宜黄县三中2018-2019学年高二上学期第二次月考试卷数学
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
宜黄县三中2018-2019学年高二上学期第二次月考试卷数学
班级__________ 姓名__________ 分数__________
一、选择题
1.直线:(为参数)与圆:(为参数)的位置关系是()A.相离 B.相切 C.相交且过圆心 D.相交但不过圆心
2.点P是棱长为1的正方体ABCD﹣A1B1C1D1的底面A1B1C1D1上一点,则的取值范围是()
A.[﹣1,﹣] B.[﹣,﹣] C.[﹣1,0] D.[﹣,0]
3.如果执行如图所示的程序框图,那么输出的a=()
A.2 B.C.﹣1 D.以上都不正确
4.已知函数f(x)=是R上的增函数,则a的取值范围是()
A.﹣3≤a<0 B.﹣3≤a≤﹣2 C.a≤﹣2 D.a<0
5.双曲线4x2+ty2﹣4t=0的虚轴长等于()
A. B.﹣2t C.D.4
6.一个四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,那么原四边形的面积是()
A.2+B.1+C.D.
7.设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为()
A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)
8.A={x|x<1},B={x|x<﹣2或x>0},则A∩B=()
A.(0,1)B.(﹣∞,﹣2)
C.(﹣2,0)D.(﹣∞,﹣2)∪(0,1)
9.函数y=2|x|的图象是()
A.B.C.D.
10.已知回归直线的斜率的估计值为1.23,样本点的中心为(4,5),则回归直线方程为()
A.B.C.D.=0.08x+1.23
11.集合U=R,A={x|x2﹣x﹣2<0},B={x|y=ln(1﹣x)},则图中阴影部分表示的集合是()
A.{x|x≥1} B.{x|1≤x<2} C.{x|0<x≤1} D.{x|x≤1}
12.设集合M={x|x>1},P={x|x2﹣6x+9=0},则下列关系中正确的是()
A.M=P B.P⊊M C.M⊊P D.M∪P=R
二、填空题
13.不等式的解集为.
14.抛物线y2=6x,过点P(4,1)引一条弦,使它恰好被P点平分,则该弦所在的直线方程为.15.一个棱长为2的正方体,被一个平面截去一部分后,所得几何体的三视图如图所示,则该几何体的体积为________.
16.已知函数()f x 23(2)5x =-+,且12|2||2|x x ->-,则1()f x ,2()f x 的大小关系 是 .
17.考察正三角形三边中点及3个顶点,从中任意选4个点,则这4个点顺次连成平行四边形的概率等于 .
18.已知函数()()31
,ln 4
f x x mx
g x x =++=-.{}min ,a b 表示,a b 中的最小值,若函数
()()(){}()min ,0h x f x g x x =>恰有三个零点,则实数m 的取值范围是 ▲ .
三、解答题
19.已知数列{a n }的前n 项和为S n ,a 1=3,且2S n =a n+1+2n . (1)求a 2;
(2)求数列{a n }的通项公式a n ;
(3)令b n =(2n ﹣1)(a n ﹣1),求数列{b n }的前n 项和T n .
20.某公司春节联欢会中设一抽奖活动:在一个不透明的口袋中装入外形一样号码分别为1,2,3,…,10的十个小球.活动者一次从中摸出三个小球,三球号码有且仅有两个连号的为三等奖;奖金30元,三球号码都连号为二等奖,奖金60元;三球号码分别为1,5,10为一等奖,奖金240元;其余情况无奖金. (1)员工甲抽奖一次所得奖金的分布列与期望;
(2)员工乙幸运地先后获得四次抽奖机会,他得奖次数的方差是多少?
21.已知m≥0,函数f(x)=2|x﹣1|﹣|2x+m|的最大值为3.
(Ⅰ)求实数m的值;
(Ⅱ)若实数a,b,c满足a﹣2b+c=m,求a2+b2+c2的最小值.
22.已知,其中e是自然常数,a∈R (Ⅰ)讨论a=1时,函数f(x)的单调性、极值;
(Ⅱ)求证:在(Ⅰ)的条件下,f(x)>g(x)+.
23.已知函数f(x)=lg(x2﹣5x+6)和的定义域分别是集合A、B,
(1)求集合A,B;
(2)求集合A∪B,A∩B.
