八年级第二学期第一次质量检测数学试卷含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
一、选择题
1.如图1,分别以直角三角形三边为边向外作等边三角形,面积分别为1S ,2S ,3S ;如图2,分别以直角三角形三边长为直径向外作半圆,面积分别为4S ,5S ,6S ,其中
116S =,245S =,511S =,614S =,则43S S +=( ).
A .86
B .61
C .54
D .48
2.如图,在△ABC 中,∠BAC =90°,AC =2AB ,点D 是AC 的中点,将一块锐角为45°的直角三角板ADE 如图放置,连接BE ,EC .下列判
断:①△ABE ≌△DCE ;②BE =EC ;③BE ⊥EC ;④EC =3DE .其中正确的有( )
A .1个
B .2个
C .3个
D .4个
3.如图,在Rt ABC 中,90BAC ︒∠=,以Rt ABC 的三边为边分别向外作等边三角形
'A BC ,'AB C △,'ABC △,若'A BC ,'AB C △的面积分别是10和4,则'ABC △的面积是( )
A .4
B .6
C .8
D .9
4.已知等边三角形的边长为a ,则它边上的高、面积分别是( )
A .2,24
a a
B .2
3,24
a a
C .2
33,
24
a a D .2
33,
44
a a 5.一个直角三角形两边长分别是12和 5,则第三边的长是( )
A .13
B .13或15
C .13或119
D .15
6.如图,2002年8月在北京召开的国际数学家大会会徽取材于我国古代数学家赵爽的《勾股圆方图》(也称《赵爽弦图》),它是由四个全等的直角三角形与中间的一个小正方形拼成的一个大正方形,如图所示,如果大正方形的面积是13,小正方形的面积是1,
直角三角形的短直角边为a ,较长直角边为b ,那么2
a b ()
的值为( )
A .13
B .19
C .25
D .169
7.以下列各组数为边长,能构成直角三角形的是( ) A .236、、 B .3、4、5 C .3、4、7 D .2、3、4 8.在下列以线段a 、b 、c 的长为边,能构成直角三角形的是( )
A .a =3,b =4,c =6
B .a =5,b =6,c =7
C .a =6,b =8,c =9
D .a =7,b =24,c =25
9.为了庆祝国庆,八年级(1)班的同学做了许多拉花装饰教室,小玲抬来一架2.5米长的梯子,准备将梯子架到2.4米高的墙上,则梯脚与墙角的距离是( ) A .0.6米
B .0.7米
C .0.8米
D .0.9米
10.如图,在△ABC ,∠C =90°,AD 平分∠BAC 交CB 于点D ,过点D 作DE ⊥AB ,垂足恰好是边AB 的中点E ,若AD =3cm ,则BE 的长为( )
A .
33
2
cm B .4cm
C .2cm
D .6cm
二、填空题
11.如图,在平面直角坐标系中,等腰直角三角形OAA 1的直角边OA 在x 轴上,点A 1在第一象限,且OA=1,以点A 1为直角顶点,OA 1为一直角边作等腰直角三角形OA 1A 2,再以点A 2为直角顶点,OA 2为直角边作等腰直角三角形OA 2A 3…依此规律,则点A 2018的坐标是_____.
12.如图,△ABC 是一个边长为1的等边三角形,BB 1是△ABC 的高,B 1B 2是△ABB 1的高,B 2B 3是△AB 1B 2的高,……B n-1B n 是△AB n-2B n-1的高,则B 4B 5的长是________,猜想B n-1B n 的长是________.
13.在ABC ∆中,90BAC ∠=︒,以BC 为斜边作等腰直角BCD ∆,连接DA ,若
22AB =,42AC =,则DA 的长为______.
14.如图,Rt ABC 中,90A ∠=︒,8AC =,6AB =,DE AC ⊥,1
3
CD BC =
,1
3
CE AC =
,P 是直线AC 上一点,把CDP 沿DP 所在的直线翻折后,点C 落在直线DE 上的点H 处,CP 的长是__________
15.如图所示,“赵爽弦图”是由8个全等的直角三角形拼接而成的,记图中正方形ABCD ,正方形EFGH ,正方形MNKT 的面积分别为123,,S S S ,已知12310S S S ++=,则2S 的值是____.
16.如图,△ABC 中,∠ABC =45°,∠BCA =30°,点D 在BC 上,点E 在△ABC 外,且AD =AE =CE ,AD ⊥AE ,则
AB
BD
的值为____________.
17.如图,△ABC 中,∠ACB=90°,AB=2,BC=AC ,D 为AB 的中点,E 为BC 上一点,将△BDE 沿DE 翻折,得到△FDE ,EF 交AC 于点G ,则△ECG 的周长是___________.
18.如图,在□ABCD 中,AC 与BD 交于点O ,且AB =3,BC =5. ①线段OA 的取值范围是______________; ②若BD -AC =1,则AC •BD = _________.
19.如图,在Rt ABC ∆中,90ACB ∠=,2AC BC ==,D 为BC 边上一动点,作如图所示的AED ∆使得AE AD =,且45EAD ∠=,连接EC ,则EC 的最小值为__________.
20.观察:①3、4、5,②5、12、13,③7、24、25,……,发现这些勾股数的“勾”都是奇数,且从3起就没断过.根据以上规律,请写出第8组勾股数:______.
三、解答题
21.如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米. (1)此时梯子顶端离地面多少米?
(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?
22.如图,已知ABC ∆中,90B ∠=︒,8AB cm =,6BC cm =,P 、Q 是ABC ∆边上的两个动点,其中点P 从点A 开始沿A B →方向运动,且速度为每秒1cm ,点Q 从点B 开始沿B C →方向运动,且速度为每秒2cm ,它们同时出发,设出发的时间为t 秒.
