BC=1:2,设EG=m,则BC=2m,∴DE=m,DG=m﹣m=m,∴DG:GE=m:m=1:3,故选:B.7.如图,已知直线a∥b∥c,直线m分别交直线a、b、c于点A、B、C,直线n分别交直线a、b、c于点D、E、F,若AB=2,AD=BC=4,则的值应该()A.等于B.大于C.小于D.不能确定【分析】作AH∥n分别交b、c于G、H,如图,易得HF=GE=AD=4,利用平行线分线段成比例得到==,所以==+,于是可判断>.【解答】解:作AH∥n分别交b、c于G、H,如图,易得四边形AGED、四边形AHFD为平行四边形,∴HF=GE=AD=4,∵直线a∥b∥c,∴=,即==,∴====+,∴>.故选:B.8.如图,一张矩形纸片ABCD的长AB=a,宽BC=b.将纸片对折,折痕为EF,所得矩形AFED与矩形ABCD相似,则a:b=()A.2:1 B.:1 C.3:D.3:2【分析】根据折叠性质得到AF=AB=a,再根据相似多边形的性质得到=,即=,然后利用比例的性质计算即可.【解答】解:∵矩形纸片对折,折痕为EF,∴AF=AB=a,∵矩形AFED与矩形ABCD相似,∴=,即=,∴()2=2,∴=.故选:B.9.如图,取一张长为a,宽为b的长方形纸片,将它对折两次后得到一张小长方形纸片,若要使小长方形与原长方形相似,则原长方形纸片的边a、b应满足的条件是()A.a=b B.a=2b C.a=2b D.a=4b【分析】根据对折表示出小长方形的长和宽,再根据相似多边形的对应边成比例列式计算即可得解.【解答】解:对折两次后的小长方形的长为b,宽为a,∵小长方形与原长方形相似,∴=,∴a=2b.故选:B.10.如图,已知△ABC和△PBD都是正方形网格上的格点三角形(顶点为网格线的交点),要使△ABC∽△PBD,则点P的位置应落在()A.点P1上B.点P2上C.点P3上D.点P4上【分析】由图可知∠BPD一定是钝角,若要△ABC∽△PBD,则PB、PD与AB、AC的比值必须相等,可据此进行判断.【解答】解:由图知:∠BAC是钝角,又△ABC∽△PBD,则∠BPD一定是钝角,∠BPD=∠BAC,又BA=2,AC=2,∴BA:AC=1:,∴BP:PD=1:或BP:PD=:1,只有P2符合这样的要求,故P点应该在P2.故选:B.11.如图,正方形OABC的边长为8,点P在AB上,CP交OB于点Q.若S△BPQ=,则OQ长为()A.6 B.C.D.【分析】根据正方形的性质得到AB∥OC,推出△PBQ∽△COQ,根据相似三角形的性质得到OC=3PB,求得PB=,于是得到结论.【解答】解:∵四边形ABCO是正方形,∴AB∥OC,∴△PBQ∽△COQ,∴=()2=,∴OC=3PB,∵OC=8,∴PB=,∵==,BO=8,∴OQ=×8=6,故选:B.12.如图,D,E分别△ABC的边AB,AC的中点,给出下列结论:①BC=2DE;②△ADE∽△ABC;③AD:AE=AB:AC;④S△ADE:S四边形BCED=1:3.其中正确的结论有()A.4个B.3个C.2个D.1个【分析】根据D,E分别是△ABC的边AB,AC的中点,得到DE是△ABC的中位线,再利用中位线的性质得到DE与BC的关系,判断三角形相似,根据相似三角形的性质对所给命题进行判断.【解答】解:∵D,E分别是△ABC的边AB,AC的中点,∴DE是△ABC的中位线,∴DE=BC,DE∥BC.∵DE=BC,∴BC=2DE.∴①正确.∵DE∥BC,∴△ADE∽△ABC.∴②正确.∵△ADE∽△ABC,∴AD:AE=AB:AC,∴③正确.∵DE:BC=1:2,又△ADE∽△ABC,∴S△ADE:S△ABC=1:4,∴S△ADE:S四边形BCED=1:3.∴④正确.故选:A.13.△DEF和△ABC是位似图形,点O是位似中心,点D,E,F分别是OA,OB,OC的中点,若△DEF的面积是2,则△ABC的面积是()A.2 B.4 C.6 D.8【分析】根据点D,E,F分别是OA,OB,OC的中点知=,由位似图形性质得=()2,即=,据此可得答案.【解答】解:∵点D,E,F分别是OA,OB,OC的中点,∴=,∴△DEF与△ABC的相似比是1:2,∴=()2,即=,解得:S△ABC=8,故选:D.14.如图,在平面直角坐标系中,已知点O(0,0),A(6,0),B(0,8),以某点为位似中心,作出与△AOB的位似比为k的位似△CDE,则位似中心的坐标和k的值分别为()A.(0,0),2 B.(2,2),C.(2,2),2 D.(1,1),【分析】直接利用位似图形的性质分别得出位似中心和位似比.【解答】解:如图所示:位似中心F的坐标为:(2,2),k的值为:=.故选:B.二.填空题(共7小题)15.如果,那么的值为.x2﹣3x=0的根是x1=0,x2=3 .【分析】根据已知条件得到x、y的数量关系,代入,通过约分求值即可;利用因式分解法解方程即可.【解答】解:∵,∴5x=3x+3y,则2x=3y,∴=.x2﹣3x=0,x(x﹣3)=0,则x=0或x﹣3=0,解得x1=0,x2=3.故答案是:,x1=0,x2=3.16.如图,直线a∥b∥c,直线AC分别交a,b,c于点A,B,C,直线DF分别交a,b,c于点D,E,F.若=,则=.【分析】先由=,根据比例的性质可得=,再根据平行线分线段成比例定理求解即可.【解答】解:∵=,∴=,∵直线a∥b∥c,∴==,故答案是:.17.如图,在△ABC中,AB:AC=7:3,∠BAC的平分线交BC于点E,过点B作AE的垂线段,垂足为D,则AE:ED=3:2 .【分析】根据题意作出合适的辅助线,然后利用相似三角形的判定和性质可以求得AE:ED的比值.【解答】解:作CF⊥AD于点F,如右图所示,则∠AFC=∠ADB,∵AD平分∠BAC,∴∠BAD=∠CAF,∴△ABD∽△ACF,∴=,∵AB:AC=7:3,BD:CF=7:3,∴AD:AF=7:3,∵∠CFE=∠BDE=90°,∠CEF=∠BED,∴△CEF∽△BED,∴,∵CF:BD=3:7,∴,∵,,AF+FE+DE=AD,解得,,故答案为:3:2.18.如图,平行四边形ABCD中,E为AD的中点,已知△DEF的面积为2,则平行四边形ABCD 的面积是24 .【分析】由于四边形ABCD是平行四边形,那么AD∥BC,AD=BC,根据平行线分线段成比例定理的推论可得△DEF∽△BCF,再根据E是AD中点,易求出相似比,从而可求△BCF 的面积,再利用△BCF与△DEF是同高的三角形,则两个三角形面积比等于它们的底之比,从而易求△DCF的面积,进而可求▱ABCD的面积.【解答】解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴△DEF∽△BCF,∴S△DEF:S△BCF=()2,又∵E是AD中点,∴DE=AD=BC,∴DE:BC=DF:BF=1:2,∴S△DEF:S△BCF=1:4,∴S△BCF=8,又∵DF:BF=1:2,∴S△DCF=4,∴S=2(S△DCF+S△BCF)=24.▱ABCD故答案为:24.19.如图,AB∥CD,AD、BC相交于点E,过点E作EF∥CD交BD于点F,AB:CD=2:3,那么=.【分析】先证明△ABE∽△DEC得到==,利用比例性质得到=,再证明EF∥AB,则可判断△DEF∽△DAB,然后利用相似比可得到的值.【解答】解:∵AB∥CD,∴△ABE∽△DEC,∴==,∴=,∵EF∥CD,AB∥CD,∴EF∥AB,∴△DEF∽△DAB,∴==.故答案为.20.如图,D是等边△ABC的边BC上一动点,ED∥AC交AB于点E.DF⊥AC交AC于点F,DF=,若△DCF与E、F、D三点组成的三角形相似,则BD的长等于1或3 .【分析】根据△DCF与E、F、D三点组成的三角形相似,分△DCF∽△EFD和△DCF∽△FED 两种情况分类讨论即可得到两个不同的答案.【解答】解:∵ED∥AC交AB于点E,△ABC是等边三角形,∴△BDE是等边三角形,∠FDC=30°,当△DCF∽△EFD,∴∠FED=∠FDC=30°∴DE===3,∴BD=DE=3;当△DCF∽△FED,∴∠EFD=∠FDC=30°,∴BD=DE=DF•tan∠A=×=1.故答案为:1或3.21.如图,在平行四边形ABCD中,AB=6,AD=9,∠BAD的平分线交BC于点E,交DC的延长线于点F,BG⊥AE,垂足为G,BG=4,则△CEF的周长为8 .【分析】本题意在综合考查平行四边形、相似三角形、和勾股定理等知识的掌握程度和灵活运用能力,同时也体现了对数学中的数形结合思想的考查.在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,可得△ADF是等腰三角形,AD=DF=9;△ADF 是等腰三角形,AB=BE=6,所以CF=3;在△ABG中,BG⊥AE,AB=6,BG=,可得AG=2,又△ADF是等腰三角形,BG⊥AE,所以AE=2AG=4,所以△ABE的周长等于16,又由▱ABCD可得△CEF∽△BEA,相似比为1:2,所以△CEF的周长为8.【解答】解:∵在▱ABCD中,AB=CD=6,AD=BC=9,∠BAD的平分线交BC于点E,∴∠BAF=∠DAF,∵AB∥DF,∴∠BAF=∠F,∴∠F=∠DAF,∴△ADF是等腰三角形,AD=DF=9;∵AD∥BC,∴△EFC是等腰三角形,且FC=CE.∴EC=FC=9﹣6=3,∴AB=BE.∴在△ABG中,BG⊥AE,AB=6,BG=,可得:AG=2,又∵BG⊥AE,∴AE=2AG=4,∴△ABE的周长等于16,又∵▱ABCD,∴△CEF∽△BEA,相似比为1:2,∴△CEF的周长为8.故答案为8.三.解答题(共9小题)22.如图,在△ABC中,已知AB=AC,D、E、B、C在同一条直线上,且AB2=BD•CE,求证:△ABD∽△ECA.【分析】由条件可得到∠ABD=∠ACE,结合AB2=BD•CE和AB=AC,可得到=,即可证得结论.【解答】证明:∵AB=AC,∴∠ABC=∠ACB,∴∠ABD=∠ACE,∵AB2=BD•CE,∴=,即=,∴△ABD∽△ECA.23.定义:顶点都在网格点上的四边形叫做格点四边形,端点都在网格点上的线段叫做格点线.如图1,在正方形网格中,格点线DE、CE将格点四边形ABCD分割成三个彼此相似的三角形.请你在图2、图3中分别画出格点线,将阴影四边形分割成三个彼此相似的三角形.【分析】图2中,连接AC、CE,得△ABC∽△CDE∽△ECA,相似比为:2;图3中,△BCE∽△EBA∽△CED,相似比为:2.【解答】解:如图所示24.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了两个格点△ABC和△DEF(顶点在网格线的交点上).(1)平移△ABC,使得△ABC和△DEF组成一个轴对称图形,在网格中画出这个轴对称图形;(2)在网格中画一个格点△A′B′C′,使△A′B′C′∽△ABC,且相似比不为1.【分析】(1)平移△ABC,速度AB与DE重合即可;(2)画出相似比为1:2D的△A′B′C′即可;【解答】解:(1)如图(答案不唯一).(2)如图(答案不唯一).25.如图,在平面直角坐标系中,△ABC的三个顶点坐标分别为A(﹣2,1),B(﹣1,4),C(﹣3,2)(1)画出△ABC关于点B成中心对称的图形△A1BC1;(2)以原点O为位似中心,位似比为1:2,在y轴的左侧画出△ABC放大后的图形△A2B2C2,并直接写出C2的坐标.【分析】(1)作出A、C的对应点A1、C1即可解决问题;(2)作出A、B、C的对应点A2、B2、C2即可;【解答】解:(1)△A1BC1即为所求;(2)△A2B2C2即为所求,C2的坐标为(﹣6,4).26.如图,在正三角形ABC中,D,E分别在AC,AB上,且=,AE=EB.求证:△AED ∽△CBD.【分析】先根据等边三角形的性质得到∠A=∠C=60°,BC=AB,由AE=BE可得到CB =2AE,再由,得到CD=2AD,则,然后根据两边及其夹角法可得到结论.【解答】证明:∵△ABC为正三角形,∴∠A=∠C=60°,BC=AB,∵AE=BE,∴CB=2AE,∵,∴CD=2AD,∴,而∠A=∠C,∴△AED∽△CBD.27.如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB的中点,(1)求证:AC2=AB•AD;(2)求证:△AFD∽△CFE.【分析】(1)根据两组对角对应相等的两个三角形相似证明即可;(2)根据直角三角形的性质得到CE=BE=AE,根据等腰三角形的性质得到∠EAC=∠ECA,推出AD∥CE即可解决问题;【解答】(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=BE=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD,∴△AFD∽△CFE.28.如图,△ABC是等边三角形,点D,E分别在BC,AC上,且BD=CE,AD与BE相交于点F,(Ⅰ)证明:△ABD≌△BCE;(Ⅱ)证明:△ABE∽△FAE;(Ⅲ)若AF=7,DF=1,求BD的长.【分析】(Ⅰ)根据等边三角形的性质,利用SAS证得△ABD≌△BCE;(Ⅱ)由△ABD≌△BCE得∠BAD=∠CBE,又∠ABC=∠BAC,可证∠ABE=∠EAF,又∠AEF =∠BEA,由此可以证明△AEF∽△BEA;(Ⅲ)根据相似三角形的性质解答即可.【解答】解:(Ⅰ)∵△ABC是等边三角形,∴AB=BC,∠ABD=∠BCE,在△ABD与△BCE中,∴△ABD≌△BCE(SAS);(Ⅱ)由(1)得:∠BAD=∠CBE,又∵∠ABC=∠BAC,∴∠ABE=∠EAF,又∵∠AEF=∠BEA,∴△AEF∽△BEA;(Ⅲ)∵∠BAD=∠CBE,∠BDA=∠FDB,∴△ABD∽△BDF,∴,∴BD2=AD•DF=(AF+DF)•DF=8,∴BD=2.29.如图,在△ABC中,D,E分别是AB,AC上的点,∠AED=∠ABC,∠BAC的平分线AF 交DE于点G,交BC于点F.(1)试写出图中所有的相似三角形,并说明理由(2)若=,求的值.【分析】(1)根据两组对应角相等可判断△ABC∽△AED,△ADG∽△ACF,△AEG∽△ABF.(2)根据相似三角形的对应高相等可以进行计算.【解答】解:(1)∵∠AED=∠ABC,∠EAD=∠BAC,∴△ABC∽△AED,∴∠ADE=∠ACB∵∠AED=∠ABC,∠EAG=∠BAF,∴△AEG∽△ABF.∵∠EDG=∠ACF,∠DAG=∠CAF,∴△ADG∽△ACF.(2)∵=,∴=,∵△ADG∽△ACF,∴==.30.如图,四边形OABC是一张放在平面直角坐标系中的矩形纸片,O为原点,点A在x轴的正半轴上,点C在y轴的正半轴上,OA=5,OC=4.(1)如图①,在AB上取一点D,将纸片沿OD翻折,使点A落在BC边上的点E处,求D、E两点的坐标;(2)如图②,若OE上有一动点P(不与O,E重合),从点O出发,以每秒1个单位的速度沿OE方向向点E匀速运动,设运动时间为t秒(0<t<5),过点P作PM⊥OE交OD 于点M,连接ME,求当t为何值时,以点P、M、E为顶点的三角形与△ODA相似?【分析】(1)由翻折的性质可知OE=5,然后利用勾股定理可求得CE=3,从而求得点E 的坐标,然后在三角形EDB中,利用翻折的性质和勾股定理可求得AD的长,从而可求得点D的坐标;(2)首先证明∠EPM=90°,首先根据相似三角形的性质可知∠PEM=∠DOA或∠PME=∠DOA,然后利用相似三角形的性质可求得t的值.【解答】解:(1)由翻折的性质可知:OE=OA=5.在Rt△OCE中,CE===3.∴点E的坐标为(3,4).∴EB=CB﹣CE=5﹣3=2.设AD=x,则BD=4﹣x.由翻折的性质可知:ED=AD=x.在Rt△BED中,EB2+BD2=ED2,即22+(4﹣x)2=x2.解得:x=2.5.∴AD=2.5.∴点D的坐标为(5,2.5).(2)由翻折的性质可知:∠OED=∠DAO=90°,∠DOE=∠DOA.∵PM∥ED,∴∠MPE+∠PED=180°.∴∠MPE=90°.∴∠MPE=∠DAO.当点P、M、E为顶点的三角形与△ODA相似时,有△PEM∽△AOD或△PME∽△AOD,∴∠PEM=∠DOA或∠PME=∠DOA.①当∠PEM=∠DOA时,在△OPM和△EPM 中,,∴△OPM≌△EPM,∴PE=PO.∴t=2.5;②当∠PME=∠DOA时,OP=t,则PE=5﹣t.∵∠DOE=∠DOA,∴tan∠DOE=tan∠DOA,∴.∴PM ==t.∵∠PME=∠DOA∴tan∠PME=tan∠DOA,∴.即.解得:t=4.综上所述,当t=2.5或4时,以点P、M、E为顶点的三角形与△ODA相似.31。
