功的计算与动能定理、功能关系经典题

合集下载

专题09动能定理、机械能守恒定律和功能关系(原卷版)

专题09动能定理、机械能守恒定律和功能关系(原卷版)

2023年高三物理二轮高频考点冲刺突破专题09 动能定理、机械能守恒定律和功能关系【典例专练】一、高考真题1.如图所示,轻质弹簧一端固定,另一端与物块A连接在一起,处于压缩状态,A由静止释放后沿斜面向上运动到最大位移时,立即将物块B轻放在A右侧,A、B由静止开始一起沿斜面向下运动,下滑过程中A、B始终不分离,当A回到初始位置时速度为零,A、B与斜面间的动摩擦因数相同、弹簧未超过弹性限度,则()A.当上滑到最大位移的一半时,A的加速度方向沿斜面向下B.A上滑时、弹簧的弹力方向不发生变化C.下滑时,B对A的压力先减小后增大D.整个过程中A、B克服摩擦力所做的总功大于B的重力势能减小量2.固定于竖直平面内的光滑大圆环上套有一个小环,小环从大圆环顶端P 点由静止开始自由下滑,在下滑过程中,小环的速率正比于( )A .它滑过的弧长B .它下降的高度C .它到P 点的距离D .它与P 点的连线扫过的面积3.风力发电已成为我国实现“双碳”目标的重要途径之一。

如图所示,风力发电机是一种将风能转化为电能的装置。

某风力发电机在风速为9m /s 时,输出电功率为405kW ,风速在5~10m /s 范围内,转化效率可视为不变。

该风机叶片旋转一周扫过的面积为A ,空气密度为ρ,风场风速为v ,并保持风正面吹向叶片。

下列说法正确的是( )A .该风力发电机的输出电功率与风速成正比B .单位时间流过面积A 的流动空气动能为212A ρv C .若每天平均有81.010kW ⨯的风能资源,则每天发电量为92.410kW h ⨯⋅D .若风场每年有5000h 风速在6~10m /s 范围内,则该发电机年发电量至少为56.010kW h ⨯⋅4.某节水喷灌系统如图所示,水以015m/s v =的速度水平喷出,每秒喷出水的质量为2.0kg 。

喷出的水是从井下抽取的,喷口离水面的高度保持H=3.75m不变。

水泵由电动机带动,电动机正常工作时,输入电压为220V,输入电流为2.0A。

高考必刷题物理动能与动能定理题及解析

高考必刷题物理动能与动能定理题及解析

高考必刷题物理动能与动能定理题及解析一、高中物理精讲专题测试动能与动能定理1.某校兴趣小组制作了一个游戏装置,其简化模型如图所示,在 A 点用一弹射装置可 将静止的小滑块以 v 0水平速度弹射出去,沿水平直线轨道运动到 B 点后,进入半径 R =0.3m 的光滑竖直圆形轨道,运行一周后自 B 点向 C 点运动,C 点右侧有一陷阱,C 、D 两点的竖 直高度差 h =0.2m ,水平距离 s =0.6m ,水平轨道 AB 长为 L 1=1m ,BC 长为 L 2 =2.6m ,小滑块与 水平轨道间的动摩擦因数 μ=0.5,重力加速度 g =10m/s 2.(1)若小滑块恰能通过圆形轨道的最高点,求小滑块在 A 点弹射出的速度大小; (2)若游戏规则为小滑块沿着圆形轨道运行一周离开圆形轨道后只要不掉进陷阱即为胜出,求小滑块在 A 点弹射出的速度大小的范围. 【答案】(1)(2)5m/s≤v A ≤6m/s 和v A ≥【解析】 【分析】 【详解】(1)小滑块恰能通过圆轨道最高点的速度为v ,由牛顿第二定律及机械能守恒定律由B 到最高点2211222B mv mgR mv =+ 由A 到B :解得A 点的速度为(2)若小滑块刚好停在C 处,则:解得A 点的速度为若小滑块停在BC 段,应满足3/4/A m s v m s ≤≤ 若小滑块能通过C 点并恰好越过壕沟,则有212h gt =c s v t =解得所以初速度的范围为3/4/A m s v m s ≤≤和5/A v m s ≥2.某小型设备工厂采用如图所示的传送带传送工件。

传送带由电动机带动,以2m/s v =的速度顺时针匀速转动,倾角37θ=︒。

工人将工件轻放至传送带最低点A ,由传送带传送至最高点B 后再由另一工人运走,工件与传送带间的动摩擦因数为78μ=,所运送的每个工件完全相同且质量2kg m =。

传送带长度为6m =L ,不计空气阻力。

区分动能定理、功能关系、机械能守恒、能量守恒及解题时如何选用(含典例分析)

区分动能定理、功能关系、机械能守恒、能量守恒及解题时如何选用(含典例分析)

区分动能定理、功能关系、机械能守恒、能量守恒及解题时选用技巧(含典例分析)一、动能定理物体所受合外力做的功等于物体动能的变化量,即使用动能定理时应注意以下2个方面的问题:(1)由于作用在物体上的诸多力往往不是同时同步作用,而是存在先后顺序,因此求合外力做的功W 合一般采取先分别求出单个力受力然后代数和相加即可,即:比如一个物体收到了三个F 1、F 2、F 3三个力的作用,三个力所做的功分别为“+10J ”、“-5J ”、“-7J ”,这样以来三个力所做的总功W 合=10+(-5)+(-7)=-2J 。

(2)动能的变化量(或称动能的增量)因此在使用动能定理之前首先要明确对哪一段过程使用,这样才能确定谁是初始,谁是末尾,下面举例说明:图1例1:如图1所示,AB 为粗糙的水平地面,AB 段的长度为L ,右侧为光滑的竖直半圆弧BC 与水平地面在B 点相切,圆弧的半径为R ,一个质量为m 的小物块放置在A 点,初速度为V 0水平向右,物块受到水平向右恒力F 的作用,但水平恒力F 在物块向右运动L 1距离时撤去(L 1<L ),物块恰好通过C 点,重力加速度为g。

求:小物块与地面之间的动摩擦因数u。

思路梳理:物块恰好通过C点,意味着小物块在C点时对轨道无压力,物块的重力恰好提供物块转弯所需的向心力,可据此求出物块在C点的速度V c,剩下的问题就变成了到底选哪一段过程使用动能定理进行解题的问题,大多数同学习惯一段一段分析,即先分析A至B段,再分析B至C段,也有同学指出可以直接分析A至C全过程即可,到底哪种比较简单,这其实要看题目有没有在B点设定问题,下面详细解答:解法一:对A至B过程运用动能定理,设小物块在B点的速度为V B再对B至C过程运用动能定理,设小物体在C点的速度为V C小物块恰好通过C点,则联立(1)(2)(3)式即可求出u。

解法二:对A至C过程运用动能定理,设小物块在C点的速度为V C小物块恰好通过C点,则联立(1)(2)式即可求出u。

功能关系动能定理经典例题.

功能关系动能定理经典例题.

【例1】如图5-1-1所示,小物体位于光滑的斜面上,斜面位于光滑的水平地面上,从地面上看,在小物体沿斜面下滑的过程中,斜面对小物体的作用力( )A.垂直于接触面,做功为零;B.垂直于接触面,做功不为零;C.不垂直于接触面,做功为零;D.不垂直于接触面,做功不为零.下面列举的哪几种情况下所做的功是零( )A .卫星做匀速圆周运动,地球引力对卫星做的功B .平抛运动中,重力对物体做的功C .举重运动员,扛着杠铃在头上的上方停留10s ,运动员对杠铃做的功D .木块在粗糙水平面上滑动,支持力对木块做的功例如:用铁锤把小铁钉钉入木板,设木板对钉子的阻力与钉进木板的深度成正比,已知铁锤第一次将钉子钉进d ,如果铁锤第二次敲钉子时对钉子做的功与第一次相同,那么,第二次进入木板的深度是多少?【例2】以一定的速度竖直向上抛出一小球,小球上升的最大速度为h ,空气的阻力大小恒为F ,则从抛出至落回出发点的过程中,空气阻力对小球做的功为( )A .0B .-FhC .-2FhD .-4Fh如图5-1-3在光滑的水平面上,物块在恒力F =100N的作用下从A 点运动到B 点,不计滑轮的大小,不计绳与滑轮的质量及绳、滑轮间的摩擦,H=2.4 m,α=37°,β=53°,求绳的拉力对物体所做的功.【例3】物块从光滑曲面上的P 点自由滑下,通过粗糙的静止水平传送带以后落到地面上的Q 点,若传送带的皮带轮沿逆时针方向转动起来,使传送带随之运动,如图5-1-4所示,再把物块放到P 点自由滑下则( )A.物块将仍落在Q 点B.物块将会落在Q 点的左边C.物块将会落在Q 点的右边D.物块有可能落不到地面上1.如图5-1-5所示,木块A 放在木块B 的左上端,用恒力F 将A 拉至B 的右端.第一次将B 固定在地面上,F 做的功为 W 1;第二次让B 可以在光滑的地面上自由滑动,F 做的功为W 2.比较两次做功,应有( )A .21W W <B .21W W =C .21W W >D .无法比较.10.半径R =0.50m 的光滑圆环固定在竖直平面内,如图所示,轻质弹簧的一端固定在环的最高点A 处,另一端系一个质量m = 0.20kg的小球,小球套在圆环上,已知弹簧的原长L o = 0.50m ,劲度系数K =4.8N/m ,将小球从图示位置的B 点由静止释放,小球将沿圆环滑动并通过最低点C ,在C 点时弹簧的弹性势能J E PC 6.0=,g 取10m/s 2。

专题七动能定理与功能关系专题

专题七动能定理与功能关系专题

专题七 动能定理与功能关系专题复习目标:1.多过程运动中动能定理的应用; 2.变力做功过程中的能量分析; 3.复合场中带电粒子的运动的能量分析。

专题训练:1.滑块以速率1v 靠惯性沿固定斜面由底端向上运动,当它回到出发点时速度变为2v ,且12v v ,假设滑块向上运动的位移中点为A ,取斜面底端重力势能为零,那么 〔 〕(A ) 上升时机械能减小,下降时机械能增大。

(B ) 上升时机械能减小,下降时机械能减小。

(C ) 上升过程中动能和势能相等的位置在A 点上方 (D ) 上升过程中动能和势能相等的位置在A 点下方2.半圆形光滑轨道固定在水平地面上,并使其轨道平面与地面垂直,物体m 1,m 2同时由轨道左右两端最高点释放,二者碰后粘在一起运动,最高能上升至轨道的M 点,如下图,OM 与竖直方向夹角为060,那么物体的质量21m m =〔 〕 A . (2+ 1 ) ∶(2— 1) C .2 ∶1 B .(2— 1) ∶ (2+ 1 ) D .1 ∶23.如下图,DO 是水平面,初速为v 0的物体从D 点出发沿DBA 滑动到顶点A 时速度刚好为零。

如果斜面改为AC ,让该物体从D 点出发沿DCA 滑动到A 点且速度刚好为零,那么物体具有的初速度 〔 〕〔物体与路面之间的动摩擦因数处处相同且为零。

〕A .大于 v 0B .等于v 0C .小于v 0D .取决于斜面的倾角4.光滑水平面上有一边长为l 的正方形区域处在场强为E 的匀强电场中,电场方向与正方形一边平行。

一质量为m 、带电量为q 的小球由某一边的中点,以垂直于该边的水平初速v 进入该正方形区域。

当小球再次运动到该正方形区域的边缘时,具有的动能可能为:AB C D〔 〕〔A 〕0 〔B 〕qEl mv 212120+ 〔C 〕2021mv 〔D 〕qEl mv 322120+5.在光滑绝缘平面上有A .B 两带同种电荷、大小可忽略的小球。