(1)当2t =秒时,求PQ 的长;
(2)求出发时间为几秒时,PQB ∆是等腰三角形?
(3)若Q 沿B C A →→方向运动,则当点Q 在边CA 上运动时,求能使BCQ ∆成为等腰三角形的运动时间.
23.如图,在ABC 中,90BAC ∠=︒,AB AC =,点D 是BC 上一动点、连接AD ,过点A 作AE AD ⊥,并且始终保持AE AD =,连接CE , (1)求证:ABD ACE ≅; (2)若AF 平分DAE ∠交BC 于F ,
①探究线段BD ,DF ,FC 之间的数量关系,并证明; ②若3BD =,4CF =,求AD 的长,
24.我们规定,三角形任意两边的“广益值”等于第三边上的中线和这边一半的平方差.如图1,在ABC ∆中,AO 是BC 边上的中线,AB 与AC 的“广益值”就等于22AO BO -的值,可记为22AB AC OA BO ∇=-
(1)在ABC ∆中,若90ACB ∠=︒,81AB AC ∇=,求AC 的值.
(2)如图2,在ABC ∆中,12AB AC ==,120BAC ∠=︒,求AB AC ∇,BA BC ∇的值.
(3)如图3,在ABC ∆中,AO 是BC 边上的中线,24ABC S ∆=,8AC =,
64AB AC ∇=-,求BC 和AB 的长.
25.如图,将一长方形纸片OABC 放在平面直角坐标系中,(0,0)O ,(6,0)A ,(0,3)C ,动点F 从点O 出发以每秒1个单位长度的速度沿OC 向终点C 运动,运动
2
3
秒时,动点E 从点A 出发以相同的速度沿AO 向终点O 运动,当点E 、F 其中一点到达终点时,另一点也停止运动.
设点E 的运动时间为t :(秒)
(1)OE =_________,OF =___________(用含t 的代数式表示)
(2)当1t =时,将OEF ∆沿EF 翻折,点O 恰好落在CB 边上的点D 处,求点D 的坐标及直线DE 的解析式;
(3)在(2)的条件下,点M 是射线DB 上的任意一点,过点M 作直线DE 的平行线,与x 轴交于N 点,设直线MN 的解析式为y kx b =+,当点M 与点B 不重合时,设
MBN ∆的面积为S ,求S 与b 之间的函数关系式. 26.已知ABC ∆中,AB AC =.
(1)如图1,在ADE ∆中,AD AE =,连接BD 、CE ,若DAE BAC ∠=∠,求证:
BD CE =
(2)如图2,在ADE ∆中,AD AE =,连接BE 、CE ,若60DAE BAC ∠=∠=,
CE AD ⊥于点F ,4AE =,5EC =,求BE 的长;
(3)如图3,在BCD ∆中,45CBD CDB ∠=∠=,连接AD ,若45CAB ∠=,求
AD
AB
的值.
27.已知:如图,在ABC ∆中,90ACB ∠=,以点B 为圆心,BC 的长为半径画弧,交线段AB 于点D ,以点A 为圆心,AD 长为半径画弧,交线段AC 与点E . (1)根据题意用尺规作图补全图形(保留作图痕迹); (2)设,BC m AC n ==
①线段AD 的长度是方程2220x mx n +-=的一个根吗?并说明理由. ②若线段2AD EC =,求
m
n
的值.
28.定义:在△ABC 中,若BC =a ,AC =b ,AB =c ,若a ,b ,c 满足ac +a 2=b 2,则称这个三角形为“类勾股三角形”,请根据以上定义解决下列问题:
(1)命题“直角三角形都是类勾股三角形”是 命题(填“真”或“假”);
(2)如图1,若等腰三角形ABC 是“类勾股三角形”,其中AB =BC ,AC >AB ,请求∠A 的度数;
(3)如图2,在△ABC 中,∠B =2∠A ,且∠C >∠A .
①当∠A =32°时,你能把这个三角形分成两个等腰三角形吗?若能,请在图2中画出分割线,并标注被分割后的两个等腰三角形的顶角的度数;若不能,请说明理由; ②请证明△ABC 为“类勾股三角形”.
29.问题情境:综合实践活动课上,同学们围绕“已知三角形三边的长度,求三角形的面积”开展活动,启航小组同学想到借助正方形网格解决问题
问题解决:图(1)、图(2)都是6×6的正方形网格,每个小正方形的边长均为1,每个小正方形的顶点称为格点,操作发现,启航小组同学在图(1)中画出△ABC ,其顶点A ,B ,C 都在格点上,同时构造长方形CDEF ,使它的顶点都在格点上,且它的边EF 经过点A ,ED 经过点B .同学们借助此图求出了△ABC 的面积.
(1)在图(1)中,△ABC 的三边长分别是AB = ,BC = ,AC = .△ABC 的面积是 .
(2)已知△PMN 中,PM =17,MN =25,NP =13.请你根据启航小组的思路,在图(2)中画出△PMN ,并直接写出△RMN 的面积 .
30.如图,在边长为2正方形ABCD 中,点O 是对角线AC 的中点,E 是线段OA 上一动点(不包括两个端点),连接BE .
(1)如图1,过点E 作EF BE ⊥交CD 于点F ,连接BF 交AC 于点G . ①求证:BE EF =;
②设AE x =,CG y =,求y 与x 的函数关系式,并写出自变量x 的取值范围. (2)在如图2中,请用无刻度的直尺作出一个以BE 为边的菱形.