24.函数f(x)=sin(ωx+φ)(ω>0,|φ|<)的部分图象如图所示
(Ⅰ)求函数f(x)的解析式
(Ⅱ)在△ABC中,角A,B,C所对的边分别是a,b,c,其中a<c,f(A)=,且a=,b=,求△ABC
的面积.
宜黄县三中2018-2019学年高二上学期第二次月考试卷数学(参考答案)
一、选择题
1.【答案】D
【解析】【知识点】直线与圆的位置关系参数和普通方程互化
【试题解析】将参数方程化普通方程为:直线:圆:
圆心(2,1),半径2.
圆心到直线的距离为:,所以直线与圆相交。
又圆心不在直线上,所以直线不过圆心。
故答案为:D
2.【答案】D
【解析】解:如图所示:以点D为原点,以DA所在的直线为x轴,以DC所在的直线为y轴,以DD1所在的直线为z轴,
建立空间直角坐标系.
则点A(1,0,0),C1(0,1,1),设点P的坐标为(x,y,z),则由题意可得0≤x≤1,0≤y≤1,z=1.
∴=(1﹣x,﹣y,﹣1),=(﹣x,1﹣y,0),
∴=﹣x(1﹣x)﹣y(1﹣y)+0=x2﹣x+y2﹣y=+﹣,
由二次函数的性质可得,当x=y=时,取得最小值为﹣;
故当x=0或1,且y=0或1时,取得最大值为0,
则的取值范围是[﹣,0],
故选D.
【点评】本题主要考查向量在几何中的应用,两个向量的数量积公式,两个向量坐标形式的运算,属于中档题.3.【答案】B
【解析】解:模拟执行程序,可得
a=2,n=1
执行循环体,a=,n=3
满足条件n≤2016,执行循环体,a=﹣1,n=5
满足条件n≤2016,执行循环体,a=2,n=7
满足条件n≤2016,执行循环体,a=,n=9
…
由于2015=3×671+2,可得:
n=2015,满足条件n≤2016,执行循环体,a=,n=2017
不满足条件n≤2016,退出循环,输出a的值为.
故选:B.
4.【答案】B
【解析】解:∵函数是R上的增函数
设g(x)=﹣x2﹣ax﹣5(x≤1),h(x)=(x>1)
由分段函数的性质可知,函数g(x)=﹣x2﹣ax﹣5在(﹣∞,1]单调递增,函数h(x)=在(1,+∞)单调递增,且g(1)≤h(1)
∴
∴
解可得,﹣3≤a≤﹣2
故选B
5.【答案】C
【解析】解:双曲线4x2+ty2﹣4t=0可化为:
∴
∴双曲线4x2+ty2﹣4t=0的虚轴长等于
故选C.
6.【答案】A
【解析】解:∵四边形的斜二侧直观图是一个底角为45°,腰和上底的长均为1的等腰梯形,
∴原四边形为直角梯形,
且CD=C'D'=1,AB=O'B=,高AD=20'D'=2,
∴直角梯形ABCD的面积为,
故选:A.
7.【答案】D
【解析】解:由奇函数f(x)可知,即x与f(x)异号,
而f(1)=0,则f(﹣1)=﹣f(1)=0,
又f(x)在(0,+∞)上为增函数,则奇函数f(x)在(﹣∞,0)上也为增函数,
当0<x<1时,f(x)<f(1)=0,得<0,满足;
当x>1时,f(x)>f(1)=0,得>0,不满足,舍去;
当﹣1<x<0时,f(x)>f(﹣1)=0,得<0,满足;
当x<﹣1时,f(x)<f(﹣1)=0,得>0,不满足,舍去;
所以x的取值范围是﹣1<x<0或0<x<1.
故选D.
【点评】本题综合考查奇函数定义与它的单调性.
8.【答案】D
【解析】解:∵A=(﹣∞,1),B=(﹣∞,﹣2)∪(0,+∞),
∴A∩B=(﹣∞,﹣2)∪(0,1),
故选:D.
【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
9.【答案】B
【解析】解:∵f(﹣x)=2|﹣x|=2|x|=f(x)
∴y=2|x|是偶函数,
又∵函数y=2|x|在[0,+∞)上单调递增,故C错误.