高考物理动能与动能定理试题(有答案和解析)

高考物理动能与动能定理试题(有答案和解析)

的小物块从轨道右侧 A 点以初速度
冲上轨道,通过圆形轨道,水平轨道
后压缩弹簧,并被弹簧以原速率弹回,取
,求:
(1)弹簧获得的最大弹性势能 ; (2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能 ; (3)当 R 满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离 轨道。 【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m 或 0≤R≤0.12m 【解析】 【详解】 (1)当弹簧被压缩到最短时,其弹性势能最大。从 A 到压缩弹簧至最短的过程中,由动
代入数据得:Q=126 J 故本题答案是:(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【点睛】 对物体受力分析并结合图像的斜率求得加速度,在 v-t 图像中图像包围的面积代表物体运 动做过的位移。
5.如图所示,一质量为 M、足够长的平板静止于光滑水平面上,平板左端与水平轻弹簧 相连,弹簧的另一端固定在墙上.平板上有一质量为 m 的小物块以速度 v0 向右运动,且在 本题设问中小物块保持向右运动.已知小物块与平板间的动摩擦因数为 μ,弹簧弹性势能 Ep 与弹簧形变量 x 的平方成正比,重力加速度为 g.求:
6J
(3)滑块从 A 点运动到 C 点过程,由动能定理得
解得 BC 间距离
mg
3r
mgs
1 2
mvc2
s 0.5m
小球与弹簧作用后返回 C 处动能不变,小滑块的动能最终消耗在与 BC 水平面相互作用的
过程中,设物块在 BC 上的运动路程为 s ,由动能定理有
mgs
1 2
mvc2
解得
s 0.7m 故最终小滑动距离 B 为 0.7 0.5m 0.2m处停下.
(1)物体与传送带间的动摩擦因数; (2) 0~8 s 内物体机械能的增加量; (3)物体与传送带摩擦产生的热量 Q。 【答案】(1)μ=0.875.(2)ΔE=90 J(3)Q=126 J 【解析】 【详解】 (1)由图象可以知道,传送带沿斜向上运动,物体放到传送带上的初速度方向是沿斜面向下的,

高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)

高中物理动能与动能定理解题技巧及经典题型及练习题(含答案)

(1)小车运动到 C 点时的速度大小;
(2)小车在 BD 段运动的时间;
(3)水平半圆轨道对小车的作用力大小;
(4)要使小车能通过水平半圆轨道,发动机开启的最短时间.
【答案】(1) 6m/s ;(2) 0.3s ;(3) 4 2N .;(4) 0.35s .
【解析】
【详解】
(1)由小车在 C 点受力得:
【答案】(1)8m/s (2)35J (3)5 次 【解析】 【详解】 (1)物块在 PO 过程中受到竖直向下的重力、垂直斜面向上的弹力、和沿斜面向上的摩擦 力,此过程应用动能定理得:
mgL sin mgL cos 1 mv2 2
解得物块第一次接触弹簧时物体的速度的大小为:
v 2gLsin cos 8 m/s
mvA2m
WT
mg
h sin
h
2.如图所示,粗糙水平地面与半径为 R=0.4m 的粗糙半圆轨道 BCD 相连接,且在同一竖直 平面内,O 是 BCD 的圆心,BOD 在同一竖直线上.质量为 m=1kg 的小物块在水平恒力 F=15N 的作用下,从 A 点由静止开始做匀加速直线运动,当小物块运动到 B 点时撤去 F, 小物块沿半圆轨道运动恰好能通过 D 点,已知 A、B 间的距离为 3m,小物块与地面间的动 摩擦因数为 0.5,重力加速度 g 取 10m/s2.求: (1)小物块运动到 B 点时对圆轨道 B 点的压力大小. (2)小物块离开 D 点后落到地面上的点与 D 点之间的距离
2mL QE
点睛:本题是电场相关知识与动量守恒定律的综合,虽然 A 球受电场力,但碰撞的内力远
大于内力,则碰撞前后动量仍然守恒.由于两球的质量相等则弹性碰撞后交换速度.那么
A 球第一次碰后从速度为零继续做匀加速直线运动,直到发生第二次碰撞.题设过程只是

动能定理功能关系练习题142题含答案

动能定理功能关系练习题142题含答案

动能定理练习稳固根底一、不定项选择题〔每题至少有一个选项〕1.以下关于运动物体所受合外力做功和动能变化的关系,以下说法中正确的选项是〔〕A.如果物体所受合外力为零,那么合外力对物体所的功一定为零;B.如果合外力对物体所做的功为零,那么合外力一定为零;C.物体在合外力作用下做变速运动,动能一定发生变化;D.物体的动能不变,所受合力一定为零。

2.以下说法正确的选项是〔〕A.某过程中外力的总功等于各力做功的代数之和;B.外力对物体做的总功等于物体动能的变化;C.在物体动能不变的过程中,动能定理不适用;D.动能定理只适用于物体受恒力作用而做加速运动的过程。

3.在光滑的地板上,用水平拉力分别使两个物体由静止获得一样的动能,那么可以肯定〔〕A.水平拉力相等 B.两物块质量相等C.两物块速度变化相等 D.水平拉力对两物块做功相等4.质点在恒力作用下从静止开场做直线运动,那么此质点任一时刻的动能〔〕A.与它通过的位移s成正比B.与它通过的位移s的平方成正比C.与它运动的时间t成正比D.与它运动的时间的平方成正比5.一子弹以水平速度v射入一树干中,射入深度为s,设子弹在树中运动所受的摩擦阻力是恒定的,那么子弹以v/2的速度射入此树干中,射入深度为〔〕A.s B.s/2 C.2/s D.s/4 6.两个物体A、B的质量之比m A∶m B=2∶1,二者动能一样,它们和水平桌面的动摩擦因数一样,那么二者在桌面上滑行到停顿所经过的距离之比为〔〕A.s A∶s B=2∶1 B.s A∶s B=1∶2 C.s A∶s B=4∶1 D.s A∶s B=1∶47.质量为m的金属块,当初速度为v0时,在水平桌面上滑行的最大距离为L,如果将金属块的质量增加到2m,初速度增大到2v0,在同一水平面上该金属块最多能滑行的距离为〔〕A.L B.2L C.4L D.8.一个人站在阳台上,从阳台边缘以一样的速率v0,分别把三个质量一样的球竖直上抛、竖直下抛、水平抛出,不计空气阻力,那么比拟三球落地时的动能〔〕A.上抛球最大 B.下抛球最大 C.平抛球最大 D.三球一样大9.在离地面高为h处竖直上抛一质量为m的物块,抛出时的速度为v0,当它落到地面时速度为v,用g表示重力加速度,那么此过程中物块克制空气阻力所做的功等于〔 〕A .2022121mv mv mgh --B .mgh mv mv --2022121 C .2202121mv mv mgh -+ D .2022121mv mv mgh -- 10.水平抛出一物体,物体落地时速度的方向与水平面的夹角为θ,取地面为参考平面,那么物体刚被抛出时,其重力势能与动能之比为〔 〕A .sin 2θB .cos 2θC .tan 2θD .cot 2θ11.将质量为1kg 的物体以20m/s 的速度竖直向上抛出。