【参考答案】***试卷处理标记,请不要删除
一、选择题 1.C 解析:C
【分析】
设1S ,2S ,3S 对应的边长为1L ,2L ,3L ,根据题意,通过等边三角形和勾股定理的性
质,得2
3L ,从而计算得到3S ;设4S ,5S ,6
S 对应的边长为4L ,5L ,6L ,通过圆形面积和勾股定理性质,得2
4L ,从而计算得到4S ,即可得到答案. 【详解】
分别以直角三角形三边为边向外作等边三角形,面积分别为1S ,2S ,3S 则1S ,2S ,3S 对应的边长设为1L ,2L ,3L
根据题意得:2
11111162S L L =
==
2
2245S L =
= ∴2
1L =
,2
2L =∵2
2
2
132L L L +=
∴222
32129L L L =-=
∴2
332929S =
== 以直角三角形三边长为直径向外作半圆,面积分别为4S ,5S ,6 S 则4S ,5S ,6
S 对应的边长设为4L ,5L ,6L 根据题意得:2
255511228L S L ππ⎛⎫=⨯=⨯= ⎪⎝⎭
2
266614228
L S L ππ
⎛⎫=⨯=⨯= ⎪⎝⎭
∴2
58
11L π
=⨯
,2
68
14L π
=⨯
∵2
2
2
564L L L += ∴()2
2
2
4568
8
111425L L L π
π
=+=⨯+=⨯
∴2448
S 25258
8L π
π
π
=
=
⨯
⨯=
∴43292554S S +=+= 故选:C . 【点睛】
本题考查了勾股定理、等边三角形、圆形面积的知识;解题的关键是熟练掌握勾股定理、
等边三角形面积计算的性质,从而完成求解.
2.C
解析:C 【分析】
根据AC=2AB ,点D 是AC 的中点求出AB=CD ,再根据△ADE 是等腰直角三角形求出AE=DE ,并求出∠BAE=∠CDE=135°,然后利用“边角边”证明△ABE 和△DCE 全等,从而判断出①小题正确;根据全等三角形对应边相等可得BE=EC ,从而判断出②小题正确;根据全等三角形对应角相等可得∠AEB=∠DEC ,然后推出∠BEC=∠AED ,从而判断出③小题正确;
倍,用DE 表示出AD ,然后得到AB 、AC ,再根据勾股定理用DE 与EC 表示出BC ,整理即可得解,从而判断出④小题错误. 【详解】
解:∵AC=2AB ,点D 是AC 的中点, ∴CD=
1
2
AC=AB , ∵△ADE 是等腰直角三角形, ∴AE=DE ,
∠BAE=90°+45°=135°,∠CDE=180°-45°=135°, ∴∠BAE=∠CDE , 在△ABE 和△DCE 中,
AB CD BAE CDE AE DE =⎧⎪
∠=∠⎨⎪=⎩
, ∴△ABE ≌△DCE (SAS ),故①小题正确; ∴BE=EC ,∠AEB=∠DEC ,故②小题正确; ∵∠AEB+∠BED=90°, ∴∠DEC+∠BED=90°, ∴BE ⊥EC ,故③小题正确; ∵△ADE 是等腰直角三角形, ∴
DE ,
∵AC=2AB ,点D 是AC 的中点, ∴
DE ,
DE ,
在Rt △ABC 中,BC 2=AB 2+AC 2=
DE )2+(
DE )2=10DE 2, ∵BE=EC ,BE ⊥EC , ∴BC 2=BE 2+EC 2=2EC 2, ∴2EC 2=10DE 2,
解得
,故④小题错误, 综上所述,判断正确的有①②③共3个. 故选:C .
【点睛】
本题考查了全等三角形的判定与性质,等腰直角三角形的性质,准确识图,根据△ADE 是等腰直角三角形推出AE=DE ,∠BAE=∠CDE=135°是解题的关键,也是解决本题的突破口.
3.B
解析:B
【分析】
设AB=c ,AC=b ,BC=a ,用a 、b 、c 分别表示'A BC ,'AB C △,'ABC △的面积,再利用Rt ABC 得b 2+c 2=a 2,求得c 值代入即可求得的面积'ABC △的面积.
【详解】
设AB=c ,AC=b ,BC=a ,
由题意得'A BC 的面积=
11022a a ⋅⋅=,
'AB C △的面积=
1422b b ⋅⋅=
∴2a = 2b =在Rt △ABC 中,∠BAC=90°,b 2+c 2=a 2,
∴c 2=a 2-b 2=
∴'ABC △的面积=
212c ⋅=6= 故此题选B
【点睛】
此题考察勾股定理的运用,用直角三角形的三边分别表示三个等边三角形的面积,运用勾股定理的等式求得第三个三角形的面积
4.C
解析:C
【分析】
作出等边三角形一边上的高,利用直角三角形中,30°角所对的直角边等于斜边的一半,得出BD ,利用勾股定理即可求出AD ,再利用三角形面积公式即可解决问题.
【详解】
解:如图作AD ⊥BC 于点D .
∵△ABC 为等边三角形,
∴∠B =60°,∠B AD =30° ∴1122
BD AB a ==
由勾股定理得,22
AD a ===
∴边长为a 的等边三角形的面积为12×a ×32a =34
a 2, 故选:C .
【点睛】 本题考点涉及等边三角形的性质、含30°角的直角三角形、勾股定理以及三角形面积公式,熟练掌握相关性质定理是解题关键.
5.C
解析:C
【分析】
记第三边为c ,然后分c 为直角三角形的斜边和直角边两种情况,利用勾股定理求解即可.
【详解】
解:记第三边为c ,若c 为直角三角形的斜边,则2212513c =+=;
若c 为直角三角形的直角边,则22125119c -=
故选:C .
【点睛】
本题考查了勾股定理,属于基本题目,正确分类、熟练掌握勾股定理是解题的关键.
