北师大版小学小升初数学期末复习应用题大全280题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
北师大版小学小升初数学期末复习应用题大全280题
一、北师大小学数学解决问题六年级下册应用题
1.沙漏又称沙钟,是我国古代一种计量时间的仪器,它是根据流沙从一个容器到另一个容器的数量来计算时间的。
图10展示了一个沙漏记录时间的情况。
(1)求出沙漏此时上部沙子的体积。
(2)现在沙漏下部沙子的体积是62.8cm,如果再过1分钟,沙漏上部的沙子可以全部漏到下部,那么现在下部的沙子已经计量了多少分钟?
2.一个盛有水的圆柱形容器,水面距容器口6厘米,从里面量这个容器底面半径为5厘米,现把一个底面半径为3厘米的圆锥形金属铸件完全浸没在水中,这时水面距容器口4.8厘米,求这个圆锥形金属铸件的高是多少?
3.求下列立体图形的体积。
4.
(1)用数对表示图中三角形顶点A、O的位置:A________,O________。
(2)将图中的三角形绕点O顺时针旋转90°,并画出旋转后的图形。
(3)将旋转后的三角形按2:1放大并画出图形。
5.一个圆柱形金属零件,底面半径是5厘米,高8厘米。
(1)将这个零件的表面全部涂上油漆,油漆面积是多少平方厘米?
(2)这种金属每立方厘米重10克,这个零件大约重多少克?
6.一张资料照片上显示一只恐龙的身长是5cm,这只恐龙的实际身长是8m,这张照片的比例尺是多少?
7.小明骑行去奶奶家,下表是他记录的已走路程和剩余路程情况。
已走路程/千米246810
剩余路程/千米1816141210
8.小雨每天上学都带一满壶水,如下图。
如果小雨想在学校一天喝水1.5L,这壶水够喝吗?(水壶厚度忽略不计,计算时π取3)
9.有一顶帽子,帽顶部分是圆柱形,用花布加工而成,帽檐部分是一个圆环,也是用同样的花布做的。
已知帽顶的半径、高和帽檐宽都是1dm,那么做这顶帽子至少要用多少平方分米的花布?
10.工人师傅要给停车位铺地砖,若用边长为4dm的方砖铺地,则需要540块。
若改用边长为3dm的方砖铺地,需要多少块?(用比例知识解答)
11.下面哪个圆能和左边这张长方形纸围成圆柱?围成的较大的圆柱体积是多少?较小的呢?(得数保留两位小数)
12.一个近似圆锥形的小麦堆,量得底面直径4米,高1.5米,这堆小麦大约有多少立方
米?
13.装订同样大小的练习本,如果每本装38页,可装订300本,如果每本多订2页,可以装订多少本?(用比例解)
14.把一根圆柱形钢材加工成一个圆锥形的零件,测得底面周长是9.42分米,高是2分米,如果每立方分米钢重7.8千克,这个零件约重多少千克?
15.一个直角三角形的三条边分别是6厘米、8厘米和10厘米,沿着它的一条直角边为轴旋转一周,可得到_______体,体积最小是多少?体积最大是多少?
16.在一幅比例尺是1:3000000地图上,量得甲、乙两地间的公路长10厘米,辆汽车从甲地出发,平均时速60千米,几小时能到达乙地?
17.一根长20cm的蜡烛8分钟可以燃烧完,照着这样计算,燃烧完一根长25cm的蜡烛需要多少分钟?(用比例知识解答)
18.下面是一个小区的平面图。
请根据图中信息完成以下问题(列比例式解答)。
(1)如果小区中设计一条480m长的公路,在图上应该画多长?
(2)一个长方形住宅区在图上长1cm,宽0.5cm,它的实际占地面积是多少平方米?19.用铁皮制作一个有盖的圆柱形油桶,底面半径是3dm,高与底面半径的比是2:1。
制作这个油桶至少需要多少平方分米的铁皮?