036.功和能 动能 动能定理

036.功和能 动能 动能定理

功和能 动能 动能定理高考试题1.(2005年·江苏)如图所示,固定的光滑竖直杆上套着一个滑块,用轻绳系着滑块绕过光滑的定滑轮,以大小恒定的拉力F 拉绳,使滑块从A 点起由静止开始上升.若从A 点上升至B 点和从B 点上升至C 点的过程中拉力F 做的功分别为W 1、W 2,滑块经B 、C 两点时的动能分别为E KB 、E Kc ,图中AB=BC ,则一定有A .W l >W 2B .W 1<W 2C .E KB >E KCD .E KB <E KC提示:要判定力F 做功的大小,只需判定物体从A 到B 和从B 到C 力F 作用点位移的大小即可.由数学关系可知,当AB =BC 时,从A 到B 力F 作用点的位移大于从B 到C 力F 作用点的位移,所以A 正确.物体沿杆上滑的过程中,由于重力做功,物体的运动必定是先加速后减速,所以无法判定E AB 和E KC 的大小.2.(2004年·全国大综合)如图所示,ABCD 是一个盆式容器,盆内侧壁与盆底BC 的连接处都是一段与BC相切的圆弧,B 、C 为水平的,其距离d =0.50m 盆边缘的高度为h =0.30m .在A 处放一个质量为m 的小物块并让其从静止出发下滑.已知盆内侧壁是光滑的,而盆底BC 面与小物块间的动摩擦因数为μ=0.10.小物块在盆内来回滑动,最后停下来,则停的地点到B 的距离为A .0.50mB .0.25mC .0.10mD .03.(2003年·广东大综合)在离地面高为A 处竖直上抛一质量为m 的物块,抛出时的速度为v 0,当它落到地面时速度为v ,用g 表示重力加速度,则在此过程中物块克服空气阻力所做的功等于A .2201122mgh mv mv -- B .2201122mv mv mgh --- C .2201122mgh mv mv +- D .2201122mgh mv mv +- 4.(2003年·上海)一个质量为0.3kg 的弹性小球,在光滑水平面上以6m/s 的速度垂直撞到墙上,碰撞后小球沿相反方向运动,反弹后的速度大小与碰撞前相同.则碰撞前后小球速度变化量的大小△v 和碰撞过程中墙对小球做功的大小为A .△v =0B .△v =12m/sC .W =0D .W =10.8J5.(2001年·上海)跳伞运动员在刚跳离飞机、其降落伞尚未打开的一段时间内,下列说法中正确的是A .空气阻力做正功B .重力势能增加C .动能增加D .空气阻力做负功.6.(2001年·上海理综)在一种叫做“蹦极跳”的运动中,质量为m 的游戏者身系一根长为L 、弹性优良的轻质柔软橡皮绳,从高处由静止开始下落1.5L 时到达最低点,若在下落过程中不计空气阻力,则以下说法正确的是A .速度先增大后减小B .加速度先减小后增大C .动能增加了mgLD .重力势能减少了mgL7.(2000年·天津理综)如图所示,DO 是水平面,AB 是斜面,初速度为v 0的物体从D 点出发沿DBA 滑动到顶点A 时速度刚好为零,如果斜面改为AC ,让该物体从D 点出发沿DCA 滑动到A 点且速度刚好为零,则物体具有的初速度(已知物体与路面之间的动摩擦因数处处相同且不为零)A .大于v 0B .等于v 0C .小于v 0D .取决于斜面的倾角8.(1999年·全国)一物体静止在升降机的地板上,在升降机加速上升的过程中,地板对物体的支持力所做的功等于A .物体势能的增加量B .物体动能的增加量C .物体动能的增加量加上物体势能的增加量D .物体动能的增加量加上克服重力所做的功9.(1997年·上海)质量为m 的小球被系在轻绳的一端,在竖直平面内做半径为R 的圆周运动,运动过程中小球受到空气阻力的作用.设某一时刻小球通过轨道最低点,此时绳子的张力为7mg ,此后小球继续做圆周运动,经过半个圆周恰能通过最高点,则在此过程中小球克服空气阻力做的功为A .14mgR B .13mgR C .12mgR D .mgR10.(1996年·上海)某消防队员从一平台上跳下,下落2m 后双脚触地,接着他用双腿弯曲的方法缓冲,使自身的重心又下降了0.5m ,在着地过程中地面对他双脚的平均作用力估计为A .自身所受重力的2倍B .自身所受重力的5倍C .自身所受重力的8倍D .自身所受重力的10倍11.(1991年·全国)图中ABCD 是一条长轨道,其中AB 段是倾角为θ的斜面,CD 段是水平的,BC 是与AB 和CD 都相切的一小段圆弧,其长度可以略去不计.一质量为m 的小滑块在A 点从静止状态释放沿轨道滑下,最后停在D 点.A 点和D 点的位置如图所示.现用一沿着轨道方向的力推滑块,使它缓慢地由D 点推回到A 点时停下.设滑块与轨道间的摩擦系数为μ,则推力对滑块做的功等于A .mghB .2mghC .()sin h mg s μθ+ D .cot mgs mgh μμθ+ 12.(1990年·全国)一质量为2kg 的滑块,以4m/s 的速度在光滑水平面上向左滑行.从某一时刻起,在滑块上作用一向右的水平力.经过一段时间,滑块的速度方向变为向右,大小为4m/s .在这段时间里水平力做的功为A .0B .8JC .16JD .32J13.(2002年·上海理综)足球守门员在发球门球时,将一个静止的质量为0.4kg 的足球,以10m/s 的速度踢出,这时足球获得的动能是________J .足球沿草地作直线运动,受到的阻力是足球重力的0.2倍,当足球运动到距发球点20m 的后卫队员处时,速度为______m/s .(g 取10m/s 2)【答案】20;14.(1996年·全国)在光滑水平面上有一静止的物体.现以水平恒力甲推这一物体,作用一段时间后,换成相反方向的水平恒力乙推这一物体.当恒力乙作用时间与恒力甲作用时间相同时,物体恰好回到原处,此时物体的动能为32J ,则在整个过程中,恒力甲做的功等于____J ,恒力乙做的功等于____J .【答案】8;2415.(1995年·全国)一人坐在雪橇上,从静止开始沿着高度为15m 的斜坡滑下,到达底部时速度为10m/s .人和雪橇的总 质量为60kg ,下滑过程中克服阻力做的功等于____J (取g =10m/s 2).【答案】600016.(1991年·全国)一物体放在一倾角为θ的斜面上,向下轻轻一推,它刚好能匀速下滑.若给此物体一个沿斜面向上的初速度v 0,则它能上滑的最大路程是________________. 【答案】204sin v g θ17.(2005年·全国理综Ⅱ)如图所示,在水平桌面的边角处有一轻质光滑的定滑轮K ,一条不可伸长的轻绳绕过K 分别与物块A 、B 相连,A 、B 的质量分别为m A 、m B .开始时系统处于静止状态.现用一水平恒力F 拉物块A ,使物块B上升.已知当B 上升距离为h 时,B 的速度为v .求此过程中物块A 克服摩擦力所做的功.重力加速度为g .【答案】21()2A B B Fh m m v m gh -+- 解析:在此过程中,B 的重力势能的增量为m B gh ,A 、B 的动能增量为21()2A B m m v +,恒力F 所做的功为Fh ,用W 表示克服摩擦力所做的功,根据功能关系,有 21()2A B B Fh W m m m gh -=++ 解得21()2A B B W Fh m m v m gh =-+- 18.(2005年·上海)某滑板爱好者在离地h =1.8m 高的平台上滑行,水平离开A 点后落在水平地面的B 点,其水平位移s 1=3m .着地时由于存在能量损失,着地后速度变为v =4m /s ,并以此为初速沿水平地面滑行s 2=8m后停止.已知人与滑板的总质量m =60kg .求:(1)人与滑板在水平地面滑行时受到的平均阻力大小;(2)人与滑板离开平台时的水平初速度.(空气阻力忽略不计,g=10m /s 2)【答案】(1)60N ;(2)5m/s解析:(1)设滑板在水平地面滑行时受到的平均阻力为f ,根据动能定理,有22102fs mv -=- ① 由①式解得222604N=60N 228mv f s ⨯==⨯ ②(2)人和滑板一起在空中做平抛运动,设初速为v 0,飞行时间为t ,根据平抛运动规律有t = ③10s v t = ④由③④两式解得0v == ⑤19.(2004年·上海)滑雪者从A 点由静止沿斜面滑下,经一平台后水平飞离B 点,地面上紧靠平台有一个水平台阶,空间几何尺度如图所示.斜面、平台与滑雪板之间的动摩擦因数为μ假设滑雪者由斜面底端进入平台后立即沿水平方向运动,且速度大小不变.求:(1)滑雪者离开B 点时的速度大小;(2)滑雪者从B 点开始时做平抛运动的水平距离s .【答案】(1(2))(21L h H h s μ--=,)(22L h H h s μ--= 解析:(1)设滑雪者质量为m ,斜面与水平面夹角为θ,滑雪者滑行过程中克服摩擦力做功mgL s L mg s mg W μθμθμ=-+=)cos (cos① 由动能定理得221)(mv mgL h H mg =--μ ② 离开B 点时的速度)(2L h H g v μ--=③ (2)设滑雪者离开B 点后落在台阶上h vt s gt h 22121121<== 可解得)(21L h H h s μ--=④ 此时必须满足h L H 2<-μ⑤ 当h L H 2>-μ时,⑥ 滑雪者直接落到地面上,222221vt s gt h ==联立解得)(22L h H h s μ--= ⑦20.(2003年·上海)质量为m 的飞机以速度v 0飞离跑道后逐渐上升,若飞机在此过程中水平速度保持不变,同时受到重力和竖直向上的恒定升力(该升力由其它力的合力提供,不含重力),今测得当飞机在水平方向的位移为l 时,它的上升高度为h .如图所示,求:(1)飞机受到的升力大小;(2)从起飞到上升到h 高度的过程中升力所做的功及在高度h 处飞机的动能.【答案】(1)2022(1)hmg v gl +;(2)2022(1)h mgh v gl +,220214(1)2h mv l+ 解析:(1)飞机水平速度不变l =v 0ty 方向加速度恒定212h at =消去t 即得2022ha v l = 由牛顿第二定律2022(1)h F mg ma mg v gl =+=+ (2)升力做功2022(1)hW Fh mgh v gl ==+在h 处02t hv v at l== 故2222002114()(1)22k t h E m v v mv l=+=+ 训练试题21.下列关于动能的说法中正确的是A .物体的质量越大,速度越大,则动能越大B .知道物体的动能和质量,就可以求出物体的速率C .物体受合外力越大,则动能越大D .物体动能大,使物体停下来的时间一定长22.甲、乙、丙三个物体具有相同的动能,甲的质量最大,丙的最小,要使它们在相同的距离内停止,则作用在物体上的合外力A .甲的最大B .丙的最大C .都相等D .取决于它们的速度23.关于做功和动能变化的关系,正确的是A .只要动力对物体做功,物体的动能增加B .只要物体克服阻力做功,它的动能就减少C .外力对物体做功的代数和等于物体的末动能与初动能之差D .动力和阻力都对物体做功,物体的动能一定变化24.对动能定理的理解正确的是A .外力做功是引起物体动能变化的原因B .动能的变化使物体产生了功C .外力做的功变成了物体的动能D .外力对物体做了多少功,物体的动能就改变多少25.一个物体做变速运动时,下述说法中正确的是A .合外力一定对物体做功,使物体动能发生变化B .合外力一定对物体做功,但物体的动能不变C .合外力可能不对物体做功,物体动能不变D .合外力可能对物体做功,使物体动能变化26.汽车在平直的公路上行驶,关闭发动机后继续运动s 1距离,速度由v 变为12v ,再运动s 2距离后,速度由12v 变为14v ,设运动时所受阻力不变,则s 2∶s 1为A .1∶1B .1C .1∶2D .1∶4 27.在光滑水平面上,质量为2kg 的物体以2m/s 的速度向东运动,当对它施加向西的力,经过一段时间,速度为2m/s ,方向向西,则外力对物体做功A .16JB .8JC .4JD .028.两个做匀速圆周运动的物体,其运动半径之比为2∶3,受向心力之比为3∶2,则其动能之比为A .9∶4B .4∶9C .1∶1D .2∶329.如图所示,质量为m 的物体(可视为质点)以某一速度从A 点冲上倾角为30°的固定斜面,其运动的加速度为34g ,此物体在斜面上上升的最大高度为h ,则在这个过程中物体A .重力势能增加了34mghB .重力势能增加了mghC .动能损失了mghD .机械能损失了12mgh提示:设物体受到摩擦阻力为F ,由牛顿运动定律得 3sin304F mg ma mg +︒== 解得14F mg = 重力势能的变化由重力做功决定,故△E p =mgh 动能的变化由合外力做功决定33(sin30)4sin302k F mg s ma s mg mgh +︒==-=-︒机械能的变化由重力以外的其它力做功决定 故114sin302h E F s mg mgh ∆===︒ 机械 综合以上分析可知,B 、D 两选项正确.30.一个小物块从斜面底端冲上足够长的斜面后,返回到斜面底端.已知小物块的初动能为E ,它返回斜面底端的速度大小为v ,克服摩擦阻力做功为2E ,若小物块冲上斜面的初动能变为2E ,则有A .返回斜面底端时的动能为EB .返回斜面底端时的动能为32EC .返回斜面底端的速度大小为2v D31.