6.C
解析:C
【解析】
试题分析:根据题意得:222c a b =+=13,4×12
ab=13﹣1=12,即2ab=12,则2()a b +=222a ab b ++=13+12=25,故选C . 考点:勾股定理的证明;数学建模思想;构造法;等腰三角形与直角三角形.
7.C
解析:C
【分析】
利用勾股定理的逆定理依次计算各项后即可解答.
【详解】
选项A ,2222)3)6)+≠,不能构成直角三角形;
选项B ,2223)4)5)+≠,不能构成直角三角形;
选项C ,2223)4)7)+=,能构成直角三角形;
选项D,222
+≠,不能构成直角三角形.
故选C.
【点睛】
本题考查勾股定理的逆定理的应用
.判断三角形是否为直角三角形,已知三角形三边的长,只要利用勾股定理的逆定理加以判断即可.
8.D
解析:D
【解析】
A选项:32+42≠62,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;
B选项:52+62≠72,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;
C选项:62+82≠92,故不符合勾股定理的逆定理,不能组成直角三角形,故错误;
D选项:72+242=252,故符合勾股定理的逆定理,能组成直角三角形,故正确.
故选D.
9.B
解析:B
【解析】
试题解析:依题意得:梯子、地面、墙刚好形成一直角三角形,梯高为斜边,利用勾股定
(米).
故选B.
10.A
解析:A
【分析】
先根据角平分线的性质可证CD=DE,从而根据“HL”证明Rt△ACD≌Rt△AED,由DE为AB中线且DE⊥AB,可求AD=BD=3cm ,然后在Rt△BDE中,根据直角三角形的性质即可求出BE 的长.
【详解】
∵AD平分∠BAC且∠C=90°,DE⊥AB,
∴CD=DE,
由AD=AD,
所以,Rt△ACD≌Rt△AED,
所以,AC=AE.
∵E为AB中点,∴AC=AE=1
2
AB,
所以,∠B=30° .
∵DE为AB中线且DE⊥AB,
∴AD=BD=3cm ,
∴DE=1
2
BD=
3
2
,
∴= 故选A.
【点睛】
本题考查了角平分线的性质,线段垂直平分线的性质,全等三角形的判定与性质,含30°角的直角三角形的性质,及勾股定理等知识,熟练掌握全等三角形的判定与性质是解答本题的关键. 二、填空题
11.(0,21009)
【解析】
【分析】本题点A 坐标变化规律要分别从旋转次数与点A 所在象限或坐标轴、点A 到原点的距离与旋转次数的对应关系.
【详解】∵∠OAA 1=90°,OA=AA 1=1,以OA 1为直角边作等腰Rt △OA 1A 2,再以OA 2为直角边作等腰Rt △OA 2A 3,…,
∴OA 1,OA 2=)2,…,OA 2018=)2018,
∵A 1、A 2、…,每8个一循环,
∵2018=252×8+2
∴点A 2018的在y 轴正半轴上,OA 2018=
2018=21009, 故答案为(0,21009).
【点睛】本题是平面直角坐标系下的规律探究题,除了研究动点变化的相关数据规律,还应该注意象限符号.
12 【分析】 根据等边三角形性质得出AB 1=CB 1=12
,∠AB 1B =∠BB 1C =90°,由勾股定理求出BB 1=
ABC 113ABB BCB S S ==
B 1B 2,由勾股定理求出BB 2,根据11221ABB BB B AB B S S S =+代入求出B 2B 3=,
B 3B 4=B 4B 5=,推出B n ﹣1B n =2
n . 【详解】
解:∵△ABC 是等边三角形,
∴BA =AC ,
∵BB 1是△ABC 的高,
∴AB 1=CB 1=12
,∠AB 1B =∠BB 1C =90°,
由勾股定理得:BB 1=;
∴△ABC 的面积是
12×1=;
∴1112ABB BCB S
S ==⨯,
12
=×1×B 1B 2,
B 1B 2,
由勾股定理得:BB 234=, ∵11221ABB BB B AB B S S S =+,
2313112422
B B =⨯⨯⨯,
B 2B 3=8,
B 3B 4=16,
B 4B 5, …,
B n ﹣1B n =2n .
【点睛】 本题考查了等边三角形的性质,勾股定理,三角形的面积等知识点的应用,关键是能根据计算结果得出规律.
13.6或2.
【分析】
由于已知没有图形,当Rt △ABC 固定后,根据“以BC 为斜边作等腰直角△BCD”可知分两种情况讨论:
①当D 点在BC 上方时,如图1,把△ABD 绕点D 逆时针旋转90°得到△DCE ,证明A 、C 、E 三点共线,在等腰Rt △ADE 中,利用勾股定理可求AD 长;
②当D 点在BC 下方时,如图2,把△BAD 绕点D 顺时针旋转90°得到△CED ,证明过程类
似于①求解.
【详解】
解:分两种情况讨论:
①当D点在BC上方时,如图1所示,
把△ABD绕点D逆时针旋转90°,得到△DCE,
则∠ABD=∠ECD,CE=AB=22,AD=DE,且∠ADE=90°在四边形ACDB中,∠BAC+∠BDC=90°+90°=180°,
∴∠ABD+∠ACD=360°-180°=180°,
∴∠ACD+∠ECD=180°,
∴A、C、E三点共线.
∴AE=AC+CE=42+22=62
在等腰Rt△ADE中,AD2+DE2=AE2,
即2AD2=(62)2,解得AD=6
②当D点在BC下方时,如图2所示,
把△BAD绕点D顺时针旋转90°得到△CED,
则CE=AB=22,∠BAD=∠CED,AD=AE且∠ADE=90°,所以∠EAD=∠AED=45°,
∴∠BAD=90°+45°=135°,即∠CED=135°,
∴∠CED+∠AED=180°,即A、E、C三点共线.
