最新初中数学相交线与平行线难题汇编含解析(1)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新初中数学相交线与平行线难题汇编含解析(1)
一、选择题
1.如图,AB∥CD,EG、EM、FM分别平分∠AEF,∠BEF,∠EFD,则图中与∠DFM相等的角(不含它本身)的个数为()
A.5 B.6 C.7 D.8
【答案】C
【解析】
解:∵FM平分∠EFD,∴∠EFM=∠DFM=1
2
∠CFE.∵EG平分∠AEF,∴∠AEG=∠GEF=
1
2
∠AEF.∵EM平分∠BEF,∴∠BEM=∠FEM=1
2
∠BEF,∴∠GEF+∠FEM=
1
2
(∠AEF+∠
BEF)=90°,即∠GEM=90°,∠FEM+∠EFM=1
2
(∠BEF+∠CFE).∵AB∥CD,∴∠EGF=∠
AEG,∠CFE=∠AEF,∴∠FEM+∠EFM=1
2
(∠BEF+∠CFE)=
1
2
(BEF+∠AEF)=90°,∴在
△EMF中,∠EMF=90°,∴∠GEM=∠EMF,∴EG∥FM,∴与∠DFM相等的角有:∠EFM、∠GEF、∠EGF、∠AEG以及∠GEF、∠EGF、∠AEG三个角的对顶角.故选C.
点睛:重点考查了角平分线的定义,平行线的性质和判定定理,推导较复杂.
2.如图,直线a∥b,直线c分别交a,b于点A,C,∠BAC的平分线交直线b于点D,若∠1=50°,则∠2的度数是()
A.50°B.70°C.80°D.110°
【答案】C
【解析】
【分析】
根据平行线的性质可得∠BAD=∠1,再根据AD是∠BAC的平分线,进而可得∠BAC的度数,再根据补角定义可得答案.
【详解】
因为a∥b,
所以∠1=∠BAD=50°,
因为AD是∠BAC的平分线,
所以∠BAC=2∠BAD=100°,
所以∠2=180°-∠BAC=180°-100°=80°.
故本题正确答案为C.
【点睛】
本题考查的知识点是平行线的性质,解题关键是掌握两直线平行,内错角相等.
3.如图,直线AC∥BD,AO、BO分别是∠BAC、∠ABD的平分线,那么下列结论错误的是()
A.∠BAO与∠CAO相等B.∠BAC与∠ABD互补
C.∠BAO与∠ABO互余D.∠ABO与∠DBO不等
【答案】D
【解析】
【分析】
【详解】
解:已知AC//BD,根据平行线的的性质可得∠BAC+∠ABD=180°,选项B正确;
因AO、BO分别是∠BAC、∠ABD的平分线,根据角平分线的定义可得∠BAO=∠CAO, ∠ABO=∠DBO,选项A正确,选项D不正确;由∠BAC+∠ABD=180°,∠BAO=∠CAO, ∠ABO=∠DBO即可得∠BAO+∠ABO=90°,选项A正确,故选D.
4.如图,将一张含有30o角的三角形纸片的两个顶点叠放在矩形的两条对边上,若∠的大小为()
∠=o,则1
244
α-
A.14o B.16o C.90α
-o D.44o
【答案】A
【解析】
分析:依据平行线的性质,即可得到∠2=∠3=44°,再根据三角形外角性质,可得∠3=∠
1+30°,进而得出结论.
详解:如图,∵矩形的对边平行,∴∠2=∠3=44°,根据三角形外角性质,可得:∠3=∠1+30°,∴∠1=44°﹣30°=14°.
故选A .
点睛:本题主要考查了平行线的性质以及三角形外角性质的运用,解题时注意:两直线平行,同位角相等.
5.下列结论中:①若a=b ,则a =b ;②在同一平面内,若a ⊥b ,b//c ,则a ⊥c ;③直线外一点到直线的垂线段叫点到直线的距离;④|3-2|=2-3,正确的个数有( ) A .1个
B .2个
C .3个
D .4个
【答案】B
【解析】
【分析】
【详解】
解:①若a=b 0≥,则a =b
②在同一平面内,若a ⊥b,b//c ,则a ⊥c ,正确
③直线外一点到直线的垂线段的长度叫点到直线的距离
④|3-2|=2-3,正确
正确的个数有②④两个
故选B
6.如图,OC 平分AOB ∠,//CD OB .若3DC =,C 到OB 的距离是2.4,则ODC ∆的面积等于( )
A .3.6
B .4.8
C .1.8
D .7.2
【答案】A
【解析】
【分析】 由角平分线的定义可得出∠BOC=∠DOC ,由CD ∥OB ,得出∠BOC=∠DCO ,进而可证出OD=CD=3.再由角平分线的性质可知C 到OA 的距离是2.4,然后根据三角形的面积公式可
求ODC ∆的面积.