如图所示,AB 为一段粗糙的波浪形路面,且AB 在同一水平面上,滑块以初速v 沿粗糙曲面由A 处滑到B 处时速度大小为v 1,以大小相同的初速沿粗糙曲面由B 处滑到A 处时速度大小为v 2,则下面说法中正确的是A .v 1<v 2B .v 1>v 2C .v 1=v 2D .不能确定32.子弹以100m/s 的速度运动时,刚好射穿一个固定的木板,若子弹以400m/s 的速度运动时,可以射穿相同的固定木板______________块.【答案】1633.0.1kg 的小球在砂坑上2m 高处由静止落下,进入砂中0.2m ,则砂对小球的平均阻力大小等于_______________.【答案】11N34.用100N 的拉力F 使一个质量为20kg 的木箱由静止开始在水平冰道上移动了100m ,拉力F 与木箱前进的方向成37°角,如图所示.木箱与冰道间动摩擦因数为0.2,求木箱获得的速度.【答案】22.8m/s35.质量为5×103kg 的汽车,从静止开始沿水平路面匀加速行驶,经20s 速度为20m/s ,以后立即关闭发动机,直到汽车停下,汽车在运动中阻力大小为车重的0.05倍,求汽车牵引力做的功.【答案】1.5×106J36.如图所示,物体在离斜面底端4m 远处由静止滑下,若动摩擦因数为0.5,斜面倾角为37°,斜面与平面间由一个小段圆弧连接,求物体能在水平面上滑行多远?(g =10m/s 2)【答案】1.6m解法一:把物体运动分为斜面和水平面两个阶段分别应用动能定理,设到斜面底端时速度为v ,则有:211(sin37cos37)02mg mg s mv μ︒-︒=- ① 22102ms mv μ-=- ②联立①②两式解得21sin37cos370.60.50.84 1.6m 0.5s s μμ︒-︒-⨯==⨯= 解法二:把物体运动全过程进行分析知:初、末状态物体的速度均为零,由于f 1、f 2相继对物体做功,可分段求两个力的功,因此对全过程应用动能定理,则有:11221sin37cos370sin37cos37 1.6m mg s mg s mg s s s μμμμ︒-︒-=︒-︒==37.一辆汽车质量为4×103kg ,以恒定的功率从静止开始启动,经20s 到达最大行驶速度15m/s ,设汽车所受阻力为车重的0.05倍,求:(1)汽车的牵引功率;(2)汽车从静止到开始匀速运动时所通过的路程.【答案】(1)3.0×104W ;(2)75m解析:(1)汽车的牵引功率为:P =F ·v =f ·v m =kmgv m =0.05×4×103×10×15=3.0×104W .(2)汽车受牵引力和阻力作用作变加速运动,其中牵引力是变力,其功为:W 牵=P ·t 阻力是恒力,其功为:W f =-fs =-kmgs由动能定理得:W 总=ΔE k22110,22f m m W W mv P t kmgs mv +=--= 牵 22211222m m m m m P t mv kmgv t mv v s v t kmg kmg kg--===- 215152075m.20.0510=⨯-=⨯⨯ 38.总质量为M 的列车,沿水平直线轨道匀速前进,其末节车厢质量为m ,中途脱节,司机发觉时,机车已行驶L 的距离,于是立即关闭油门,除去牵引力.设运动的阻力与质量成正比,机车的牵引力是恒定的,当列车两部分都停止时,它们的距离是多少? 【答案】ML M m- 39.一位观光游客(年逾70岁)被撞死在斑马线上.肇事司机在经过律师授意后一口咬定,老人在没有示意的情况下突然快速地走出安全岛向南而行,虽然他已经紧急刹车但还是发生了不幸.汽车撞上老人后经过19.7m 停下来,出事点距安全岛1.3m .但经警方调查取证后发现:目击者证实说老人本是一直向北而行.这到底是怎么回事?为了清晰了解事故现场,现以下图表示之.为了明晰事故责任,首先让我们来计算一下汽车司机是否超速行驶:警方派一警车执法以最高时速50km/h (13.9m/s )行驶在同一马路的同一地段.在肇事汽车的起始制动点紧急刹车,警车在经过13.0m 后停下来.(1)求肇事汽车刹车时初速度、加速度多大?是否超速行驶?(2)如何断定老人是向安全岛匀速走去,还是由安全岛匀速走出.(老人步行速度范围为1.1m/s ~1.3m/s ,司机的反应时间为0.7s ~1.3s )【答案】(1)a =7.43m/s 2,v 0=22.8m/s>13.9m/s ,超速行驶;(2)老人是向安全岛走去的.40.如图所示,一小物块从倾角θ=37°的斜面上的A 点由静止开始滑下,最后停在水平面上的C 点.已知小物块的质量m =0.10kg ,小物块与斜面和水平面间的动摩擦因数均为μ=0.25,A 点到斜面底端B 点的距离L =0.50m ,斜面与水平面平滑连接,小物块滑过斜面与水平面连接处时无机械能损失.求:(1)小物块在斜面上运动时的加速度;(2)BC 间的距离;(3)若在C 点给小物块一水平初速度使小物块恰能回到A 点,此初速度为多大.(sin37°=0.6,cos37°=0.8,g=10m/s 2)【答案】(1)4.0m/s 2;(2)0.80m ;(3)3.5m/s解析:(1)小物块受到斜面的摩擦力f 1=μmg cos θ由牛顿第二定律得mg sin θ-f 1=ma解得a =g sin θ-μgcos θ=4.0m/s 2(2)小物块由A 运动到B ,根据运动学公式,有22B v aL =,解得B 2.0m/s v =小物块由B 运动到C 的过程中所受摩擦力为f 2=μmg 根据动能定理,有:22BC B 102f s mv -=-,解得s BC =0.80m (3)设小物块在C 点以初速度v C 运动,恰好回到A 点,由动能定理得-mgL sin θ-f 1L -f 2s BC =2102C mv -,解得v C =23m/s=3.5m/s 41.在海滨游乐场里有一种滑沙的游乐活动.如图所示,人坐在滑板上从斜坡的高处A 点由静止开始滑下,滑到斜坡底部B 点后沿水平滑道再滑行一段距离到C 点停下来.斜坡滑道与水平滑道间是平滑连接的,滑板与两滑道间的动摩擦因数均为μ=0.50.(不计空气阻力,重力加速度g =l0m/s 2,sin37°=0.6,cos37°=0.8)(1)若斜坡倾角θ=37°,人和滑板的总质量m =60kg ,求人在斜坡上下滑的加速度大小.(2)若由于受到场地限制,A 点到C 点的水平距离为s =50m ,为确保人身安全,你认为在设计斜坡滑道时,对高度应有怎样的要求.【答案】(1)2m/s 2;(2)25m解析:(1)在斜坡上下滑时,人及滑板受力情况如图所示,根据牛顿第二定律,有sin mg N ma θμ-=,cos 0N mg θ-=,则2sin cos 2m/s a g g θμθ=-=(2)设斜坡的最大高度为h ,人的质量为m ,人从A 运动到C 的全过程,根据动能定理,有cos 0sin h mgh mg mg BC μθμ-⋅-⋅= 即()0mgh mg BD BC μ-+=解得0.5050m 25m h s μ==⨯=所以,斜坡轨道的高度不应超过25m .42.在20m 高的阳台上,玩具枪枪筒内的弹簧将质量为15g 的弹丸以10m/s 的速度水平射出,弹丸落入沙坑后,在沙坑中运动的竖直距离h =20cm .不计空气阻力.(g 取10m/s 2)求:(1)弹簧枪对弹丸所做的功;(2)弹丸落到沙坑时的动能;(3)弹丸克服沙坑阻力所做的功.【答案】(1)0.75J ;(2)3.75J ;(3)3.78J解析:(1)弹簧枪对弹丸所作的功等于弹丸射出弹簧枪时的动能,由功能关系得: 210.75J 2kA A W E mv === (2)弹丸从弹簧枪膛射出至落到沙坑时(A 到B )的过程中,由动能定理得221122B A mgH mv mv =- 弹丸落到沙坑时的动能21 3.75J 2KB A E mv mgH =+= (3)弹丸在沙坑中运动(B 到C )的过程,由动能定理得2102B mgh W mv -=-阻 21 3.78J 2B W mgh mv =+=阻 43.如图所示,光滑水平面右端B 处连接一个竖直的半径为R的光滑半圆轨道,在离B 距离为x 的A 点,用水平恒力将质量为m 的质点从静止开始推到B 处后撤去恒力,质点沿半圆轨道运动到C 处后又正好落回A 点,求:(1)推力对小球所做的功.(2)x 取何值时,使质点完成BC 段运动后落回水平面,水平恒力所做的功最少?最小功为多少?【答案】(1)22(16)8mg R x R+;(2)x =2R ,W F =25mgR 解析:(1)质点从半圆弧轨道做平抛运动又回到A 点,设质点在C 点的速度为v C 质点从C 点运动到A 点所用的时间为t ,在水平方向有x =v C t ①竖直方向上2R =21gt 2 ②由①②解得C v =对质点从A 到C ,由动能定理得W F -mg ·2R =21mv C 2 解得22(16)8F mg R x W R+= (2)由W F =2mgR +21mv C 2知,只要质点在C 点速度最小,则功W F 就最小.若质点恰好能通过C 点,则在C 点的速度最小,设为v ,由牛顿第二定律有mg =Rmv 2,则v =Rg 当x =vt =Rg ×2gR =2R 时,W F 最小,最小的功W F =25mgR44.如图所示,竖直平面内放一直角杆AOB ,杆的水平部分粗糙,动摩擦因数μ=0.20,杆的竖直部分光滑.两部分各套有质量分别为2.0kg 和1.0kg 的小球A 和B ,A 、B 间用细绳相连,初始位置OA =1.5m ,OB =2.0m .g 取10m/s 2,问:(1)若用水平拉力F 1沿杆向右缓慢拉A ,使之移动0.5m ,该过程中A 受到的摩擦力多大?拉力F 1做功多少?(2)若小球A 、B 都有一定的初速度,A 在水平拉力F 2的作用下,使B 由初始位置以1.0m/s 的速度匀速上升0.5m ,此过程中拉力F 2做功多少?【答案】(1)8.0J ;(2)6.8J解析:(1)A 、B 小球和细绳整体竖直方向处于平衡,A 受到水平杆的弹力g m m N B A )(+=则A 受到的摩擦力()0.20(2.0 1.0)10N 6.0N A B f m m g μ=+=⨯+⨯=由动能定理得,10B W fs m gs --=代入数据解得W 1=8.0J(2)设细绳与竖直方向的夹角为θ,由于绳长不变,则有v =v B cos θ=v A cos (900-θ) 解得θθθcot )90cos(cos 0B B A v v v =-= 则34cot 11==θB A v v m/s ,43cot 22==θB A v v m/s 设拉力F 1做功为W 1,对系统,由动能定理可得222211122B A A A A W fs m gs m v m v --=- 代入数据解得W 2=6.8J45.如图所示,AB 是倾角为θ的粗糙直轨道,BCD 是光滑的圆弧轨道,AB 恰好在B 点与圆弧相切,圆弧的半径为R .一个质量为m 的物体(可以看作质点)从直轨道上的P 点由静止释放,结果它能在两轨道间做往返运动.已知P 点与圆弧的圆心O 等高,物体与轨道AB 间的动摩擦因数为μ..求:(1)物体做往返运动的整个过程中,在AB 轨道上通过的总路程;(2)最终当物体通过圆弧轨道最低点E 时,对圆弧轨道的压力.【答案】(1)R μ;(2)mg (3-2cos θ) 解析:(1)由于摩擦力做负功,使物体的机械能不断减少,最终当物体到达B 点时,速度变为零.考虑物体从P 点出发至最终到达B 点速度为零的全过程,由动能定理可得cos cos 0mgR mg s θμθ-= ,解得R s μ= (2)最终物体以B 为最高点在圆轨道底部做往返运动,设物体到E 点时速度为v ,由动能定理得21(1cos )2mgR mv θ-= 在E 点,由牛顿第二定律得2v N mg m R-= 联立解得N =mg (3-2cos θ)46.如图所示,轨道的对称轴是过O 、E 点的竖直线,轨道BEC是120°的光滑圆弧,半径R =2.0m ,O 为圆心,AB 、CD 两斜面与圆弧分别相切于B 点和C 点,一物体从高h =3.0m 处以速率v 0=4.0m/s 沿斜面运动,物体与两斜面的摩擦因数μ=0.2,求物体在AB 、CD 两斜面上(不包含圆弧部分)通过的总路程s .【答案】(1)28m解析:设物体在两斜面上通过的总路程为s ,整个过程中,重力作正功[(1cos60)]()2R mg h R mg h --︒=- 摩擦力作负功cos602mg s mgs μμ-︒=-由动能定理得201()0222R mg h mgs mv μ--=- 解得202()210(31)16228m 0.210R g h v s g μ-+⨯⨯-+===⨯. 47.如图所示,轻质长绳水平地跨在相距2L 的两个小定滑轮A 、B 上,质量为m 的物块悬在绳上O 点,O 与A 、B 两滑轮距离相等,在轻绳的C 、D 两端分别施加竖直向下的恒力F =mg ,先托住物块,使绳子处于水平拉直状态,无初速地释放物块,在它下落过程中保持C 、D 两端的拉力F 不变,不计滑轮处摩擦,求:(1)当物块下落距离h 为多大时,物块的加速度为零?(2)在上述过程中,克服C 端恒力F 做的功W 为多少?(3)求物块下落的最大速度v m 和最大距离H .【答案】(1;(2)1)mgL -;(3,43H L = 解析:(1)设加速度为零时,AO 与水平方向的夹角为θ.则2F cos θ=mg ,又F =mg ,故θ=60°此时cot h L θ==(2))1)W mg L mgL == (3)由动能定理可得2122m W mgh mv -+=解得m v =全过程由动能定理得2)0mgH F L -= 解得43H L =。