北师大版九年级数学上册《第四章图形的相似》单元测试(含答案)
![北师大版九年级数学上册《第四章图形的相似》单元测试(含答案)](https://img.taocdn.com/s3/m/ee5b1600ad51f01dc381f112.png)
第四章 图形的相似第Ⅰ卷 (选择题 共30分)一、选择题(每小题3分,共30分)1.下列各组中的四条线段是成比例线段的是( )A .1 cm ,2 cm ,20 cm ,40 cmB .1 cm ,2 cm ,3 cm ,4 cmC .6 cm ,4 cm ,1 cm ,3 cmD .5 cm ,10 cm ,15 cm ,20 cm2.如图1,两条直线分别被三条平行直线l 1,l 2,l 3所截,若AB =3,BC =6,DE =2,则DF 的长为( )图1A .4B .5C .6D .73.若a b =35,则a +b b的值是( )A.58B.35C.85D.324.如图2,△ABC 中,AC =BC ,在边AB 上截取AD =AC ,连接CD ,若点D 恰好是线段AB 的一个黄金分割点,则∠A 的度数是( )图2A.22.5° B.30° C.36° D.45°5.如图3所示,将△ABO的三边分别扩大为原来的2倍得到△A1B1C1(顶点均在格点上),它们是以点P为位似中心的位似图形,则点P的坐标是( )A.(-4,-3) B.(-3,-3) C.(-4,-4) D.(-3,-4)图36.如图4,已知矩形ABCD,AB=2,在BC上取一点E,沿AE将△ABE向上折叠,使点B落在AD上的点F处,若四边形EFDC与矩形ABCD相似,则AD的长为( )图4A. 5B.5+1 C.4 D.2 37.在小孔成像问题中,光线穿过小孔,在屏幕上形成倒立的实像,如图5所示,若点O到AB的距离是18 cm,点O到CD的距离是6 cm,则像CD的长是AB长的( )图5A .3倍 B.12C.13D .不知AB 的长度,故无法判断8.为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图6所示的测量方案,把一面很小的镜子水平放置在离树底(B )8.4米的点E 处,然后沿着直线BE 后退到点D ,这时恰好在镜子里看到树梢顶点A ,再用皮尺量得DE =3.2米,观察者目高CD =1.6米,则树(AB )的高度为( )图6A .4.2米B .4.8米C .6.4米D .16.8米9.如图7,将矩形纸片ABCD 沿EF 折叠,使点B 与CD 边的中点B ′重合,若AB =2,BC =3,则△FCB ′与△B ′DG 的面积之比为( )A.9∶4 B.3∶2 C.4∶3 D.16∶9图710.如图8,在△ABC中,AB=6 cm,AC=12 cm,动点D从点A出发到点B停止,动点E从点C出发到点A停止.点D的运动速度为1 cm/s,点E的运动速度为2 cm/s.如果两点同时运动,那么当以点A,D,E为顶点的三角形与△ABC相似时,运动的时间是( )图8A.3 s或4.8 s B.3 sC.4.5 s D.4.5 s或4.8 s请将选择题答案填入下表:题号12345678910总分答案第Ⅱ卷(非选择题共90分)二、填空题(每小题3分,共18分)11.如图9,D 是等边三角形ABC 中边AB 上的点,AD =2,DB =4.现将△ABC 折叠,使得点C 与点D 重合,折痕为EF ,且点E ,F 分别在边AC 和BC 上,则CFCE=________.图912.如图10,△ABC 中,AB =6,DE ∥AC ,将△BDE 绕点B 顺时针旋转得到△BD ′E ′,点D 的对应点D ′落在边BC 上.已知BE ′=5,D ′C =4,则BC 的长为________.图1013.若a b =c d =e f =12,则3a -2c +e 3b -2d +f(3b -2d +f ≠0)=________.14.如图11所示,Rt △DEF 是由Rt △ABC 沿BC 方向平移得到的,若AB =8,BE =4,DH =3,则△HEC 的面积为________.图1115.如图12,在△ABC 中,AC =6,AB =4,点D ,A 在直线BC 的同侧,且∠ACD =∠B ,CD =2,E 是线段BC 延长线上的动点,当△DCE 和△ABC 相似时,线段CE 的长为________.图1216.如图13,直线y =12x +1与x 轴交于点A ,与y 轴交于点B ,△BOC 与△B ′O ′C ′是以点A 为位似中心的位似图形,且相似比为1∶3,则点B 的对应点B ′的坐标为________.图13三、解答题(共72分)17.(6分)已知a ,b ,c 是△ABC 的三边长,且满足a +43=b +32=c +84,a +b +c =12,试求a ,b ,c 的值,并判断△ABC 的形状.18.(6分)如图14,在平面直角坐标系中,四边形OABC的顶点分别是O(0,0),A(6,0),B(3,6),C(-3,3).(1)以原点O为位似中心,在点O的异侧画出四边形OABC的位似图形四边形OA1B1C1,使它与四边形OABC的相似比是2∶3;(2)写出点A1,B1,C1的坐标;(3)求四边形OA1B1C1的面积.图1419.(8分)已知:在△ABC中,∠ABC=90°,AB=3,BC=4,Q是线段AC上的一个动点,过点Q作AC的垂线交线段AB(如图15①)或线段AB的延长线(如图15②)于点P.(1)当点P 在线段AB 上时,求证:△AQP ∽△ABC ;(2)当△PQB 为等腰三角形时,求AP 的长.图1520.(8分)如图16①,点D ,E 分别在AB ,AC 上,且AD AB =AEAC .(1)求证:DE ∥BC ;(2)如图②,在△ABC 中,D 为边AC 上任意一点,连接BD ,取BD 的中点E ,连接CE 并延长CE 交边AB 于点F ,求证:BF AF =CDAC;(3)在(2)的条件下,若AB =AC ,AF =CD ,求BFAF的值.图1621.(10分)如图17是位于陕西省西安市荐福寺内的小雁塔,是中国早期方形密檐式砖塔的典型作品,并作为丝绸之路的一处重要遗址点,被列入《世界遗产名录》.小铭、小希等几位同学想利用一些测量工具和所学的几何知识测量小雁塔的高度,由于观测点与小雁塔底部间的距离不易测量,因此经过研究需要进行两次测量,于是在阳光下,他们首先利用影长进行测量,方法如下:小铭在小雁塔的影子顶端D 处竖直立一根木棒CD ,并测得此时木棒的影长DE =2.4米;然后,小希在BD 的延长线上找出一点F ,使得A ,C ,F 三点在同一直线上,并测得DF=2.5米.已知图中所有点均在同一平面内,木棒高CD=1.72米,AB⊥BF,CD⊥BF,试根据以上测量数据,求小雁塔的高度AB.图1722.(10分)如图18,在平面直角坐标系中,已知OA=12厘米,OB=6厘米,点P从点O开始沿OA边向点A以1厘米/秒的速度移动,点Q从点B开始沿BO边向点O以1厘米/秒的速度移动.如果点P,Q同时出发,用t(秒)表示移动的时间(0≤t≤6).(1)设△POQ的面积为y,求y关于t的函数表达式;(2)当t为何值时,△POQ与△AOB相似?图1823.(12分)如图19,在等腰三角形ABC中,∠BAC=120°,AB=AC=2,D是BC边上的一个动点(不与点B,C重合),在AC上取一点E,使∠ADE=30°.(1)求证:△ABD∽△DCE;(2)设BD=x,AE=y,求y关于x的函数关系式并写出自变量x的取值范围;(3)当△ADE是等腰三角形时,求AE的长.图1924.(12分)如图20①,点C 将线段AB 分成两部分,如果AC AB =BCAC ,那么称点C 为线段AB 的黄金分割点.某数学兴趣小组在进行研究时,由“黄金分割点”联想到“黄金分割线”,类似给出“黄金分割线”的定义:一条直线将一个面积为S 的图形分成两部分,这两部分的面积分别为S 1,S 2,如果S 1S =S 2S 1,那么称这条直线为该图形的黄金分割线.(1)如图②,在△ABC 中,∠A =36°,AB =AC ,∠ACB 的平分线交AB 于点D ,请问直线CD 是不是△ABC 的黄金分割线?并证明你的结论;(2)如图③,在边长为1的正方形ABCD 中,E 是边BC 上一点,若直线AE 是正方形ABCD 的黄金分割线,求BE 的长.图20详解详析1.A2.C [解析] ∵两条直线分别被三条平行直线l 1,l 2,l 3所截,∴AB BC =DE EF.∵AB =3,BC =6,DE =2,∴EF =4,∴DF =DE +EF =2+4=6.故选C.3.C4.C [解析] ∵点D 是线段AB 的一个黄金分割点,∴AD 2=BD ·AB . ∵AD =AC =BC ,∴BC 2=BD ·AB , 即BC ∶BD =AB ∶BC .而∠ABC =∠CBD ,∴△BCD ∽△BAC , ∴∠A =∠BCD .设∠A =x °,则∠B =x °,∠BCD =x °, ∴∠ADC =∠BCD +∠B =2x °. 而AC =AD ,∴∠ACD =∠ADC =2x °, ∴x +2x +2x =180,解得x =36, 即∠A =36°.故选C.5.A6.B [解析] 由折叠知AF =AB =2,设AD =x ,则FD =x -2,EF =2,∵四边形EFDC 与矩形ABCD 相似,∴EF FD =AD AB ,即2x -2=x 2,解得x 1=1+5,x 2=1-5(不合题意,舍去),即AD 的长为5+1.故选B.7.C [解析] 过点O 作OM ⊥AB 于点M ,交CD 于点N ,如图,则OM =18 cm ,ON =6 cm.∵AB ∥CD ,∴△ODC ∽△OAB ,∴CD AB =ON OM =618=13,即CD 的长是AB 长的13.故选C.8.A [解析] 如图,过点E 作EF ⊥BD 于点E ,则∠1=∠2.∵∠DEF =∠BEF =90°,∴∠DEC =∠AEB .∵CD ⊥BD ,AB ⊥BD ,∴∠CDE =∠ABE =90°,∴△CDE ∽△ABE ,∴DE BE =CDAB.∵DE =3.2米,CD =1.6米,BE =8.4米,∴3.28.4=1.6AB,解得AB =4.2米. 9.D [解析] 本题运用方程思想,设CF =x , 则BF =3-x ,易得CF 2+CB ′2=FB ′2,即x 2+12=(3-x )2,解得x =43.由已知可证得Rt △FCB ′∽Rt△B ′DG ,所以S △FCB ′S △B ′DG =⎝ ⎛⎭⎪⎫CF DB ′2=169.10.A [解析] 本题运用分类讨论的思想,分△ADE ∽△ABC 和△ADE ∽△ACB 两种情况分别求解.11.54 [解析] ∵△ABC 是等边三角形,∴∠A =∠B =∠C =60°,AC =BC =AB =AD +DB =6.由折叠的性质可知∠EDF =∠C =60°,EC =ED ,FC =FD ,∴∠AED =∠BDF , ∴△AED ∽△BDF ,∴DF DE =BD +DF +BF AE +AD +DE =108=54,∴CF CE =DF DE =54. 12.2+34 [解析] 由旋转可得BE =BE ′=5,BD =BD ′. ∵D ′C =4,∴BD ′=BC -4,即BD =BC -4.∵DE ∥AC ,∴BD BA =BE BC ,即BC -46=5BC,解得BC =2+34(负值已舍),即BC 的长为2+34.13.12 [解析] 由a b =c d =e f =12,得a =12b ,c =12d ,e =12f ,所以3a -2c +e 3b -2d +f =1.5b -d +0.5f3b -2d +f =12. 14.503 [解析] 设CE =x ,由△CEH ∽△CBA ,得EH AB =CE CB ,即8-38=x x +4,∴x =203,∴S△HEC=12×203×5=503.15.43或3 [解析] ∵∠ACD +∠DCE =∠B +∠A ,∠ACD =∠B ,∴∠DCE =∠A ,∴∠A 与∠DCE 是对应角,∴△DCE 和△ABC 相似有两种情况:(1)当△BAC ∽△ECD 时,AB CE =AC CD ,∴4CE =62,∴CE =43; (2)当△BAC ∽△DCE 时,AB CD =ACCE, ∴42=6CE,∴CE =3. 综上所述,CE 的长为43或3.故答案为:43或3.易错警示△DCE 和△ABC 相似有两种情况,注意不要漏解.16.(4,3)或(-8,-3) [解析] 由直线y =12x +1与x 轴交于点A ,与y 轴交于点B ,得点A (-2,0),点B (0,1).画△BOC 的位似图形△B ′O ′C ′如图所示.∵△BOC 与△B ′O ′C ′的相似比为1∶3,∴点B ′(x ,3)或(x ,-3).∵点B ′(x ,3)或(x ,-3)在直线y=12x +1上,∴点B ′的坐标为(4,3)或(-8,-3). 故答案为(4,3)或(-8,-3).17.解:设a +43=b +32=c +84=k (k ≠0),∴a =3k -4,b =2k -3,c =4k -8. ∵a +b +c =12,将a =3k -4,b =2k -3,c =4k -8代入上式, 得3k -4+2k -3+4k -8=12, ∴9k =27,即k =3. ∴a =5,b =3,c =4.∵b 2+c 2=9+16=25,a 2=52=25, ∴b 2+c 2=a 2,∴△ABC 是直角三角形.18.解:(1)如图所示,四边形OA 1B 1C 1即为所求.(2)由图形可得A 1(-4,0),B 1(-2,-4),C 1(2,-2).(3)四边形OA 1B 1C 1的面积为12×2×4+12×(3+4)×2+12×3×2=14.19.解:(1)证明:∵∠A +∠APQ =90°,∠A +∠C =90°, ∴∠APQ =∠C . 在△AQP 和△ABC 中, ∵∠APQ =∠C ,∠A =∠A , ∴△AQP ∽△ABC .(2)在Rt △ABC 中,AB =3,BC =4,由勾股定理,得AC =5. ①当点P 在线段AB 上时. ∵△PQB 为等腰三角形,∴PB =PQ . 由(1)可知,△AQP ∽△ABC ,∴PA AC =PQBC,即3-PB 5=PB 4,解得PB =43, ∴AP =AB -PB =3-43=53;②当点P 在线段AB 的延长线上时. ∵△PQB 为等腰三角形, ∴PB =BQ ,∴∠BQP =∠P .∵∠BQP +∠AQB =90°,∠A +∠P =90°,∴∠AQB =∠A ,∴BQ =AB , ∴AB =BP ,即B 为线段AP 的中点, ∴AP =2AB =2×3=6.综上所述,当△PQB 为等腰三角形时,AP 的长为53或6.20.解:(1)证明:∵∠A =∠A ,AD AB =AEAC, ∴△ADE ∽△ABC ,∴∠ADE =∠B , ∴DE ∥BC .(2)证明:如图,过点D 作DG ∥AB 交CF 于点G ,则△CDG ∽△CAF ,∴DG AF =CD AC.∵E 是BD 的中点,∴BE =ED . ∵DG ∥AB ,∴∠FBE =∠EDG .