【详解】
证明:∵OC 平分∠AOB ,
∴∠BOC=∠DOC .
∵CD ∥OB ,
∴∠BOC=∠DCO ,
∴∠DOC=∠DCO ,
∴OD=CD=3.
∵C 到OB 的距离是2.4,
∴C 到OA 的距离是2.4,
∴ODC ∆的面积=13 2.4=3.62
⨯⨯. 故选A .
【点睛】
本题考查了等腰三角形的判定、角平分线的定义、平行线的性质、以及角平分线的性质,利用角平分线的性质得出C 到OA 的距离是2.4是解题的关键.
7.如图,已知//AB CD ,直线EF 分别交AB ,CD 于M ,N 两点,将一个含有30°角的直角三角尺按如图所示的方式放置(30PNG ∠=︒),若75EMB ∠=︒,则PNM ∠的度数是()
A .30°
B .45︒
C .60︒
D .75︒
【答案】B
【解析】
【分析】 根据75EMB ∠=︒,可以计算75END ∠=︒(两直线平行,同位角相等),又由75END PNM PNG ∠=∠+∠=︒,30PNG ∠=︒从而得到PNM ∠的度数.
【详解】
解:∵//AB CD ,
∴75EMB EFD ∠=∠=︒(两直线平行,同位角相等),
又∵30PNG ∠=︒,75END PNM PNG ∠=∠+∠=︒,
∴753045PNM END PNG ∠=∠-∠=︒-︒=︒,
故答案为B.
【点睛】
本题主要考查了两直线平行的性质. 牢记知识点: 两直线平行,同位角相等;两直线平行,
内错角相等;两直线平行,同旁内角互补;
8.如图,直线 a ∥b ∥c ,直角三角板的直角顶点落在直线 b 上,若∠1=30°,则∠2 等于( )
A .40°
B .60°
C .50°
D .70° 【答案】B
【解析】
【分析】
根据两直线平行内错角相等得1324==∠∠,∠∠,再根据直角三角板的性质得341290+=+=︒∠∠∠∠,即可求出∠2的度数.
【详解】
∵a ∥b ∥c
∴1324==∠∠,∠∠
∵直角三角板的直角顶点落在直线 b 上
∴341290+=+=︒∠∠∠∠
∵∠1=30°
∴290160=︒-=︒∠∠
故答案为:B .
【点睛】
本题考查了平行线和三角板的角度问题,掌握平行线的性质、三角板的性质是解题的关键.
9.如图,若AB ∥CD ,则∠α、∠β、∠γ之间关系是( )
A .∠α+∠β+∠γ=180°
B .∠α+∠β﹣∠γ=360°
C .∠α﹣∠β+∠γ=180°
D .∠α+∠β﹣∠γ=180°
【答案】D
【解析】
试题解析:如图,作EF ∥AB ,
∵AB ∥CD ,
∴EF ∥CD ,
∵EF ∥AB ,
∴∠α+∠AEF=180°,
∵EF ∥CD ,
∴∠γ=∠DEF ,
而∠AEF+∠DEF=∠β,
∴∠α+∠β=180°+∠γ,
即∠α+∠β-∠γ=180°.
故选:D .
10.如图,直线AD BC ∥,30C ∠=︒,:1:3ADB BDC ∠∠=,则DBC ∠的度数是( )
A .35°
B .37.5°
C .45°
D .40° 【答案】B
【解析】
【分析】
根据两直线平行,同旁内角互补,可得出18030015ADC ∠=︒-︒=︒,再结合:1:3ADB BDC ∠∠=即可得出ADB ∠的度数,最后,根据两直线平行,内错角相等即可得出答案.
【详解】
解:∵//AD BC ,30C ∠=︒
∴18030015ADC ∠=︒-︒=︒
∵:1:3ADB BDC ∠∠= ∴115037.513
ADB ∠=︒⨯=︒+ ∴37.5DBC ADB ∠=∠=︒
故选:B .
【点睛】
本题考查的知识点是平行线的性质,难度不大,熟记平行线性质的内容是解此题的关键.
