皋兰县第三中学2018-2019学年上学期高二数学12月月考试题含解析

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

皋兰县第三中学2018-2019学年上学期高二数学12月月考试题含解析
班级__________ 姓名__________ 分数__________
一、选择题
1. 下面茎叶图表示的是甲、乙两个篮球队在3次不同比赛中的得分情况,其中有一个数字模糊不清,在图中以m 表示.若甲队的平均得分不低于乙队的平均得分,那么m 的可能取值集合为( )
A .
B .
C .
D .
2. 过点(﹣1,3)且平行于直线x ﹣2y+3=0的直线方程为( )
A .x ﹣2y+7=0
B .2x+y ﹣1=0
C .x ﹣2y ﹣5=0
D .2x+y ﹣5=0
3. 设数集M={x|m ≤x ≤m+},N={x|n ﹣≤x ≤n},P={x|0≤x ≤1},且M ,N 都是集合P 的子集,如果把b ﹣a 叫做集合{x|a ≤x ≤b}的“长度”,那么集合M ∩N 的“长度”的最小值是( )
A .
B .
C .
D .
4. 棱台的两底面面积为1S 、2S ,中截面(过各棱中点的面积)面积为0S ,那么( )
A .=
B .0S =
C .0122S S S =+
D .20122S S S =
5. 某大学数学系共有本科生1000人,其中一、二、三、四年级的人数比为4:3:2:1,要用分层抽样的方法从所有本科生中抽取一个容量为200的样本,则应抽取三年级的学生人数为( ) A .80 B .40
C .60
D .20
6. 复数z=(m ∈R ,i 为虚数单位)在复平面上对应的点不可能位于( )
A .第一象限
B .第二象限
C .第三象限
D .第四象限
7. 一个几何体的三视图如图所示,如果该几何体的侧面面积为12π,则该几何体的体积是( )
A .4π
B .12π
C .16π
D .48π
8. 已知全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},则(∁U A )∩(∁U B )=( ) A .{5,8}
B .{7,9}
C .{0,1,3}
D .{2,4,6}
9. 等差数列{a n }中,已知前15项的和S 15=45,则a 8等于( )
A .
B .6
C .
D .3
10.集合{}|42,M x x k k Z ==+∈,{}|2,N x x k k Z ==∈,{}|42,P x x k k Z ==-∈,则M ,
N ,P 的关系( )
A .M P N =⊆
B .N P M =⊆
C .M N P =⊆
D .M P N ==
11.已知平面向量=(1,2),=(﹣2,m ),且∥,则=( )
A .(﹣5,﹣10)
B .(﹣4,﹣8)
C .(﹣3,﹣6)
D .(﹣2,﹣4)
12.已知某运动物体的位移随时间变化的函数关系为,设物体第n 秒内的位移为a n ,则
数列{a n }是( ) A .公差为a 的等差数列 B .公差为﹣a 的等差数列
C .公比为a 的等比数列
D .公比为的等比数列
二、填空题
13.抛物线y=x 2的焦点坐标为( )
A .(0,)
B .(
,0)
C .(0,4)
D .(0,2)
14.已知i 是虚数单位,复数
的模为 .
15.定义:[x](x ∈R )表示不超过x 的最大整数.例如[1.5]=1,[﹣0.5]=﹣1.给出下列结论: ①函数y=[sinx]是奇函数;
②函数y=[sinx]是周期为2π的周期函数; ③函数y=[sinx]﹣cosx 不存在零点;
④函数y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}.
其中正确的是 .(填上所有正确命题的编号)
16.不等式()2
110ax a x +++≥恒成立,则实数的值是__________. 17.如图所示是y=f (x )的导函数的图象,有下列四个命题: ①f (x )在(﹣3,1)上是增函数; ②x=﹣1是f (x )的极小值点;
③f (x )在(2,4)上是减函数,在(﹣1,2)上是增函数; ④x=2是f (x )的极小值点.
其中真命题为 (填写所有真命题的序号).
18.已知圆22240C x y x y m +-++=:,则其圆心坐标是_________,m 的取值范围是________. 【命题意图】本题考查圆的方程等基础知识,意在考查运算求解能力.
三、解答题
19.(本小题满分12分) 已知函数21()x f x x +=
,数列{}n a 满足:12a =,11n n a f a +⎛⎫= ⎪⎝⎭
(N n *
∈). (1)求数列{}n a 的通项公式;
(2)设数列{}n a 的前n 项和为n S ,求数列1n S ⎧⎫
⎨⎬⎩⎭
的前n 项和n T .
【命题意图】本题主要考查等差数列的概念,通项公式的求法,裂项求和公式,以及运算求解能力.
20.已知函数,