在△BEF 和△DEG 中,∠FBE =∠EDG ,∠FEB =∠GED ,BE =ED ,∴△BEF ≌△DEG (ASA),∴BF =DG ,∴BF AF =CDAC.(3)由(2)可得BF AF =CDAC.∵AB =AC ,AF =CD ,∴BF AF =AFAF +BF,∴BF 2+BF ·AF -AF 2=0,∴(BF AF)2+BF AF -1=0,解得BF AF =-1±52,而BE AF >0,∴BF AF =5-12.21.解:由题意得∠ABD =∠CDE =90°, ∠ADB =∠CED ,∴△CDE ∽△ABD ,∴CD AB =DE BD.∵由题意得∠CDF =∠ABF =90°,∠CFD =∠AFB ,∴△CDF ∽△ABF ,∴CD AB =DF BF,∴DE BD =DF BF,即2.4BD = 2.5BD +2.5,∴BD =60, ∴1.72AB =2.460,∴AB =43. 答:小雁塔的高度AB 是43米.22.解:(1)由题意,得BQ =t 厘米,OP =t 厘米. 因为OB =6厘米, 所以OQ =(6-t )厘米.所以y =12OP ·OQ =12t ·(6-t )=-12t 2+3t (0≤t ≤6). (2)当△POQ 与△AOB 相似时,①若OQ OB =OP OA ,即6-t 6=t 12,解得t =4; ②若OQ OA =OP OB ,即6-t 12=t 6,解得t =2. 所以当t =4或t =2时,△POQ 与△AOB 相似.23.解:(1)证明:∵△ABC 是等腰三角形,且∠BAC =120°,∴∠B =∠C =30°. 又∵∠ADE =30°,∴∠B =∠ADE .又∵∠ADC =∠ADE +∠EDC =∠B +∠DAB ,∴∠EDC =∠DAB ,∴△ABD ∽△DCE .(2)如图①,过点A 作AF ⊥BC 于点F ,∵AB =AC =2,∠BAC =120°,∴∠AFB =90°.∵AB =2,∠ABF =30°,∴AF =12AB =1, ∴BF =3,∴BC =2BF =23,则CD =23-x ,CE =2-y .∵△ABD ∽△DCE ,∴AB BD =CD CE ,∴2x =23-x 2-y ,化简得y =12x 2-3x +2(0<x <23).(3)当AD =DE 时,如图②,由(1)可知:此时△ABD ∽△DCE ,则AB =CD ,即2=23-x ,x =23-2,将其代入y =12x 2-3x +2,解得y =4-23, 即AE =4-23;当AE =ED 时,如图③,∠EAD =∠EDA =30°,∠AED =120°,∴∠DEC =60°,∠EDC =90°,则DE =12CE ,即y =12(2-y ),解得y =23,即AE =23;当AD =AE 时,∠AED =∠ADE =30°,∠EAD =120°,此时点D 与点B 重合,不符合题意,故此种情况不存在.综上,当△ADE 是等腰三角形时,AE 的长为4-23或23. 24.解:(1)直线CD 是△ABC 的黄金分割线.证明:∵AB =AC ,∠A =36°,∴∠ABC =∠ACB =72°.∵CD 平分∠ACB ,∴∠ACD =∠BCD =12∠ACB =36°, ∴∠BDC =72°=∠B ,∠A =∠ACD ,∴BC =CD ,AD =CD ,∴BC =AD .∵∠B =∠B ,∠BCD =∠A ,∴△BCD ∽△BAC ,∴BD BC =BC AB ,∴BD AD =AD AB. 又∵S △BCD S △ADC =BD AD ,S △ADC S △ABC =AD AB, ∴S △BCD S △ADC =S △ADC S △ABC, ∴直线CD 是△ABC 的黄金分割线.(2)设BE =x ,∵正方形ABCD 的边长为1,∴S △ABE =12AB ·BE =12x ,S 正方形ABCD =12=1, ∴S 四边形ADCE =1-12x . ∵直线AE 是正方形ABCD 的黄金分割线, ∴S △ABES 四边形ADCE =S 四边形ADCE S 正方形ABCD, ∴S 四边形ADCE 2=S △ABE ·S 正方形ABCD , 即(1-12x )2=12x ·1, 整理,得x 2-6x +4=0,解得x 1=3+5,x 2=3- 5.∵E 是边BC 上一点,∴x <1,∴x=3-5,∴BE的长为3- 5.。
【易错题】北师大九年级上《第四章图形的相似》单元试卷(学生用)
![【易错题】北师大九年级上《第四章图形的相似》单元试卷(学生用)](https://img.taocdn.com/s3/m/195c3cde48649b6648d7c1c708a1284ac85005b9.png)
【易错题解析】北师大版九年级数学上册第四章图形的相似一、单选题(共10题;共30分)1. ( 3分) 如图所示,在△ABC中D为AC边上一点,若∠DBC=∠A ,BC=3,AC=6,则CD的长为()A. 1B. 2C.D.2. ( 3分) 如果两个相似三角形的面积的比是4:9,那么它们的周长的比是()A. 4:9B. 1:9C. 1:3D. 2:33. ( 3分) 两个相似多边形一组对应边分别为3 cm,4.5 cm,那么它们的相似比为( )A. B. C. D.4. ( 3分) 下列各组图形中不是位似图形的是()A. B. C. D.5. ( 3分) 在同一时刻太阳光线是平行的,如果高1.5米的测杆影长3米,那么此时影长36米的旗杆的高度为()A. 18米B. 12米C. 15米D. 20米6. ( 3分) 下列各组长度的线段中,成比例线段的是()A. 1cm,2cm, 3cm, 4cmB. 1cm, cm, cm,cmC. 2cm, 4cm, 6cm, 8cmD. cm, cm, cm, cm7. ( 3分) 如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AD,AB的中点,EF交AC于点H,则的值为()A. B. 1 C. D.8. ( 3分) 下列说法中正确的是()A. 两个直角三角形相似B. 两个等腰三角形相似C. 两个等边三角形相似D. 两个锐角三角形相似9. ( 3分) 如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为()A. B. C. D.610. ( 3分) 如图,在△ABC中,点P为AB上一点,给出下列四个条件:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP·AB;④AB·CP=AP·CB.其中能满足△APC和△ACB相似的条件是( )A. ①②④B. ①③④C. ②③④D. ①②③二、填空题(共10题;共30分)11. ( 3分) 两个相似三角形的相似比为1 :2 ,它们的面积比为________.12. ( 3分) 如图,在△ABC中,DE∥BC,= ,则=________.13. ( 3分) 如图,直线l1∥l2∥l3,直线AC交l1,l2,l3,于点A,B,C;直线DF交l1,l2,l3于点D,E,F,已知,则=________。
第四章 图形的相似数学九年级上册-单元测试卷-北师大版(含答案)
![第四章 图形的相似数学九年级上册-单元测试卷-北师大版(含答案)](https://img.taocdn.com/s3/m/22f449b9be1e650e53ea99ea.png)
第四章图形的相似数学九年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、下列命题中,是真命题的为( )A.锐角三角形都相似B.直角三角形都相似C.等腰三角形都相似 D.等边三角形都相似2、若△ABC~△DEF,它们的面积比为4︰1,则△ABC与△DEF的相似比为()A.2︰1B.1︰2C.4︰1D.1︰43、下列四个三角形,与左图中的三角形相似的是()A. B. C. D.4、下列各命题中是真命题的是 ( )A.两个位似图形一定在位似中心的同侧.B.如果,那么-3<x<0.C.如果关于x的一元二次方程kx 2-4x-3=0有实根,那么k≥-D.有一个角是100°的两个等腰三角形相似.5、如图,△ABC是等边三角形,被一平行于BC的矩形所截,AB被截成三等分,则图中阴影部分的面积是△ABC的面积的()A. B. C. D.6、如图,在△ABC中,DE∥BC交AB于点D,交AC于点E.若AB=4,AC=3,AD=3,则AE 的长为()A. B. C. D.7、已知,△ABC∽△DEF ,△ABC与△DEF的面积之比为1:2,当BC=1,对应边EF的长是()A. B.2 C.3 D.48、如右图,由下列条件不能判定△ABC与△ADE相似的是()A. B. C. D.9、如图,身高为1.5米的某学生想测量一棵大树的高度,她沿着树影BA由B向A走去当走到C点时,她的影子顶端正好与树的影子顶端重合,测得BC=3米,CA=1米,则树的高度为()A.4.5米B.6米C.3米D.4米10、如图所示,一张等腰三角形纸片,底边长18cm,底边上的高长18cm,现沿底边依次向下往上裁剪宽度均为3cm的矩形纸条,已知剪得的纸条中有一张是正方形,则这张正方形纸条是()A.第4张B.第5张C.第6张D.第7张11、如图所示,点E是平行四边形ABCD的边CB延长线上的点,AB与DE相交于点F,则图中相似三角形共有()对.A.5B.4C.3D.212、如图所示,E,F,G,H分别是OA,OB,OC,OD的中点,已知四边形EFGH的面积是3,则四边形ABCD的面积是()A.6B.9C.12D.1813、在同一时刻,身高1.6米的小强在阳光下的影长为0.8米,一棵大树的影长为4.8米,则树的高度为()A.10米B.9.6米C.6.4米D.4.8米14、若△ABC∽△DEF,且△ABC与△DEF的面积比是,则△ABC与△DEF对应中线的比为()A. B. C. D.15、如图,在△ABC中,中线BE,CD相交于点O,连接DE,下列结论:①= ;②= ;③;④=其中正确的个数有()A.1个B.2个C.3个D.4个二、填空题(共10题,共计30分)16、如图,等边三角形ABC中,,点D在直线BC上,点E在直线AC上,且,当时,则AE的长为________.17、已知= ,则的值为________.18、已知:,且,则的值为________.19、若两个相似多边形的面积比是16:25,则它们的周长比等于________.20、小明家的客厅有一张直径BC为1.2米,高0.8米的圆桌,在距地面2米的A处有一盏灯,BC的影子为DE,依据题意建立平面直角坐标系,其中D点坐标为(2,0),则点E的坐标是________ 。
北师大版九年级数学上册 第四章 图形的相似 单元测试试题(有答案)
![北师大版九年级数学上册 第四章 图形的相似 单元测试试题(有答案)](https://img.taocdn.com/s3/m/2ccc199314791711cd791766.png)
北师大版九年级数学上册第四章图形的相似单元测试题一.选择题(共10小题)1.如图,△ABC中,DE∥BC分别交BA、CA的延长线于点E、D,则下列比例式正确的是()A.=B.=C.=D.=2.已知△ABC∽△DEF,若周长比为4:9,则AC:DF等于()A.4:9B.16:81C.3:5D.2:33.如果2a=5b,那么下列比例式中正确的是()A.=B.=C.=D.=4.如图,已知直线a∥b∥c,直线m、n与a、b、c分别交于点A、C、E、B、D、F,若AC=8,CE=12,BD=6,则BF的值是()A.14B.15C.16D.175.下面四组图形中,必是相似三角形的为()A.两个直角三角形B.两条边对应成比例,一个对应角相等的两个三角形C.有一个角为40°的两个等腰三角形D.有一个角为100°的两个等腰三角形6.如图,在▱ABCD中,R为BC延长线上的点,连接AR交BD于点P,若CR:AD=2:3,则AP:PR的值为()A.3:5B.2:3C.3:4D.3:27.我国古代数学著作中记载了一个问题:“今有邑方不知大小,各开中门,出北门四十步有木,出西门八百一十步见木,问:邑方几何?”其大意是:一座正方形城池,西、北边正中各开一道门,从北门往正北方向走40步后刚好有一树木,若从西门往正西方向走810步后正好看到树木,则正方形城池的边长为()步.A.360B.270C.180D.908.若两个相似三角形的周长之比是1:4,那么这两个三角形的面积之比是()A.1:4B.1:2C.1:16D.1:89.如图,在平面直角坐标系中,已知点A(﹣2,4),B(﹣4,﹣2),以原点O为位似中心,相似比为,把△ABO缩小,则点A的对应点A’的坐标是()A.(1,﹣2)B.(2,1)C.(﹣2,﹣1)或(2,1)D.(﹣1,2)或(1,﹣2)10.如图,在△ABC中,AB=6,AC=8,BC=9,将△ABC沿图中的线段剪开,剪下的阴影三角形与原三角形不相似的是()A.B.C.D.二.填空题(共8小题)11.在比例尺为1:100000的地图上,相距3m的两地,它们的实际距离为km.12.如图所示,矩形ABCD中,点E、F分别在边AB、CD上,且AEFD是正方形,若矩形BCFE 和矩形ABCD相似,且AD=2,则AB的长为.13.如图,l1∥l2∥l3,直绒l4、l5被这组平行线所截,且直线l4、l5相交于点E,已知=,则=.14.已知Rt△ABC∽Rt△A′B′C′,且∠C=∠C′=90°,若AC=3,BC=4,A′B′=10,则A′C′=.15.在平面直角坐标系中,矩形OABC的顶点坐标分别是O(0,0),A(8,0),B(8,6),D (0,6),已知矩形OA1B1C1与矩形OABC位似,位似中心为坐标原点O,位似比为,则点B1的坐标是.16.如图,△ABC中,DE∥BC交AB于点D,交AC于点E,BD=2,AB=6,AC=9,则AE的长为.17.利用标杆CD测量建筑物的高度的示意图如图所示,使标杆顶端的影子与建筑物顶端的影子恰好落在地面的同一点E.若标杆CD的高为1.5米,测得DE=2米,BD=16米,则建筑物的高AB为米.18.如图,AD∥BC,∠D=90°,AD=2,BC=12,DC=10,若在边DC上有点P,使△PAD与△PBC相似,则这样的点P有个.三.解答题(共8小题)19.若x:y=3:5,y:z=2:3,求5x﹣2z的值.20.如图,已知:l1∥l2∥l3,AB=2,BC=4,DF=12.求DE的长.21.如图,已知在ABC中,AB=,AC=2,BC=3,点M为AB的中点,在线段AC上取点N,使△AMIN与△ABC相似,求线段MN的长.22.如图,在△ABC中,∠C=90°,AC=12cm,BC=16cm,D、E分别是AC、AB的中点,连接DE.点P从点D出发,沿DE方向匀速运动,速度为2cm/s;同时,点Q从点B出发,沿BA方向匀速运动,速度为4cm/s,当点P停止运动时,点Q也停止运动.连接PQ,设运动时间为t(0<t<4)s.解答下列问题:(1)当t为何值时,以点E、P、Q为顶点的三角形与△ADE相似?(2)当t为何值时,△EPQ为等腰三角形?23.如图,AB与CD相交于点O,△OBD∽△OAC,=,OB=6,S=50,△AOC 求:(1)AO的长;(2)求S△BOD24.如图,在边长为1个单位长度的小正方形组成的10×10的网格中,给出了以格点(网格线的交点)为顶点的△ABC和点D.(1)过点D作△DEF,使得===,且点E、F均在格点上;(2)△ABC的面积是个平方单位,△DEF的面积是个平方单位.25.如图,在直角坐标系中,△ABC的顶点坐标分别为A(1,1),B(2,3),C(4,2).(1)以点A(1,1)为位似中心画出△ABC的位似图形△A1B1C1,使得△A1B1C1与△ABC的位似比为2:1(2)点B1的坐标为;点C1的坐标为.26.