20.一幅地图的图上距离和实际距离的关系如下:
图上距离(cm)1234567……
实际距离(km)481216202428……
(2)这幅图的比例尺是________。
(3)图上距离和实际距离成________比例关系。
(4)在这幅图上量得两地的距离是13厘米,这两地间的实际距离是多少千米?
21.一个高为10厘米的圆柱,如果它的高增加2厘米,那么它的面积就增加125.6平方厘米,求这个圆柱的体积?(π取3.14)
22.小明为了测量出一只乌龟的体积,按如下的步骤进行了一个实验:①小明找来一个圆柱形玻璃水杯,量得底面周长是25.12厘米;②在玻璃杯中装入一定量的水,量得水面的高度是10厘米;③将乌龟放入水中完全浸没,再次测量水面的高度是12厘米。
如果玻璃的厚度忽略不计,这只乌龟的体积大约是多少立方厘米?
23.下图的博士帽是用黑色卡纸做成的,上面是边长30厘米的正方形,下面是底面直径16厘米、高10厘米的无底无盖的圆柱。
制作一个这样的“博士帽”至少需要多少平方厘米的黑色卡纸?
24.如下图,瓶底的面积和锥形杯口的面积相等,将瓶子中的液体倒入锥形杯子中,能倒满几杯?
小力:
假设瓶底的面积是100平方厘米,高是6厘米。
V圆柱=100×6×2=1200毫升
V圆锥=100×6× =200毫升
1200÷200=6杯
答:可以倒6杯。
笑笑:
V圆柱=sh×2=2sh
V圆锥= ×s×h= sh
V圆柱:V圆锥=2sh: sh=6:1
答:可以倒6杯。
小明:
等底等高的圆柱体积是圆锥体积的3倍。
3×2=6杯
答:可以倒6杯。
(1)三位同学的方法,你认为正确的在打√。
(2)你最喜欢()的解答方法,请用你喜欢的解答方法解决下面的问题。
乐乐说:“如果一个圆锥的体积和底面积都相等,那么圆锥的高是圆柱的高的3倍”乐乐的说法对吗?为什么?
25.下图是甲、乙两辆汽车行驶的路程和时间的关系图。
(1)甲车的路程与时间________,乙车的路程和时间________。
A.成正比例
B.成反比例
C.不成比例
(2)若乙车按目前的平均速度继续行驶,能不能追上甲车?请说明理由。
26.为了抗旱,小平家挖了一个底面半径5m、深2m的圆柱形蓄水池,并且用水泥涂抹水池的内壁与底部,防止漏水。
一场暴雨过后,小平沿水池边缘走了一圈,并测得池中水深1.2m。
(1)涂抹水泥的面积是多少平方米?
(2)池中水的体积是多少?
27.用a,h分别表示面积为96平方厘米的平行四边形的底和高。
(1)请完成下表,并回答问题。
a/cm123468122448
h/cm96
(2)A随着a的增加是怎样变化的?
(3)h与a成什么关系?为什么?
(4)当平行四边形的底为15厘米时,高是多少厘米?
28.用如图的一张长方形的铁皮做成一个圆柱形的油桶,求这个油桶的容积是多少立方分米,做这个油桶至少需要多少平方分米铁皮?(接头处和厚度不计)
29.操作实践,动手动脑。
(1)画出三角形AOB关于直线MN对称的图形。
(2)若B点的位置可以用(x,y)表示,则A点的位置为________。
(3)画出三角形AOB绕点A逆时针旋转90°后的图形。
30.下图中A、B、C表示三个城市的车站位置。
根据图中的比例尺,求下列问题。
(1)先测量图上有关长度(精确到整厘米),再分别求出A站到B站、B站到C站的实际距离。
(2)甲、乙两车分别同时从A、C两站开出,甲车从A到B再到C要行5小时;乙车从C 到B再到A要行4小时。
照这样的速度,
①两车开出几小时后可以在途中相遇?
②在相遇前当乙车到达B站时,甲车还离B站多少千米?
