改则县第三中学校2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
改则县第三中学校2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 下列判断正确的是( )
A .①不是棱柱
B .②是圆台
C .③是棱锥
D .④是棱台
2. 若f (x )=﹣x 2+2ax 与g (x )=在区间[1,2]上都是减函数,则a 的取值范围是( )
A .(﹣∞,1]
B .[0,1]
C .(﹣2,﹣1)∪(﹣1,1]
D .(﹣∞,﹣2)∪(﹣1,1]
3. 若双曲线﹣
=1(a >0,b >0)的渐近线与圆(x ﹣2)2+y 2=2相切,则此双曲线的离心率等于( )
A .
B .
C .
D .2
4. 某几何体的三视图如图所示,则该几何体的表面积为( )
A .8+2
B .8+8
C .12+4
D .16+4
5. 在中,、、分别为角、
、
所对的边,若
,则此三角形的形状一定是
( )
A .等腰直角
B .等腰或直角
C .等腰
D .直角
6. 已知集合{
}
{
2
|5,x |y ,A y y x B A B ==-+===( )
A .[)1,+∞
B .[]1,3
C .(]3,5
D .[]3,5
【命题意图】本题考查二次函数的图象和函数定义域等基础知识,意在考查基本运算能力. 7. 若全集U={﹣1,0,1,2},P={x ∈Z|x 2<2},则∁U P=( ) A .{2} B .{0,2}
C .{﹣1,2}
D .{﹣1,0,2}
8. 如图在圆O 中,AB ,CD 是圆O 互相垂直的两条直径,现分别以OA ,OB ,OC ,OD 为直径作四个
圆,在圆O 内随机取一点,则此点取自阴影部分的概率是( )
A .
π
1
B .
π21 C .π121- D .π
2141- 【命题意图】本题考查几何概型概率的求法,借助圆这个载体,突出了几何概型的基本运算能力,因用到圆的几何性质及面积的割补思想,属于中等难度.
9. 在△ABC 中,∠A 、∠B 、∠C 所对的边长分别是a 、b 、c .若sinC+sin (B ﹣A )=sin2A ,则△ABC 的形状为( )
A .等腰三角形
B .直角三角形
C .等腰直角三角形
D .等腰三角形或直角三角形
10.数列{a n }满足a n+2=2a n+1﹣a n ,且a 2014,a 2016是函数f (x )
=+6x ﹣1的极值点,则log 2
(a 2000+a 2012+a 2018+a 2030)的值是( ) A .2
B .3
C .4
D .5
11
.是z 的共轭复数,若
z+=2,(z
﹣)i=2(i 为虚数单位),则z=( ) A .1+i B .﹣1﹣i C .﹣1+i
D .1﹣i
12.下列函数中,既是偶函数又在(0,)+∞单调递增的函数是( )
A .3
y x =
B . 2
1y x =-+
C .||1y x =+
D .2x
y -=
二、填空题
13.如图,是一回形图,其回形通道的宽和OB 1的长均为1,回形线与射线OA 交于A 1,A 2,A 3,…,若从点O 到点A 3的回形线为第1圈(长为7),从点A 3到点A 2的回形线为第2圈,从点A 2到点A 3的回形线为第3圈…依此类推,第8圈的长为 .
14.直线2x+3y+6=0与坐标轴所围成的三角形的面积为 .
15.【盐城中学2018届高三上第一次阶段性考试】函数f (x )=x ﹣lnx 的单调减区间为 .
16.命题p :∀x ∈R
,函数
的否定为 .
D
A
B
C
O
17.命题“对任意的x∈R,x3﹣x2+1≤0”的否定是.
18.满足tan(x+)≥﹣的x的集合是.
三、解答题
196
(2)求年推销金额y关于工作年限x的线性回归方程;
(3)若第6名推销员的工作年限为11年,试估计他的年推销金额.
20.已知函数f(x)=.
(1)求f(x)的定义域;
(2)判断并证明f(x)的奇偶性;
(3)求证:f()=﹣f(x).
21.在极坐标系中,圆C的极坐标方程为:ρ2=4ρ(cosθ+sinθ)﹣6.若以极点O为原点,极轴所在直线为x 轴建立平面直角坐标系.
(Ⅰ)求圆C的参数方程;
(Ⅱ)在直角坐标系中,点P(x,y)是圆C上动点,试求x+y的最大值,并求出此时点P的直角坐标.
22.设函数f(x)=ax2+bx+c(a≠0)为奇函数,其图象在点(1,f(1))处的切线与直线x﹣6y﹣7=0垂直,导函数
f′(x)的最小值为﹣12.
(1)求a,b,c的值;
(2)求函数f(x)的单调递增区间,并求函数f(x)在[﹣1,3]上的最大值和最小值.
23.已知函数f(x)=1+(﹣2<x≤2).
(1)用分段函数的形式表示函数;
(2)画出该函数的图象;
(3)写出该函数的值域.
24.如图,在四棱锥P﹣ABCD中,底面ABCD是正方形,PA⊥底面ABCD,且PA=AD,点F是棱PD的中点,点E为CD的中点.