某校九年级数学兴趣小组在探究相似多边形问题时,他们提出了下面两个观点:观点一:将外面大三角形按图1的方式向内缩小,得到新三角形,它们对应的边间距都为1,则新三角形与原三角形相似.观点二:将邻边为6和10的矩形按图2的方式向内缩小,得到新的矩形,它们对应的边间距都为1,则新矩形与原矩形相似.请回答下列问题:(1)你认为上述两个观点是否正确?请说明理由.(2)如图3,已知△ABC,AC=6,BC=8,AB=10,将△ABC按图3的方式向外扩张,得到△DEF,它们对应的边间距都为m,DE=15,求△DEF的面积.参考答案与试题解析一.选择题(共10小题)1.解:∵DE∥BC,∴△ADE∽△ACB,∴,,则A,B,D不正确,故选:C.2.解:∵△ABC∽△DEF,∴==.故选:A.3.解:∵2a=5b,∴=或=或=.故选:C.4.解:∵a∥b∥c,AC=8,CE=12,BD=6,∴=,即=,解得BF=15.故选:B.5.解:两个直角三角形不一定相似;因为只有一个直角相等,∴A不一定相似;两条边对应成比例,一个对应角相等的两个三角形不一定相似;因为这个对应角不一定是夹角;∴B不一定相似;有一个角为40°的两个等腰三角形不一定相似;因为40°的角可能是顶角,也可能是底角,∴C不一定相似;有一个角为100°的两个等腰三角形一定相似;因为100°的角只能是顶角,所以两个等腰三角形的顶角和底角分别相等,∴D一定相似;故选:D.6.解:∵在▱ABCD中,AD∥BC,且AD=BC,∴△ADP∽△RBP,∴,∴.∴=.故选:A.7.解:如图,设正方形城池的边长为x步,则AE=CE=x,∵AE∥CD,∴∠BEA=∠EDC,∴Rt△BEA∽Rt△EDC,∴,即,∴x=360,即正方形城池的边长为360步.故选:A.8.解:∵相似三角形的周长之比是1:4,∴对应边之比为1:4,∴这两个三角形的面积之比是:1:16,故选:C.9.解:以原点O为位似中心,相似比为,把△ABO缩小,点A的坐标为(﹣2,4),则点A的对应点A′的坐标为(﹣2×,4×)或(2×,﹣4×),即(﹣1,2)或(1,﹣2),故选:D.10.解:A、根据平行线截得的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;B、两三角形的对应边不成比例,故两三角形不相似,故本选项正确;C、两三角形对应边成比例且夹角相等,故两三角形相似,故本选项错误.D、根据平行线截得的三角形与原三角形有两个角相等,故两三角形相似,故本选项错误;故选:B.二.填空题(共8小题)11.解:3÷=300000(m),300000m=300km;答:它们的实际距离为300km;故答案为:300.12.解:设EB=x,∵矩形BCFE和矩形ABCD相似,∴=,∵四边形AEFD是正方形,∴AD=BC=2,∴=,解得:x=﹣1±(负数不合题意舍去),∴BE=﹣1+,故AB=2﹣1+=1+,故答案为:1+.13.解:∵l1∥l2∥l3,∴AC∥BD,∴△ACE∽△BDE,∴=,故答案为:.14.解:∵AC=3,BC=4,∠C=90°,∴AB===5,∵Rt△ABC∽Rt△A′B′C′,∴∴A'C'==6,故答案为6.15.解:∵矩形OA1B1C1与矩形OABC位似,位似中心为坐标原点O,位似比为,∴点B1的坐标是:(4,3)或(﹣4,﹣3).故答案为:(4,3)或(﹣4,﹣3).16.解:∵DE∥BC,∴,即,即,解得:AE=6.故答案为:617.解:∵AB∥CD,∴△EBA∽△ECD,∴,即,∴AB=13.5(米).故答案为:13.518.解:∵AD∥BC,∠D=90°∴∠C=∠D=90°∵AD=2,BC=12,DC=10.设PD=x,则PC=10﹣x;①若PD:PC=AD:BC,则△PAD∽△PBC∴x:(10﹣x)=2:12,解得x=,即PD=;②若PD:BC=AD:PC,则△PAD∽△CBP∴x:12=2:(10﹣x),解得:x=4或x=6,即PD=4或PD=6.∴这样的点P存在的个数有3个.故答案为3.三.解答题(共8小题)19.解:∵x:y=3:5,y:z=2:3,∴x=y,z=y,∴5x﹣2z=5×y﹣2×y=3y﹣3y=0.20.解:∵l1∥l2∥l3,AB=2,BC=4,DF=12,∴=,即=,解得DE=4.21.解:当△AMN∽△ABC时,∵点M为AB的中点,AB=,AC=2,BC=3,∴,∴,即,解得MN=;当△ANM∽△ABC时,∵,即,解得MN=.22.解:(1)如图1中,在Rt△ABC中,AC=12cm,BC=16cm,∴AB==20cm.∵D、E分别是AC、AB的中点.AD=DC=6cm,AE=EB=10cm,DE∥BC且DE=BC=8cm,①PQ⊥AB时,∵∠PQB=∠ADE=90°,∠AED=∠PEQ,∴△PQE∽△ADE,∴,由题意得:PE=8﹣2t,QE=4t﹣10,即,解得t=;②如图2中,当PQ⊥DE时,△PQE∽△DAE,∴,∴,∴t=,∴当t为s或s时,以点E、P、Q为顶点的三角形与△ADE相似.(2)如图3中,当点Q在线段BE上时,由EP=EQ,可得8﹣2t=10﹣4t,t=1.如图4中,当点Q在线段AE上时,由EQ=EP,可得8﹣2t=4t﹣10,解得t=3.如图5中,当点Q在线段AE上时,由EQ=QP,可得(8﹣2t):(4t﹣10)=4:5,解得t =.如图6中,当点Q在线段AE上时,由PQ=EP,可得(4t﹣10):(8﹣2t)=4:5,解得t =.综上所述,t=1或3或或秒时,△PQE是等腰三角形.23.解:(1)∵△OBD∽△OAC,∴==,∵BO=6,∴AO=10;(2)∵△OBD∽△OAC,=,∴=,∵S=50,△AOC=18.∴S△BOD24.解:(1)如图所示,△DEF即为所求:(2)△ABC的面积==4个平方单位,△DEF的面积==8个平方单位,故答案为:4;825.解:(1)如图所示:△A1B1C1,即为所求;(2)点B1的坐标为(3,5);点C1的坐标为(7,3).故答案为:(3,5);(7,3).26.解:(1)观点一正确;观点二不正确.理由:①如图(1)连接并延长DA,交FC的延长线于点O,∵△ABC和△DEF对应的边的距离都为1,∴AB∥DE,AC∥DF,∴∠FDO=∠CAO,∠ODE=∠OAB,∴∠FDO+∠ODE=∠CAO+∠OAB,即∠FDE=∠CAB,同理∠DEF=∠ABC,∴△ABC∽△DEF,∴观点一正确;②如图(2)由题意可知,原矩形的邻边为6和10,则新矩形邻边为4和8,∵=,=,∴,∴新矩形于原矩形不相似,∴观点二不正确;(2)如图(3),延长DA、EB交于点O,∵A到DE、DF的距离都为1,∴DA是∠FDE的角平分线,同理,EB是∠DEF的角平分线,∴点O是△ABC的内心,∵AC=6,BC=8,AB=10,∴△ABC是直角三角形,设△ABC的内切圆的半径为r,则6﹣r+8﹣r=10,解得r=2,过点O作OH⊥DE于点H,交AB于G,∵AB∥DE,∴OG⊥AB,∴OG=r=2,∴==,同理===,∴DF=9,EF=12,∴△DEF的面积为:×9×12=54.。
第四章 图形的相似数学九年级上册-单元测试卷-北师大版(含答案)
![第四章 图形的相似数学九年级上册-单元测试卷-北师大版(含答案)](https://img.taocdn.com/s3/m/9e4032207f1922791788e850.png)
第四章图形的相似数学九年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、生活中到处可见黄金分割的美.如图,在设计人体雕像时,使雕像的腰部以下a与全身b的高度比值接近0.618,可以增加视觉美感.若图中b为2米,则a约为()A.1.24米B.1.38米C.1.42米D.1.62米2、如图,路灯AB的高度为8米,树CD与路灯的水平距离为4米,则得树在灯光下的影长DE为3米,则树高()A.4米B.6米C. 米D. 米3、如图,在△ABC 中,点 D 在线段 BC 上,∠B=∠DAC,AC=8,BC=16,那么 CD=()A.4B.6C.8D.104、如图,D是△ABC的边BC上一点,AB=4,AD=2.∠DAC=∠B.若△ACD的面积为a,则△ABD的面积为()A.2 aB.3 aC.4 aD.5 a5、如图,在平行四边形中,点E是边上一点,,连接,且交于点F.若,则()A.7B.15C.17.5D.18.56、如图,△ABC中,三边互不相等,点P是AB上一点,有过点P的直线将△ABC切出一个小三角形与△ABC相似,这样的直线一共有()A.5条B.4条C.3条D.2条7、如图,在△ABC中,D,E是AB边上的点,且AD=DE=EB,DF∥EG∥BC,则△ABC被分成三部分,S△ADF:S四边形DEGF:S四边形EBCG等于()A.1:1:1B.1:2:3C.1:4:9D.1:3:58、如图,E,F分别为矩形ABCD的边AD,BC的中点,若矩形ABCD与矩形EABF相似,AB=1,则矩形ABCD的面积是()A.4B.2C.D.9、如图,D、E分别是△ABC的边AB、BC上的点,且DE∥AC, AE、CD相交于点O,若S△:S△COA=1:36,则S△BDE与S△BAC的比是()DOEA.1:3B.1:4C.1:5D.1:3610、如图,在中,是边的中点,交对角线于点,若,则等于()A. B. C. D..11、如图,在中,两条中线BE、CD相交于点O,则:A.1:4B.2:3C.1:3D.1:212、如图,若△ABC与△A1B1C1是位似图形,则位似中心的坐标是()A. B. C. D.13、两个相似多边形的面积之比为5,周长之比为m,则为().A.1B.C.D.514、相邻两根电杆都用钢索在地面上固定,如图,一根电杆钢索系在离地面4米处,另一根电杆钢索系在离地面6米处,则中间两根钢索相交处点P离地面()A.2.4米B.2.8米C.3米D.高度不能确定15、如图,线段CD两个端点的坐标分别为C(﹣1,﹣2),D(﹣2,﹣1),以原点O为位似中心,在第一象限内将线段CD扩大为原来的2倍,得到线段AB,则线段AB的中点E的坐标为()A.(3,3)B.()C.(2,4)D.(4,2)二、填空题(共10题,共计30分)16、如图,已知平行四边形ABCD,E是边BC的中点,联结DE并延长,与AB的延长线交于点F.设= ,= 那么向量用向量、表示为________.17、如图,在平面直角坐标系中,△ABC和△是以坐标原点O为位似中心的位似图形,且点B(3,1),(6,2).若△ABC的面积为m,则△的面积(用含m的代数式表示)是________18、如图,在△ABC中,D为AC边上的中点,AE∥BC,ED交AB于G,交BC延长线于F.若BG:GA=3:1,BC=10,则AE的长为________.19、如图,△ABB1,△A1B1B2,…,△A n﹣2B n﹣2B n﹣1,△A n﹣1B n﹣1B n是n个全等的等腰三角形,其中AB=2,BB1=1,底边BB1, B1B2,…,B n﹣2B n﹣1, B n﹣1B n在同一条直线上,连接AB n交A n﹣2B n﹣1于点P,则PB n﹣1的值为________.20、如图,已知直线与坐标轴交于A,B两点,矩形ABCD的对称中心为M,双曲线(x>0)正好经过C,M两点,则直线AC的解析式为:________.21、如图所示,在正方形ABCD中,点E在AB边上,BE=4 , M是对角线BD上的一点(∠EMB是锐角),连接EM,EM=5,过点M作MN⊥EM交BC边于点N.过点N 作NH⊥BD于H,则△HMN的面积=________.22、已知在△ABC与△A′B′C′中,,BC=4cm,B′C′=5cm,△ABC的周长为18cm,则△A′B'C′的周长为________.23、如图,在▱ABCD中,点E是边AD的中点,EC交对角线BD于点F,则EF:FC等于________ .24、如图,在正方形中,为边中点,连接,将沿翻折,得到,延长分别交、延长线于、两点,连接,延长交边于点,则下列正确的有________①四边形为平行四边形;②,③,④;25、如图,四边形OABC中,AB∥OC,边OA在x轴的正半轴上,OC在y轴的正半轴上,点B在第一象限内,点D为AB的中点,CD与OB相交于点E,若△BDE、△OCE的面积分别为1和9,反比例函数y= 的图象经过点B,则k=________.三、解答题(共5题,共计25分)26、已知,,求:代数式的值.27、某出版社一位编辑在设计一本书的封面时,想把封面划分为四个矩形,其中左上角矩形与右下角矩形相似(如图所示),给人一种和谐的感觉,这样的两个相似矩形是怎样画出来的?28、如图,一次函数y=ax+b的图象与反比例函数y=的图象交于A,B两点,与x轴交于点C,与y轴交于点D,已知OA=, tan∠AOC=,点B的坐标为(m,﹣2).(1)反比例函数的解析式.(2)在y轴上存在一点,使得△PDC与△ODC相似,请你求出点P的坐标.29、周末,小华和小亮想用所学的数学知识测量家门前小河的宽.测量时,他们选择了河对岸岸边的一棵大树,将其底部作为点A,在他们所在的岸边选择了点B,使得AB与河岸垂直,并在B点竖起标杆BC,再在AB的延长线上选择点D,竖起标杆DE,使得点E与点C. A共线.已知:CB⊥AD,ED⊥AD,测得BC=1m,DE=1.5m,BD=8.5m.测量示意图如图所示.请根据相关测量信息,求河宽AB.30、已知线段a、b、c满足a:b:c=3:2:6,且a+2b+c=26.(1)求a、b、c的值;(2)若线段x是线段a、b的比例中项,求x的值.参考答案一、单选题(共15题,共计45分)1、A2、D3、A4、B5、C6、B7、D8、D9、D10、B11、A12、C13、C14、A15、A二、填空题(共10题,共计30分)16、17、18、19、20、21、22、23、24、25、三、解答题(共5题,共计25分)26、29、30、。
北师大版九年级数学上册第四章《图形的相似》单元同步测试题及答案 (1)
![北师大版九年级数学上册第四章《图形的相似》单元同步测试题及答案 (1)](https://img.taocdn.com/s3/m/7faadf8384254b35eefd34f3.png)