③如果两车要在B站相遇,则乙车可以从C站迟开出多少小时?
31.在比例尺是1:20000000的地图上量得甲、乙两地间的铁路长6厘米。
两列高速列车分别从甲、乙两地同时相对开出,已知从甲地开出的列车平均每小时行315千米,从乙地开出的列车平均每小时行285千米,几小时后两车能相遇?
32.计划修一条3600米的水渠,前6天完成了计划的,照这样计算修完水渠还需要多少天?(用比例解)
33.一架飞机顺风每小时飞行1500km,逆风每小时飞行1200km,燃油够飞9小时,飞机起飞时为顺风,飞机飞出多远就得往回飞?(用比例知识解答)
34.在一个圆柱形的储水箱里,把一段底面半径是5厘米的圆柱形钢材全部放入水中,水面就上升9厘米;把钢材竖着拉出水面8厘米后,水面就下降4厘米。
钢材的体积是多少?
35.下图是爸爸制作一个圆柱形油桶的下料图,阴影部分是制作油桶所用的铁皮,空白部分为边角料,请你根据下图计算这个油桶的容积。
(接头处忽略不计,保留整立方分米)
36.一个圆柱高8厘米,如果它的高增加2厘米,那么它的表面积增加25.12平方厘米,求原来圆柱的表面积是多少平方厘米?
37.把一个圆柱的侧面展开后得到一个长18厘米,宽12厘米的长方形,这个圆柱的体积最大可能是多少立方厘米?(π取近似值3)
38.下图是装某种饮料的易拉罐。
请你灵活思考,解决下面的问题。
(1)制作1个这种易拉罐,大约需要多大面积的铝箔?
(2)你认为饮料厂向易拉罐中装多少饮料合适?
(3)饮料厂将12罐饮料装在一个盒子里,请你设计出两种不同的包装盒,并给出设计方
案。
39.如图是校园一角的平面图,过A点有一根水管与长方形草坪的长边平行.
(1)请在平面图中用直线画出这根水管.
(2)从A点到下水道挖一条排水沟,要使其长度最短.请在平面图中用线段画出这条水沟.
(3)草坪长边的实际长度是________米.
40.在一个圆柱形储水桶里,把一段底面半径为7厘米的圆柱形钢材全部放人水中,这时水面上升10厘米.把这段钢材竖着拉出水面6厘米,水面下降3厘米。
求这段钢材的体积。
【参考答案】***试卷处理标记,请不要删除
一、北师大小学数学解决问题六年级下册应用题
1.(1)解:3.14×(2÷2)2×3×
=3.14×1
=3.14(cm3)
答:此时沙漏上部沙子的体积是3.14立方厘米。
(2)解:62.8÷3.14×1=20(分钟)
答:现在下部的沙子已经计量了20分钟。
【解析】【分析】(1)圆锥的体积=底面积×高×,根据圆锥的体积计算上部沙子的体积;
(2)用下部沙子的体积除以上部沙子的体积,得数是几,那么下部的沙子计量的时间就是几个1分钟。
2.解:3.14×52×(6-4.8)÷÷(3.14×32)
=3.14×25×1.2×3÷(3.14×9)
=3.14×90÷3.14÷9
=10(厘米)
答:这个圆锥形金属铸件的高是10厘米。
【解析】【分析】水面上升部分水的体积就是圆锥的体积,水面上升的高度是(6-4.8)厘米,根据圆柱的体积公式计算出水面上升部分水的体积,也就是圆锥的体积。
用圆锥的体
积除以,再除以圆锥的底面积即可求出圆锥的高度。
3.解:3.14×(202-102)×100
=3.14×(400-100)×100
=3.14×30000
=94200(cm3)
【解析】【分析】用横截面的面积乘长即可求出立体图形的体积,横截面的面积是一个圆环,由此根据公式计算即可。
4.(1)(1,6);(2,3)
(2)
(3)
【解析】【分析】(1)数对中第一个数表示列,第二个数表示行,根据各点所在的列与行
用数对表示即可;
(2)先确定旋转中心,然后根据旋转方向和度数确定对应点的位置,然后画出旋转后的图形;