【物理】物理动能与动能定理题20套(带答案)

【物理】物理动能与动能定理题20套(带答案)

【物理】物理动能与动能定理题20套(带答案)一、高中物理精讲专题测试动能与动能定理1.如图所示,在水平轨道右侧固定半径为R的竖直圆槽形光滑轨道,水平轨道的PQ段长度为,上面铺设特殊材料,小物块与其动摩擦因数为,轨道其它部分摩擦不计。

水平轨道左侧有一轻质弹簧左端固定,弹簧处于原长状态。

可视为质点的质量的小物块从轨道右侧A点以初速度冲上轨道,通过圆形轨道,水平轨道后压缩弹簧,并被弹簧以原速率弹回,取,求:(1)弹簧获得的最大弹性势能;(2)小物块被弹簧第一次弹回经过圆轨道最低点时的动能;(3)当R满足什么条件时,小物块被弹簧第一次弹回圆轨道时能沿轨道运动而不会脱离轨道。

【答案】(1)10.5J(2)3J(3)0.3m≤R≤0.42m或0≤R≤0.12m【解析】【详解】(1)当弹簧被压缩到最短时,其弹性势能最大。

从A到压缩弹簧至最短的过程中,由动能定理得:−μmgl+W弹=0−m v02由功能关系:W弹=-△E p=-E p解得 E p=10.5J;(2)小物块从开始运动到第一次被弹回圆形轨道最低点的过程中,由动能定理得−2μmgl=E k−m v02解得 E k=3J;(3)小物块第一次返回后进入圆形轨道的运动,有以下两种情况:①小球能够绕圆轨道做完整的圆周运动,此时设小球最高点速度为v2,由动能定理得−2mgR=m v22−E k小物块能够经过最高点的条件m≥mg,解得R≤0.12m②小物块不能够绕圆轨道做圆周运动,为了不让其脱离轨道,小物块至多只能到达与圆心等高的位置,即m v12≤mgR,解得R≥0.3m;设第一次自A点经过圆形轨道最高点时,速度为v1,由动能定理得:−2mgR =m v 12-m v 02且需要满足 m ≥mg ,解得R≤0.72m ,综合以上考虑,R 需要满足的条件为:0.3m≤R≤0.42m 或0≤R≤0.12m 。

【点睛】解决本题的关键是分析清楚小物块的运动情况,把握隐含的临界条件,运用动能定理时要注意灵活选择研究的过程。

专题11 功和功率及动能定理的理解与应用-2023届高考物理一轮复习热点题型专练(解析版)

专题11  功和功率及动能定理的理解与应用-2023届高考物理一轮复习热点题型专练(解析版)

专题11功和功率及动能定理的理解与应用目录题型一恒力做功的分析和计算..................................................................................................................................1题型二变力做功的分析和计算. (4)类型1微元法计算变力做功...............................................................................................................................5类型2图像法计算变力做功...............................................................................................................................5类型3等效转换法求变力做功...........................................................................................................................7类型4平均力法求变力做功...............................................................................................................................7类型5应用动能定理求变力做功.......................................................................................................................8题型三功率的分析和计算 (9)类型1功率的分析和计算...................................................................................................................................9类型2功率和功综合问题的分析和计算.........................................................................................................11题型四机车启动问题 (13)类型1恒定功率启动.......................................................................................................................................14类型2恒加速度启动问题...............................................................................................................................15题型五动能定理的理解............................................................................................................................................17题型六动能定理的基本应用....................................................................................................................................19题型七动能定理与图像的“数形结合”. (21)类型1E k -x (W -x )图像问题.............................................................................................................................22类型2F -x 图像与动能定理的结合.................................................................................................................23类型3其他图像与动能定理的结合.................................................................................................................25题型八动能定理在多过程、往复运动问题中的应用.. (27)类型1运用动能定理解决多过程问题...........................................................................................................27类型2动能定理在往复运动问题中的应用.. (30)题型一恒力做功的分析和计算【解题指导】1.判断力是否做功及做正、负功的方法(1)恒力做的功直接用W =Fl cos α计算或用动能定理计算。

功能关系、动能定理与动量计算题

功能关系、动能定理与动量计算题

功能关系、动能定理与动量题集一、计算题1. 如图所示,一辆质量为M=6kg的平板小车停靠在墙角处,地面水平且光滑,墙与地面垂直.一质量为m=2kg的小铁块(可视为质点)放在平板小车最右端,平板小车上表面水平且与小铁块之间的动摩擦因数μ=0.45,平板小车的长度L=1m.现给铁块一个v0=5m/s的初速度使之向左运动,与竖直墙壁发生弹性碰撞后向右运动,碰撞过程中无能量损失,求:(1)最终的车速大小;(2)小铁块在平板小车上运动的过程中系统损失的机械能(g取10m/s2).2. 如图所示,传送带水平部分AB的长度L=1.5m,与一圆心在O点、半径R=1m的竖直光滑圆轨道的末端相切于A点.AB高出水平地面H=1.25m.一质量m=0.1kg的小滑块(可视为质点),由因轨道上的P点从静止释放,OP与竖直线的夹角θ=37°.已知sin37°=0.6,cos37°=0.8,g取10m/s2,滑块与传送带的动摩擦因数μ=0.2,转轮与传送带间不打滑.不计空气阻力.(1)求滑块对圆轨道末端的压力的大小.(2)若传送带以速度为v1=1.0m/s顺时针匀速转动.滑块运动至B点水平抛出.求此种情况下,滑块的落地点与B点的水平距离.(3)若传送带以速度为V2=0.8m/s顺时针匀速转动,求滑块在传送带上滑行过程中产生的热量.3. 如图甲所示,倾角为θ=37°的传送带以恒定速率逆时针运行,现将一质量m=2kg的小物体轻轻放在传送带的A端,物体相对地面的速度随时间变化的关系如图乙所示,2s末物体到达B端,取沿传送带向下为正方向,g=10m/s2,sin37°=0.6,求:(1)小物体在传送带A、B两端间运动的平均速度v;(2)物体与传送带间的动摩擦因数μ;(3)2s内物体机械能的减少量ΔE及因与传送带摩擦产生的内能Q。

4. (加试题)如图17所示,在光滑的水平面上有木块A和B,m A=0.5kg,m B=0.4kg,它们的上表面是粗糙的.今有一小铁块C,m C=0.1kg,以初速度v0=10m/s沿两木块表面滑过,最后停留在B上,此时B、C以共同速度v=1.5m/s运动,求:(1)A最终运动的速度v A;(2)C刚离开A时的速度v C;(3)整个过程中因摩擦而产生的内能.5. 如图所示,质量为M.内间距为L的箱子静止在光滑水平面上,箱子中间有一质量为m的小物块(可视为质点),初始时小物块停在箱子正中间。

功和功率专题

功和功率专题

功和功率专题 一、 功 1、功的概念:一个物体受到力的作用,如果在力的方向上发生了位移,这个力就对物体做了功.2.做功的两个不可缺少的因素:力和物体在力的方向上发生的位移.3.功的公式:cos W FS α=4. 正功和负功.根据cos W FS α=可知:当α=90°时,W =0,即当力F 和S 位移垂直时,力对物体不做功,因为物体在力F 的方向上没有发生位移.当090α︒≤>o 时,W >0,力F 对物体做功,这时力F 是动力,所以正功表示动力对物体做的功. 当90180θ︒<≤︒时,W <0,力F 对物体做负功,这时力F 是阻力,所以,负功表示阻力对物体做的功.一个力对物体做负功,又常说成物体克服这个力做功(取绝对值).学法指导:(一)、判断正负功的方法1.根据力和位移的方向的夹角判断,此法常用于恒力做功的判断.例1、如图所示,光滑水平面上有一光滑斜面b ,a 由斜面顶端静止滑下,b 对a 的支持力N 对a 物体做负功,因为支持力N 与位移s 之间的夹角大于90°2.根据力和瞬时速度方向的夹角判断.此法常用于判断质点做曲线运动时变力的功,夹角为锐角时做正功,夹角为钝角时做负功,夹角为直角时不做功.例2、人造地球卫星在椭圆轨道上运行,由图中的a 点运动到b 点的过程中,万有引力对卫星做负功,因为万有引力的方向与速度的方向夹角大于90°.3.根据功能关系或能量转化与守恒定律进行判断.若有能量转化,则应有力做功.此法常用于判断两个相联系的物体内力做功的情况.例3、车M 静止在光滑水平轨道上,球m 用细线悬挂在车上,由图中的位置无初速地释放,则可判断在球下摆过程中绳的拉力对车做正功.因为绳的拉力使车的动能增加了,又因为M 和m 构成的系统的机械能是守恒的,M 的机械能增加必意味着m 的机械能减少,所以绳的拉力一定对球m 做负功.(二)恒力做功计算方法:关键是明确力与位移的夹角【例1】 如图所示,质量为m 的物体静止在倾角为θ的斜面上,物体与斜面的动摩擦因数为μ,现使斜面水平向左匀速移动距离L. (1)摩擦力对物体做的功为(物体与斜面相对静止)( )A .0B .mglcos μθC .mglcos sin θθ-D .mglsin cos θθ(2)斜面对物体的弹力做的功为( )A .0B .2mglsin cos μθθC .2mglcos θ-D .mglsin cos θθ(3)重力对物体做的功为( )A .0B .mglC .mgltan θD .mglcos θ例2、质量为M 、长为L 的长木板,放置在光滑的水平面上,长木板最右端放置一质量为m 的小物块,如图所示.现在长木板右端施加一水平恒力F ,使长木板从小物块底下抽出,小物块与长木板间动摩擦因数为μ,求把长木板抽出来所做的功.(提示:m a g μ=,M F mg a M μ-=,212m m S a t =,212M M S a t =,M m S S L =+,F M W FS =) (三)总功的计算方法:①先求合外力F 合,再应用公式W F scos α合合=求功,其中α为合力F 合与位移的夹角.一般适用于整个过程中合力恒定不变的情况;(如下图1,图2)②分别求出每个力的功W 1、W 2、W 3…再应用123W W W W ⋯合=+++求合外力的功.这种解法一般适用于在整个过程中,某些力分阶段作用的情况;(如下图3,图4)③利用动能定理或功能关系求解.(后面讲)(四) 变力做功计算方法:(1)用动能定理W =ΔEk 或功能关系W =ΔE ,即用能量的增量等效代换变力所做的功.(也可计算恒力功)(2)当变力的功率P 一定时,可用W =Pt 求功,如机车恒功率启动时.(3)将变力做功转化为恒力做功.①当力的大小不变,而方向始终与运动方向相同或相反时,这类力的功等于力和路程(不是位移)的乘积.如滑动摩擦力做功、空气阻力做功等;②当力的方向不变,大小随位移做线性变化时,可先求出力对位移的平均值12()/2F F F =+,再由W Fscos α=计算,如弹簧弹力做功.(4)作出变力F 随位移s 变化的图像,图像与位移轴所围的“面积”即为变力做的功.图中①图表示恒力F 做的功W ,②图表示变力F 做的功W.【例1】 人在A 点拉着绳通过一定滑轮吊起质量m =50 kg 的物体,如图,开始绳与水平方向夹角为60°,当人匀速提起重物由A 点沿水平方向运动s =2 m 而到达B 点,此时绳与水平方向成30°角,求人对绳的拉力做了多少功?(173J)(学法指导:若转换一下研究对象则不难发现,人对绳的拉力的功与绳对物体的拉力的功是相同的,而绳对物体的拉力是恒力,这种转换研究对象的办法也是求变力做功的一个有效途径.解:人由A 走到B 的过程中,重物G 上升的高度Δh 等于滑轮右侧绳子的长度,设滑轮距地的高度为h ,则, ()3060AB h cot cot S ︒-︒= /sin30/sin60h h h ∆=-o o ,人对绳子做功为W=Fs=G Δh, 代入数据可得:W ≈732 J.)(五)作用力与反作用力的功分析【例3】 下列关于做功问题中,说法正确的是( )A .作用力做功,反作用力也必定做功B .作用力做正功,反作用力一定做负功C .单纯根据作用力做功情况不能判断反作用力做功情况D .可以根据平衡力中一个力做功情况判断另一个力做功情况参考答案:(二)例1.(1)C (2)D (3)A 例2.()()FL F mg F M m gμμ--+ (五):例3. CD 二、功率1.定义:功跟完成这些功所用时间的比值.2.物理意义:功率是描述物体做功的快慢的物理量,功率大则做功快,功率小则做功慢.3.公式.(1)WPt=,P 为时间t内的平均功率.(2)v PP Fvcos v PF vαα⎧⎪-⎨⎪⎩为平均速度,则为平均功率。