图形的相似单元同步练习(典型题汇总)一、选择题1.如图,Rt△ABC中,∠C=90°,D是AC边上一点,AB=5,AC=4,若△ABC∽△BDC,则CD=()A.2 B.C.D.2.(易错题)已知:如图,∠ADE=∠ACD=∠ABC,图中相似三角形共有()A.1对B.2对C.3对D.4对3.如图,线段AB两个端点的坐标分别是A(6,4),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,2)B.(4,1)C.(3,1)D.(4,2)4.已知△ABC中,DE∥BC,AD=4,DB=6,AE=3,则AC的值是()A.4.5 B.5.5 C.6.5 D.7.55.若两个相似三角形的相似比是1:4,则它们的周长比是()A.1:2 B.1:4 C.1:16 D.1:56.如图,P是Rt△ABC斜边AB上任意一点(A,B两点除外),过P点作一直线,使截得的三角形与Rt△ABC相似,这样的直线可以作()A.1条B.2条C.3条D.4条7.若△ABC∽△A′B′C′,∠A=40°,∠B=60°,则∠C′等于()A.20°B.40°C.60°D.80°8.如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,若AD=1,BC=3,则的值为()A.B.C.D.9.如图,小明作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积.然后分别取△A1B1C1三边的中点A2、B2、C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积.用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,第10个正△A10B10C10的面积是()A. B.C.D.10.关于相似的下列说法正确的是()A.所有直角三角形相似B.所有等腰三角形相似C.有一角是80°的等腰三角形相似D.所有等腰直角三角形相似11.在小孔成像问题中,根据如图所示,若O到AB的距离是18cm,O到CD的距离是6cm,则像CD的长是物体AB长的()A.3倍B.C.D.2倍12.如图,P是△ABC的边AC上一点,连接BP,以下条件中不能判定△ABP∽△ACB的是()A.B.C.∠ABP=∠C D.∠APB=∠ABC 二.填空题13.如图,要得到△ABC∽△ADE,只需要再添加一个条件是______.14.若x:y=2:3,那么x:(x+y)=______.15.如图,AD为△ABC的中线,G为△ABC的重心,若S△BGC =2,则S△ABD=______.16.已知,则=______.17.如图,DE∥BC,AD:DB=3:5,则△ADE与△ABC的面积之比为______.18.为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面很小的镜子放在离树底(B)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树(AB)的高度为______米.19.如图,在梯形ABCD中,AD∥BC,BE平分∠ABC交CD于E,且BE⊥CD,CE:ED=2:1.如果△BEC的面积为2,那么四边形ABED的面积是______.20.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,则窗口底边离地面的高BC=______m.三.解答题21.(2015秋•滕州市校级期末)如图,Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,一动点P从点A出发沿边AC向点C以1cm/s的速度运动,另一动点Q同时从点C出发沿CB 边向点B以2cm/s的速度运动.问:(1)运动几秒时,△CPQ的面积是8cm2?(2)运动几秒时,△CPQ与△ABC相似?22.(2016•颍泉区一模)如图,在由边长为1的单位正方形组成的网格中,按要求画出坐标系及△A1B1C1及△A2B2C2;(1)若点A、C的坐标分别为(﹣3,0)、(﹣2,3),请画出平面直角坐标系并指出点B的坐标;(2)画出△ABC关于y轴对称再向上平移1个单位后的图形△A1B1C1;(3)以图中的点D为位似中心,将△A1B1C1作位似变换且把边长放大到原来的两倍,得到△A2B2C2.23.(2013•泰安)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB 的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.24.(2011•武汉)(1)如图1,在△ABC中,点D、E、Q分别在AB、AC、BC上,且DE∥BC,AQ交DE于点P,求证:=;(2)如图,△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点.①如图2,若AB=AC=1,直接写出MN的长;②如图3,求证:MN2=DM•EN.25.(2006•山西)某中学初三(2)班数学活动小组利用周日开展课外实践活动,他们要在湖面上测量建在地面上某塔AB的高度.如图,在湖面上点C测得塔顶A的仰角为45°,沿直线CD向塔AB方向前进18米到达点D,测得塔顶A的仰角为60度.已知湖面低于地平面1米,请你帮他们计算出塔AB的高度.(结果保留根号)参考答案与试题解析一、选择题1.如图,Rt△ABC中,∠C=90°,D是AC边上一点,AB=5,AC=4,若△ABC∽△BDC,则CD=()A.2 B.C.D.【考点】相似三角形的性质.【分析】根据△ABC∽△BDC,利用相似三角形对应边成比例解答即可.【解答】解:∵∠C=90°,AB=5,AC=4∴BC=3∵△ABC∽△BDC∴∴∴CD=.故选D.【点评】此题考查了相似三角形的性质,相似三角形的对应角相等,对应边的比相等,还考查了勾股定理.2.(易错题)已知:如图,∠ADE=∠ACD=∠ABC,图中相似三角形共有()A.1对B.2对C.3对D.4对【考点】相似三角形的判定;平行线的判定.【分析】根据已知先判定线段DE∥BC,再根据相似三角形的判定方法进行分析,从而得到答案.【解答】解:∵∠ADE=∠ACD=∠ABC∴DE∥BC∴△ADE∽△ABC,∵DE∥BC∴∠EDC=∠DCB,∵∠ACD=∠ABC,∴△EDC∽△DCB,同理:∠ACD=∠ABC,∠A=∠A,∴△ABC∽△ACD,∵△ADE∽△ABC,△ABC∽△ACD,∴△ADE∽△ACD∴共4对故选D.【点评】考查了平行线的判定;相似三角形的判定:(1)两角对应相等的两个三角形相似;(2)两边对应成比例且夹角相等的两个三角形相似;(3)三边对应成比例的两个三角形相似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.3.如图,线段AB两个端点的坐标分别是A(6,4),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,则端点C的坐标为()A.(3,2) B.(4,1) C.(3,1) D.(4,2)【考点】位似变换;坐标与图形性质.【分析】利用位似图形的性质结合两图形的位似比进而得出C点坐标.【解答】解:∵线段AB的两个端点坐标分别为A(6,4),B(8,2),以原点O为位似中心,在第一象限内将线段AB缩小为原来的后得到线段CD,∴端点C的横坐标和纵坐标都变为A点的一半,∴端点C的坐标为:(3,2).故选:A.【点评】此题主要考查了位似图形的性质,利用两图形的位似比得出对应点横纵坐标关系是解题关键.4.已知△ABC中,DE∥BC,AD=4,DB=6,AE=3,则AC的值是()A.4.5 B.5.5 C.6.5 D.7.5【考点】平行线分线段成比例.【分析】利用平行线分线段成比例的性质得出=,进而求出EC即可得出答案.【解答】解:∵DE∥BC,∴=,∴=,解得:EC=4.5,故AC=AE+EC=4.5+3=7.5.故选:D.【点评】此题主要考查了平行线分线段成比例定理,得出=是解题关键.5.若两个相似三角形的相似比是1:4,则它们的周长比是()A.1:2 B.1:4 C.1:16 D.1:5【考点】相似三角形的性质.【分析】根据相似三角形周长的比等于相似比进行解答即可.【解答】解:∵两个相似三角形的相似比为1:4,∴它们对应周长的比为1:4.故选B.【点评】本题考查的是相似三角形的性质,即相似三角形周长的比等于相似比.6.如图,P是Rt△ABC斜边AB上任意一点(A,B两点除外),过P点作一直线,使截得的三角形与Rt△ABC相似,这样的直线可以作()A.1条B.2条C.3条D.4条【考点】相似三角形的判定.【分析】本题要根据相似三角形的判定方法进行求解.【解答】解:过点P可作PE∥BC或PE∥AC,可得相似三角形;过点P还可作PE⊥AB,可得:∠EPA=∠C=90°,∠A=∠A,∴△APE∽△ACB;所以共有3条.故选:C.【点评】此题考查了相似三角形的判定:①有两个对应角相等的三角形相似;②有两个对应边的比相等,且其夹角相等,则两个三角形相似;③三组对应边的比相等,则两个三角形相似.7.若△ABC∽△A′B′C′,∠A=40°,∠B=60°,则∠C′等于()A.20°B.40°C.60°D.80°【考点】相似三角形的性质.【分析】根据三角形的内角和定理求出∠C,再根据相似三角形对应角相等可得∠C′=∠C.【解答】解:∵∠A=40°,∠B=60°,∴∠C=180°﹣∠A﹣∠B=180°﹣40°﹣60°=80°,∵△ABC∽△A′B′C′,∴∠C′=∠C=80°.故选D.【点评】本题考查了相似三角形对应角相等的性质,三角形的内角和定理,是基础题,熟记性质是解题的关键.8.如图,在梯形ABCD中,AD∥BC,对角线AC,BD相交于点O,若AD=1,BC=3,则的值为()A.B.C.D.【考点】相似三角形的判定与性质;梯形.【分析】根据梯形的性质容易证明△AOD∽△COB,然后利用相似三角形的性质即可得到AO:CO的值.【解答】解:∵四边形ABCD是梯形,∴AD∥CB,∴△AOD∽△COB,∴,∵AD=1,BC=3.∴=.故选B.【点评】此题主要考查了梯形的性质,利用梯形的上下底平行得到三角形相似,然后用相似三角形的性质解决问题.9.如图,小明作出了边长为1的第1个正△A1B1C1,算出了正△A1B1C1的面积.然后分别取△A1B1C1三边的中点A2、B2、C2,作出了第2个正△A2B2C2,算出了正△A2B2C2的面积.用同样的方法,作出了第3个正△A3B3C3,算出了正△A3B3C3的面积…,由此可得,第10个正△A10B10C10的面积是()A. B.C.D.【考点】相似三角形的性质;等边三角形的性质;三角形中位线定理.【分析】根据相似三角形的性质,先求出正△A2B2C2,正△A3B3C3的面积,依此类推△A n B n C n 的面积是()n﹣1,从而求出第10个正△A10B10C10的面积.【解答】解:正△A1B1C1的面积是,而△A2B2C2与△A1B1C1相似,并且相似比是1:2,则面积的比是,则正△A2B2C2的面积是×;因而正△A3B3C3与正△A2B2C2的面积的比也是,面积是()2;依此类推△A n B n C n与△A n﹣1B n﹣1C n﹣1的面积的比是,第n个三角形的面积是()n﹣1.所以第10个正△A10B10C10的面积是,故选A.【点评】本题考查了相似三角形的性质及应用,相似三角形面积的比等于相似比的平方,找出规律是关键.10.关于相似的下列说法正确的是()A.所有直角三角形相似B.所有等腰三角形相似C.有一角是80°的等腰三角形相似D.所有等腰直角三角形相似【考点】相似三角形的判定.【分析】根据有两组角对应相等的两个三角形相似,可知所有直角三角形不一定相似;所有等腰三角形不一定相似;有一角是80°的等腰三角形也比一定相似;只有所有等腰直角三角形相似.【解答】解:A、所有直角三角形不一定相似;故本选项错误;B、所有等腰三角形不一定相似;故本选项错误;C、∵有一角是80°的等腰三角形可能是:80°、80°、20°或80°、50°、50°,∴不一定相似;故本选项错误;D、所有等腰直角三角形相似;故本选项正确.故选D.【点评】此题考查了相似三角形的判定.注意有两组角对应相等的两个三角形相似.11.在小孔成像问题中,根据如图所示,若O到AB的距离是18cm,O到CD的距离是6cm,则像CD的长是物体AB长的()A.3倍B.C.D.2倍【考点】相似三角形的应用.【分析】作OE⊥AB于E,OF⊥CD于F,根据题意得到△AOB∽△COD,根据相似三角形的对应高的比等于相似比计算即可.【解答】解:作OE⊥AB于E,OF⊥CD于F,由题意得,AB∥CD,∴△AOB∽△COD,∴==,∴像CD的长是物体AB长的,故选:C.【点评】本题考查的是相似三角形的应用,掌握相似三角形的对应高的比等于相似比是解题的关键.12.如图,P是△ABC的边AC上一点,连接BP,以下条件中不能判定△ABP∽△ACB的是()A.B.C.∠ABP=∠C D.∠APB=∠ABC【考点】相似三角形的判定.【分析】根据已知及相似三角形的判定方法对各个选项进行分析从而得到最后的答案.【解答】解:A正确,符合两组对应边的比相等且相应的夹角相等的两个三角形相似;B不正确,不符合两组对应边的比相等且相应的夹角相等的两个三角形相似;C正确,符合有两组角对应相等的两个三角形相似;D正确,符合有两组角对应相等的两个三角形相似.故选B.【点评】考查相似三角形的判定定理:(1)两角对应相等的两个三角形相似;(2)两边对应成比例且夹角相等的两个三角形相似;(3)三边对应成比例的两个三角形相似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.二.填空题13.如图,要得到△ABC∽△ADE,只需要再添加一个条件是DE∥BC(答案不唯一).【考点】相似三角形的判定.【分析】由图可得,两三角形已有一组角对应相等,再加一组角对应相等即可.【解答】解:由图可得,∠BAC=∠DAE,根据三角形的判定:两角对应相等,两三角形相似.可添加条件:DE∥BC,则∠ABC=∠ADE,则△ADE∽△ABC,故答案为:DE∥BC(答案不唯一).【点评】本题考查了相似三角形的判定,此题为开放性试题,首先要找出已经满足的条件,然后再进一步分析需要添加的条件,熟记相似三角形的各种判定方法是解题关键.14.若x:y=2:3,那么x:(x+y)=2:5.【考点】比例的性质.【分析】利用合比性质计算.【解答】解:∵=,∴==.故答案为2:5.【点评】本题考查了比例的性质:常用的性质有:内项之积等于外项之积;合比性质;分比性质;合分比性质;等比性质.15.如图,AD为△ABC的中线,G为△ABC的重心,若S△BGC =2,则S△ABD=3.【考点】三角形的重心.【分析】根据重心到顶点的距离是它到对边中点的距离的2倍和已知求出△ABC的面积,根据三角形的中心把三角形分成面积相等的两部分解答即可.【解答】解:∵G为△ABC的重心,∴AD=2GD,=2,∵S△BGC=6,∴S△ABC∵AD为△ABC的中线,=3,∴S△ABD故答案为:3.【点评】本题考查的是三角形的重心的知识,掌握重心到顶点的距离是它到对边中点的距离的2倍是解题的关键.16.已知,则=.【考点】比例的性质.【分析】先由已知条件可得a=b,e=f,再把它们代入,计算即可.【解答】解:∵,∴a=b,e=f,∴===.故答案为.【点评】本题考查了比例的计算及性质,比较简单.本题还可以根据等比性质直接求解.17.如图,DE∥BC,AD:DB=3:5,则△ADE与△ABC的面积之比为9:64.【考点】相似三角形的判定与性质.【分析】先证明△ADE与△ABC相似并求出相似比,再根据相似三角形面积的比等于相似比的平方即可求出.【解答】解:∵DE∥BC,∴△ADE∽△ABC,∵AD:BD=3:5,∴AD:AB=3:8,∴△ADE与△ABC面积之比=9:64,故答案为9:64.【点评】本题主要考查相似三角形面积的比等于相似比的平方的性质,根据平行得到三角形相似是解题的关键.18.为了测量校园水平地面上一棵不可攀的树的高度,学校数学兴趣小组做了如下的探索:根据光的反射定律,利用一面镜子和一根皮尺,设计如图所示的测量方案:把一面很小的镜子放在离树底(B)8.4米的点E处,然后沿着直线BE后退到点D,这时恰好在镜子里看到树梢顶点A,再用皮尺量得DE=2.4米,观察者目高CD=1.6米,则树(AB)的高度为 5.6米.【考点】相似三角形的应用.【分析】根据镜面反射的性质求出△ABE∽△CDE,再根据其相似比解答.【解答】解:根据题意,易得∠CDE=∠ABE=90°,∠CED=∠AEB,则△ABE∽△CDE,则,即,解得:AB=5.6米.故答案为:5.6.【点评】应用反射的基本性质,得出三角形相似,运用相似比即可解答.19.如图,在梯形ABCD 中,AD ∥BC ,BE 平分∠ABC 交CD 于E ,且BE ⊥CD ,CE :ED =2:1.如果△BEC 的面积为2,那么四边形ABED 的面积是 .【考点】相似三角形的判定与性质;等腰三角形的判定与性质;梯形.【分析】首先延长BA ,CD 交于点F ,易证得△BEF ≌△BEC ,则可得DF :FC =1:4,又由△ADF ∽△BCF ,根据相似三角形的面积比等于相似比的平方,可求得△ADF 的面积,根据S 四边形ABED =S △BEF ﹣S △ADF 继而求得答案.