(3)按2:1放大后的直角三角形的两条直角边分别是6格和2格,由此画出放大后的三角形即可。
5.(1)解:3.14×52×2+3.14×5×2×8=157+251.2=408.2(cm2)
答:油漆面积是408.2平方厘米。
(2)解:3.14×52×8=628(cm3)
628×10=6280(克)。
答:这个零件大约重6280克。
【解析】【分析】(1)在零件的表面全部涂上油漆,就是求圆柱的表面积,圆柱的表面积=底面积×2+侧面积,即S=2πr2+2πrh。
(2)先求圆柱的体积V=πr2h,因为每立方厘米重10克,看这个零件有多少立方厘米就有多少个10克,即可求出零件的重量。
6.解:5cm:8m
=5cm:800cm
=1:160
答:这张照片的比例尺是1:160。
【解析】【分析】先把单位进行换算,即1m=100cm,那么比例尺=图上距离:实际距离。
7.解:已走路程+剩余路程=全程,所以已走路程和剩余路程不成比例关系。
【解析】【分析】若y=kx(k不为0,x,y≠0),那么x和y成正比例关系;
若y=(k不为0,x,y≠0),那么x和y成反比例关系。
8.解:(10÷2)2×3×20=1500(立方厘米)=1.5升
答:这壶水够喝。
【解析】【分析】水壶的容积=(底面直径×2)2×π×h,然后进行三位换算,即1升=1000立方厘米,最后与小雨在学校一天喝水的升数进行比较即可。
9.解:3.14×1×2×1=6.28(dm2)
(1+1)2×3.14=12.56(dm2)
6.28+12.56=18.84(dm2)
答:做这顶帽子至少要用18.84dm2的花布。
【解析】【分析】将这个帽顶的顶部圆平移到底部,与帽檐合起来是圆,所以做这顶帽子至少要花布的面积=帽顶的侧面积+帽檐和帽顶的顶部合起来的面积,其中帽顶的侧面积=帽顶的半径×2×π×h,帽檐和帽顶的顶部合起来的面积=(帽顶的半径+帽檐的宽度)2×π。
10.解:设若用边长为3dm的方砖铺地,需要x块。
32x=540×42
9x÷9=8640÷9
x=960
答:若改用边长为3dm的方砖铺地,需要960块。
【解析】【分析】方砖的面积×需要的块数=停车位的面积(一定),据此解答即可。
11.解:A:4×3.14=12.56cm
B:3×3.14=9.42cm
C:2×3.14=6.28cm
所以A中和C中的圆能和左边这张长方形纸围成圆柱;
(4÷2)2×3.14×6.28≈78.88(cm3)
较小:(2÷2)2×3.14×12.56≈39.44(cm3)
答:围成的较大的圆柱体积是78.88cm3,较小的是39.44cm3。
【解析】【分析】圆柱的底面周长=底面直径×π,先分别算出这三个圆的周长,然后与长方形的长和宽相等的圆能围成圆柱,最后利用圆柱的体积=(直径÷2)2×π×h,计算出较大和较小的圆柱的体积。
12.解:3.14×()2×1.5×
=3.14×4×0.5
=6.28(立方米)
答:这堆小麦大约有6.28立方米。
【解析】【分析】圆锥的体积=底面积×高×,根据圆锥的体积公式直接计算即可。
13.解:设可以装订x本。
(38+2)x=38×300
x=11400÷40
x=285
答:可以装订285本。
【解析】【分析】装订的本数×每本装的页数=总页数,总页数不变,装订的本数与每本装订的页数成反比例,先设出未知数,然后根据总页数不变列出比例解答即可。
14.解:体积:×π×(9.42÷2π)2×2
=×3.14×2.25×2
=4.71(立方分米)
重量:4.71×7.8=36.738(千克)
答:这个零件约重36.738千克。
【解析】【分析】零件重量=体积×每立方分米钢重量,体积=×π×底面半径2×高,底面半径=底面周长÷2π。