(Ⅰ)求函数的最大值; (Ⅱ)若,求函数
的单调递增区间.
21.已知函数f(x)=x|x﹣m|,x∈R.且f(4)=0
(1)求实数m的值.
(2)作出函数f(x)的图象,并根据图象写出f(x)的单调区间
(3)若方程f(x)=k有三个实数解,求实数k的取值范围.
22.已知cos(+θ)=﹣,<θ<,求的值.
23.已知函数f(x)=2|x﹣2|+ax(x∈R).
(1)当a=1时,求f(x)的最小值;
(2)当f(x)有最小值时,求a的取值范围;
(3)若函数h(x)=f(sinx)﹣2存在零点,求a的取值范围.
24.已知向量=(x,y),=(1,0),且(+)•(﹣)=0.
(1)求点Q(x,y)的轨迹C的方程;
(2)设曲线C与直线y=kx+m相交于不同的两点M、N,又点A(0,﹣1),当|AM|=|AN|时,求实数m的取值范围.
皋兰县第三中学2018-2019学年上学期高二数学12月月考试题含解析(参考答案) 一、选择题
1. 【答案】C
【解析】【知识点】样本的数据特征茎叶图 【试题解析】由题知:
所以m 可以取:0,1,2. 故答案为:C 2. 【答案】A 【解析】解:由题意可设所求的直线方程为x ﹣2y+c=0
∵过点(﹣1,3) 代入可得﹣1﹣6+c=0 则c=7
∴x ﹣2y+7=0 故选A . 【点评】本题主要考查了直线方程的求解,解决本题的关键根据直线平行的条件设出所求的直线方程x ﹣
2y+c=0.
3. 【答案】C
【解析】解:∵集M={x|m ≤x ≤
m+},N={x|n
﹣≤x ≤n}, P={x|0≤x ≤1},且M ,N 都是集合P 的子集, ∴根据题意,M
的长度为,N
的长度为, 当集合M ∩N 的长度的最小值时, M 与N 应分别在区间[0,1]的左右两端, 故M ∩N
的长度的最小值是
=

