(完整word版)勾股定理习题(附答案)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
勾股定理评估试卷(1)
一、选择题(每小题3分,共30分)
1.直角三角形一直角边长为12,另两条边长均为自然数,则其周长为( ).
(A)30(B)28(C)56(D)不能确定
2. 直角三角形的斜边比一直角边长2cm,另一直角边长为6cm,则它的斜边长
(A)4cm(B)8cm(C)10cm(D)12cm
20.如图,已知一等腰三角形的周长是16,底边上的高是4.求这个三角形各边的长.
21.如图,A、B两个小集镇在河流CD的同侧,分别到河的距离为AC=10千米,BD=30千米,且CD=30千米,现在要在河边建一自来水厂,向A、B两镇供水,铺设水管的费用为每千米3万,请你在河流CD上选择水厂的位置M,使铺设水管的费用最节省,并求出总费用是多少?
所以x=3,所以AB=AC=5,BC=6
21.作A点关于CD的对称点A′,连结B A′,与CD交于点E,则E点即为所求.总费用150万元.
22.116m2;
23.0.8米;
四、综合探索
24.4小时,2.5小时.
25. 解:若△ABC是锐角三角形,则有a2+b2>c2
若△ABC是钝角三角形,∠C为钝角,则有a2+b2<c2
12、如图1,是用硬纸板做成的两个全等的直角三角形,两直角边的长分别为a和b,斜边长为c;如图2是以c为直角变的等腰直角三角形,请你开动脑筋,将它们拼成一个能证明勾股定理的图形。
画出拼成的这个图形的示意图,写出它的名称;
用这个图形证明勾股定理;
设图1中的直角三角形由若干个,你能运用图1中所给的直角三角形拼出另外一种能证明勾股定理的图形吗?请画出拼成后的示意图。(无需证明)
A 6cm2B 8cm2C 10cm2D 12cm2
4、已知,如图,一轮船以16海里/时的速度从港口A出发向东北方向航行,另一轮船以12海里/时的速度同时从港口A出发向东南方向航行,离开港口2小时后,则两船相距_________
A 25海里B 30海里C 35海里D 40海里
填空题(每题6分)
5、在Rt△ABC中,∠C=90°,①若a=5,b=12,则c=___________;②若a=15,c=25,则b=___________;③若c=61,b=60,则a=__________;④若a∶b=3∶4,c=10则SRt△ABC=________
16. 如图,△ABC中,∠C=90°,AB垂直平分线交BC于D若BC=8,AD=5,则AC等于______________.
17.如图,四边形 是正方形, 垂直于 ,且 =3, =4,阴影部分的面积是______.
18.如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A,B,C,D的面积之和为___________cm2.
设CD为x,则有DB2=a2-x2
根据勾股定理得(b+x)2+a2―x2=c2
即b2+2bx+x2+a2―x2=c2

∴2bx>0
∴a2+b2<c2.
探索勾股定理测试卷姓名_________
(满分:100分 时间:45分钟) 成绩_______________
当△ABC是锐角三角形时,
证明:过点A作AD⊥CB,垂足为D。设CD为x,则有DB=a-x
根据勾股定理得b2-x2=c2―(a―x)2
即b2-x2=c2―a2+2ax―x2
∴a2+b2=c2+2ax
∵a>0,x>0
∴2ax>0
∴a2+b2>c2
当△ABC是钝角三角形时,
证明:过点B作BDAC,交AC的延长线于点D.
8.如果Rt△的两直角边长分别为n2-1,2n(n >1),那么它的斜边长是( )
A、2nB、n+1C、n2-1D、n2+1
9.在△ABC中, 若 △ABC的面积等于6,则边长c=
10.如图△ABC中, 则MN=
11.一个直角三角形的三边长的平方和为200,则斜边长为10
12.若△ABC是直角三角形,两直角边都是6,在三角形斜边上有一点P,到两直角边的距离相等,则这个距离等于六根二
10.如图,AB⊥CD于B,△ABD和△BCE都是等腰直角三角形,如果CD=17,BE=5,那么AC的长为( ).
(A)12 (B)7 (C)5 (D)13
(第10题) (第11题) (第14题)
二、填空题(每小题3分,24分)
11.如图为某楼梯,测得楼梯的长为5米,高3米,计划在楼梯表面铺地毯,地毯的长度至少需要____________米.