(1)证明:EF∥平面PAC;
(2)证明:AF⊥EF.
改则县第三中学校2018-2019学年上学期高二数学12月月考试题含解析(参考答案)一、选择题
1.【答案】C
【解析】解:①是底面为梯形的棱柱;
②的两个底面不平行,不是圆台;
③是四棱锥;
④不是由棱锥截来的,
故选:C.
2.【答案】D
【解析】解:∵函数f(x)=﹣x2+2ax的对称轴为x=a,开口向下,
∴单调间区间为[a,+∞)
又∵f(x)在区间[1,2]上是减函数,
∴a≤1
∵函数g(x)=在区间(﹣∞,﹣a)和(﹣a,+∞)上均为减函数,
∵g(x)=在区间[1,2]上是减函数,
∴﹣a>2,或﹣a<1,
即a<﹣2,或a>﹣1,
综上得a∈(﹣∞,﹣2)∪(﹣1,1],
故选:D
【点评】本题主要考查二次函数与反比例函数的单调性的判断,以及根据所给函数单调区间,求参数的范围.3.【答案】B
【解析】解:由题意可知双曲线的渐近线方程之一为:bx+ay=0,
圆(x﹣2)2
+y2=2的圆心(2,0),半径为,
双曲线﹣=1(a>0,b>0)的渐近线与圆(x﹣2)2+y2=2相切,
可得:,
可得a2
=b2,c=a,
e==.
故选:B .
【点评】本题考查双曲线的简单性质的应用,双曲线的渐近线与圆的位置关系的应用,考查计算能力.
4. 【答案】D
【解析】解:根据三视图得出该几何体是一个斜四棱柱,AA
1=2,AB=2,高为,
根据三视图得出侧棱长度为=2,
∴该几何体的表面积为2×(2×+2×2+2×2)=16
,
故选:D
【点评】本题考查了空间几何体的三视图,运用求解表面积,关键是恢复几何体的直观图,属于中档题.
5. 【答案】B
【解析】 因为,所以由余弦定理得
,
即
,所以
或
,
即此三角形为等腰三角形或直角三角形,故选B
答案:B
6. 【答案】D
【解析】
{}{{}|5,||3,A y y B x y x x =≤===≥[]3,5A B ∴=,故选D.
7. 【答案】A
【解析】解:∵x 2
<2 ∴﹣
<x <
∴P={x ∈Z|x 2
<2}={x|﹣
<x
<,x ∈Z|}={﹣1,0,1},
又∵全集U={﹣1,0,1,2}, ∴∁U P={2} 故选:A .
8. 【答案】C
【解析】设圆O 的半径为2,根据图形的对称性,可以选择在扇形OAC 中研究问题,过两个半圆的交点分别向OA ,OC 作垂线,则此时构成一个以1为边长的正方形,则这个正方形内的阴影部分面积为
12
-π
,扇形OAC 的面积为π,所求概率为π
π
π
12112
-=
-=P . 9. 【答案】D
【解析】解:∵sinC+sin (B ﹣A )=sin2A , ∴sin (A+B )+sin (B ﹣A )=sin2A , ∴sinAcosB+cosAsinB+sinBcosA ﹣cosBsinA=sin2A ,
∴2cosAsinB=sin2A=2sinAcosA , ∴2cosA (sinA ﹣sinB )=0, ∴cosA=0,或sinA=sinB ,
∴
A=
,或a=b ,
∴△ABC 为等腰三角形或直角三角形 故选:D . 【点评】本题考查三角形形状的判断,涉及三角函数公式的应用,本题易约掉cosA 而导致漏解,属中档题和
易错题.
10.【答案】C
【解析】解:函数f (x )
=+6x ﹣1,可得f ′(x )=x 2﹣8x+6, ∵a 2014,a 2016是函数f (x )
=+6x ﹣1的极值点,
∴a 2014,a 2016是方程x 2
﹣8x+6=0的两实数根,则a 2014+a 2016=8.
数列{a n }中,满足a n+2=2a n+1﹣a n , 可知{a n }为等差数列,
∴a 2014+a 2016=a 2000+a 2030,即a 2000+a 2012+a 2018+a 2030=16, 从而log 2(a 2000+a 2012+a 2018+a 2030)=log 216=4. 故选:C .
【点评】熟练掌握利用导数研究函数的极值、等差数列的性质及其对数的运算法则是解题的关键.
11.【答案】D
【解析】解:由于,(z﹣)i=2,可得z﹣=﹣2i ①
又z+=2 ②
由①②解得z=1﹣i
故选D.
12.【答案】C
【解析】
试题分析:函数3
0,+∞上单调递减,不
=-+是偶函数,但是在区间()
=为奇函数,不合题意;函数21
y x
y x
合题意;函数2x
=为非奇非偶函数。
故选C。
y-
考点:1.函数的单调性;2.函数的奇偶性。
二、填空题
13.【答案】63.
【解析】解:∵第一圈长为:1+1+2+2+1=7
第二圈长为:2+3+4+4+2=15
第三圈长为:3+5+6+6+3=23
…
第n圈长为:n+(2n﹣1)+2n+2n+n=8n﹣1
故n=8时,第8圈的长为63,
故答案为:63.