且当x=0时,y=1;x=1时,y=2,故A,D错误
故选B
【点评】本题考查的知识点是指数函数的图象变换,其中根据函数的解析式,分析出函数的性质,进而得到函数的形状是解答本题的关键.
10.【答案】C
【解析】解:法一:
由回归直线的斜率的估计值为1.23,可排除D
由线性回归直线方程样本点的中心为(4,5),
将x=4分别代入A、B、C,其值依次为8.92、9.92、5,排除A、B
法二:
因为回归直线方程一定过样本中心点,
将样本点的中心(4,5)分别代入各个选项,只有C满足,
故选C
【点评】本题提供的两种方法,其实原理都是一样的,都是运用了样本中心点的坐标满足回归直线方程.
11.【答案】B
【解析】解:由Venn图可知,阴影部分的元素为属于A当不属于B的元素构成,所以用集合表示为A∩(∁U B).A={x|x2﹣x﹣2<0}={x|﹣1<x<2},B={x|y=ln(1﹣x)}={x|1﹣x>0}={x|x<1},
则∁U B={x|x≥1},
则A∩(∁U B)={x|1≤x<2}.
故选:B.
【点评】本题主要考查Venn图表达集合的关系和运算,比较基础.
12.【答案】B
【解析】解:P={x|x=3},M={x|x>1};
∴P⊊M.
故选B.
二、填空题
13.【答案】(0,1].
【解析】解:不等式,即,求得0<x ≤1,
故答案为:(0,1].
【点评】本题主要考查分式不等式、一元二次不等式的解法,属于基础题.
14.【答案】 3x ﹣y ﹣11=0 .
【解析】解:设过点P (4,1)的直线与抛物线的交点 为A (x 1,y 1),B (x 2,y 2),
即有y 12=6x 1,y 22
=6x 2,
相减可得,(y 1﹣y 2)(y 1+y 2)=6(x 1﹣x 2),
即有k AB =
=
==3,
则直线方程为y ﹣1=3(x ﹣4), 即为3x ﹣y ﹣11=0.
将直线y=3x ﹣11代入抛物线的方程,可得 9x 2﹣72x+121=0,判别式为722﹣4×9×121>0, 故所求直线为3x ﹣y ﹣11=0. 故答案为:3x ﹣y ﹣11=0.
15.【答案】
【解析】【知识点】空间几何体的三视图与直观图 【试题解析】正方体中,BC 中点为E ,CD 中点为F ,
则截面为
即截去一个三棱锥其体积为:
所以该几何体的体积为:
故答案为:
16.【答案】12()()f x f x ]
【
解
析
】
考
点:不等式,比较大小.
【思路点晴】本题主要考查二次函数与一元二次方程及一元二次不等式三者的综合应用. 分析二次函数的图象,主要有两个要点:一个是看二次项系数的符号,它确定二次函数图象的开口方向;二是看对称轴和最值,它确定二次函数的具体位置.对于函数图象判断类似题要会根据图象上的一些特殊点进行判断,如函数图象与正半轴的交点,函数图象的最高点与最低点等.
17.【答案】 .
【解析】解:从等边三角形的三个顶点及三边中点中随机的选择4个,共有=15种选法,
其中4个点构成平行四边形的选法有3个,
∴4个点构成平行四边形的概率P==
.
故答案为:
.
【点评】本题考查古典概型及其概率计算公式的应用,是基础题.确定基本事件的个数是关键.
18.【答案】()
53
,44
--
【解析】
试题分析:()2
3f x x m '=+,因为()10g =,所以要使()()(){}()min ,0h x f x g x x =>恰有三个零点,须满足
()10,0,0f f m ><<,解得51534244
m m >-⇒-<<- 考点:函数零点
【思路点睛】涉及函数的零点问题、方程解的个数问题、函数图像交点个数问题,一般先通过导数研究函数的单调性、最大值、最小值、变化趋势等,再借助函数的大致图象判断零点、方程根、交点的情况,归根到底还是研究函数的性质,如单调性、极值,然后通过数形结合的思想找到解题的思路.