【解答】解:延长BA ,CD 交于点F ,∵BE 平分∠ABC ,∴∠EBF =∠EBC ,∵BE ⊥CD ,∴∠BEF =∠BEC =90°,在△BEF 和△BEC 中,,∴△BEF ≌△BEC (ASA ),∴EC =EF ,S △BEF =S △BEC =2,∴S △BCF =S △BEF +S △BEC =4,∵CE :ED =2:1∴DF :FC =1:4,∵AD ∥BC ,∴△ADF ∽△BCF ,∴=()2=,∴S △ADF =×S △BCF =,∴S 四边形ABED =S △BEF ﹣S △ADF =2﹣=.故答案为:.【点评】此题考查了相似三角形的判定与性质、全等三角形的判定与性质以及梯形的性质.此题难度适中,注意掌握辅助线的作法,注意掌握数形结合思想的应用.20.阳光通过窗口照射到室内,在地面上留下2.7m宽的亮区(如图所示),已知亮区到窗口下的墙脚距离EC=8.7m,窗口高AB=1.8m,则窗口底边离地面的高BC=4m.【考点】相似三角形的应用.【分析】根据题意易证△BCD∽△ACE,利用相似三角形的性质,对应线段成比例求解即可.【解答】解:∵光线是平行的,即BD∥AE则有∵△BCD∽△ACE∴∴∴BC=4【点评】主要考查了相似的三角形在实际生活中的应用,利用相似对角线的性质,对应线段成比例解题.三.解答题21.(2015秋•滕州市校级期末)如图,Rt△ABC中,∠C=90°,AC=6cm,BC=8cm,一动点P从点A出发沿边AC向点C以1cm/s的速度运动,另一动点Q同时从点C出发沿CB 边向点B以2cm/s的速度运动.问:(1)运动几秒时,△CPQ的面积是8cm2?(2)运动几秒时,△CPQ与△ABC相似?【考点】一元二次方程的应用;相似三角形的判定.【分析】(1)设P、Q同时出发,x秒钟后,AP=xcm,PC=(6﹣x)cm,CQ=2xcm,此时△PCQ的面积为:×2x(6﹣x),令该式=8,由此等量关系列出方程求出符合题意的值;(2)设运动y秒时,△CPQ与△ABC相似,分两种情况讨论:若△CPQ∽△CAB和△CPQ ∽△CBA,根据相似三角形的性质即可得出答案.【解答】解:(1)设x秒后,可使△CPQ的面积为8cm2.由题意得,AP=xcm,PC=(6﹣x)cm,CQ=2xcm,则(6﹣x)•2x=8,整理,得x2﹣6x+8=0,解得x1=2,x2=4.则P、Q同时出发,2秒或4秒后可使△CPQ的面积为8cm2(2)设运动y秒时,△CPQ与△ABC相似.若△CPQ∽△CAB,则=,即=,解得y=2.4秒;若△CPQ∽△CBA,则=,即=,解得y=秒.综上所述,运动2.4秒或秒时,△CPQ与△ABC相似.【点评】本题考查一元二次方程的应用,三角形的面积公式的求法和一元二次方程的解的情况,解题关键是要读懂题目的意思,根据题目给出的条件,找出合适的等量关系,列出方程,再求解.22.(2016•颍泉区一模)如图,在由边长为1的单位正方形组成的网格中,按要求画出坐标系及△A1B1C1及△A2B2C2;(1)若点A、C的坐标分别为(﹣3,0)、(﹣2,3),请画出平面直角坐标系并指出点B的坐标;(2)画出△ABC关于y轴对称再向上平移1个单位后的图形△A1B1C1;(3)以图中的点D为位似中心,将△A1B1C1作位似变换且把边长放大到原来的两倍,得到△A2B2C2.【考点】作图-位似变换;作图-平移变换.【分析】(1)根据A,C点坐标作出直角坐标系,进而求出B点坐标;(2)根据轴对称的性质结合平移的性质得出答案;(3)利用位似图形的性质得出对应点位置进而得出答案.【解答】解:(1)如图所示,B(﹣4,2);(2)如图所示:△A1B1C1即为所求;(3)如图所示:△A2B2C2即为所求.【点评】此题主要考查了位似变换、轴对称变换和平移变换,根据题意建立正确的坐标系是解题关键.23.(2013•泰安)如图,四边形ABCD中,AC平分∠DAB,∠ADC=∠ACB=90°,E为AB 的中点,(1)求证:AC2=AB•AD;(2)求证:CE∥AD;(3)若AD=4,AB=6,求的值.【考点】相似三角形的判定与性质;直角三角形斜边上的中线.【分析】(1)由AC平分∠DAB,∠ADC=∠ACB=90°,可证得△ADC∽△ACB,然后由相似三角形的对应边成比例,证得AC2=AB•AD;(2)由E为AB的中点,根据在直角三角形中,斜边上的中线等于斜边的一半,即可证得CE=AB=AE,继而可证得∠DAC=∠ECA,得到CE∥AD;(3)易证得△AFD∽△CFE,然后由相似三角形的对应边成比例,求得的值.【解答】(1)证明:∵AC平分∠DAB,∴∠DAC=∠CAB,∵∠ADC=∠ACB=90°,∴△ADC∽△ACB,∴AD:AC=AC:AB,∴AC2=AB•AD;(2)证明:∵E为AB的中点,∴CE=AB=AE,∴∠EAC=∠ECA,∵∠DAC=∠CAB,∴∠DAC=∠ECA,∴CE∥AD;(3)解:∵CE∥AD,∴△AFD∽△CFE,∴AD:CE=AF:CF,∵CE=AB,∴CE=×6=3,∵AD=4,∴,∴.【点评】此题考查了相似三角形的判定与性质、等腰三角形的性质以及直角三角形的性质.此题难度适中,注意掌握数形结合思想的应用.24.(2011•武汉)(1)如图1,在△ABC中,点D、E、Q分别在AB、AC、BC上,且DE∥BC,AQ交DE于点P,求证:=;(2)如图,△ABC中,∠BAC=90°,正方形DEFG的四个顶点在△ABC的边上,连接AG,AF分别交DE于M,N两点.①如图2,若AB=AC=1,直接写出MN的长;②如图3,求证:MN2=DM•EN.【考点】相似三角形的判定与性质;正方形的性质.【分析】(1)可证明△ADP∽△ABQ,△ACQ∽△ADP,从而得出=;(2)①根据三角形的面积公式求出BC边上的高,根据△ADE∽△ABC,求出正方形DEFG的边长,根据等于高之比即可求出MN;②可得出△BGD∽△EFC,则DG•EF=CF•BG;又由DG=GF=EF,得GF2=CF•BG,再根据(1)==,从而得出答案.【解答】(1)证明:在△ABQ和△ADP中,∵DP∥BQ,∴△ADP∽△ABQ,∴=,同理在△ACQ和△APE中,=,∴=.(2)①作AQ⊥BC于点Q.∵BC边上的高AQ=,∵DE=DG=GF=EF=BG=CF∴DE:BC=1:3又∵DE∥BC,∴AD:AB=1:3,∴AD=,DE=,∵DE边上的高为,MN:GF=:,∴MN:=:,∴MN=.故答案为:.②证明:∵∠B+∠C=90°∠CEF+∠C=90°,∴∠B=∠CEF,又∵∠BGD=∠EFC,∴△BGD∽△EFC,∴=,∴DG•EF=CF•BG,又∵DG=GF=EF,∴GF2=CF•BG,由(1)得==,∴×=•,∴()2=•,∵GF2=CF•BG,∴MN2=DM•EN.【点评】本题考查了相似三角形的判定和性质以及正方形的性质,是一道综合题目,难度较大.25.(2006•山西)某中学初三(2)班数学活动小组利用周日开展课外实践活动,他们要在湖面上测量建在地面上某塔AB的高度.如图,在湖面上点C测得塔顶A的仰角为45°,沿直线CD向塔AB方向前进18米到达点D,测得塔顶A的仰角为60度.已知湖面低于地平面1米,请你帮他们计算出塔AB的高度.(结果保留根号)【考点】解直角三角形的应用-仰角俯角问题.【分析】首先分析图形:根据题意构造直角三角形;本题涉及到两个直角三角形△ACE、△ADE,应利用其公共边AE构造等量关系,借助AB=AE﹣BE构造方程关系式,进而可求出答案.【解答】解:如图,延长CD,交AB的延长线于点E,则∠AEC=90°,∠ACE=45°,∠ADE=60°,CD=18,设线段AE的长为x米,在Rt△ACE中,∵∠ACE=45°,∴CE=x,在Rt△ADE中,∵tan∠ADE=tan60°=,∴DE=x,∵CD=18,且CE﹣DE=CD,∴x﹣x=18,解得:x=27+9,∵BE=1米,∴AB=AE﹣BE=(26+9)(米).答:塔AB的高度是(26+9)米.【点评】本题要求学生借助仰角关系构造直角三角形,并结合图形利用三角函数解直角三角形.图形的相似单元同步练习(典型题汇总)(时间:100分钟满分:120分)一、选择题(每小题3分,共30分)1.观察下列每组图形,相似图形是()2.(2020·玉林)△ABC与△A′B′C′是位似图形,且△ABC与△A′B′C′的位似比是1∶2,已知△ABC的面积是3,则△A′B′C′的面积是()A.3 B.6 C.9 D.123.下列四组条件中,能判定△ABC与△DEF相似的是()A.∠A=45°,∠B=55°;∠D=45°,∠F=75°B.AB=5,BC=4,∠A=45°;DE=5,EF=4,∠D=45°C.AB=6,BC=5,∠B=40°;DE=12,EF=10,∠E=40°D.AB=BC,∠A=50°;DE=EF,∠E=50°4.已知点C是线段AB的黄金分割点,且AC>BC,若AB=8,则线段AC的长为() A.4(5-1) B.45-1 C.12-4 5 D.8-4 5 5.如图,BE,CD相交于O,且∠1=∠2,图中的相似三角形有() A.2组B.3组C.5组D.6组第5题图 第6题图 第7题图 第9题图6.小明在一次军事夏令营活动中,进行打靶训练,在用枪瞄准目标点B 时,要使眼睛O ,准星A ,目标B 在同一条直线上.如图所示,在射击时,小明有轻微的抖动,致使准星A 偏离到A ′,若OA =0.2米,OB =40米,AA ′=0.0015米,则小明射击到的点B ′偏离目标点B 的长度BB ′为( )A .3米B .0.3米C .0.03米D .0.2米 7.如图,△ABC 中,∠C =90°,四边形DEFC 是内接正方形,AC =4 cm ,BC =3 cm ,则正方形的面积为( )A.127 cm 2 B .3 cm 2 C .4 cm 2 D.14449 cm 2 8.下列四条线段成比例的是( )A .a =4,b =6,c =5,d =10B .a =2,b =3,c =2,d = 3C .a =2,b =5,c =15,d =2 3D .a =12,b =8,c =15,d =11 9.如图,E (-4,2),F (-1,-1),以O 为位似中心,按比例尺1∶2把△EFO 缩小,则点E 的对应点E ′的坐标为( )A .(2,-1)或(-2,1)B .(8,-4)或(-8,4)C .(2,-1)D .(8,-4)10.将边长分别为2,3,5的三个正方形按如图方式排列,则图中阴影部分的面积为( )A.214B.154C.72D .3 ,第10题图 第13题图 第14题图 第15题图)二、填空题(每小题3分,共24分)11.如果x 2=y 3=z4≠0,那么x +2y +3z 3x +2y -2z的值是____.12.两个相似三角形的面积比为9∶25,其中一个三角形的周长为36,则另一个三角形的周长为_____________________.13.如图,在△ABC 中,点D ,E 分别是边AB ,AC 的中点,则△ADE 与△ABC 的周长之比等于____.14.如图,正方形OABC与正方形ODEF是位似图形,O为位似中心,相似比为1∶2,点A的坐标为(1,0),则E点的坐标为__________________.15.如图,▱ABCD中,F是BC上一点,直线DF与AB的延长线相交于E,BP∥DF,且与AD相交于点P,请从图中找出一组相似的三角形:_________________.16.如图,D,E是AB的三等分点,DF∥EG∥BC,则图中三部分面积S1∶S2∶S3=_______________.第16题图第17题图第18题图17.如图,在边长为3的菱形ABCD中,点E在边CD上,点F为BE延长线与AD延长线的交点,若DE=1,则DF的长为____.18.如图,正方形ABCD和正方形OEFG中,点A和点F的坐标分别为(3,2),(-1,-1),则两个正方形的位似中心的坐标是_____________________________.三、解答题(共66分)19.(6分)一般在室外放映的电影胶片中图片的规格是3.5 cm×3.5 cm,放映的银屏规格为2 m×2 m.若放映机的光源距胶片20 cm,问:银屏拉在距离光源多远的地方时,放映的图象刚好布满整个银屏?20.(7分)如图,在矩形ABCD中,点E,F分别在边AD,DC上,△ABE∽△DEF,AB=6,AE=9,DE=2,求EF的长.21.(8分)图中的两个多边形ABCDEF 和A 1B 1C 1D 1E 1F 1相似(各字母已按对应关系排列),∠A =∠D 1=135°,∠B =∠E 1=120°,∠C 1=95°.(1)求∠F 的度数;(2)如果多边形ABCDEF 和A 1B 1C 1D 1E 1F 1的相似比是1∶1.5,且CD =15 cm ,求C 1D 1的长度.22.(8分)在平面直角坐标系内有两点A (-2,0),B (12,0),CB 所在的直线为y =2x +b ,连接AC ,求证:△AOC ∽△COB .23.(8分)(2020·汕尾)如图,在▱ABCD中,E是AD边上的中点,连接BE,并延长BE交CD的延长线于点F.(1)证明:FD=AB;(2)当▱ABCD的面积为8时,求△FED的面积.24.(8分)如图,△ABC中,D是BC的中点,且AD=AC,DE⊥BC与AB相交于点E,EC 与AD相交于点F.(1)△ABC与△FCD相似吗?请说明理由;(2)点F是线段AD的中点吗?为什么?25.(10分)如图,△ABC是等边三角形,CE是外角平分线,点D在AC上,连接BD延长交CE于点E.(1)求证:△ABD∽△CED;(2)若AB=6,AD=2CD,求BE的长.26.(11分)如图①所示,在等边三角形ABC中,线段AD为其角平分线,过D的直线B1C1⊥AC 于C1,交AB的延长线于B1.(1)请你探究:AC AB =CD DB ,AC 1AB 1=C 1DDB 1是否成立?(2)如图②所示,在Rt △ABC 中,∠ACB =90°,AC =8,AB =403,E 为AB 上一点,且AE =5,CE 交△ABC 的角平分线AD 于F ,试求DFFA的值.参考答案一、选择题(每小题3分,共30分) 1.观察下列每组图形,相似图形是( D )2.△ABC 与△A ′B ′C ′是位似图形,且△ABC 与△A ′B ′C ′的位似比是1∶2,已知△ABC 的面积是3,则△A ′B ′C ′的面积是( D )A .3B .6C .9D .12 3.下列四组条件中,能判定△ABC 与△DEF 相似的是( C )A .∠A =45°,∠B =55°;∠D =45°,∠F =75°B .AB =5,BC =4,∠A =45°;DE =5,EF =4,∠D =45° C .AB =6,BC =5,∠B =40°;DE =12,EF =10,∠E =40° D .AB =BC ,∠A =50°;DE =EF ,∠E =50°4.已知点C 是线段AB 的黄金分割点,且AC >BC ,若AB =8,则线段AC 的长为( A )A .4(5-1)B .45-1C .12-4 5D .8-4 5 5.如图,BE ,CD 相交于O ,且∠1=∠2,图中的相似三角形有( A )A .2组B .3组C .5组D .6组第5题图 第6题图 第7题图 第9题图6.小明在一次军事夏令营活动中,进行打靶训练,在用枪瞄准目标点B 时,要使眼睛O ,准星A ,目标B 在同一条直线上.如图所示,在射击时,小明有轻微的抖动,致使准星A 偏离到A ′,若OA =0.2米,OB =40米,AA ′=0.0015米,则小明射击到的点B ′偏离目标点B 的长度BB ′为( B )A .3米B .0.3米C .0.03米D .0.2米 7.如图,△ABC 中,∠C =90°,四边形DEFC 是内接正方形,AC =4 cm ,BC =3 cm ,则正方形的面积为( D )A .127 cm 2B .3 cm 2C .4 cm 2D .14449 cm 2 8.下列四条线段成比例的是( C )A .a =4,b =6,c =5,d =10B .a =2,b =3,c =2,d = 3C .a =2,b =5,c =15,d =2 3D .a =12,b =8,c =15,d =11 9.如图,E (-4,2),F (-1,-1),以O 为位似中心,按比例尺1∶2把△EFO 缩小,则点E 的对应点E ′的坐标为( A )A .(2,-1)或(-2,1)B .(8,-4)或(-8,4)C .(2,-1)D .(8,-4)10.将边长分别为2,3,5的三个正方形按如图方式排列,则图中阴影部分的面积为( B )A.214B.154C.72D .3 ,第10题图 第13题图 第14题图 第15题图)二、填空题(每小题3分,共24分)11.如果x 2=y 3=z4≠0,那么x +2y +3z 3x +2y -2z的值是__5__.12.两个相似三角形的面积比为9∶25,其中一个三角形的周长为36,则另一个三角形的周长为__1085或60__.。