《机械能守恒功能关系动能定理》压轴题 103道含详解

《机械能守恒功能关系动能定理》压轴题 103道含详解

《机械能守恒、功能关系、动能定理》压轴题103道含详解1.如图所示,一个质量为m的圆环套在一根固定的水平直杆上,环与杆的动摩擦因数为μ,现给环一个向右的初速度v0,如果在运动过程中还受到一个方向始终竖直向上的力F的作用,已知力F的大小F=kv(k 为常数,v为环的运动速度),则环在整个运动过程中克服摩擦力所做的功(假设杆足够长)可能为( ACD )A mv20 B .mv2+. 0 D mv2-解析:当mg=kv0时,即v=时,环作匀速运动,Wf=0,环克服摩擦力所做的功为零;(3分)当mg>kv0时,即v<时,环在运动过程中,v减少,F减少,f增大,最终环静止Wf=,环克服摩擦力所做的功为。

(5分)当mg<kv0时,即v>时,环在运动过程中,v减少,F减少,f减少到mg=kv时,环作匀速运动,Wf=,环克服摩擦力所做的功为;(7分)如图所示,一个质量为m的圆环套在一根固定的水平长直杆上,环与杆的摩擦因数为μ,现给环一个向右的初速度,同时对环加一个竖直向上的作用力F,并使F的大小随的大小变化,两者关系为,其中k为常数,则环运动过程中的速度图像可能是图中的[ ]A.B.C.D.答案ABD/physics2/ques/detail/eb389891-8b76-4a70-bc47-219824ceaf86如图,一个质量为m的圆环套在一根固定的水平长直杆上,环与杆的动摩擦因数为μ.现给环一个水平向右的恒力F,使圆环由静止开始运动,同时对环施加一个竖直向上、大小随速度变化的作用力F=kv,其中k为常数,则圆环运动过程中()13.如图所示,粗糙程度均匀的绝缘斜面下方O点处有一正点电荷,带负电的小物体以初速度V1从M点沿斜面上滑,到达N点时速度为零,然后下滑回到M点,此时速度为V2(V2<V1)。

若小物体电荷量保持不变,OM=ON,则A.小物体上升的最大高度为B.从N到M的过程中,小物体的电势能逐渐减小C.从M到N的过程中,电场力对小物体先做负功后做正功D.从N到M的过程中,小物体受到的摩擦力和电场力均是先增大后减小答案:AD解析:设斜面倾角为θ、上升过程沿斜面运动的最大距离为L。

功和功率,动能定理

功和功率,动能定理

第一部分功和功率知识要点梳理知识点一——功和功的计算▲知识梳理1.功的定义一个物体受到力的作用,如果在力的方向上发生一段位移,就说这个力对物体做了功。

2.做功的两个必要因素力和物体在力的方向上发生的位移,缺一不可。

如图甲所示,举重运动员举着杠铃不动时,杠铃没有发生位移,举杠铃的力对杠铃没有做功。

如图乙所示,足球在水平地面上滚动时,重力对球做的功为零。

3.功的物理意义:功是能量变化的量度能量的转化跟做功密切相关,做功的过程就是能量转化的过程,做了多少功就有多少能量发生了转化,功是能量转化的量度。

4.公式(1)当恒力F的方向与位移l的方向一致时,力对物体所做的功为W = Fl。

(2)当恒力F的方向与位移l 的方向成某一角度时,力F 物体所做的功为.即力对物体所做的功,等于力的大小、位移的大小、力与位移的夹角的余弦这三者的乘积。

5.功是标量,但有正负功的单位由力的单位和位移的单位决定。

在国际单位制中,功的单位是焦耳,简称焦,符号是J。

一个力对物体做负功,往往说成物体克服这个力做功(取绝对值)。

这两种说法在意义上是相同的。

例如竖直向上抛出的球,在向上运动的过程中,重力对球做了-6J的功,可以说成球克服重力做了6J的功。

由,可以看出:①当=0时,,即,力对物体做正功;②当时,,力对物体做正功。

①②两种情况都是外界对物体做功。

③当时,力与位移垂直,,即力对物体不做功,即外界和物体间无能量交换;④当时,,力对物体做负功;⑤当时,,此时,即力的方向与物体运动位移的方向完全相反,是物体运动的阻力。

④⑤两种情况都是物体对外界做功。

6.合力的功当物体在几个力的共同作用下发生一段位移时,这几个力的合力对物体所做的功,等于各个力分别对物体所做功的代数和。

求合力的功可以先求各个力所做的功,再求这些力所做功的代数和;也可先求合外力,再求合外力的功;也可用动能定理求解。

▲疑难导析一、功的正负的理解和判断1.功的正负的理解功是一个标量,只有大小没有方向。

动能定理和功能关系

动能定理和功能关系

1、子弹以某速度击中静止在光滑水平面上的木块,当子弹进入木块深度为x 时,木块相对水平面移动距离2x,求木块获得的动能1k E ∆和子弹损失的动能2k E ∆之比。

2、物体质量为10kg ,在平行于斜面的拉力F 作用下沿斜面向上运动,斜面与物体间的动摩擦因数为1.0=μ,当物体运动到斜面中点时,去掉拉力F ,物体刚好能运动到斜面顶端,斜面倾角为30°,求拉力F 多大?(2/10s m g =)3、质量为 5×105kg 的机车,以恒定的功率沿平直轨道行驶,在3min 内行驶了1450m ,其速度从10m/s 增加到最大速度15m/s .若阻力保持不变,求机车的功率和所受阻力的数值.【单个物体做功..与能量变化....之间的关系判定】 1.节日燃放礼花弹时,要先将礼花弹放入一个竖直的炮筒中,然后点燃礼花弹的发射部分,通过火药剧烈燃烧产生的高压燃气,将礼花弹由炮筒底部射向空中.若礼花弹在由炮筒底部出发至炮筒口的过程中,克服重力做功w 1,克服炮筒阻力及空气阻力做功w 2,高压燃气对礼花弹做功w 3,则礼花弹在炮筒内运动的过程中(设礼花弹发射过程中质量不变) ( )A .礼花弹的动能变化量为w 3+w 2+w 1B .礼花弹的动能变化量为w 3-w 2-w 1C .礼花弹的机械能变化量为w 3-w 2D .礼花弹的机械能变化量为w 3-w 12.飞船返回时高速进入大气层后,受到空气阻力的作用,接近地面时,减速伞打开,在距地面几米处,制动发动机点火制动,飞船迅速减速,安全着陆.下列说法正确的是( )A .制动发动机点火制动后,飞船的重力势能减小,动能减小B .制动发动机工作时,由于化学能转化为机械能,飞船的机械能增加C .重力始终对飞船做正功,使飞船的机械能增加D .重力对飞船做正功,阻力对飞船做负功,飞船的机械能不变3.如图,质量为m 的小车在水平恒力F 推动下,从山坡底部A 处由静止起运动至高为h 的坡顶B ,获得的速度为v ,AB 的水平距离为x .下列说法正确的是( ) A .小车克服重力所做的功是mghB .合力对小车做的功是12mv 2C .推力对小车做的功是Fx -mghD .小车机械能增加了12mv 2+mgh4.如图所示,某段滑雪道倾角为30°,总质量为m (包括雪具在内)的滑雪运动员从雪道上距底端高为h 处由静止开始匀加速下滑,加速度大小为13g ,他沿雪道滑到底端的过程中,下列说法正确的是( )A .运动员减少的重力势能全部转化为动能B .运动员获得的动能为23mghC .运动员克服摩擦力做功为23mghD .下滑过程中系统减少的机械能为13mgh5.如图跳水运动员最后踏板的过程可以简化为下述模型:运动员从高处落到处于自然状态的跳板(A 位置)上,随跳板一同向下做变速运动到达最低点(B 位置).对于运动员开始与跳板接触到运动至最低点B的过程中,下列说法中正确的是()A.运动员的动能一直在减小B.运动员的机械能一直在减小C.运动的加速度先变小后变大D.跳板的弹性势能先增加后减小6.如图,斜劈静止在水平地面上,有一物体沿斜劈表面向下运动,重力做的功与克服力F做的功相等.则下列判断中正确的是()A.物体可能加速下滑B.物体可能受三个力作用,且合力为零C.斜劈受到地面的摩擦力方向一定水平向左D.撤去F后斜劈可能不受地面的摩擦力【含弹簧类功能关系判定】1.如图所示,物体A的质量为m,置于水平地面上,A的上端连一轻弹簧,原长为L,劲度系数为k,现将弹簧上端B缓慢地竖直向上提起,使B点上移距离为L,此时物体A 也已经离开地面,则下列论述中正确的是( )A.提弹簧的力对系统做功为mgLB.物体A的重力势能增加mgLC.系统增加的机械能小于mgLD.以上说法都不正确2.轻质弹簧吊着小球静止在如图所示的A位置,现用水平外力F将小球缓慢拉到B位置,此时弹簧与竖直方向的夹角为θ,在这一过程中,对于整个系统,下列说法正确的是( )A.系统的弹性势能不变B.系统的弹性势能增加C.系统的机械能不变D.系统的机械能增加3.如图所示,一小球从光滑圆弧轨道顶端由静止开始下滑,进人光滑水平面又压缩弹簧.在此过程中,小球重力势能和动能的最大值分别为E p和E k,弹簧弹性势能的最大值为E p’,则它们之间的关系为( )A.E p=E k=E p’ B.E p>E k>E p’C.E p=E k+E p’ D.E p+E k=E p’4.如图所示,固定的倾斜光滑杆上套有一个质量为m的圆环,圆环与竖直放置的轻质弹簧一端相连,弹簧的另一端固定在地面上的A点,开始弹簧处于原长h.今让圆环沿杆自由滑下,滑到杆的底端时速度恰为零.则此过程中()A.圆环的机械能守恒B.弹簧对圆环先做正功后做负功C.弹簧的弹性势能变化了mghD.重力的功率一直减小5.如图所示,光滑水平面OB与足够长的粗糙斜面BC交于B点.轻弹簧左端固定于竖直墙面,现用质量为m1的滑块压缩弹簧至D 点,然后由静止释放,滑块脱离弹簧后经B点滑上斜面,上升到最大高度,并静止在斜面上.不计滑块在B点的机械能损失;换用相同材料质量为m2的滑块(m2>m1)压缩弹簧至同一点D后,重复上述过程,下列说法正确的是()A.两滑块到达B点的速度相同B.两滑块沿斜面上升的最大高度相同C.两滑块上升到最高点过程克服重力做的功相同D.两滑块上升到最高点过程机械能损失相同【连接体(系统)功能关系判定】1.如图a 、b 两物块质量分别为m 、2m ,用不计质量的细绳相连接,悬挂在定滑轮的两侧,不计滑轮质量和一切摩擦.开始时,a 、b 两物块距离地面高度相同,用手托住物块b ,然后突然由静止释放,直至a 、b 物块间高度差为h .在此过程中,下列说法正确的是( )A .物块a 的机械能逐渐增加B .物块b 机械能减少了23mghC .物块b 重力势能的减少量等于细绳拉力对它所做的功D .物块a 重力势能的增加量小于其动能增加2.如图所示,一直角斜面固定在地面上,A 、B 两质量相同的物块系于一根跨过定滑轮的轻绳两端,分别置于动摩擦因数相同的两斜面上,两物块可以看成质点,且位于同一高度并处于静止状态.绳子均与斜面平行.若剪断绳,让两物块从静止开始沿斜面下滑,下列叙述正确的是( )A .两物块沿斜面下滑的时间可能相同B .落地时A 物块的动能大于B 物块的动能C .落地时A 物块的机械能等于B 物块的机械能D .落地时两物块重力的功率可能相同3.如图,置于足够长斜面上的盒子A 内放有光滑球B ,B 恰与盒子前、后壁接触,斜面光滑且固定于水平地面上.一轻质弹簧的一端与固定在斜面上的木板P 拴接,另一端与A 相连.今用外力推A 使弹簧处于压缩状态,然后由静止释放,则从释放盒子直至其获得最大速度的过程中( )A .弹簧的弹性势能一直减小直至为零B .A 对B 做的功等于B 机械能的增加量C .弹簧弹性势能的减小量等于A 和B 机械能的增加量D .A 所受重力和弹簧弹力做功的代数和小于A 动能的增加量4.如图,在粗糙的水平面上,质量相等的两个物体A 、B 间用一轻质弹簧相连组成系统.且该系统在外力F 作用下一起做匀加速直线运动,当它们的总动能为2E k 时撤去水平力F ,最后系统停止运动.不计空气阻力,认为最大静摩擦力等于滑动摩擦力,从撤去拉力F 到系统停止运动的过程中( ) A .合外力对物体A 所做总功的绝对值等于E kB .物体A 克服摩擦阻力做的功等于E kC .系统克服摩擦阻力做的功可能等于系统的总动能2E kD .系统克服摩擦阻力做的功一定等于系统机械能的减小量5.如图,轻质弹簧的一端与固定的竖直板P 栓接,另一端与物体A 相连,物体A 静止于光滑水平桌面上,A 右端连接一细线,细线绕过光滑的定滑轮与物体B 相连.开始时用手托住B ,让细线恰好伸直,然后由静止释放B ,直至B 获得最大速度.下列有关该过程的分析正确的是( ) A .B 物体受到绳的拉力保持不变B .B 物体机械能的减少量小于弹簧弹性势能的增加量C .A 物体动能的增加量等于B 物体重力做功与弹簧对A 的弹力做功之和D .A 物体与弹簧所组成的系统机械能的增加量等于细线拉力对A 做的功6.如图,顶端装有定滑轮的斜面体放在粗糙水平地面上,M 、N 两物体通过轻弹簧和细绳连接,并处于静止状态(不计绳的质量和绳与滑轮间的摩擦).现用水平向右的恒力F 作用于物体N 上,物体N 升高到一定的距离h 的过程中,斜面体与物体M 仍然保持静止.设M 、N 两物体的质量都是m ,在此过程中( ) A .恒力F 所做的功等于物体N 增加的机械能 B .物体N 的重力势能增加量一定等于mghC .当弹簧的势能最大时,N 物体的动能最大D .M 物体受斜面的摩擦力一定变大7.如图所示,一轻弹簧左端固定在长木板m 2的左端,右端与小木块m 1连接,且m 1与m 2及m 2与地面之间接触面光滑.开始时m 1和m 2均静止,现同时对m 1、m 2施加等大、反向的水平恒力F 1和F 2,从两物体开始运动至以后的整个过程中,关于m 1、m 2和弹簧组成的系统(整个过程中弹簧形变不超过其弹性限度),下列说法正确的是()A.由于F1、F2等大反向,故系统机械能守恒B.由于F1、F2分别对m1、m2做正功,故系统动能不断增加C.由于F1、F2分别对m1、m2做正功,故系统机械能不断增加D.当弹簧弹力大小与F1、F2大小相等时,m1、m2的动能最大。