故选:C .
4. 【答案】A 【解析】
试题分析:不妨设棱台为三棱台,设棱台的高为2h 上部三棱锥的高为,根据相似比的性质可得:
220()2()a S a h
S a S a h
S '⎧=⎪+⎪⎨'⎪=+⎪⎩
,解得=A .
考点:棱台的结构特征.
5.【答案】B
【解析】解:∵要用分层抽样的方法从该系所有本科生中抽取一个容量为200的样本,
∴三年级要抽取的学生是×200=40,
故选:B.
【点评】本题考查分层抽样方法,本题解题的关键是看出三年级学生所占的比例,本题也可以先做出三年级学生数和每个个体被抽到的概率,得到结果.
6.【答案】C
【解析】解:z====+i,
当1+m>0且1﹣m>0时,有解:﹣1<m<1;
当1+m>0且1﹣m<0时,有解:m>1;
当1+m<0且1﹣m>0时,有解:m<﹣1;
当1+m<0且1﹣m<0时,无解;
故选:C.
【点评】本题考查复数的几何意义,注意解题方法的积累,属于中档题.
7.【答案】B
【解析】解:由三视图可知几何体是底面半径为2的圆柱,
∴几何体的侧面积为2π×2×h=12π,解得h=3,
∴几何体的体积V=π×22×3=12π.
故选B.
【点评】本题考查了圆柱的三视图,结构特征,体积,表面积计算,属于基础题.
8.【答案】B
【解析】解:由题义知,全集U={0,1,2,3,4,5,6,7,8,9},集合A={0,1,3,5,8},集合B={2,4,5,6,8},
所以C U A={2,4,6,7,9},C U B={0,1,3,7,9},
所以(C U A)∩(C U B)={7,9}
故选B
9.【答案】D
【解析】解:由等差数列的性质可得:S 15==15a 8=45,则a 8=3.
故选:D .
10.【答案】A 【解析】
试题分析:通过列举可知{}{}2,6,0,2,4,6M P N ==±±=±±±,所以M P N =⊆.
考点:两个集合相等、子集.1 11.【答案】B
【解析】解:排除法:横坐标为2+(﹣6)=﹣4, 故选B .
12.【答案】A
【解析】解:∵

∴a n =S (n )﹣s (n ﹣1)=
=
∴a n ﹣a n ﹣1=
=a
∴数列{a n }是以a 为公差的等差数列 故选A
【点评】本题主要考察了数列的递推公式求解数列的通项公式,等差数列的定义的应用,属于数列知识的简单应用
二、填空题
13.【答案】D
【解析】解:把抛物线y=x 2方程化为标准形式为x 2
=8y ,
∴焦点坐标为(0,2).
故选:D .
【点评】本题考查抛物线的标准方程和简单性质的应用,把抛物线的方程化为标准形式是关键.
14.【答案】 .
【解析】解:∵复数==i ﹣1的模为=.
故答案为:

【点评】本题考查了复数的运算法则、模的计算公式,属于基础题.
15.【答案】 ②③④
【解析】解:①函数y=[sinx]是非奇非偶函数;
②函数y=[sinx]的周期与y=sinx 的周期相同,故是周期为2π的周期函数; ③函数y=[sinx]的取值是﹣1,0,1,故y=[sinx]﹣cosx 不存在零点;
④函数数y=[sinx]、y=[cosx]的取值是﹣1,0,1,故y=[sinx]+[cosx]的值域是{﹣2,﹣1,0,1}. 故答案为:②③④.
【点评】本题考查命题的真假判断,考查新定义,正确理解新定义是关键.
16.【答案】1a = 【解析】
试题分析:因为不等式()2110ax a x +++≥恒成立,所以当0a =时,不等式可化为10x +≥,不符合题意;
当0a ≠时,应满足20(1)40a a a >⎧⎨∆=+-≤⎩,即2
(1)0
a a >⎧⎨-≤⎩,解得1a =.1 考点:不等式的恒成立问题.
17.【答案】 ①
【解析】解:由图象得:f (x )在(1,3)上递减,在(﹣3,1),(3,+∞)递增, ∴①f (x )在(﹣3,1)上是增函数,正确, x=3是f (x )的极小值点,②④不正确;
③f (x )在(2,4)上是减函数,在(﹣1,2)上是增函数,不正确, 故答案为:①.
18.【答案】(1,2)-,(,5)-∞.
【解析】将圆的一般方程化为标准方程,2
2
(1)(2)5x y m -++=-,∴圆心坐标(1,2)-, 而505m m ->⇒<,∴m 的范围是(,5)-∞,故填:(1,2)-,(,5)-∞.
三、解答题
19.【答案】
【解析】(1)∵211(
)2x f x
x x +=
=+,∴11
()2n n n
a f a a +
==+. 即12n n a a +-=,所以数列{}n a 是以首项为2,公差为2的等差数列, ∴1(1)22(1)2n a a n d n n =+-
=+-=. (5分) (2)∵数列{}n a 是等差数列,
∴1()(22)(1)22
n n a a n n n
S n n ++===+, ∴1111(1)1
n S n n n n ==-
++. (8分) ∴1231111n n T S S S S =++++
11111111()()()()1223341
n n =-+-+-++-+ 111n =-+1
n n =+. (12分) 20.【答案】
【解析】【知识点】三角函数的图像与性质恒等变换综合 【试题解析】(Ⅰ)由已知
当 ,即
, 时,
(Ⅱ)当
时,递增
即,令,且注意到
函数
的递增区间为
21.【答案】
【解析】解:(1)∵f (4)=0, ∴4|4﹣m|=0 ∴m=4,
(2)f (x )=x|x ﹣4|=
图象如图所示:
由图象可知,函数在(﹣∞,2),(4,+∞)上单调递增,在(2,4)上单调递减.
(3)方程f(x)=k的解的个数等价于函数y=f(x)与函数y=k的图象交点的个数,
由图可知k∈(0,4).
22.【答案】
【解析】解:∵<θ<,∴+θ∈(,),
∵cos(+θ)=﹣,∴sin(+θ)=﹣=﹣,
∴sin(+θ)=sinθcos+cosθsin=(cosθ+sinθ)=﹣,
∴sinθ+cosθ=﹣,①
cos(+θ)=cos cosθ﹣sin sinθ=(cosθ﹣cosβ)=﹣,
∴cosθ﹣sinθ=﹣,②
联立①②,得cosθ=﹣,sinθ=﹣,
∴==
==.
【点评】本题考查函数值的求法,是中档题,解题时要认真审题,注意三角函数诱导公式、加法定理和同角三角函数关系式的合理运用.
23.【答案】
【解析】解:(1)当a=1时,f(x)=2|x﹣2|+x=…(2分)
所以,f(x)在(﹣∞,2)递减,在[2,+∞)递增,
故最小值为f(2)=2;…(4分)
(2)f(x)=,…(6分)
要使函数f(x)有最小值,需,
∴﹣2≤a≤2,…(8分)
故a的取值范围为[﹣2,2].…(9分)
(3)∵sinx∈[﹣1,1],∴f(sinx)=(a﹣2)sinx+4,
“h(x)=f(sinx)﹣2=(a﹣2)sinx+2存在零点”等价于“方程(a﹣2)sinx+2=0有解”,
亦即有解,
∴,…(11分)
解得a≤0或a≥4,…(13分)
∴a的取值范围为(﹣∞,0]∪[4,+∞)…(14分)
【点评】本题主要考查分段函数的应用,利用分段函数的表达式结合一元二次函数的性质,是解决本题的关键.24.【答案】
【解析】解:(1)由题意向量=(x,y),=(1,0),且(+)•(﹣)=0,
∴,
化简得,
∴Q点的轨迹C的方程为.…
(2)由得(3k2+1)x2+6mkx+3(m2﹣1)=0,
由于直线与椭圆有两个不同的交点,∴△>0,即m2<3k2+1.①…
(i)当k≠0时,设弦MN的中点为P(x P,y P),x M、x N分别为点M、N的横坐标,则,
从而,,…
又|AM|=|AN|,∴AP⊥MN.
则,即2m=3k2+1,②
将②代入①得2m>m2,解得0<m<2,由②得,解得,
故所求的m的取值范围是(,2).…
(ii)当k=0时,|AM|=|AN|,∴AP⊥MN,m2<3k2+1,
解得﹣1<m<1.…
综上,当k≠0时,m的取值范围是(,2),
当k=0时,m的取值范围是(﹣1,1).…
【点评】本题考查轨迹方程,考查直线与椭圆的位置关系,考查小时分析解决问题的能力,属于中档题.。

相关文档
最新文档