15.解:沿着它的一条直角边为轴旋转一周,可得到圆锥体,
×62×3.14×8=301.44(立方厘米)
×82×3.14×6=401.92(立方厘米)
答:体积最小是301.44立方厘米,体积最大是401.92立方厘米。
【解析】【分析】直角三角形沿着它的一条直角边为轴旋转一周,可得到圆锥体;圆锥的
体积=×πr2h。
16.解:10÷
=30000000cm
=300km
300÷60=5(小时)
答:5小时能到达乙地。
【解析】【分析】时间=路程÷速度,路程=图上距离÷比例尺。
17.解:设燃烧完一根长25cm的蜡烛需要x分钟。
=
20x=200
x=10
答:燃烧完一根长25cm的蜡烛需要10分钟。
【解析】【分析】本题可以设燃烧完一根长25cm的蜡烛需要x分钟,题中存在的比例关
系是:=,据此解出x的值即可。
18.(1)解:480m=48000cm
48000×=8(厘米)
答:在图上应该画8厘米。
(2)解:1÷=6000(厘米)=60(米)
0.5÷=3000(厘米)=30(米)
60×30=1800(平方米)
答:它的实际占地面积是1800平方米。
【解析】【分析】1m=100cm
(1)图上距离=实际距离×比例尺,据此代入数据作答即可;
(2)实际距离=图上距离÷比例尺,所以住宅的实际占地面积=长×宽,据此代入数据作答即可。
19.解:3÷1×2=6(dm)
32×3.14×2+3×2×3.14×6
=56.52+113.04
=169.56(平方分米)
答:制作这个油桶至少需要169.56平方分米的铁皮。
【解析】【分析】圆柱的高=圆柱的底面半径÷底面半径占的份数×高占的份数,那么制作这个油桶至少需要铁皮的表面积=底面积×2+侧面积,其中底面积=πr2,侧面积=2πrh。
20.(1)解:
(2)1:400000
(3)正
(4)解:13÷
=5200000(厘米)
=52千米
答:两地间的实际距离是52千米。
【解析】【分析】(1)横轴表示图上距离,纵轴表示实际距离,据此先描点,后连线即可。
(2)比例尺=图上距离:实际距离;
(3)图上距离:实际距离的比值不变,所以图上距离和实际距离成正比例关系。
(4)实际距离=图上距离÷比例尺。
21.解:圆柱的底面半径:
125.6÷2÷3.14÷2
=62.8÷3.14÷2
=20÷2
=10(厘米)
体积:
3.14×10²×10
=3.14×100×10
=314×10
=3140(立方厘米)
答:这个圆柱的体积是3140立方厘米。
【解析】【分析】根据题意可知圆柱的高增加2厘米,那么它的面积就增加125.6平方厘米,增加的只是侧面积,侧面积÷高=底面周长,底面周长÷3.14÷2=半径;圆柱体的体积=底面积×高即可。
22.解:圆柱形玻璃水杯的底面半径是:25.12÷3.14÷2=4(厘米)
圆柱形玻璃水杯的底面积:3.14×4×4=50.24(平方厘米)
水的体积:50.24×10=502.4(立方厘米)
水增加的体积:50.24×(12-10)=100.48(立方厘米)
答:这只乌龟的体积大约是100.48立方厘米。
【解析】【分析】底面周长÷π÷2=底面半径;底面积=π×底面半径的平方;水的体积=底面积×高;水增加的体积=底面积×水增加的高度;水增加的体积就是这只乌龟的体积。
23.解:3.14×16×10+30×30
=502.4+900
=1402.4(cm2)
答:制作一个这样的“博士帽”至少需要1402.4平方厘米的黑色卡纸。
【解析】【分析】这个“博士帽”面积是一个正方形的面积和一个圆柱的侧面积组成,正方形的面积=边长×边长,圆柱的侧面积=πdh,再把两部分的面积合起来,即可求得“博士帽”的面积。