动能定理(精华)

动能定理(精华)

功与能的专题1、理解功的六个基本问题(1)做功与否的判断问题:关键看功的两个必要因素,第一是力;第二是力的方向上的位移。

(2)关于功的计算问题:①W=FS cos α这种方法只适用于恒力做功。

②用动能定理W=ΓE k 或功能关系求功。

当F 为变力时,高中阶段往往考虑用这种方法求功。

这种方法的依据是:做功的过程就是能量转化的过程,功是能的转化的量度。

如果知道某一过程中能量转化的数值,那么也就知道了该过程中对应的功的数值。

(3)关于求功率问题:①tW P = 所求出的功率是时间t 内的平均功率。

②功率的计算式:θcos Fv P =,其中θ是力与速度间的夹角。

一般用于求某一时刻的瞬时功率。

(4)一对作用力和反作用力做功的关系问题:①一对作用力和反作用力在同一段时间内做的总功可能为正、可能为负、也可能为零;②一对互为作用反作用的摩擦力做的总功可能为零(静摩擦力)、可能为负(滑动摩擦力),但不可能为正。

(5)了解常见力做功的特点:①重力做功和路径无关,只与物体始末位置的高度差h 有关:W=mgh ,当末位置低于初位置时,W >0,即重力做正功;反之重力做负功。

②滑动摩擦力做功与路径有关。

当某物体在一固定平面上运动时,滑动摩擦力做功的绝对值等于摩擦力与路程的乘积。

在两个接触面上因相对滑动而产生的热量相对滑S F Q =,其中滑F 为滑动摩擦力,相对S 为接触的两个物体的相对路程。

(6)做功意义的理解问题:做功意味着能量的转移与转化,做多少功,相应就有多少能量发生转移或转化。

2.理解动能和动能定理(1) 动能221mV E k =是物体运动的状态量,而动能的变化ΓE K 是与物理过程有关的过程量。

(2)动能定理的表述:合外力做的功等于物体动能的变化。

(这里的合外力指物体受到的所有外力的合力,包括重力)。

表达式为K E mv mv W ∆=-=21222121合 动能定理也可以表述为:外力对物体做的总功等于物体动能的变化。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

3.足球运动员用力踢质量为0.3 kg的静止足球,使足球以10 m/s的速度飞出,假定脚踢足球时对足球的平均作用力为400 N,球在水平面上运动了20 m后停止,那么人对足球做的功为(选C )A.8 000 JB.4 000 JC.15 JD.无法确定4.某人用手将一质量为1 kg的物体由静止向上提升1 m,这时物体的速度为2 m/s,则下列说法中错误的是(g取10 m/s2)(选B )A.手对物体做功12 JB.合外力对物体做功12 JC.合外力对物体做功2 JD.物体克服重力做功10 J9、距沙坑高7m处,以v0=10m/s的初速度竖直向上抛出一个重力为5N的物体,物体落到沙坑并陷入沙坑0.4m深处停下.不计空气阻力,g=10m/s2.求:(1)物体上升到最高点时离抛出点的高度;(2)物体在沙坑中受到的平均阻力大小是多少?四、动能定理分析连结体问题4、如图所示,m A=4kg,m B=1kg,A与桌面间的动摩擦因数μ=0.2,B与地面间的距离s=0.8m,A、B间绳子足够长,A、B原来静止,求:(1)B落到地面时的速度为多大;(2)B落地后,A在桌面上能继续滑行多远才能静止下来。

(g取10m/s2)1.关于功的判断,下列说法正确的是()A.功的大小只由力和位移决定B.力和位移都是矢量,所以功也是矢量C.因为功有正功和负功,所以功是矢量D.因为功只有大小而没有方向,所以功是标量解析:选D.由功的公式W=Fx cosα可知做功的多少不仅与力和位移有关,同时还与F和x正方向之间的夹角有关,故A错;功是标量没有方向,但有正负,正、负不表示大小,也不表示方向,只表示是动力做功还是阻力做功,故B、C错误,D项正确.2.人以20 N的水平恒力推着小车在粗糙的水平面上前进了5.0 m,人放手后,小车还前进了2.0 m才停下来,则小车在运动过程中,人的推力所做的功为() A.100 JB.140 JC.60 JD.无法确定解析:选A.人的推力作用在小车上的过程中,小车发生的位移是5.0 m,故该力做功为W=Fx cosα=20×5.0×cos0° J=100 J.4.如图4-1-17所示,B物体在拉力F的作用下向左运动,在运动的过程中,A、B 之间有相互的力,则对各力做功的情况,下列说法中正确的是(地面光滑,A、B物体粗糙)()A.A、B都克服摩擦力做功B.A、B间弹力对A、B都不做功C.摩擦力对B做负功,对A不做功D .弹力对A 不做功,对B 做正功 解析:选BC.判断AB 间是否有摩擦力时是看AB 间有无相对滑动(或运动趋势),计算功的大小时涉及到的位移,都是相对地面的位移.A 、B 间相互作用力为f 1与f 2、N AB 与N BA ,如图所示.A 没有位移,f 2、N BA 对A 不做功,B 有位移,f 1做负功,N AB 与位移成90°,不做功,B 、C 对,A 、D 错.如图4-1-19所示,滑雪者由静止开始沿斜坡从A 点自由下滑,然后在水平面上前进至B 点后停止.已知斜坡、水平面与滑雪板之间的动摩擦因数皆为μ,滑雪者(包括滑雪板)的质量为m ,A 、B 两点间的水平距离为L .在滑雪者运动的过程中,克服摩擦力做的功( )A .大于μmgLB .小于μmgLC .等于μmgLD .以上三种情况都有可能解析:选C.滑雪者运动过程中摩擦力做功为 W f =-μmg cos α·l AO -μmg ·l OB =-μmg (l AO cos α+l OB )=-μmgL .故此过程中,滑雪者克服摩擦力做的功为μmgL ,C 正确.10. 如图2-2-11所示,用50 N 的力拉一个质量为10kg 的物体在水平地面上前进,若物体前进了10m ,拉力F 做的功W 1=________J ,重力G 做的功W 2=________J.如果物体与水平面间动摩擦因数μ=0.1,物体克服阻力做功W 3=________J.2(sin 370.6,cos370.8,10/)g m s ︒=︒=取12.如图4-1-24所示,一个质量为m =2 kg 的物体受到与水平面成37°角的斜向下方的推力F =10 N 的作用,在水平地面上移动了距离x 1=2 m 后撤去推力,此物体又滑行了x 2=1.6 m 的距离后停止运动,动摩擦因数为0.2(g 取10 m/s 2)求:(1)推力F 对物体做的功;(2)全过程中摩擦力对物体所做的功.解析:(1)推力做功由W =Fx cos θ得 W F =Fx 1cos37°=10×2×0.8 J =16 J. (2)受力分析可知竖直方向2-2-11N1=mg+F sin37°=26 N,所以摩擦力做功W f1=μN1x1cos180°=0.2×26×2×(-1)J=-10.4 J,撤去外力后N2=mg=20 N.W f2=μN2x2cos180°=0.2×20×1.6×(-1)J=-6.4 J,故W f=W f1+W f2=-16.8 J.答案:(1)16 J(2)-16.8 J10.质量为2 kg的物体置于水平面上,在运动方向上受到水平拉力F的作用,沿水平方向做匀变速直线运动,2 s后撤去F,其运动的速度图像如图4-1-20所示,g取10 m/s2,则下列说法中正确的是().A.拉力F对物体做功150 JB.拉力F对物体做功500 JC.物体克服摩擦力做功100 JD.物体克服摩擦力做功175 J解析设摩擦力大小为f,在0~2 s内,a1=2.5 m/s2,F-f=ma1,位移x1=(5+10)×22m=15 m,在2~6 s内,a2=-2.5 m/s 2,x2=10×42m=20 m,只受摩擦力f作用,故f=-ma2=5 N,代入上式得F=10 N,则拉力F做功为W F=F·x1=150 J,摩擦力做功W f=-f(x1+x2)=-5×(15+20) J=-175 J,即物体克服摩擦力做功175 J.答案AD5.长为L的轻杆可绕O在竖直平面内无摩擦转动,质量为M的小球A固定于杆端点,质量为m的小球B固定于杆中点,且M=2m,开始杆处于水平,由静止释放,当杆转到竖直位置时()A.由于M>m,A球对轻杆做正功B.A球在最低点速度为5gL9图4C.OB杆的拉力等于BA杆的拉力D.B球对轻杆做功29mgL 图4-1-20解析:选D 由机械能守恒得:MgL +mg L 2=12M v 2A +12m v 2B ,又v A =2v B ,解得:v A=25gL9,v B =5gL 9,B 错误;由F OB -mg -F BA =m v 2BL 2,解得;F OB -F BA =199mg ,故C 错误;由ΔE A 机=12M v 2A -MgL =19MgL ,故杆对A 球做正功,A 错误;ΔEB 机=12m v 2B-mg L 2=-29mgL ,故B 球对轻杆做功为29mgL ,D 正确。