∴AE=AC-CE=42-22=22
在等腰Rt△ADE中,2AD2=AE2=8,解得AD=2.
故答案为:6或2.
【点睛】
本题主要考查了旋转的性质、勾股定理,解决这类等边(或共边)的两个三角形问题,一般是通过旋转的方式作辅助线,转化线段使得已知线段于一个特殊三角形中进行求解.
14.53或203 【分析】 根据折叠后点C 的对应点H 与AC 的位置关系分类讨论,分别画出对应的图形,利用勾股定理求出各边的长,再根据折叠的性质与勾股定理列出对应的方程即可求出结论.
【详解】
解:①当折叠后点C 的对应点H 在AC 的下方时,如下图所示
∵Rt ABC 中,90A ∠=︒,8AC =,6AB =,
根据勾股定理可得2210AB AC += ∵13CD BC =
,13CE AC =, ∴13CD BC ==103,13
CE AC ==83 ∵DE AC ⊥
根据勾股定理可得222CD CE -=
由折叠的性质可得:DH=CD=
103,CP=PH ∴EH=DH -DE=43
设CP=PH=x ,则EP=CE -CP=83
-x 在Rt △PEH 中,EP 2+EH 2=PH 2
即(83-x )2+(43
)2=x 2 解得:x=53
即此时CP=53
; ②当折叠后点C 的对应点H 在AC 的上方时,如下图所示
根据折叠的性质可得DH=CD=
103,CP=PH ∴EH=DH +DE=163
设CP=PH=y ,则EP= CP -CE =y -8
3
在Rt △PEH 中,EP 2+EH 2=PH 2
即(y -83)2+(
163)2=y 2 解得:y=203
即此时CP=203
. 综上所述:CP=53或203. 故答案为:
53或203
. 【点睛】 此题考查的是勾股定理和折叠问题,掌握利用勾股定理解直角三角形、折叠的性质和分类讨论的数学思想是解决此题的关键.
15.
103
. 【分析】 根据八个直角三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形,得出CG=NG ,
CF=DG=NF ,再根据()21S CG DG =+,22S GF =,()2
3S NG NF =-,12310S S S ++=,即可得出答案.
【详解】
∵八个直三角形全等,四边形ABCD ,EFGH ,MNKT 是正方形
∴CG=NG ,CF=DG=NF
∴()2
222122S CG DG CG DG CG DG GF CG DG =+=++=+ 22S GF =
()2
2232S NG NF NG NF NG NF =-=+-
∴2222212322310S S S GF CG DG GF NG NF NG NF GF ++=+⋅+++-⋅== ∴2103GF =
故2103
S = 故答案为
103
. 【点睛】 本题主要考查了勾股定理的应用,用到的知识点由勾股定理和正方形、全等三角形的性质.
16【解析】
【分析】
过A 点作BC 的垂线,E 点作AC 的垂线,构造全等三角形,利用对应角相等计算得出∠DAM=15°,在AM 上截取AG=DG ,则∠DGM=30°,设DM=a,通过勾股定理可得到
DG=AG=2a ,2)a ,1)a ,1)a ,代入计算即可.
【详解】
过A 点作AM ⊥BC 于M 点,过E 点EN ⊥AC 于N 点.
∵∠BCA =30°,AE=EC
∴AM=
12AC ,AN=12
AC ∴AM=AN
又∵AD=AE
∴R t∆ADM ≅ R t∆AEN (HL)
∴∠DAM=∠EAN 又∵∠MAC=60°,AD ⊥AE
∴∠DAM=∠EAN=15°
在AM 上截取AG=DG ,则∠DGM=30°
设DM=a,则 DG=AG=2a ,
根据勾股定理得:
∵∠ABC =45°
∴2)a
∴
BD=(31)a
+,
AB=2(32)a
+,
∴
()
()
62262
2
31
a
AB
BD a
++ ==
+
故答案为:62 2
+
【点睛】
本题主要考查等于三角形的性质、含30°角的直角三角形的性质,勾股定理等知识,关键是能根据已知条件构建全等三角形及构建等腰三角形将15°角转化为30°角,本题有较大难度.
17.2
【分析】
连接CE.根据“直角三角形斜边上的中线等于斜边的一半”、等腰三角形的性质以及折叠的性质推知EG+CG=EG+GF=EF=BE,
【详解】
解:(1)如图,连接CD、CF.
∵Rt△ABC中,∠ACB=90°,AC=BC,D为AB边的中点,
∴BD=CD=1.2 ,
∵由翻折可知BD=DF,
∴CD=BD=DF=1,∠DFE=∠B=∠DCA=45°,
∴∠DCF=∠DFC,
∴∠DCF-∠DCA=∠DFC-∠DFE,即∠GCF=∠GFC,
∴GC=GF,
∴EG+CG=EG+GF=EF=BE,
∴△ECG的周长2,
故答案为2.
【点睛】
本题考查了折叠的性质、勾股定理、直角三角形的性质,能将三角形的周长转移到已知线段上是解题的关键.. 18.①1<OA <4. ②
672
. 【解析】
(1)由三角形边的性质
5-3<2OA <5+3,
1<OA <4.
(2)过A 作AF BC ,F ⊥于过D 作DE BC ⊥于E,可知,ABF 全等DCE ,
由题意知,22BD DE =+()2BC CE +=2DE +()24CE +, ()()22
2225AC DE BC CE DE CE ∴=+-=+-,
2AC ∴+ 2BD
=2DE +()()22245CE DE CE +++-=2(22)5018DE CE ++=+50=68,
BD -AC =1,两边平方2AC ∴+ 2BD -2AC •BD =1, ∴AC •BD =672
.