11.下列说法中错误的个数是( )
(1)过一点有且只有一条直线与已知直线平行;
(2)过一点有且只有一条直线与已知直线垂直;
(3)不相交的两条直线叫做平行线;
(4)有公共顶点且有一条公共边的两个互补的角互为邻补角.
A .1个
B .2个
C .3个
D .4个
【答案】C
【解析】
(1)应强调过直线外一点,故错误;
(2)正确;
(3)不相交的两条直线叫做平行线,没有说明是否是在同一平面内,所以错误;
(4)有公共顶点且有一条公共边的两个角不一定互为邻补角,角平分线的两个角也满足,但可以不是,故错误.错误的有3个,故选C.
12.已知α∠的两边与β∠的两边分别平行,且α∠=20°,则∠β的度数为( ) A .20°
B .160°
C .20°或160°
D .70°
【答案】C
【解析】
【分析】
分两种情况,画出图形,结合平行线的性质求解即可.
【详解】
如图1,
∵a ∥b ;
∴∠1=α∠=20°,
∵c ∥d
∴∠β=∠1=20°;
如图2,
∵a ∥b ;
∴∠1=α∠=20°,
∵c ∥d
∴∠β=180°-∠1=160°;
故选C.
【点睛】
本题考查了平行线的性质:①两直线平行同位角相等,②两直线平行内错角相等,③两直线平行同旁内角互补.在运用平行线的性质定理时,一定要找准同位角,内错角和同旁内角.本题也考查了分类讨论的数学思想.
13.如图,//AB CD ,点E 在CD 上,点F 在AB 上,如果:6:7CEF BEF ∠∠=,50ABE ∠=︒,那么AFE ∠的度数为( )
A .110︒
B .120︒
C .130︒
D .140︒
【答案】B
【解析】
【分析】 由//AB CD 可得∠ABE+∠CEB=180°,∠BED=50ABE ∠=︒,即∠CEB=130°,由
:6:7CEF BEF ∠∠=可得=67CEF BEF ∠∠,设=67
CEF BEF ∠∠=k,则∠CEF=6k,∠FEB=7k,可得∠FEB=70°,可得∠DEF=∠FEB+∠BED=120°;又由//AB CD 可得AFE ∠=∠DEF 即可解答.
【详解】
解:∵//AB CD
∴∠ABE+∠CEB=180°,∠BED=50ABE ∠=︒
∴∠CEB=130°
∵:6:7CEF BEF ∠∠= ∴
=67CEF BEF ∠∠ 设=67
CEF BEF ∠∠=k ,则∠CEF=6k,∠FEB=7k, ∴6k+7k=130°
∴∠FEB=7k=70°
∴∠DEF=∠FEB+∠BED=120°
∵//AB CD
∴AFE ∠=∠DEF=120°
故答案为B .
【点睛】
本题考查的是平行线的性质以及比例的应用,.熟练掌握平行线的性质是解答本题的关键.
14.下列说法中不正确的是( )
①过两点有且只有一条直线
②连接两点的线段叫两点的距离
③两点之间线段最短
④点B 在线段AC 上,如果AB=BC ,则点B 是线段AC 的中点
A .①
B .②
C .③
D .④
【答案】B
【解析】
【分析】
依据直线的性质、两点间的距离、线段的性质以及中点的定义进行判断即可.
【详解】
①过两点有且只有一条直线,正确;
②连接两点的线段的长度叫两点间的距离,错误
③两点之间线段最短,正确;
④点B 在线段AC 上,如果AB=BC ,则点B 是线段AC 的中点,正确;
故选B .
15.如图,直线//a b ,将一块含45︒角的直角三角尺(90︒∠=C )按所示摆放.若180︒∠=,则2∠的大小是( )
A .80︒
B .75︒
C .55︒
D .35︒
【答案】C
【解析】
【分析】 先根据//a b 得到31∠=∠,再通过对顶角的性质得到34,25∠=∠∠=∠,最后利用三角形的内角和即可求出答案.
【详解】
解:给图中各角标上序号,如图所示:
∵//a b
∴3180︒∠=∠=(两直线平行,同位角相等),
又∵34,25∠=∠∠=∠(对顶角相等),
∴251804180804555A ∠=∠=︒-∠-∠=︒-︒-︒=︒.
故C 为答案.
【点睛】
本题主要考查了直线平行的性质(两直线平行,同位角相等)、对顶角的性质(对顶角相等),熟练掌握直线平行的性质是解题的关键.
