【转】ISP-镜头阴影校正(LSC)
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
【转】ISP-镜头阴影校正(LSC)
转⾃:https:///xiaoyouck/article/details/77206505
介绍
镜头阴影校正(Lens Shading Correction)是为了解决由于lens的光学特性,由于镜头对于光学折射不均匀导致的镜头周围出现阴影的情况。
shading可以细分为luma shading和color shading:
luma shading:
由于Lens的光学特性,Sensor影像区的边缘区域接收的光强⽐中⼼⼩,所造成的中⼼和四⾓亮度不⼀致的现象。
镜头本⾝就是⼀个凸透镜,由于凸透镜原理,中⼼的感光必然⽐周边多。
如图所⽰:
chrom/color shading:
由于各种颜⾊的波长不同,经过了透镜的折射,折射的⾓度也不⼀样,因此会造成color shading的现象,这也是为什么太阳光经过三棱镜可以呈现彩虹的效果。
如图所⽰:
此外,还有CRA的原因会导致shading现象的出现,这⾥不再赘述,这⾥推荐《What’s CRA》这篇⽂章,详细讲述了由于镜头的CRA带来的shading。
影响
luma shading:会造成图像边⾓偏暗,就是所谓的暗⾓。
color shading:中⼼和四周颜⾊不⼀致,体现出来⼀般为中⼼或者四周偏⾊。
如图所⽰:
校正
lens shading的校正是分别对于bayer的四个通道进⾏校正,每个通道的校正过程是相对独⽴的过程。
考虑到芯⽚设计的成本,因此⼀般情况下不会存储整幅图像的lut,⽬前主流的都是存储128*128个点的增益,利⽤双线性插值的⽅法计算每个pixel的增益。
算法
由于条件限制,图像仅⽤于算法验证,不做图像质量评判标准
这⾥写了⼀个shading的算法,将图像分为16x16的⽅块,求取每个交点的增益值,对平⾯进⾏四次⽅拟合,分别计算了luma shading 和 chrom shading,先计算出来⼀个lut⽤于存储,校正的世⾏通过对这个lut进⾏双线性插值得到每个pixel的值乘以原本像素点。
16x16的分块并⾮固定,可以对块的⼤⼩进⾏调整,⽐如中⼼块偏⼤,靠近边缘的⽅块变⼩,这些都是可以⾃定义的,本算法由于做演⽰使⽤,故不做其他功能。
如图所⽰:
code
由于代码量较⼤,这⾥分别附上⼀部分算法
shading lut caculate:
function [image_r_gain, image_gr_gain, image_gb_gain, image_b_gain] = ...
isp_lsc_lut(image_r, image_gr, image_gb, image_b, side_num)
[height, width] = size(image_r);
side_y = floor(height/side_num);
side_x = floor(width/side_num);
% figure,imshow(image_r);
% hold on;
% for k=0:side_num
% line_x = side_x * k;
% line_y = side_y * k;
% if(k==side_num && line_y ~= width) line_y = height;end
% if(k==side_num && line_x ~= width) line_x = width;end
% line([line_x,line_x],[0,height],'Color','red');
% line([0,width], [line_y, line_y],'Color','red');
% % line(Xd,Yd,'Color','red');
% end
% hold off
%% compress resolution
image_point = zeros(side_num,side_num);
for i = 0:side_num
for j = 0:side_num
x_clip = floor([j*side_x - side_x/2, j*side_x + side_x/2]);
y_clip = floor([i*side_y - side_y/2, i*side_y + side_y/2]);
if(i==side_num && y_clip(2) ~= height) y_clip(2) = height;end
if(j==side_num && x_clip(2) ~= width) x_clip(2) = width;end
x_clip(x_clip<1) = 1;x_clip(x_clip>width) = width;
y_clip(y_clip<1) = 1;y_clip(y_clip>height) = height;
data_r_in = image_r(y_clip(1):y_clip(2), x_clip(1):x_clip(2));
image_r_point(i+1,j+1) = mean(mean(data_r_in));
data_gr_in = image_gr(y_clip(1):y_clip(2), x_clip(1):x_clip(2));
image_gr_point(i+1,j+1) = mean(mean(data_gr_in));
data_gb_in = image_gb(y_clip(1):y_clip(2), x_clip(1):x_clip(2));
image_gb_point(i+1,j+1) = mean(mean(data_gb_in));
data_b_in = image_b(y_clip(1):y_clip(2), x_clip(1):x_clip(2));
image_b_point(i+1,j+1) = mean(mean(data_b_in));
end
end
% figure,imshow(uint8(image_r_point));
%% caculate lsc luma gain
for i = 1:side_num+1
for j = 1:side_num+1
image_r_luma_gain_point(i,j) = mean2(image_r_point(uint8(side_num/2)-1:uint8(side_num/2)+1, uint8(side_num/2)-1:uint8(side_num/2)+1)) / image_r_point(i,j);
image_gr_luma_gain_point(i,j) = mean2(image_gr_point(uint8(side_num/2)-1:uint8(side_num/2)+1, uint8(side_num/2)-1:uint8(side_num/2)+1)) / image_gr_point(i,j); image_gb_luma_gain_point(i,j) = mean2(image_gb_point(uint8(side_num/2)-1:uint8(side_num/2)+1, uint8(side_num/2)-1:uint8(side_num/2)+1)) / image_gb_point(i,j); image_b_luma_gain_point(i,j) = mean2(image_b_point(uint8(side_num/2)-1:uint8(side_num/2)+1, uint8(side_num/2)-1:uint8(side_num/2)+1)) / image_b_point(i,j);
end
end
bilinear interpolation:
image_r_luma_gain_reshape = reshape(image_r_luma_gain_point, [], 1);
image_gr_luma_gain_reshape = reshape(image_gr_luma_gain_point, [], 1);
image_gb_luma_gain_reshape = reshape(image_gb_luma_gain_point, [], 1);
image_b_luma_gain_reshape = reshape(image_b_luma_gain_point, [], 1);
for i = 1:17
for j = 1:17
x((i-1)*17+j) = i;
y((i-1)*17+j) = j;
end
end
x=x';
y=y';
% scatter3(x,y,image_r_luma_gain_reshape)
% hold on
Z=[ones(length(x),1),x,y,x.^2,x.*y,y.^2,x.^3,x.^2.*y,x.*y.^2,y.^3];
[x y]=meshgrid(1:17,1:17);
A=Z\image_r_luma_gain_reshape;
image_r_luma_gain=A(1)+A(2)*x+A(3)*y+A(4)*x.^2+A(5)*x.*y+A(6)*y.^2+A(7)*x.^3+A(8)*x.^2.*y+A(9)*x.*y.^2+A(10)*y.^3;
A=Z\image_gr_luma_gain_reshape;
image_gr_luma_gain=A(1)+A(2)*x+A(3)*y+A(4)*x.^2+A(5)*x.*y+A(6)*y.^2+A(7)*x.^3+A(8)*x.^2.*y+A(9)*x.*y.^2+A(10)*y.^3;
A=Z\image_gb_luma_gain_reshape;
image_gb_luma_gain=A(1)+A(2)*x+A(3)*y+A(4)*x.^2+A(5)*x.*y+A(6)*y.^2+A(7)*x.^3+A(8)*x.^2.*y+A(9)*x.*y.^2+A(10)*y.^3;
A=Z\image_b_luma_gain_reshape;
image_b_luma_gain=A(1)+A(2)*x+A(3)*y+A(4)*x.^2+A(5)*x.*y+A(6)*y.^2+A(7)*x.^3+A(8)*x.^2.*y+A(9)*x.*y.^2+A(10)*y.^3;
% surf(x,y,image_r_luma_gain)
% hold on
% surf(x,y,image_r_luma_gain_point)
%% calulate lsc chroma gain
for i = 1:side_num+1
for j = 1:side_num+1
image_r_chroma_gain(i,j) = image_r_luma_gain(i,j) - image_r_luma_gain_point(i,j);
image_gr_chroma_gain(i,j) = image_gr_luma_gain(i,j) - image_gr_luma_gain_point(i,j);
image_gb_chroma_gain(i,j) = image_gb_luma_gain(i,j) - image_gb_luma_gain_point(i,j);
image_b_chroma_gain(i,j) = image_b_luma_gain(i,j) - image_b_luma_gain_point(i,j);
end
end
%% caculate lsc result gain
image_r_gain = image_r_luma_gain - image_r_chroma_gain;
image_gr_gain = image_gr_luma_gain - image_gr_chroma_gain;
image_gb_gain = image_gb_luma_gain - image_gb_chroma_gain;
image_b_gain = image_b_luma_gain - image_b_chroma_gain;
function image_gain_lut = lsc_data_gain_interpolation(image_gain, height, width, side_num)
side_y_ori = floor(height/side_num);
side_x_ori = floor(width/side_num);
k = 0;
l = 0;
[gain_height, gain_width] = size(image_gain);
for i = 1:gain_height-1
for j = 1:gain_width-1
data_gain_11 = image_gain(i, j);
data_gain_12 = image_gain(i, j+1);
data_gain_21 = image_gain(i+1, j);
data_gain_22 = image_gain(i+1, j+1);
if(j == gain_width-1 && ((j-1)*side_x + l) ~= width)
side_x = width - (j-1)*side_x_ori;
else
side_x = side_x_ori;
end
if(i == gain_width-1 && ((i-1)*side_y + k) ~= width)
side_y = height - (i-1)*side_y_ori;
else
side_y = side_y_ori;
end
for k = 1:side_y
for l = 1:side_x
label_y1 = 1;
label_x1 = 1;
label_y2 = side_y;
label_x2 = side_x;
image_gain_lut((i-1)*side_y_ori + k, (j-1)*side_x_ori + l) = ...
data_gain_22/(label_x2-label_x1)/(label_y2-label_y1)* ...
(l - label_x1) * (k - label_y1) + ...
data_gain_21/(label_x2-label_x1)/(label_y2-label_y1)* ...
(label_x2 - l) * (k - label_y1) + ...
data_gain_12/(label_x2-label_x1)/(label_y2-label_y1)* ...
(l - label_x1) * (label_y2 - k) + ...
data_gain_11/(label_x2-label_x1)/(label_y2-label_y1)* ...
(label_x2 - l) * (label_y2 - k);
end
end
end
end
end
效果展⽰:
实验条件有限,图⽚有⽔波纹,仅⽤于理解算法
original image:
luma shading
chroma shading:
luma shading + chroma shading:
tuning
LSC的tuning⼀定要把校正图采集好,⼀般情况下raw图的G通道中⼼亮度在8bit的70%~80%之间,由于在不同⾊温情况下是经过插值的,因此需要校正多个光源,⼀般情况下TL84、D65、A光源下进⾏校正。
将得到的LUT写⼊RAM中即可
注意:采集的raw图不要有filcker。
LSC强度⼀般是可调的,由于图像边⾓的增益会很⼤,因此在⾼倍gain下,可以把强度给降低,防⽌图像边⾓噪声压不住的情况。
由于各个平台不同,这⾥不做详细介绍,想到再补充。