19.22-【分析】
根据已知条件,添加辅助线可得△EAC ≌△DAM (SAS ),进而得出当MD ⊥BC 时,CE 的值最小,转化成求DM 的最小值,通过已知值计算即可.
【详解】
解:如图所示,在AB 上取AM=AC=2,
∵90ACB ∠=,2AC BC ==,
∴∠CAB=45°,
又∵45EAD ∠=,
∴∠EAC+∠CAD=∠DAB+∠CAD=45°,
∴∠EAC =∠DAB ,
∴在△EAC 与△DAB 中
AE=AD ,∠EAF =∠DAB ,AC =AM ,
∴△EAC ≌△DAM (SAS )
∴CE=MD ,
∴当MD ⊥BC 时,CE 的值最小,
∵AC=BC=2, 由勾股定理可得2222AB AC BC =
+=,
∴222=-BM ,
∵∠B=45°,
∴△BDM 为等腰直角三角形,
∴DM=BD ,
由勾股定理可得222+BD DM =BM
∴DM=BD=22-
∴CE=DM=22-
故答案为:22-
【点睛】
本题考查了动点问题及全等三角形的构造,解题的关键是作出辅助线,得出全等三角形,找到CE 最小时的状态,化动为静.
20.17,144,145
【分析】
由题意观察题干这些勾股数,根据所给的勾股数找出三个数之间的关系即可.
【详解】
解:因为这些勾股数的“勾”都是奇数,且从3起就没断过,所以从3、5、7…依次推出第8组的“勾”为17,
继续观察可知弦-股=1,利用勾股定理假设股为m ,则弦为m+1,
所以有222
17(1)m m +=+,解得144m =,1145m +=,即第8组勾股数为17,144,145.
故答案为17,144,145.
【点睛】
本题属规律性题目,考查的是勾股数之间的关系,根据题目中所给的勾股数及勾股定理进行分析即可. 三、解答题
21.(1)梯子顶端离地面24米(2)梯子底端将向左滑动了8米
【解析】
试题分析:(1)构建数学模型,根据勾股定理可求解出梯子顶端离地面的距离;
(2)构建直角三角形,然后根据购股定理列方程求解即可.
试题解析:(1)如图,∵AB=25米,BE=7米,
梯子距离地面的高度AE=22257-=24米.
答:此时梯子顶端离地面24米;
(2)∵梯子下滑了4米,即梯子距离地面的高度CE=(24﹣4)=20米,
∴22CD CE -222520-,
∴DE=15﹣7=8(米),即下端滑行了8米. 答:梯子底端将向左滑动了8米.
22.(1)132)83
;(3)5.5秒或6秒或6.6秒 【分析】
(1)根据点P 、Q 的运动速度求出AP ,再求出BP 和BQ ,用勾股定理求得PQ 即可; (2)由题意得出BQ BP =,即28t t =-,解方程即可;
(3)当点Q 在边CA 上运动时,能使BCQ ∆成为等腰三角形的运动时间有三种情况: ①当CQ BQ =时(图1),则C CBQ ∠=∠,可证明A ABQ ∠=∠,则BQ AQ =,则CQ AQ =,从而求得t ;
②当CQ BC =时(图2),则12BC CQ +=,易求得t ;
③当BC BQ =时(图3),过B 点作BE AC ⊥于点E ,则求出BE ,CE ,即可得出t .
【详解】
(1)解:(1)224BQ cm =⨯=,
8216BP AB AP cm =-=-⨯=,
90B ∠=︒,
222246213()PQ BQ BP cm +=+=;
(2)解:根据题意得:BQ BP =,
即28t t =-,
解得:83
t =; 即出发时间为8
3秒时,PQB ∆是等腰三角形;
(3)解:分三种情况:
①当CQ BQ =时,如图1所示:
则C CBQ ∠=∠,
90ABC ∠=︒,
90CBQ ABQ ∴∠+∠=︒,
90A C ∠+∠=︒,
A ABQ ∴∠=∠
BQ AQ ∴=,
5CQ AQ ∴==,
11BC CQ ∴+=,
112 5.5t ∴=÷=秒.
②当CQ BC =时,如图2所示:
则12BC CQ +=
1226t ∴=÷=秒.
③当BC BQ =时,如图3所示:
过B 点作BE AC ⊥于点E , 则68 4.8()10
AB BC BE cm AC ⨯=== 22 3.6CE BC BE cm ∴=-=,
27.2CQ CE cm ∴==,
13.2BC CQ cm ∴+=,
13.22 6.6t ∴=÷=秒.
由上可知,当t 为5.5秒或6秒或6.6秒时,
BCQ ∆为等腰三角形.
【点睛】
本题考查了勾股定理、三角形的面积以及等腰三角形的判定和性质;本题有一定难度,注意分类讨论思想的应用.
23.(1)见详解(2)①结论:2
22BD FC DF +=,证明见详解②
35
【分析】
(1)根据SAS ,只要证明BAD CAE ∠=∠即可解决问题;
(2)①结论:222BD FC DF +=.连接EF ,进一步证明90ECF ∠=︒,DF EF =,再利用勾股定理即可得证;②过点A 作AG BC ⊥于点G ,在Rt ADG 中求出AG 、DG 即可求解.