3. 已知一个Rt△的两边长分别为3和4,则第三边长的平方是( )
(A)25(B)14(C)7(D)7或25
4. 等腰三角形的腰长为10,底长为12,则其底边上的高为( )
(A)13 (B)8 (C)25 (D)64
5.五根小木棒,其长度分别为7,15,20,24,25,现将他们摆成两个直角三角形,其中正确的是( )
三、解答题(每小题8分,共40分)
19. 11世纪的一位阿拉伯数学家曾提出一个“鸟儿捉鱼”的问题:
“小溪边长着两棵棕榈树,恰好隔岸相望.一棵树高是30肘尺(肘尺是古代的长度单位),另外一棵高20肘尺;两棵棕榈树的树干间的距离是50肘尺.每棵树的树顶上都停着一只鸟.忽然,两只鸟同时看见棕榈树间的水面上游出一条鱼,它们立刻飞去抓鱼,并且同时到达目标.问这条鱼出现的地方离开比较高的棕榈树的树跟有多远?
探索勾股定理(二)
1.填空题
(1)某养殖厂有一个长2米、宽1.5米的矩形栅栏,现在要在相对角的顶点间加固一条木板,则木板的长应取米.
(2)有两艘渔船同时离开某港口去捕鱼,其中一艘以16海里/时的速度向东南方向航行,另一艘以12海里/时的速度向东北方向航行,它们离开港口一个半小时后相距海里.
(3)如图1:隔湖有两点A、B,为了测得A、B两点间的距离,从与AB方向成直角的BC方向上任取一点C,若测得CA=50m,CB=40m,那么A、B两点间的距离是_________.
3.已知a,b,c为△ABC三边,且满足(a2-b2)(a2+b2-c2)=0,则它的形状为( )
A.直角三角形B.等腰三角形
C.等腰直角三角形D.等腰三角形或直角三角形
4.如图,一圆柱高8cm,底面半径2cm,一只蚂蚁从点A爬到点B处吃食,要爬行的最短路程( 取3)是().
(A)20cm (B)10cm (C)14cm (D)无法确定
6、如图,所有的四边形都是正方形,所有的三角形都是直角三角形,其中最大的正方形的边和长为7cm,则正方形A,B,C,D的面积之和为___________cm2。
7、已知x、y为正数,且│x2-4│+(y2-3)2=0,如果以x、y的长为直角边作一个直角三角形,那么以这个直角三角形的斜边为边长的正方形的面积为___________。
10、已知,如图,四边形ABCD中,AB=3cm,AD=4cm,BC=13cm,CD=12cm,且
∠A=90°,求四边形ABCD的面积。
11、太阳刚刚从地平线升起,巴河姆就在草原上大步朝东方走去,他走了足足有10俄里才左拐弯,接着又走了许久许久,再向左拐弯,这样又走了2俄里,这时,他发现天色不早了,而自己离出发点还足足有17俄里,于是改变方向,拼命朝出发点跑去,在日落前赶回了出发点。这是俄罗斯大作家托尔斯泰在作品《一个人需要很多土地吗》中写的故事的一部分。你能算出巴河姆这一天共走了多少路?走过的路所围成的土地面积有多大吗?
2.已知一个等腰三角形的底边和腰的长分别为12cm和10cm,求这个三角形的面积.
3.在△ABC中,∠C=90°,AC=2.1cm,BC=2.8cm
(1)求这个三角形的斜边AB的长和斜边上的高CD的长.
(2)求斜边被分成的两部分AD和BD的长.
4.如图2,要修建一个育苗棚,棚高h=1.8m,棚宽a=2.4m,棚的长为12m,现要在棚顶上覆盖塑料薄膜,试求需要多少平方米塑料薄膜?
12.在直角三角形 中,斜边 =2,则 =______.
13.直角三角形的三边长为连续偶数,则其周长为.
14.如图,在△ABC中,∠C=90°,BC=3,AC=4.以斜边AB为直径作半圆,则这个半圆的面积是____________.
(第15题) (第16题) (第17题)
15.如图,校园内有两棵树,相距12米,一棵树高13米,另一棵树高8米,一只小鸟从一棵树的顶端飞到另一棵树的顶端,小鸟至少要飞___________米.