第四章 图形的相似数学九年级上册-单元测试卷-北师大版(含答案)
![第四章 图形的相似数学九年级上册-单元测试卷-北师大版(含答案)](https://img.taocdn.com/s3/m/5eb008f816fc700aba68fc80.png)
第四章图形的相似数学九年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,每个正方形网格的边长为1个单位长度,将△ABC的三边分别扩大一倍得到△A1B1C1(顶点均在格点上),若它们是以点P为位似中心的位似图形,则点P的坐标是()A. (-4,-4)B. (-3,-3)C. (-4,-3)D. (-3,-4)2、下列判断正确的是()A.不全等的三角形一定不是相似三角形;B.不相似的三角形一定不是全等三角形;C.相似三角形一定不是全等三角形;D.全等三角形不一定是相似三角形3、据《九章算术》记载:“今有山居木西,不知其高.山去五十三里,木高九丈五尺.人立木东三里,望木末适与山峰斜平.人目高七尺.问山高几何?”译文如下:如图,今有山位于树的西面.山高为未知数,山与树相距53里,树高9丈5尺.人站在离树3里的地方,观察到树梢C恰好与山峰A处在同一条直线上,人眼离地7尺.则山高的长为(结果保留到整数,1丈=10尺)( )A.162丈B.163丈C.164丈D.165丈4、如图,把△ABC沿AB边平移到△DEF的位置,它们重叠部分的面积是△ABC面积的一半,若AB=,则此三角形移动的距离是()A. ﹣1B.C.1D.5、如图,用放大镜将图形放大,这种图形的改变是()A.相似B.平移C.轴对称D.旋转6、在三角形纸片ABC中,AB=8,BC=4,AC=6,按下列方法沿虚线剪下,能使阴影部分的三角形与△ABC相似的是()A. B. C. D.7、两三角形的相似比是2:3,则其面积之比是()A. :B.2:3C.4:9D.8:278、如图,在正方形ABCD中,E,F分别为BC,CD的中点,连接AE,BF交于点G,将△BCF 沿BF对折,得到△BPF,延长FP交BA延长于点Q,下列结论正确的有()个①AE⊥BF;②QB=QF;③;④S四边形ECFG=2S△BGE.A.1B.4C.3D.29、下列图形不一定相似的是().A.两个等边三角形B.各有一个角是110°的两个等腰三角形C.两个等腰直角三角形D.各有一个角是45°的两个等腰三角形10、如图,△ABC的三个顶点都在⊙O上,∠BAC的平分线交BC于点D,交⊙O于点E,则与△ABD相似的三角形有()A.3个B.2个C.1个D.0个11、如图,若,则下列结论错误的是()A. B. C. D.12、如图,P为反比例函数y= (k>0)在第一象限内图象上的一点,过点P分别作x 轴,y轴的垂线交一次函数y=﹣x﹣4的图象于点A、B.若∠AOB=135°,则k的值是()A.2B.4C.6D.813、如图,∠APD=90°,AP=PB=BC=CD,则下列结论成立的是()A.ΔPAB∽ΔPDAB.ΔABC∽ΔDCAC.ΔPAB∽ΔPCAD.ΔABC∽ΔDBA14、如下图,已知⊙O的直径为AB,AC⊥AB于点A, BC与⊙O相交于点D,在AC上取一点E,使得ED=EA.下面四个结论:①ED是⊙O的切线;②BC=2OE③△BOD为等边三角形;④△EOD ∽△CAD,正确的是()A.①②B.②④C.①②④D.①②③④15、西安市大雁塔广场占地面积约为667000m ,若按比例尺1∶2000缩小后,其面积大约相当于()A.一个篮球场的面积B.一张乒乓球台台面的面积C.《华商报》的一个版面的面积D.《数学》课本封面的面积二、填空题(共10题,共计30分)16、如图,在平行四边形ABCD中,AB=4,BC-5,∠B=60°,点E是AB的中点,EFLED交BC于点F,连结DF,则cos∠∠EDF 的值为________.17、定义:如果△ABC内有一点P,满足∠PAC=∠PCB=∠PBA,那么称点P为△ABC 的布罗卡尔点,如图,在△ABC中,AB=AC=5,BC=8,点P为△ABC的布罗卡尔点,如果PA=2,那么PC=________.18、如图,在平面直角坐标系中,已知A(1.5,0),D(4.5,0),△ABC与△DEF位似,原点O是位似中心.若DE=7.5,则AB=________.19、如图所示,某地三条互相平行的街道a,b,c与两条公路相交,有六个路口分别为A,B,C,D,E,F.路段EF正在封闭施工.若已知路段AB约为270.1米,路段BC约为539.8米,路段DE约为282.0米,则封闭施工的路段EF的长约为________米.20、如图,点B,E分别在线段AC,DF上,若AD∥BE∥CF,AB=3,BC=2,DE=4.5,则DF 的长为________.21、如图,在矩形纸片ABCD中,AB=6,BC=10,点E在CD上,将△BCE沿BE折叠,点C 恰好落在边AD上的点F处,点G在AF上,将△ABG沿BG折叠,点A恰好落在线段BF上的H处,有下列结论:①∠EBG=45°;②2S△BFG=5S△FGH;③△DEF∽△ABG;④4CE=5ED.其中正确的是________.(填写所有正确结论的序号)22、已知图,正方形ABCD,M是BC延长线上一点,过B作BE⊥DM于点E,交DC于点F,过F作FG∥BC交BD于点G,连接GM,若S△EFD= DF2, AB=4 ,则GM=________.23、如图,在正方形ABCD中,AB=2,点E是CD的中点,连接AE,将△ADE沿AE折叠至△AHE,连接BH,延长AE,BH交于点F;BF,CD交于点G,则FG=________.24、如图,在正方形 ABCD 中,对角线 AC,BD 相交于点 O,E 是 OB 的中点,连接 AE 并延长交 BC 于点 F,若△BEF 的面积为 2,则△AED 的面积为________.25、如图,反比例函数y= (x>0)的图形经过A(2,6)和B两点,且tan∠AOB= ,则点B的坐标是________。
第四章 图形的相似数学九年级上册-单元测试卷-北师大版(含答案)
![第四章 图形的相似数学九年级上册-单元测试卷-北师大版(含答案)](https://img.taocdn.com/s3/m/b96ab18801f69e3142329463.png)
第四章图形的相似数学九年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,已知点A(-6,0),B(2,0),点C在直线上,则使△ABC 是直角三角形的点C的个数为()A.1B.2C.3D.42、如图,平行四边形ABCD中,点E为AD边中点,连接AC、BE交于点,若的面积为关于的一元二次方程的解,则的面积为().A.4B.5C.6D.73、△ABC与△DEF的相似比为1:4,则△DEF与△ABC的相似比为()A.1:2B.1:3C.4:1D.1:164、如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD•AB.其中单独能够判定△ABC∽△ACD的个数为()A.1B.2C.3D.45、如图,点A在线段BD上,在BD的同侧作等腰Rt△ABC和等腰Rt△ADE,其中∠ABC =∠AED=90°,CD与BE、AE分别交于点P、M.对于下列结论:①△CAM∽△DEM;②CD=2BE;③MP•MD=MA•ME;④2CB2=CP•CM.其中正确是()A.①②B.①②③C.①③④D.①②③④6、如图所示,点E是平行四边形ABCD的边CB延长线上的点,AB与DE相交于点F,则图中相似三角形共有()对.A.5B.4C.3D.27、如果2:7=x:4,那么x的值是( )A.14B.C.D.8、如图,平行于BC的直线DE把△ABC分成面积相等的两部分,则的值为()A.1B.C.D.9、若,且,则的值是()A.4B.2C.20D.1410、如右图,一块平行四边形的土地被分成4块小平行四边形,用来种植红、黄、蓝、白四种不同颜色的花卉,其中种植红、黄、蓝颜色花卉的土地的面积分别是20m2, 30m2, 36 m2,则种植白色花卉土地的面积为()A.46m 2B.50m 2C.54m 2D.60m 211、如图,梯形ABCD中,AD∥BC,∠B=∠ACD=90°,AB=2,DC=3,则△ABC与△DCA的面积比为()A.2:3B.2:5C.4:9D. :12、如图,△ABC与△A′B′C′是位似图形,点O是位似中心,若OA=2AA′,S△ABC=5,则S△A′B′C′等于()A. B. C. D.13、如图,这是圆桌正上方的灯泡(看作一个点)发出的光线照射到圆桌后在地面上形成圆形的示意图。
第四章 图形的相似数学九年级上册-单元测试卷-北师大版(含答案)
![第四章 图形的相似数学九年级上册-单元测试卷-北师大版(含答案)](https://img.taocdn.com/s3/m/82bc9998caaedd3382c4d331.png)
第四章图形的相似数学九年级上册-单元测试卷-北师大版(含答案)一、单选题(共15题,共计45分)1、如图,在一块斜边长30cm的直角三角形木板(Rt△ACB)上截取一个正方形CDEF,点D 在边BC上,点E在斜边AB上,点F在边AC上,若AF:AC=1:3,则这块木板截取正方形CDEF后,剩余部分的面积为( )A.100cm 2B.150cm 2C.170cm 2D.200cm 22、如果两个相似三角形的相似比为4:3,那么这两个相似三角形的面积比为()A.2:B.4:3C.16:9D.256:813、“差之毫厘,失之千里”是一句描述开始时虽然相差很微小,结果会造成很大的误差或错误的成语.现实中就有这样的实例,如步枪在瞄准时的示意图如图,从眼睛到准星的距离OE为80cm,眼睛距离目标为200m,步枪上准星宽度AB为2mm,若射击时,由于抖动导致视线偏离了准星1mm,则目标偏离的距离为()cm.A.25B.50C.75D.1004、如图,在△ABC中,∠A=75°,AB=6,AC=8,将△ABC沿图中的虚线剪开,剪下的阴影三角形与原三角形不相似的是()A. B. C. D.5、下列数中,能与6,9,10组成比例的数是()A.1B.74C.5.4D.1.56、如图,P为线段AB上一点,AD与BC交于E,∠CPD=∠A=∠B,BC交PD于F,AD交PC 于G,则图中相似三角形有()A.1对B.2对C.3对D.4对7、如图所示,给出下列条件:①∠B=∠ACD;②∠ADC=∠ACB;③;④AC2=AD•AB.其中单独能够判定△ABC∽△ACD的个数为()A.1B.2C.3D.48、如图,△ABC内接于⊙O,AD为⊙O的直径,交BC于点E,若DE=2,OE=3,则()A.4B.3C.2D.59、如图,△ABC中,AB=4,BC=6.点D,点E分别是边AB,BC上的两个动点,若按照下列条件将△ABC沿DE剪开,剪下的△BDE与原三角形不相似的是()A.∠BDE=∠CB.DE∥ACC.AD=3,BE=2D.AD=1,CE=410、若x:y=6:5,则下列等式中不正确的是()A. B. C. D.11、如图,在正方形ABCD中,△BPC是等边三角形,BP、CP的延长线分别交AD于点E、F,连接BD、DP,BD与CF相交于点H,给出下列结论:①BE=2AE;②△DFP∽△BPH;③△PFD∽△PDB;④DP2=PH•PC其中正确的是()A.①②③④B.②③C.①②④D.①③④12、已知Rt△ABC中,∠C=90°,∠A≠∠B,点P是边AC上一点(不与A、C重合),过P点的一条直线与△ABC的边相交,所构成的三角形与原三角形相似,这样的直线有()条.A.1B.2C.3D.413、如图,在正三角形ABC中,D,E分别在AC,AB上,且,AE=BE,则有( )A.△AED∽△BEDB.△AED∽△CBDC.△AED∽△ABDD.△BAD∽△BCD14、如图所示,在中,,D是上一点,于点E,若,,.则的长为()A. B. C. D.15、如图,在中,,且DE分别交AB,AC于点D,E,若,则△和△的面积之比等于()A. B. C. D.二、填空题(共10题,共计30分)16、如图,与是以点为位似中心的位似图形,相似比为,,,若点的坐标是,则点的坐标是________.17、如图,AB为⊙O的直径,AB=4,C为半圆AB的中点,P为上一动点,延长BP至点Q,使BP•BQ=AB2.若点P由A运动到C,则点Q运动的路径长为________.18、已知,,并且成比例线段,那么________.19、如图,已知直线与轴、轴分别交于A,B两点,P是以为圆心,1为半径的圆上一动点,连接,,当的面积最大时,点P的坐标为________.20、已知线段b是线段a、c的比例中项,且a=2 cm,b=4 cm,那么c=________cm.21、在平面直角坐标系中,正方形ABCD的位置如图所示,点A的坐标为(1,0),点D的坐标为(0,2),延长CB交x轴于点A1,作正方形A1B1C1C;延长C1B1交x轴于点A2,作正方形A2B2C2C1…按这样的规律进行下去,第1个正方形的面积为________;第4个正方形的面积为________.22、在“测量学校教学楼的高度”的数学活动中,小刚同学使用镜面反射法进行测量,如图所示.若米,米,米,则这个学校教学楼的高度为________米.23、如图是小孔成像原理的示意图,根据图中标注的尺寸,如果物体在暗盒中所成的像的高度为,那么物体的高度应为________ .24、如图,在△ABC中,点D、E分别在△ABC的两边AB、AC上,且DE∥BC,如果,,,那么线段BC的长是________.25、如图,已知点A是双曲线y= 在第三象限分支上的一个动点,连结AO并延长交另一分支于点B,以AB为边作等边三角形ABC,点C在第四象限内,且随着点A的运动,点C的位置也在不断变化,但点C始终在双曲线y= 上运动,则k的值是________.三、解答题(共5题,共计25分)26、已知,求的值。
【易错题解析】北师大版九年级数学上册 第四章 图形的相似
![【易错题解析】北师大版九年级数学上册 第四章 图形的相似](https://img.taocdn.com/s3/m/83d96684b0717fd5360cdc48.png)
【易错题解析】北师大版九年级数学上册第四章图形的相似一、单选题(共10题;共30分)1. ( 3分) 如图所示,在△ABC中D为AC边上一点,若∠DBC=∠A ,BC=3,AC=6,则CD的长为()A. 1B. 2C.D.【答案】C【考点】相似三角形的判定与性质【解析】解答:∵∠DBC=∠A ,∠C=∠C ,∴△BCD∽△ACB ,∴= ,∴=∴CD= ,故选:C .分析:由∠DBC=∠A ,∠C=∠C ,可证得△BCD∽△ACB ,所以有= ,代入数据可求得.2. ( 3分) 如果两个相似三角形的面积的比是4:9,那么它们的周长的比是()A. 4:9B. 1:9C. 1:3D. 2:3【答案】D【考点】相似三角形的性质【解析】【解答】两个相似三角形的面积的比是4:9,两个相似三角形的相似比为:2:3.两个相似三角形的周长比为:2:3.故答案为:D.【分析】根据两个相似三角形的面积的比等于相似比的平方求解。