【详解】
解:(1)∵AE AD ⊥
∴90DAC CAE ∠+∠=︒
∵90BAC ∠=︒
∴90DAC BAD ∠+∠=︒
∴BAD CAE ∠=∠
∴在ABD △和ACE △中 AB AC BAD CAE AD AE =⎧⎪∠=∠⎨⎪=⎩
∴ABD △≌ACE △()SAS
(2)①结论:2
22BD FC DF +=
证明:连接EF ,如图:
∵ABD △≌ACE △
∴B ACE ∠=∠,BD CE =
∴90ECF BCA ACE BCA B ∠=∠+∠=∠+∠=︒
∴222FC CE EF +=
∴222FC BD EF +=
∵AF 平分DAE ∠
∴DAF EAF ∠=∠
∴在DAF △和EAF △中
AD AE DAF EAF AF AF =⎧⎪∠=∠⎨⎪=⎩
∴DAF △≌EAF △()SAS
∴DF EF =
∴222FC BD DF +=
即2
22BD FC DF +=
②过点A 作AG BC ⊥于点G ,如图:
∵由①可知222223425DF BD FC =+=+=
∴5DF =
∴35412BC BD DF FC =++=++=
∵AB AC =,AG BC ⊥ ∴1112622
BG AG BC ===⨯= ∴633DG BG BD =-=-=
∴在Rt ADG 中,22223635AD DG AG =+=+=故答案是:(1)见详解(2)①结论:222BD FC DF +=,证明见详解②35【点睛】
本题考查了全等三角形的判定和性质、直角三角形的判定和性质以及角平分线的性质.综合性较强,属中档题,学会灵活应用相关知识点进行推理证明.
24.(1)AC=9;(2)AB ∇AC =-72,BA ∇BC =73
【分析】
(1)在Rt AOC ∆中,根据勾股定理和新定义可得AO 2-OC 2=81=AC 2;
(2)①先利用含30°的直角三角形的性质求出AO =2,OB =23再用新定义即可得出结论; ②先构造直角三角形求出BE ,AE ,再用勾股定理求出BD ,最后用新定义即可得出结论;
(3)作BD ⊥CD,构造直角三角形BCD,根据三角形面积关系求出BD,根据新定义和勾股定理逆定理得出三角形AOD 是直角三角形,根据中线性质得出OA 的长度,根据勾股定理求出OC,从而得出BC,再根据勾股定理求出CD,再求出AD,再运用勾股定理求出AB.
【详解】
(1)已知如图:AO 为BC 上的中线,
在Rt AOC ∆中,
AO 2-OC 2=AC 2
因为81AB AC ∇=
所以AO 2-OC 2=81
所以AC 2=81
所以AC=9.
(2)①如图2,取BC 的中点D ,连接AO ,∵AB =AC ,∴AO ⊥BC ,
在△ABC 中,AB =AC ,∠BAC =120°,∴∠ABC =30°,
在Rt △AOB 中,AB =12,∠ABC =30°,∴AO =6,OB =2222126AB AO -=-=63,
∴AB ∇AC =AO 2﹣BO 2=36﹣108=﹣72, ②取AC 的中点D ,连接BD ,∴AD =CD =
12
AC =6,过点B 作BE ⊥AC 交CA 的延长线于E ,在Rt △ABE 中,∠BAE =180°﹣∠BAC =60°,∴∠ABE =30°, ∵AB =12,∴AE =6,BE =
222212663AB AE -=-=, ∴DE =AD +AE =12,
在Rt △BED 中,根据勾股定理得,BD =()2222631267BE DE +=
+=
∴BA ∇BC =BD 2﹣CD 2=216;
(3)作BD ⊥CD,
因为24ABC S ∆=,8AC =,
所以BD=26ABC S AC ∆÷=,
因为64AB AC ∇=-,AO 是BC 边上的中线,
所以AO 2-OC 2=-64,
所以OC 2-AO 2=64,
由因为AC 2=82=64,
所以OC 2-AO 2= AC 2
所以∠OAC=90°
所以OA=24228322ABC S
AC ∆⨯
÷=⨯÷= 所以OC=22228373AC OA +=+=
所以BC=2OC=273, 在Rt △BCD 中,
CD=()2222276163BC BD -=-=
所以AD=CD-AC=16-8=8
所以AB=22228610AD BD +=+=
【点睛】 考核知识点:勾股定理逆定理,含30°直角三角形性质.借助辅助线构造直角三角形,运用勾股定理等直角三角形性质解决问题是关键.
25.(1)6-t ,t+23;(2)D(1,3),y=34-x+154;(3)1515215()4215215()2b b S b b ⎧-+≤<⎪⎪=⎨⎪->⎪⎩
【分析】
(1)根据点E ,F 的运动轨迹和速度,即可得到答案;
(2)由题意得:DF=OF=
53
,DE=OE=5,过点E 作EG ⊥BC 于点G ,根据勾股定理得DG=4,进而得D(1,3),根据待定系数法,即可得到答案; (3)根据题意得直线直线MN 的解析式为:34y x b =-+,从而得M(443
b -,3),分2种情况:①当点M 在线段DB 上时, ②当点M 在DB 的延长线上时,分别求出S 与b 之间的函数关系式,即可.
【详解】
∵(0,0)O ,(6,0)A ,(0,3)C ,
∴OA=6,OC=3,
∵AE=t×
1= t , ∴OE =6-t ,OF =(t+
23)×1=t+23, 故答案是:6-t ,t+23
; (2)当1t =时,OE =6-t=5,OF =t+
23=53, ∵将OEF ∆沿EF 翻折,点O 恰好落在CB 边上的点D 处,
∴DF=OF=53
,DE=OE=5, 过点E 作EG ⊥BC 于点G ,则EG=OC=3,CG=OE=5,
∴
4=,
∴CD=CG-DG=5-4=1,
∴D(1,3),
设直线DE 的解析式为:y=kx+b ,
把D(1,3),E(5,0)代入y=kx+b ,得350k b k b +=⎧⎨+=⎩ ,解得:34154k b ⎧=-⎪⎪⎨⎪=⎪⎩
, ∴直线DE 的解析式为:y=34-x+154; (3)∵MN ∥DE ,
∴直线直线MN 的解析式为:34y x b =-
+, 令y=3,代入34y x b =-
+,解得:x=443b -, ∴M(443
b -,3). ①当点M 在线段DB 上时,BM=6-(
443b -)=4103b -+, ∴1143(10)223
S BM AB b =⋅=⨯⨯-+=215b -+, ②当点M 在DB 的延长线上时,BM=
443b --6=4103b -, ∴1143(10)223
S BM AB b =⋅=⨯⨯-=215b -,
综上所述:1515
215(
)4215215()2b b S b b ⎧-+≤<⎪⎪=⎨⎪->⎪⎩.