24.(1)解:
(2)解:我最喜欢笑笑的解答方法。
答:乐乐的说法是对的。
h圆柱=V÷s=, h圆锥=3V÷s=, h圆锥:h圆柱=:=3:1
【解析】【分析】(1)小力用假设法,分别求出圆柱和圆锥的容积,再比较,方法正确;笑笑用公式推导法,方法正确;小明的方法高度概括,等底等高的圆柱体积是圆锥体积的3倍,这样的2个圆柱就是圆锥体积的6倍,方法正确。
(2)答案不唯一,合理即可。
25.(1)A;C
(2)解:420÷6=70(千米/小时)
70<80
所以,按照目前的平均速度,乙车不能追上甲车。
【解析】【解答】(1)240÷3=80(千米/小时)
480÷6=80(千米/小时)
因为甲车的路程与时间的比值是定值,所以,甲车的路程与时间程正比例。
120÷1=120(千米/小时)
(180-120)÷(4-1)
=60÷3
=20(千米/小时)
(420-180)÷(6-4)
=240÷2
=120(千米/小时)
因为乙车的路程与时间的比值不是定值,所以,乙车的路程与时间不成比例。
故答案为:(1)A;C。
【分析】(1)两个量的比值是定值,则两个量成正比例,据此判断即可。
(2)乙车的平均速度=总路程÷总时间,甲车的速度=路程÷时间,代入数值计算,并比较两车的速度即可判断。
26.(1)解:3.14×52+3.14×(5×2)×2=141.3(平方米)
答:涂抹水泥的面积是141.3平方米。
(2)解:3.14×52×1.2=94.2(立方米)=94200升
答:池中水的体积是94200L。
【解析】【分析】(1)涂抹水泥的面积=圆柱的底面积+侧面积=πr2+πdh=πr2+π(r×2)h,据此代入数值解答即可,π一般取3.14;
(2)池中水的体积=底面积×水深=πr2×水深,1立方米=1000升,据此代入数值解答即可。
27.(1)解:填表如下:
a/cm123468122548
h/cm964832241912842
(3)解:因为底×高=平行四边形的面积(一定),所以平行四边形底和高成反比例。
(4)解:15h=96
h=96÷15=6.4
答:高是6.4厘米。
【解析】【分析】(1)平行四边形的面积=底×高,据此计算填表即可;
(2)根据表中数据的走向作答即可;
(3)如果xy=k(k为常数,x,y≠0),那么x和y成反比例;平行四边形的面积=底×高,平行四边形的面积一定,那么平行四边形底和高成反比例;
(4)平行四边形的高=平行四边形的面积÷底,据此作答即可。
28.解:设圆的直径为d分米,则:
3.14d+d=2
4.84
4.14d=24.84
d=6
所以r=d÷2=3;h=2d=12
容积:3.14×32×12
=3.14×9×12
=339.12(立方分米)
表面积=3.14×32×2+3.14×6×12
=56.52+226.08
=282.6(平方分米)
答:油桶的容积为339.12立方分米,做这个油桶至少需要282.6平方分米铁皮。
【解析】【分析】设圆的直径是d,大长方形的长是24.84分米,等于小长方形的长加上圆的直径d,小长方形的宽等于两个等圆直径之和,也就是2d,也就是圆柱的高,小长方形是圆柱侧面展开图,所以长应等于圆周长πd=3.14d,根据“大长方形的长等于圆的周长与直径的和”求出圆的直径,进而求出圆柱的高,由于没说铁皮厚度,所以油桶的容积就是圆柱体积,根据“圆柱的体积=πr2h”和“圆柱的表面积=2πr2+2πrh”进行解答即可。
29.(1)解:如图所示:
(2)(x+3,y+2)
(3)解:如图所示:
【解析】【分析】(1)画轴对称图形的方法:①点出关键点,找出所有的关键点,即图形中所有线段的端点;②确定关键点到对称轴的距离,关键点离对称轴多远,对称点就离对称轴多远;③点出对称点;④连线,按照给出的一半图形将所有对称点连接成线段。
(2)用数对表示位置,先表示列,后表示行; A点的位置为(列数+3,行数+2)。
(3)旋转作图,把一个图形绕其上面一点逆时针旋转一定的度数,先把这个点连接的边逆时针旋转指定的度数,然后把剩下的边连接起来即。
30.(1)A站到B站的图上距离是3厘米,B站到C站的图上距离是2厘米。
3÷=15000000(厘米)=150(千米)
2÷=10000000(厘米)=100(千米)
答:A站到B站的实际距离是150千米,B站到C站的实际距离是100千米。
(2)解:甲车速度:250÷5=50(千米)
乙车速度:250÷4=62.5(千米)
①250÷(50+62.5)=250÷112.5=(时)
答:两车开出小时后可以在途中相遇。
②100÷62.5=1.6(时)
150-50×1.6=70(千米)
答:甲车还离B站70千米。
③150÷50=3(小时)
(62.5×3-100)÷62.5=1.4(小时)
答:乙车可以从C站迟开出1.4小时。
【解析】【分析】(1)实际距离=图上距离÷比例尺,然后进行单位换算,即1千米=100000厘米;
(2)甲车的速度=从A到B再到C的距离÷甲车从A到B再到C要行的时间,乙车的速度=从A到B再到C的距离÷乙车从C到B再到A要行的时间;
①两车相遇需要的时间=从A到B再到C的距离÷两车的速度和;
②当乙车到达B站用的时间=从C到B的距离÷乙车的速度,所以甲车还离B站的距离=从A到B的距离-甲车的速度×当乙车到达B站用的时间;
③甲车到达B站用的时间=从A到B的距离÷甲车的速度,那么乙车可以从C站迟开出的时间=(乙车的速度×甲车到达B站用的时间-从C到B的距离)÷乙车的速度。
31.解:6÷
=6×20000000
=120000000(厘米)
=1200(千米)
1200÷(315+285)
=1200÷600
=2(小时)
答:2小时后两车能相遇。
【解析】【分析】实际距离=图上距离÷比例尺,据此求出实际距离;实际距离÷(甲车速度+乙车速度)=相遇时间。
32.解:3600×=2160(米)
设修完水渠还需要x天,则
2160x=1440×6
2160x=8640
x=4
答:照这样计算修完水渠还需要4天。
【解析】【分析】因为水渠的长度÷所修时间=每天修的水渠长度(一定),所以水渠的长
度和所修时间成正比例关系,根据,即可求得修完剩下的水渠还需要的时间。
33.解:设飞机飞出去x小时就得往回返。
1500x=1200×( 9 -x)
1500x=10800-1200x
1500x+1200x=10800
2700x=10800
x=10800÷2700
x=4
1500×4 =6000 (千米)
答:飞机飞出6000千米远就得往回飞。
【解析】【分析】设飞机飞出去x小时就得往回返。
往返的路程是不变的,速度和时间成反比例,顺风速度×飞出去时间=逆风速度×返回时间,根据关系列出比例,解比例求出飞机飞出的时间,进而求出飞出的路程即可。
34.解:水箱的底面积为:
5×5×3.14×8÷4
=628÷4
=157(平方厘米)
钢材的体积为:157×9=1413(立方厘米)。
答:钢材的体积是1413立方厘米。
【解析】【分析】拉出水面8厘米时,下降部分的水的体积就等于半径5厘米、高为8厘米的圆柱的体积,由此可以得出下降4厘米的水的体积为5×5×3.14×8=628立方厘米。
根据圆柱的体积公式即可求得水箱的底面积;然后用水箱的底面积乘水面上升的高度即可求出钢材的体积。
35.解:底面半径:16.56÷(2×3.14+2)