三、解答题
19.【答案】
【解析】解:(1)当n=1时,2S 1=2a 1=a 2+2, ∴a 2=4…1;
(2)当n ≥2时,2a n =2s n ﹣2s n ﹣1=a n+1+2n ﹣a n ﹣2(n ﹣1)=a n+1﹣a n +2, ∴a n+1=3a n ﹣2,
∴a n+1﹣1=3(a n﹣1)…4,
∴,
∴{a n﹣1}从第二项起是公比为3的等比数列…5,
∵,
∴,
∴;
(3)∴ (8)
∴① (9)
∴②
①﹣②得:,
=,
=(2﹣2n)×3n﹣4, (11)
∴ (12)
【点评】本题考查等比数列的通项公式,数列的递推公式,考查“错位相减法”求数列的前n项和,考查计算能力,属于中档题.
20.【答案】
【解析】解:(1)由题意知甲抽一次奖,基本事件总数是C103=120,
奖金的可能取值是0,30,60,240,
∴一等奖的概率P(ξ=240)=,
P(ξ=60)=
P(ξ=30)=,
P(ξ=0)=1﹣
∴变量的分布列是ξ
∴E ξ==20
(2)由(1)可得乙一次抽奖中奖的概率是1﹣
四次抽奖是相互独立的
∴中奖次数η~B(4,)
∴Dη=4×
【点评】本题考查离散型随机变量的分布列和期望,考查二项分布的方差公式,解本题的关键是看清题目中所给的变量的特点,看出符合的规律,选择应用的公式.
21.【答案】
【解析】解:(Ⅰ)f(x)=2|x﹣1|﹣|2x+m|=|2x﹣2|﹣|2x+m|≤|(2x﹣2)﹣(2x+m)|=|m+2|
∵m≥0,∴f(x)≤|m+2|=m+2,当x=1时取等号,
∴f(x)max=m+2,又f(x)的最大值为3,∴m+2=3,即m=1.
(Ⅱ)根据柯西不等式得:(a2+b2+c2)[12+(﹣2)2+12]≥(a﹣2b+c)2,
∵a﹣2b+c=m=1,∴,
当,即时取等号,∴a2+b2+c2的最小值为.
【点评】本题考查绝对值不等式、柯西不等式,考查学生分析解决问题的能力,属于中档题.
22.【答案】
【解析】解:(1)a=1时,因为f(x)=x﹣lnx,f′(x)=1﹣,
∴当0<x<1时,f′(x)<0,此时函数f(x)单调递减.
当1<x≤e时,f′(x)>0,此时函数f(x)单调递增.
所以函数f(x)的极小值为f(1)=1.
(2)因为函数f(x)的极小值为1,即函数f(x)在(0,e]上的最小值为1.
又g′(x)=,所以当0<x<e时,g′(x)>0,此时g(x)单调递增.
所以g(x)的最大值为g(e)=,
所以f(x)min﹣g(x)max>,
所以在(1)的条件下,f(x)>g(x)+.
【点评】本题主要考查利用函数的单调性研究函数的单调性问题,考查函数的极值问题,本题属于中档题..
23.【答案】
【解析】解:(1)由x2﹣5x+6>0,即(x﹣2)(x﹣3)>0,
解得:x>3或x<2,即A={x|x>3或x<2},
由g(x)=,得到﹣1≥0,
当x>0时,整理得:4﹣x≥0,即x≤4;
当x<0时,整理得:4﹣x≤0,无解,
综上,不等式的解集为0<x≤4,即B={x|0<x≤4};
(2)∵A={x|x>3或x<2},B={x|0<x≤4},
∴A∪B=R,A∩B={x|0<x<2或3<x≤4}.
【点评】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
24.【答案】
【解析】解:(Ⅰ)∵由图象可知,T=4(﹣)=π,
∴ω==2,
又x=时,2×+φ=+2kπ,得φ=2kπ﹣,(k∈Z)
又∵|φ|<,
∴φ=﹣,
∴f(x)=sin(2x﹣)…6分
(Ⅱ)由f(A)=,可得sin(2A﹣)=,
∵a<c,
∴A为锐角,
∴2A﹣∈(﹣,),
∴2A﹣=,得A=,
由余弦定理可得:a2=b2+c2﹣2bccosA,可得:7=3+c2﹣2,即:c2﹣3c﹣4=0,∵c>0,∴解得c=4.
∴△ABC的面积S=bcsinA==…12分
【点评】本题主要考查了余弦定理,三角形面积公式,由y=Asin(ωx+φ)的部分图象确定其解析式等知识的应用,属于基本知识的考查.。