16.如图,直线,AB CD 相交于点,50,O AOC OE AB ︒∠=⊥,则DOE ∠的大小是( )
A .40︒
B .50︒
C .70︒
D .90︒
【答案】A
【解析】
【分析】 根据对顶角的性质,把BOD ∠的度数计算出来,再结合OE AB ⊥,即可得到答案.
【详解】
解:∵50AOC ∠=︒,
∴50BOD ∠=︒(对顶角相等),
又∵OE AB ⊥,
∴90EOB ∠=︒,
∴905040DOE BOE DOB ∠=∠-∠=︒-︒=︒,
故A 为答案.
【点睛】
本题主要考查了对顶角的性质(对顶角相等),判断,BOD AOC ∠∠是对顶角是解题的关
键.
17.如图,1B ∠=∠,2C ∠=∠,则下列结论正确的个数有( )
①//AD BC ;②B D ∠=∠;③//AB CD ;④2180B ∠+∠=︒
A .4个
B .3个
C .2个
D .1个
【答案】A
【解析】
【分析】
根据∠1=∠B 可判断AD ∥BC ,再结合∠2=∠C 可判断AB ∥CD ,其余选项也可判断.
【详解】
∵∠1=∠B
∴AD ∥BC ,①正确;
∴∠2+∠B=180°,④正确;
∵∠2=∠C
∴∠C+∠B=180°
∴AB ∥CD ,③正确
∴∠1=∠D ,∴∠D=∠B ,②正确
故选:A
【点睛】
本题考查平行的证明和性质,解题关键是利用AD ∥BC 推导出∠B+∠2=180°,为证AB ∥DC 作准备.
18.把一块直尺与一块三角板如图放置,若∠1=45°,则∠2的度数为( )
A .115°
B .120°
C .145°
D .135°
【答案】D
【解析】
【分析】
由三角形的内角和等于180°,即可求得∠3的度数,又由邻补角定义,求得∠4的度数,然后由两直线平行,同位角相等,即可求得∠2的度数.
【详解】
在Rt △ABC 中,∠A=90°,
∵∠1=45°(已知),
∴∠3=90°-∠1=45°(三角形的内角和定理),
∴∠4=180°-∠3=135°(平角定义),
∵EF ∥MN (已知),
∴∠2=∠4=135°(两直线平行,同位角相等).
故选D .
【点睛】
此题考查了三角形的内角和定理与平行线的性质.注意两直线平行,同位角相等与数形结合思想的应用.
19.如图,在ABC V 中,AB AC =,30A ∠=︒,直线a b ∥,顶点C 在直线b 上,直线a 交AB 于点D ,交AC 与点E ,若1145∠=︒,则2∠的度数是( )
A .30°
B .35°
C .40°
D .45°
【答案】C
【解析】
【分析】 先根据等腰三角形的性质和三角形内角和可得ACB ∠度数,由三角形外角的性质可得AED ∠的度数,再根据平行线的性质得同位角相等,即可求得2∠.
【详解】
∵AB AC =,且30A ∠=︒, ∴18030752
ACB ∠︒-︒=
=︒, 在ADE ∆中,∵1145A AED ∠∠∠=+=︒,
∴14514530115AED A ∠∠=︒-=︒-︒=︒,
∵//a b ,
∴2AED ACB ∠∠∠=+,
即21157540∠=︒-︒=︒,
故选:C .
【点睛】
本题考查综合等腰三角形的性质、三角形内角和定理、三角形外角的性质以及平行直线的性质等知识内容.等腰三角形的性质定理:等腰三角形两底角相等;三角形内角和定理:三角形三个内角的和等于180︒;三角形外角的性质:三角形的外角等于与它不相邻的两个内角之和;两直线平行,同位角相等.
∠=∠,那么20.如图,现将一块含有60︒角的三角板的顶点放在直尺的一边上,若12
∠的度数为()
1
A.50︒B.60︒C.70︒D.80︒
【答案】B
【解析】
【分析】
先根据两直线平行的性质得到∠3=∠2,再根据平角的定义列方程即可得解.
【详解】
∵AB∥CD,
∴∠3=∠2,
∠1=∠2,
∴∠1=∠3,
∴2∠3+60°=180°,
∴∠3=60°,
∴∠1=60°,
故选:B.
【点睛】
此题考查平行线的性质,三角板的知识,熟记性质是解题的关键.。