3. ( 3分) 两个相似多边形一组对应边分别为3 cm,4.5 cm,那么它们的相似比为( )A. B. C. D.【答案】A【考点】相似多边形的性质【解析】【解答】由题意得,两个相似多边形的一组对应边的比为3:4.5= ,∴它们的相似比为 .故答案为:A.【分析】两个相似多边形的对应线段(边、高、中线、角平分线)成比例.4. ( 3分) 下列各组图形中不是位似图形的是()A.B.C.D.【答案】D【考点】位似变换【解析】【解答】解:根据位似图形的定义,可得A,B,C是位似图形,B与C的位似中心是交点,A的为中心是圆心;D不是位似图形.故选:D.【分析】根据如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心即可求得答案,注意排除法在解选择题中的应用.5. ( 3分) 在同一时刻太阳光线是平行的,如果高1.5米的测杆影长3米,那么此时影长36米的旗杆的高度为()A. 18米B. 12米C. 15米D. 20米【答案】A【考点】相似三角形的应用,平行投影【解析】【解答】解:∵测竿的高度测竿的影长= 旗竿的高度旗竿的影长,∴= 旗竿的高度,解得旗杆的高度= ×36=18(m).故选:A.【分析】根据同一时刻物高与影长成比例,列出比例式再代入数据计算即可.6. ( 3分) 下列各组长度的线段中,成比例线段的是()A. 1cm,2cm, 3cm, 4cmB. 1cm, cm, cm,cmC. 2cm, 4cm, 6cm, 8cmD. cm, cm, cm, cm【答案】B【考点】比例线段【解析】【分析】如果其中两条线段的乘积等于另外两条线段的乘积,则四条线段叫成比例线段.对选项一一分析,排除错误答案.【解答】A、1×4≠2×3,故选项错误;B、1×=×,故选项正确;C、2×8≠4×6,故选项错误;D、×≠×,故选项错误.故选B.【点评】考查了比例线段,根据成比例线段的概念,注意在相乘的时候,最小的和最大的相乘,另外两个相乘,看它们的积是否相等.7. ( 3分) 如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AD,AB的中点,EF交AC于点H,则的值为()A. B. 1 C. D.【答案】A【考点】平行线分线段成比例【解析】【分析】∵平行四边形ABCD中,对角线AC,BD相交于点O,∴AO=CO.∵点E,F分别是边AD,AB的中点,∴EF∥BD. ∴.∴.故选A.8. ( 3分) 下列说法中正确的是()A. 两个直角三角形相似B. 两个等腰三角形相似C. 两个等边三角形相似D. 两个锐角三角形相似【答案】C【考点】相似三角形的判定【解析】【分析】根据相似三角形的判定方法对各个选项进行分析,从而得到答案.【解答】A、只知道一个直角相等,不符合相似三角形判定的条件,故选项错误;B、因为没有说明角或边相等的条件,故选项错误;C、因为其三对角均相等,符合相似三角形的判定条件,故选项正确;D、因为没有说明角或边相等的条件,故选项错误.故选:C.【点评】考查相似三角形的判定定理:(1)两角对应相等的两个三角形相似;(2)两边对应成比例且夹角相等的两个三角形相似;(3)三边对应成比例的两个三角形相似;(4)如果一个直角三角形的斜边和一条直角边与另一个直角三角形的斜边和一条直角边对应成比例,那么这两个直角三角形相似.9. ( 3分) 如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为()A.B.C.D.6【答案】C【考点】全等三角形的判定与性质,相似三角形的判定与性质【解析】【解答】解:如图所示:在AB上取点C′,使AC′=AC,过点C′作C′F⊥AC,垂足为F,交AD与点E.在Rt△ABC中,依据勾股定理可知BA=10.∵AC=AC′,∠CAD=∠C′AD,AE=C′E,∴△AEC≌△AEC′.∴CE=EC′.∴CE+EF=C′E+EF.∴当C′F⊥AC时,CE+EF有最小值.∵C′F⊥AC,BC⊥AC,∴C′F∥BC.∴△AFC′∽△ACB.∴′= ′,即′= ,解得FC′= .故答案为:C【分析】在AB上取点C′,使AC′=AC,过点C′作C′F⊥AC,垂足为F,交AD与点E,利用全等三角形的判定定理证明△AEC≌△AEC′.得出对应边相等,即CE=EC′.就可得出CE+EF=C′E+EF=FC′,当C′F⊥AC时,CE+EF有最小值,再证明△AFC′∽△ACB,得出对应边成比例,就可求出FC′的长。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【易错题解析】北师大版九年级数学上册第四章图形的相似一、单选题(共10题;共30分)1. ( 3分) 如图所示,在△ABC中D为AC边上一点,若∠DBC=∠A ,BC=3,AC=6,则CD的长为()A. 1B. 2C.D.2. ( 3分) 如果两个相似三角形的面积的比是4:9,那么它们的周长的比是()A. 4:9B. 1:9C. 1:3D. 2:33. ( 3分) 两个相似多边形一组对应边分别为3 cm,4.5 cm,那么它们的相似比为( )A. B. C. D.4. ( 3分) 下列各组图形中不是位似图形的是()A. B. C. D.5. ( 3分) 在同一时刻太阳光线是平行的,如果高1.5米的测杆影长3米,那么此时影长36米的旗杆的高度为()A. 18米B. 12米C. 15米D. 20米6. ( 3分) 下列各组长度的线段中,成比例线段的是()A. 1cm,2cm, 3cm, 4cmB. 1cm, cm, cm,cmC. 2cm, 4cm, 6cm, 8cmD. cm, cm, cm, cm7. ( 3分) 如图,在平行四边形ABCD中,对角线AC,BD相交于点O,点E,F分别是边AD,AB的中点,EF交AC于点H,则的值为()A. B. 1 C. D.8. ( 3分) 下列说法中正确的是()A. 两个直角三角形相似B. 两个等腰三角形相似C. 两个等边三角形相似D. 两个锐角三角形相似9. ( 3分) 如图,在Rt△ABC中,∠ACB=90°,AC=6,BC=8,AD平分∠CAB交BC于D点,E,F分别是AD,AC上的动点,则CE+EF的最小值为()A. B. C. D.610. ( 3分) 如图,在△ABC中,点P为AB上一点,给出下列四个条件:①∠ACP=∠B;②∠APC=∠ACB;③AC2=AP·AB;④AB·CP=AP·CB.其中能满足△APC和△ACB相似的条件是( )A. ①②④B. ①③④C. ②③④D. ①②③二、填空题(共10题;共30分)11. ( 3分) 两个相似三角形的相似比为1 :2 ,它们的面积比为________.12. ( 3分) 如图,在△ABC中,DE∥BC,= ,则=________.13. ( 3分) 如图,直线l1∥l2∥l3,直线AC交l1,l2,l3,于点A,B,C;直线DF交l1,l2,l3于点D,E,F,已知,则=________。
14. ( 3分) 如图,在△ABC中,DE∥BC,AD=1,AB=3,DE=2,则BC=________.15. ( 3分) 把一个矩形剪去一个正方形,若余下的矩形与原矩形相似,则原矩形长宽之比为________ .16. ( 3分) (2017•兰州)如图,四边形ABCD与四边形EFGH位似,位似中心点是O,= ,则=________.17. ( 3分) 墙壁CD上D处有一盏灯(如图),小明站在A站测得他的影长与身长相等都为1.5m,他向墙壁走1m到B处时发现影子刚好落在A点,则灯泡与地面的距离CD=________m.18. ( 3分) 如图,在△ABC中,AB=9,AC=6,BC=12,点M在边AB上,AM=3,过点M作直线MN与边AC交于点N,使截得的三角形与原三角形ABC相似,则MN的长为________.如图,在△ABC中,AB=9,AC=6,BC=12,点M在边AB上,AM=3,过点M作直线MN与边AC交于点N,使截得的三角形与原三角形ABC相似,则MN的长为________.19. ( 3分) 如图,矩形ABCD中,BE平分∠ABC交AD于点E,F为BE上一点,连接DF,过F作FG⊥DF 交BC于点G,连接BD交FG于点H,若FD=FG,BF=3 ,BG=4,则GH的长为________.20. ( 3分)已知正方形ABC1D1的边长为1,延长C1D1到A1,以A1C1为边向右作正方形A1C1C2D2,延长C2D2到A2,以A2C2为边向右作正方形A2C2C3D3(如图所示),以此类推….若A1C1=2,且点A,D2,D3,…,D10都在同一直线上,则正方形A9C9C10D10的边长是________.三、解答题(共8题;共60分)21. ( 6分) 如图所示的网格中,每个小方格都是边长为1的小正方形,B(﹣1,﹣1),C(5,﹣1)(1)把△ABC绕点C按顺时针旋转90°后得到△A1B1C1,请画出这个三角形并写出点B1的坐标;(2)以点A为位似中心放大△ABC,得到△A2B2C2,使放大前后的面积之比为1:4,请在下面网格内出△A2B2C2.22. ( 6分) 如图,有一块三角形的土地,它的一条边BC=100米,BC边上的高AH=80米.某单位要沿着边BC修一座底面是矩形DEFG的大楼,D、G分别在边AB、AC上.若大楼的宽是40米(即DE=40米),求这个矩形的面积.23. ( 6分) 如图,在△ABC中,EF∥CD ,DE∥BC .求证:AF:FD=AD:DB .24. ( 8分) 如图,四边形ABCD中,AC⊥BD交BD于点E,点F,M分别是AB,BC的中点,BN平分∠ABE 交AM于点N,AB=AC=BD,连接MF,NF.(1)判断△BMN的形状,并证明你的结论;(2)判断△MFN与△BDC之间的关系,并说明理由.25. ( 8分) 如图,矩形ABCD中,以对角线BD为一边构造一个矩形BDEF,使得另一边EF过原矩形的顶点C.(1)设Rt△CBD的面积为S1,Rt△BFC的面积为S2,Rt△DCE的面积为S3,则S1 S2+S3(用“>”、“=”、“<”填空);(2)写出如图中的三对相似三角形,并选择其中一对进行证明.26. ( 8分) 四边形ABCD中,点E是AB的中点,F是AD边上的动点.连结DE、CF.(1)若四边形ABCD是矩形,AD=12,CD=10,如图(1)所示.①请直接写出AE的长度;②当DE⊥CF时,试求出CF长度.(2)如图(2),若四边形ABCD是平行四边形,DE与CF相交于点P.探究:当∠B与∠EPC满足什么关系时,成立?并证明你的结论.27. ( 8分) 把两个直角三角形如图(1)放置,使∠ACB与∠DCE重合,AB与DE相交于点O,其中∠DCE=90°,∠BAC=45°,AB=6cm,CE=5cm, CD=10cm.(1)图1中线段AO的长= cm;DO= cm图1(2)如图2,把△DCE绕着点C逆时针旋转α度(0°<α<90°)得△D1CE1,D1C与AB相交于点F,若△BCE1恰好是以BC为底边的等腰三角形,求线段AF的长.图228. ( 10分) 如图,在同一平面内,将两个全等的等腰直角三角形ABC和ADE摆放在一起,A为公共顶点,∠BAC=∠ADE=90°,它们的斜边长为2,若△ABC固定不动,△ADE绕点A旋转,AE、AD与边BC的交点分别为F、G (点F不与点C重合,点G不与点B重合),设BF=a,CG=b.(1)请在图(1)中找出两对相似但不全等的三角形,并选取其中一对进行证明.(2)求b与a的函数关系式,直接写出自变量a的取值范围.(3)以△ABC的斜边BC所在的直线为x轴,BC边上的高所在的直线为y轴,建立平面直角坐标系(如图2).若BG=CF,求出点G的坐标,猜想线段BG、FG和CF之间的关系,并通过计算加以验证.答案解析部分一、单选题1.【答案】C2.【答案】D3.【答案】A4.【答案】D5.【答案】A6.【答案】B7.【答案】A8.【答案】C9.【答案】C10.【答案】D二、填空题11.【答案】1:412.【答案】13.【答案】214.【答案】615.【答案】16.【答案】17.【答案】18.【答案】619.【答案】20.【答案】三、解答题21.【答案】(1)解:如图所示:△A1B1C1,即为所求,点B1的坐标为:(5,5)(2)解:如图所示:△A2B2C222.【答案】解答:由已知得,DG∥BC∴△ADG∽△ABC ,∵AH⊥BC∴AH⊥DG于点M,且AM=AH-MH=80-40=40(m)=,即DG==50(m),=DE×DG=2000(m2).∴S矩形DEFG23.【答案】证明:∵EF∥CD,DE∥BC,∴,,∴,即AF:FD=AD:DB.24.【答案】(1)解:△BMN是等腰直角三角形.证明:∵AB=AC,点M是BC的中点,∴AM⊥BC,AM平分∠BAC.∵BN平分∠ABE,AC⊥BD,∴∠AEB=90°,∴∠EAB+∠EBA=90°,∴.∴△BMN是等腰直角三角形(2)解:△MFN∽△BDC.证明:∵点F,M分别是AB,BC的中点,∴FM∥AC,.∵AC=BD,∴,即.由(1)知△BMN是等腰直角三角形,∴,即,∴.∵AM⊥BC,∴∠NMF+∠FMB=90°.∵FM∥AC.∵∠ACB=∠FMB.∵∠CEB=90°,∴∠ACB+∠CBD=90°.∴∠CBD+∠FMB=90°,∴∠NMF=∠CBD.∴△MFN∽△BDC.25.【答案】(1)解:∵S1=BD×ED,S矩形BDEF=BD×ED,∴S1=S矩形BDEF,∴S2+S3=S矩形BDEF,∴S1=S2+S3.(2)答:△BCD∽△CFB∽△DEC.证明△BCD∽△DEC;证明:∵∠EDC+∠BDC=90°,∠CBD+∠BDC=90°,∴∠EDC=∠CBD,又∵∠BCD=∠DEC=90°,∴△BCD∽△DEC.26.【答案】解:(1)①∵四边形ABCD是矩形, CD=10,点E是AB的中点, ∴AE=CD=5;②∵四边形ABCD是矩形,∴∠A=∠FDC=90°,∵CF⊥DE,∴∠ADE+∠CFD=90°,∠ADE+∠AED=90°,∴∠CFD=∠AED,∵∠A=∠CDF,∴△AED∽△DFC∴在△AED中,∠A =90°,AD=12,AE =5,∴DE==13∴CF=;(2)当∠B+∠EPC=180°时,成立.∵四边形ABCD是平行四边形,∴∠B=∠ADC,AD∥BC,∴∠B+∠A=180°,∵∠B+∠EPC=180°,∴∠A=∠EPC=∠FPD,∵∠FDP=∠EDA,∴△DFP∽△DEA,∴,∵∠B=∠ADC,∠B+∠EPC=180°,∠EPC+∠DPC=180°,∴∠CPD=∠CDF,∵∠PCD=∠DCF,∴△CPD∽△CDF,∴,∴,∴,即当∠B+∠EPC=180°时,成立.27.【答案】解:(1)如图,过点A作AF∥DE,∵∠ACB与∠DCE重合,∠DCE=90°,∠BAC=45°,AB= , ∴AC=BC=6,∵∠DCE="90°,CE=5," CD=10.∴ED= , BE=BC-CE=6-5=1,AD=CD-AC=10-6=4,∵AF∥DE∴△AFC∽△DEC∴ ,即AF= ,∴ ,即EF=2,∴BF=EF+BE=2+1=3,∵AF∥DE∴△BOE∽△BAF∴,即AO=,即OE=∴DO=DE-OE=(2) 连接BE1 ,过点E1作E1G⊥BC于G, 过点F作FH⊥BC于H,∵△DCE绕着点C 逆时针旋转α度∴∠E1CG=α,∵△BCE1恰好是以BC为底边的等腰三角形,∴E1G是线段BC的中垂线∵E1C=5,BC=6∴CG=BH=3,E1G=,∵FH⊥BC,∠DCE=90°,∠BAC=45°,∴BH=FH,令BH=FH=x,则:CH=6-x在△FHC与△CG E1中∵∠E1CG +∠FCH=∠FCH +∠CFH=90°,∴∠E1CG =∠CFH,∵∠FHC=∠CG E1=90°,∴△FHC∽△CG E1,。