【点睛】
本题主要考查一次函数与几何图形的综合,掌握勾股定理与一次函数的待定系数法,是解题的关键.
26.(1)详见解析;(241;(33
【分析】
(1)证∠EAC=∠DAB.利用SAS 证△ACE ≌△ABD 可得;(2)连接BD ,证
1302
FEA AED ∠=∠=,证△ACE ≌△ABD 可得30FEA BDA ∠=∠=,CE=BD=5,利用勾股定理求解;(3)作CE 垂直于AC,且CE=AC,连接AE,则90,45ACE CAE ∠=∠=,利用勾股定理得AE 2AB =,3AB ,根据(1)思路得3AB .
【详解】
(1) 证明:∵∠DAE=∠BAC ,
∴∠DAE+∠CAD=∠BAC+∠CAD ,
即∠EAC=∠DAB.
在△ACE 与△ABD 中,
AD AE EAC BAB AC AB =⎧⎪∠=∠⎨⎪=⎩
, ∴△ACE ≌△ABD(SAS),
∴BD CE =;
(2)连接BD
因为AD AE =, 60DAE BAC ∠=∠=,
所以ADE ∆是等边三角形
因为60DAE DEA EDA ∠=∠=∠=,ED=AD=AE=4
因为CE AD ⊥
所以1302FEA AED ∠=∠=
同(1)可知△ACE ≌△ABD(SAS),
所以30FEA BDA ∠=∠=,CE=BD=5
所以90BDE BDA ADE ∠=∠+∠=
所以BE=22225441BD DE +=+=
(3)作CE 垂直于AC,且CE=AC,连接AE,则90,45ACE CAE ∠=∠=
所以AE=222AB AC AC +=
因为AB AC =
所以AE 2AB =
又因为45CAB ∠=
所以90ABE ∠=
所以()2
22223BE AE AB AB AB AB =+=+= 因为45CBD CDB ∠=∠=
所以BC=CD, 90BCD ∠=
因为同(1)可得△ACD ≌△ECB(SAS)
所以AD=BE=3AB
所以33AD AB AB ==
【点睛】
考核知识点:等边三角形;勾股定理.构造全等三角形和直角三角形是关键.
27.(1)详见解析;(2)①线段AD 的长度是方程2220x mx n +-=的一个根,理由详
见解析;②512
m n = 【分析】 (1)根据题意,利用尺规作图画出图形即可;
(2)①根据勾股定理求出AD ,然后把AD 的值代入方程,即可得到答案;
②先得到出边长的关系,然后根据勾股定理,列出方程,解方程后得到答案.
【详解】
(1)解:作图,如图所示:
(2)解:①线段AD 的长度是方程2220x mx n +-=的一个根.
理由如下:依题意得, BD BC m ==,
在Rt ABC 中,90ACB ∠=︒
222BC AC AB ∴=+
22AB m n =+22AD AB BD m n m ∴=-=+
222AD m AD n ∴+-
)()
2222222m n m m m n m n =+++- 222222222222m n m m n m m m n m n =+-+++-
0=;
∴线段AD 的长度是方程22 20x mx n +-=的一个根
②依题意得:,,AD AE BD BC AB AD BD ==== 2AD EC =
2233AD AE AC n ∴=== 在RT ABC 中,90ACB ∠= 222BC AC AB ∴+=
2
2223m n n m ⎛⎫+=+ ⎪⎝⎭ 22224493
m n n mn m +=++ 25493
n mn =
512m n ∴= 【点睛】
本题考查的是基本作图,勾股定理、一元二次方程的解法,掌握一元二次方程的求根公式、勾股定理是解题的关键.
28.(1)假;(2)∠A =45°;(3)①不能,理由见解析,②见解析
【分析】
(1)先由直角三角形是类勾股三角形得出ab+a 2=c 2,再由勾股定理得a 2+b 2=c 2,即可判断出此直角三角形是等腰直角三角形;
(2)由类勾股三角形的定义判断出此三角形是等腰直角三角形,即可得出结论; (3)①分三种情况,利用等腰三角形的性质即可得出结论;
②先求出CD=CB=a ,AD=CD=a ,DB=AB-AD=c-a ,DG=BG=
12(c-a ),AG=12
(a+c ),两个直角三角形中利用勾股定理建立方程即可得出结论.
【详解】
解:(1)如图1,假设Rt △ABC 是类勾股三角形,
∴ab +a 2=c 2,
在Rt △ABC 中,∠C =90°,根据勾股定理得,a 2+b 2=c 2,
∴ab +b 2=a 2+b 2,
∴ab =a 2,
∴a =b ,
∴△ABC 是等腰直角三角形,
∴等腰直角三角形是类勾股三角形,
即:原命题是假命题,
故答案为:假;
(2)∵AB =BC ,AC >AB ,
∴a =c ,b >c ,
∵△ABC 是类勾股三角形,
∴ac +a 2=b 2,
∴c 2+a 2=b 2,
∴△ABC 是等腰直角三角形,
∴∠A =45°,。