3.如图所示,质量相同的物体分别自斜面AC 和BC 的顶端由静止开始下滑,物体与斜面间的动摩擦因数都相同,物体滑到斜面底部C 点时的动能分别为E k1和E k2,下滑过程中克服摩擦力所做的功分别为W 1和W 2,则( )A .E k1>E k2 W 1<W 2B .E k1>E k2 W 1=W 2C .E k1=E k2 W 1>W 2D .E k1<E k2 W 1>W 2解析:设斜面的倾角为θ,斜面的底边长为L ,则下滑过程中克服摩擦力做的功为W =μmg cos θ·L /cos θ=μmgL ,所以两种情况下克服摩擦力做的功相等.又由于B 的高度比A 低,所以由动能定理可知E k1>E k2,故选B.答案:B4.一辆汽车以v 1=6 m/s 的速度沿水平路面行驶时,急刹车后能滑行l 1=3.6 m ,如果以v 2=8 m/s 的速度行驶,在同样路面上急刹车后滑行的距离l 2应为( )A .6.4 mB .5.6 mC .7.2 mD .10.8 m5.在足球比赛中,球刚踢出时的速度为v 0,并从球门右上角擦着横梁进入球门,如图所示.球门的高度为h ,足球飞入球门的速度为v ,足球的质量为m ,足球可看成质点.则球员将足球踢出时对足球做的功为(不计空气阻力)( )A .mgh +12m v 2B .mgh -12m v 2C.12m v 20-mgh -12m v 2D.12m v 206.如图所示,用同种材料制成的一个轨道,AB 段为14圆弧,半径为R ,水平放置的BC段长度为R .一小物块质量为m ,与轨道间动摩擦因数为μ,当它从轨道顶端A 由静止下滑时,恰好运动到C 点静止,那么物块在AB 段克服摩擦力做的功为( )A .μmgRB .mgR (1-μ)C .πμmgR /2D .mgR /2解析:设在AB 段物块克服摩擦力做的功为W ,则对物块从A 到C 全过程应用动能定理得mgR -W -μmgR =0,整理得W =mgR (1-μ),B 正确. 答案:B7.(2012·芜湖高一检测)2008年北京奥运会上,芜湖籍跳水运动员周吕鑫获得10米跳台的银牌,为芜湖人民争了光.假设在某次比赛中他从10 m 高处的跳台跳下,设水的平均阻力约为其体重的3倍,在粗略估算中,把运动员当做质点处理,为了保证运动员的人身安全,池水深度至少为(不计空气阻力)( )A .5 mB .3 mC .7 mD .1 m解析:设水的深度为h ,由动能定理mg × (10+h )-3mgh =0,h =5 m ,A 对. 答案:A9.一列车的质量为5.0×105 kg ,在平直的轨道上以额定功率3 000 kW 加速行驶,当速度由10 m/s 加速到所能达到的最大速度30 m/s 时,共用了2 min ,则在这段时间内列车前进的距离是多少?解析:列车速度最大时做匀速运动,则有 F 阻=F 牵=P v m =3 000×10330 N=1×105 N对列车速度由10 m/s 至30 m/s 的过程用动能定理得: Pt -F 阻·x =12m v 2m -12m v 2代入数据解得 x =1 600 m 答案:1 600 m9.如图所示,用细圆管组成的光滑轨道AB 部分平直,BC 部分是处于竖直平面内半径为R 的半圆,圆管截面半径r ≪R .有一质量为m ,半径比r 略小的光滑小球以水平初速度v 0射入圆管,问:(1)若要小球能从C 端出来,初速度v 0需多大?(2)在小球从C 端出来的瞬间,管壁对小球的压力为12mg ,那么小球的初速度v 0应为多少?解析:(1)要使小球能运动到C 处,且从C 端出来,必须满足12m v 20≥mg ·2R ,即:v 0≥2gR①(2)以AB 所在平面为零势面,则小球到达C 处时的重力势能为2mgR ,从B 到C 列机械能守恒方程:12m v 20=2mgR +12m v 2C② 小球在C 处受重力mg 和细管竖直方向的作用力F N ,根据牛顿第二定律,得:mg +F N=m v 2C R③由②③解得F N =m v 20R-5mg ④讨论④式,即得解:a .当小球受到向下的压力时, F N =12mg ,v 0= 5.5gRb .当小球受到向上的压力时, F N =-12mg ,v 0= 4.5gR答案:见解析8.如图所示,在一长为2l 的不可伸长的轻杆的两端,各固定一质量为2m 与m 的A 、B 两小球,系统可绕过杆的中点O 且垂直纸面的固定转轴转动.初始时轻杆处于水平状态,无初速度释放后,轻杆转动.当轻杆转至竖直位置时,小球A 的速率多大?解析:选A 、B 两小球与地球为一系统,在运动过程中没有机械能与其他形式能的转化,故系统的机械能守恒.选初始位置为参考平面,由机械能守恒得:0=-2mgl +mgl +12×2m v 2A +12m v 2B .① 因两球角速度ω相等,则v A =ωl ,② v B =ωl ,③联立①②③式,解得v A = 23gl . 答案:23gl 6.(2012·辽宁大连高一检测)如图是为了检验某种防护罩承受冲击能力的装置的一部分,M 为半径为R =1.0 m 、固定于竖直平面内的四分之一光滑圆弧轨道,轨道上端切线水平,M 的下端相切处放置竖直向上的弹簧枪,可发射速度不同的质量m =0.01 kg 的小钢珠.假设某次发射的钢珠沿轨道内侧恰好能经过M 的上端点水平飞出,取g =10 m/s 2,弹簧枪的长度不计,则发射该钢珠前,弹簧的弹性势能为( )A .0.10 JB .0.15 JC .0.20 JD .0.25 J解析:小钢珠恰好经过M 的上端点有mg =m v 2R ,所以v =gR =10 m/s.根据机械能守恒定律得E p =mgR +12m v 2=0.15 J.答案:B1.如图所示,细绳跨过定滑轮悬挂两物体M 和m ,且M >m ,不计摩擦,系统由静止开始运动过程中( )A.M、m各自的机械能分别守恒B.M减少的机械能等于m增加的机械能C.M减少的重力势能等于m增加的重力势能D.M和m组成的系统机械能守恒解析:M下落过程中,绳的拉力对M做负功,M的机械能减少;m上升过程,绳的拉力对m做正功,m的机械能增加,A错误;对M、m组成的系统,机械能守恒,易得B、D 正确;M减少的重力势能并没有全部用于m重力势能的增加,还有一部分转变成M、m的动能,所以D错误.答案:BD15.(滚动交汇考查)(10分)为了研究过山车的原理,物理小组提出了下列设想:取一个与水平方向夹角为37°、长为L=2.0 m的粗糙的倾斜轨道AB,通过水平轨道BC与竖直圆轨道相连,出口为水平轨道DE,整个轨道除AB段以外都是光滑的.其中AB与BC轨道以微小圆弧相接,如图所示.一个小物块以初速度v0=4.0 m/s,从某一高处水平抛出,到A点时速度方向恰沿AB方向,并沿倾斜轨道滑下.已知小物块与倾斜轨道的动摩擦因数μ=0.5(g取10m/s2,sin37°=0.60, cos37°=0.80)求:(1)小物块的抛出点和A点的高度差;(2)为了让小物块不离开轨道,并且能够滑回倾斜轨道AB,则竖直圆轨道的半径应该满足什么条件.(3)要使小物块不离开轨道,并从水平轨道DE滑出,求竖直圆轨道的半径应该满足什么条件.15.【解析】(1)设从抛出点到A点的高度差为h,到A点时竖直方向的速度为v y,则有:h=12gt2①(1分)tan37°=y 0v gt v v =②(1分)联立以上两式代入数据解得h=0.45 m③(1分)(2)小物块到达A 点时的速度: v A=5 m/s ④(1分)从A 到B,由动能定理: mgLsin37°-μmgLcos37°=12mv B 2-12mv A 2⑤(1分)要使小物块不离开轨道并且能够滑回倾斜轨道AB,则小物块沿圆轨道上升的最大高度不能超过圆心,即:12mv B 2≤mgR ′ ⑥(1分)所以R ′≥1.65 m ⑦(1分)(3)小物块从B 到竖直圆轨道最高点,由机械能守恒:12mv B 2=12mv P 2+2mgR ⑧(1分)在最高点有:2P v m R≥mg⑨(1分)由以上几式解得R ≤0.66 m⑩(1分)答案:(1)0.45 m (2)大于等于1.65 m (3)小于等于0.66 m13.(8分)如图所示,水平轨道AB 与位于竖直面内半径为R=0.90 m 的半圆形光滑轨道BCD 相连,半圆形轨道的BD 连线与AB 垂直.质量为m=1.0 kg 可看做质点的小滑块在恒定外力F 作用下从水平轨道上的A 点由静止开始向右运动,滑块与水平轨道AB 间的动摩擦因数μ=0.5.到达水平轨道的末端B 点时撤去外力,滑块继续沿半圆形轨道运动,且恰好能通过轨道最高点D ,滑块脱离半圆形轨道后又刚好落到A 点.g 取10 m/s 2,求:(1)滑块经过B 点进入半圆形轨道时对轨道的压力大小. (2)滑块在AB 段运动过程中恒定外力F 的大小.13.【解析】(1)滑块恰好通过最高点,则有:mg=2D v m R(1分)设滑块到达B 点时的速度为v B ,滑块由B 到D 过程由动能定理得: -2mgR=22D B 11mv mv 22(1分)对B 点:F N -mg=2B v m R(1分)联立以上各式,代入数据得:F N =60 N由牛顿第三定律知滑块对轨道的压力大小为60 N.(1分)(2)滑块从D 点离开轨道后做平抛运动, 则2R=21gt 2x AB =v D t(1分)滑块从A 运动到B 有:v B 2=2ax AB (1分) 由牛顿第二定律有:F-μmg=ma(1分)联立以上各式,代入数据得:F=17.5 N.(1分)答案:(1)60 N (2)17.5 N。

相关文档
最新文档