选择题(每题6分)
1、等腰三角形底边上的高为8,周长为32,则三角形的面积为______________
A 56B 48C 40D 321
2、如果Rt△的两直角边长分别为n2-1,2n(n>1),那么它的斜边长是____________
A 2nB n+1C n2-1D n2+1
3、已知,如图长方形ABCD中,AB=3cm,AD=9cm,将此长方形折叠,使点B与点D重合,折痕为EF,则△ABE的面积为________
25.(14分)△ABC中,BC ,AC ,AB ,若∠C=90°,如图(1),根据勾股定理,则 ,若△ABC不是直角三角形,如图(2)和图(3),请你类比勾股定理,试猜想 与 的关系,并证明你的结论.
参考答案
一、选择题(每小题3分,共30分)
1.(D);2.(C);3.(D);4.(B);5.(C);
8、在一棵树的10米高处有两只猴子,一只猴子爬下树走到离树20米处的池塘的A处。另一只爬到树顶D后直接跃到A处,距离以直线计算,如果两只猴子所经过的距离相等,则这棵树高____________米。
三、解答题(每题13分)
9、小明的叔叔家承包了一个矩形鱼池,已知其面积为48m2,其对角线长为10m,为建栅栏,要计算这个矩形鱼池的周长,你能帮助小明算一算吗?
22.如图所示的一块地,∠ADC=90°,AD=12m,CD=9m,AB=39m,BC=36m,求这块地的面积。
23. 如图,一架2.5米长的梯子AB,斜靠在一竖直的墙AC上,这时梯足B到墙底端C的距离为0.7米,如果梯子的顶端沿墙下滑0.4米,那么梯足将向外移多少米?
四、综合探索(共26分)
24.(12分)如图,某沿海开放城市A接到台风警报,在该市正南方向100km的B处有一台风中心,沿BC方向以20km/h的速度向D移动,已知城市A到BC的距离AD=60km,那么台风中心经过多长时间从B点移到D点?如果在距台风中心30km的圆形区域内都将有受到台风的破坏的危险,正在D点休闲的游人在接到台风警报后的几小时内撤离才可脱离危险?
6.将直角三角形的三条边长同时扩大同一倍数, 得到的三角形是( )
(A) 钝角三角形 (B) 锐角三角形 (C) 直角三角形 (D) 等腰三角形.
7.如图小方格都是边长为1的正方形,则四边形ABCD的面积是 ( )
(A) 25 (B) 12.5 (C) 9 (D) 8.5
8.三角形的三边长为 ,则这个三角形是( )
5.如图3,已知长方形ABCD中AB=8cm,BC=10cm,在边CD上取一点E,将△ADE折叠使点D恰好落在BC边上的点F,求CE的长.
勾股定理练习题:练习一:(基础)
等腰三角形的腰长为13,底边长为10,则顶角的平分线为___.
一个三角形的三边之比为5∶12∶13,它的周长为60,则它的面积是___.
(A) 等边三角形 (B) 钝角三角形
(C) 直角三角形 (D) 锐角三角形.
9.△ABC是某市在拆除违章建筑后的一块三角形空地.已知∠C=90°,AC=30米,AB=50米,如果要在这块空地上种植草皮,按每平方米草皮 元计算,那么共需要资金( ).
(A)50 元 (B)600 元 (C)1200 元 (D)1500 元
6.(C);7.(B);8.(C);9.(B);10.(D);
二、填空题(每小题3分,24分)
11.7;12.8;13.24;14. ;15. 13;
16.4;17.19;18.49;
三、解答题
19.20;
20.设BD=x,则AB=8-x
由勾股定理,可以得到AB2=BD2+AD2,也就是(8-x)2=x2+42.
在Rt△ABC中,斜边AB=2,则AB2+BC2+AC2=_____.
6.Rt△一直角边的长为11,另两边为自然数,则Rt△的周长为( )
A、121B、120C、132D、不能确定
7.如图,正方形网格中的△ABC,若小方格边长为1,则△ABC是 ( )
A.直角三角形 B.锐角三角形 C.钝角三角形 D.以上答案都不对
相关文档
最新文档