【点评】本题主要考查了归纳推理,解答的一般步骤是:先通过观察第1,2,3,…圈的长的情况发现某些相同性质,再从相同性质中推出一个明确表达的一般性结论,最后将一般性结论再用于特殊情形.
14.【答案】3.
【解析】解:把x=0代入2x+3y+6=0可得y=﹣2,把y=0代入2x+3y+6=0可得x=﹣3,
∴直线与坐标轴的交点为(0,﹣2)和(﹣3,0),
故三角形的面积S=×2×3=3,
故答案为:3.
【点评】本题考查直线的一般式方程和三角形的面积公式,属基础题.
15.【答案】(0,1)
【解析】
考点:本题考查函数的单调性与导数的关系
16.【答案】∃x0∈R,函数f(x0)=2cos2x0+sin2x0>3.
【解析】解:全称命题的否定是特称命题,即为∃x
∈R,函数f(x0)=2cos2x0+sin2x0>3,
故答案为:∃x
∈R,函数f(x0)=2cos2x0+sin2x0>3,
17.【答案】存在x∈R,x3﹣x2+1>0.
【解析】解:因为全称命题的否定是特称命题,
所以命题“对任意的x∈R,x3﹣x2+1≤0”的否定是:存在x∈R,x3﹣x2+1>0.
故答案为:存在x∈R,x3﹣x2+1>0.
【点评】本题考查命题的否定,特称命题与全称命题的否定关系.
18.【答案】[kπ,+kπ),k∈Z.
【解析】解:由tan(x+)≥﹣得+kπ≤x+<+kπ,
解得kπ≤x<+kπ,
故不等式的解集为[kπ,+kπ),k∈Z,
故答案为:[kπ,+kπ),k∈Z,
【点评】本题主要考查三角不等式的求解,利用正切函数的图象和性质是解决本题的关键.三、解答题
19.【答案】
【解析】解:(1)依题意,画出散点图如图所示,
(2)从散点图可以看出,这些点大致在一条直线附近,
设所求的线性回归方程为.
则,
∴年推销金额y关于工作年限x的线性回归方程为=0.5x+0.4.
(3)由(2)可知,当x=11时,=0.5x+0.4=0.5×11+0.4=5.9(万元).∴可以估计第6名推销员的年推销金额为5.9万元.
20.【答案】
【解析】解:(1)∵1+x2≥1恒成立,∴f(x)的定义域为(﹣∞,+∞);
(2)∵f(﹣x)===f(x),
∴f(x)为偶函数;
(3)∵f(x)=.
∴f()===﹣=﹣f(x).
即f()=﹣f(x)成立.
【点评】本题主要考查函数定义域以及函数奇偶性的判断,比较基础.
21.【答案】
【解析】(本小题满分10分)选修4﹣4:坐标系与参数方程
解:(Ⅰ)因为ρ2=4ρ(cosθ+sinθ)﹣6,
所以x2+y2=4x+4y﹣6,
所以x2+y2﹣4x﹣4y+6=0,
即(x﹣2)2+(y﹣2)2=2为圆C的普通方程.…
所以所求的圆C的参数方程为(θ为参数).…
(Ⅱ)由(Ⅰ)可得,…
当时,即点P的直角坐标为(3,3)时,…x+y取到最大值为6.…
22.【答案】
【解析】解:(1)∵f(x)为奇函数,
∴f(﹣x)=﹣f(x),即﹣ax3﹣bx+c=﹣ax3﹣bx﹣c,∴c=0.
∵f′(x)=3ax2+b的最小值为﹣12,∴b=﹣12.
又直线x﹣6y﹣7=0的斜率为,则f′(1)=3a+b=﹣6,得a=2,
∴a=2,b=﹣12,c=0;
(2)由(1)知f(x)=2x3﹣12x,∴f′(x)=6x2﹣12=6(x+)(x﹣),
,
)
∵f(﹣1)=10,f()=﹣8,f(3)=18,
∴f(x)在[﹣1,3]上的最大值是f(3)=18,最小值是f()=﹣8.
23.【答案】
【解析】解:(1)函数f(x)=1+=,
(2)函数的图象如图:
.
(3)函数值域为:[1,3).
24.【答案】
【解析】(1)证明:如图,
∵点E,F分别为CD,PD的中点,
∴EF∥PC.
∵PC⊂平面PAC,EF⊄平面PAC,
∴EF∥平面PAC.
(2)证明:∵PA⊥平面ABCD,CD⊂平面ABCD,
又ABCD是矩形,∴CD⊥AD,
∵PA∩AD=A,∴CD⊥平面PAD.
∵AF⊂平面PAD,∴AF⊥CD.
∵PA=AD,点F是PD的中点,∴AF⊥PD.
又CD∩PD=D,∴AF⊥平面PDC.
∵EF⊂平面PDC,
∴AF⊥EF.
【点评】本题考查了线面平行的判定,考查了由线面垂直得线线垂直,综合考查了学生的空间想象能力和思维能力,是中档题.。