=16.56÷8.28
=2(dm)
容积:3.14×2²×2×4
=12.56×8
=100.48
≈100(dm³)
答:这个油桶的容积100dm³。
【解析】【分析】底面周长+底面直径=16.56,可得底面半径=16.56÷(2×π+2),容积=πr2×高,高=2×直径。
36.解:底面周长:25.12÷2=12.56(厘米)
底面半径:12.56÷3.14÷2
=4÷2
=2(厘米)
两个底面积和:3.14×22×2
=12.56×2
=25.12(平方厘米)
侧面积:12.56×8
=100.48(平方厘米)
表面积:25.12+100.48=125.6(平方厘米)
答:原来圆柱的表面积是125.6平方厘米。
【解析】【分析】底面周长=增加的表面积÷增加的高,底面半径=底面周长÷2π,底面积=π底面半径2,侧面积=底面周长×高,圆柱的表面积=两个底面面积和+侧面的面积,据此解答即可。
37.解:第一种情况:18÷3÷2
=6÷2
=3(厘米)
3×3²×12
=3×9×12
=27×12
=324(立方厘米)
第二种情况:12÷3÷2
=4÷2
=2(厘米)
3×2²×18
=3×4×18
=12×18
=216(立方厘米)
324立方厘米>216立方厘米
答:这个圆柱的体积最大可能是324立方厘米。
【解析】【分析】此题分两种情况,(1)当底面周长是18厘米时,高是12厘米,r=C÷π÷2,得出半径,然后底面积×高就可以计算出体积;(2)当底面周长是12厘米时,高是18厘米,r=C÷π÷2,得出半径,然后底面积×高就可以计算出体积。
38.(1)解:3.14×6×10+3.14×(6÷2)2×2
=3.14×6×10+3.14×9×2
=188.4+56.52
=244.92(平方厘米)
答:制作1个这种易拉罐,大约需要244.92平方厘米的铝箔。
(2)解:3.14×(6÷2)2×10
=3.14×9×10
=282.6(立方厘米)
1立方厘米=1毫升,
所以饮料厂向易拉罐中装270mL饮料最合适。
(3)解:12=6×2=4×3,
第一种方案:可将12瓶饮料放2排,每层6排;
第二种方案:可将12瓶饮料放3排,每排4瓶。
【解析】【分析】(1)要求需要多大面积的铝箔,则是求易拉罐的表面积,圆柱的表面积=圆柱的侧面积(底面周长【π×底面直径】×高)+2个底面积(π×底面半径的平方),代入数值计算即可;
(2)要求装多少饮料合适,即不大于圆柱的体积即可,圆柱的体积=底面积×高,代入数值计算即可;
(3)将12进行因式分解可得12=6×2=4×3,即第一种方案:可将12瓶饮料放2排,每层6排;第二种方案:可将12瓶饮料放3排,每排4瓶。
39.(1)
(2)
(3)90
【解析】【解答】解:(3)解:测量草坪长边的图上长度为3厘米,草坪长边的实际长度是3×30=90(米),所以草坪长边的实际长度是90米。
【分析】(1)过直线外一点做已知直线的平行线,把三角尺的一条直角边与已知直线重合,然后把直尺与另一条直角边重合,保持直尺不变,沿着直尺平移三角尺,直到这个点出现在第一条直角边上,最后沿着这条直角边画线即可;
(2)过直线外一点做已知直线的垂线,把三角尺的一条直角边与已知直线重合,沿着这条直线平移三角尺,直到直到这个点出现在第一条直角边上,最后沿着这条直角边画线,并标上直角符号即可;
(3)草坪场边的实际长度=图上距离÷比例尺,据此作答即可。
40.解: 3.14×7²×(6÷3×10)
=3.14×49×20
=3.14×980
=3077.2(立方厘米)
答:这段钢材的体积是3077.2立方厘米。
【解析】【分析】钢材的体积=πr2×高,高=6÷3×10。