2020-2021中考数学—一元二次方程组的综合压轴题专题复习附详细答案
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
2020-2021中考数学—一元二次方程组的综合压轴题专题复习附详细答案
一、一元二次方程
1.如图,A、B、C、D为矩形的4个顶点,AB=16cm,BC=6cm,动点P、Q分别以
3cm/s、2cm/s的速度从点A、C同时出发,点Q从点C向点D移动.
(1)若点P从点A移动到点B停止,点P、Q分别从点A、C同时出发,问经过2s时P、Q 两点之间的距离是多少cm?
(2)若点P从点A移动到点B停止,点Q随点P的停止而停止移动,点P、Q分别从点A、C 同时出发,问经过多长时间P、Q两点之间的距离是10cm?
(3)若点P沿着AB→BC→CD移动,点P、Q分别从点A、C同时出发,点Q从点C移动到点D停止时,点P随点Q的停止而停止移动,试探求经过多长时间△PBQ的面积为12cm2?
【答案】(1)cm;(2)8
5
s或
24
5
s;(3)经过4秒或6秒△PBQ的面积为
12cm2.
【解析】
试题分析:(1)作PE⊥CD于E,表示出PQ的长度,利用PE2+EQ2=PQ2列出方程求解即可;
(2)设x秒后,点P和点Q的距离是10cm.在Rt△PEQ中,根据勾股定理列出关于x的方程(16-5x)2=64,通过解方程即可求得x的值;
(3)分类讨论:①当点P在AB上时;②当点P在BC边上;③当点P在CD边上时.试题解析:(1)过点P作PE⊥CD于E.
则根据题意,得
EQ=16-2×3-2×2=6(cm),PE=AD=6cm;
在Rt△PEQ中,根据勾股定理,得
PE2+EQ2=PQ2,即36+36=PQ2,
∴cm;
∴经过2s时P、Q两点之间的距离是;(2)设x秒后,点P和点Q的距离是10cm.(16-2x-3x)2+62=102,即(16-5x)2=64,
∴16-5x=±8,
∴x1=8
5
,x2=
24
5
;
∴经过8
5
s或
24
5
sP、Q两点之间的距离是10cm;
(3)连接BQ.设经过ys后△PBQ的面积为12cm2.
①当0≤y≤16
3
时,则PB=16-3y,
∴1
2
PB•BC=12,即
1
2
×(16-3y)×6=12,
解得y=4;
②当16
3
<x≤
22
3
时,
BP=3y-AB=3y-16,QC=2y,则
1 2BP•CQ=
1
2
(3y-16)×2y=12,
解得y1=6,y2=-2
3
(舍去);
③22
3
<x≤8时,
QP=CQ-PQ=22-y,则
1 2QP•CB=
1
2
(22-y)×6=12,
解得y=18(舍去).
综上所述,经过4秒或6秒△PBQ的面积为 12cm2.
考点:一元二次方程的应用.
2.如图,抛物线y=ax2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,3),其对称轴l为x=﹣1.
(1)求抛物线的解析式并写出其顶点坐标;
(2)若动点P在第二象限内的抛物线上,动点N在对称轴l上.
①当PA⊥NA,且PA=NA时,求此时点P的坐标;
②当四边形PABC的面积最大时,求四边形PABC面积的最大值及此时点P的坐标.
【答案】(1)y=﹣(x+1)2
+4,顶点坐标为(﹣1,4);(2)①点P
﹣1,
2);②P (﹣32
,154) 【解析】
试题分析:(1)将B 、C 的坐标代入已知的抛物线的解析式,由对称轴为1x =-即可得到抛物线的解析式;
(2)①首先求得抛物线与x 轴的交点坐标,然后根据已知条件得到PD=OA ,从而得到方程求得x 的值即可求得点P 的坐标;
②ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形,表示出来得到二次函数,求得最值即可.
试题解析:(1)∵抛物线2
y ax bx c =++与x 轴交于点A 和点B (1,0),与y 轴交于
点C (0,3),其对称轴l 为1x =-,∴0
{3
1
2a b c c b
a
++==-=-,解得:1
{23a b c =-=-=,∴二次函数的
解析式为2
23y x x =--+=2
(1)4x -++,∴顶点坐标为(﹣1,4);
(2)令2
230y x x =--+=,解得3x =-或1x =,∴点A (﹣3,0),B (1,0),作
PD ⊥x 轴于点D ,∵点P 在223y x x =--+上,∴设点P (x ,223x x --+), ①∵PA ⊥NA ,且PA=NA ,∴△PAD ≌△AND ,∴OA=PD ,即2232y x x =--+=,解得
1(舍去)或
x=1,∴点P
(1,2);
②设P(x ,y),则223y x x =--+,∵ΔOBC ΔAPD ABCP C =PDO S S S S ++四边形梯形 =
12OB•OC+12AD•PD+12
(PD+OC)•OD=111
31+(3)(3)()222x y y x ⨯⨯⨯+++-=
333222
x y -+ =
2333(23)222x x x -+--+=239622x x --+=23375()228
x -++, ∴当x=32-
时,ABCP S 四边形最大值=758,当x=32
-时,2
23y x x =--+=154,此时P
(32
-
,15
4).
考点:1.二次函数综合题;2.二次函数的最值;3.最值问题;4.压轴题.
3.已知关于x 的方程24832x nx n --=和()2
2
3220x n x n -+-+=,是否存在这样的
n 值,使第一个方程的两个实数根的差的平方等于第二个方程的一整数根?若存在,请求
出这样的n 值;若不存在,请说明理由?
【答案】存在,n=0. 【解析】 【分析】
在方程①中,由一元二次方程的根与系数的关系,用含n 的式子表示出两个实数根的差的平方,把方程②分解因式,建立方程求n ,要注意n 的值要使方程②的根是整数. 【详解】 若存在n 满足题意.
设x1,x2是方程①的两个根,则x 1+x 2=2n ,x 1x 2=324
n +-,所以(x 1-x 2)2=4n 2
+3n+2, 由方程②得,(x+n-1)[x-2(n+1)]=0,
①若4n 2+3n+2=-n+1,解得n=-12
,但1-n=3
2不是整数,舍.
②若4n 2+3n+2=2(n+2),解得n=0或n=-1
4
(舍),
综上所述,n=0.
4.解方程:x 2-2x =2x +1.
【答案】x 1=2,x 2=2 【解析】
试题分析:根据方程,求出系数a 、b 、c ,然后求一元二次方程的根的判别式,最后根据
求根公式x =求解即可.
试题解析:方程化为x 2
-4x -1=0.
∵b2-4ac=(-4)2-4×1×(-1)=20,
∴x=,
∴x1=2,x2=2
5.已知x1、x2是关于x的﹣元二次方程(a﹣6)x2+2ax+a=0的两个实数根.
(1)求a的取值范围;
(2)若(x1+1)(x2+1)是负整数,求实数a的整数值.
【答案】(1)a≥0且a≠6;(2)a的值为7、8、9或12.
【解析】
【分析】
(1)根据一元二次方程的定义及一元二次方程的解与判别式之间的关系解答即可;(2)
根据根与系数的关系可得x1+x2=﹣
2
6
a
a+
,x1x2=
6
a
a+
,由(x1+1)(x2+1)=x1x2+x1+x2+1=
﹣
6
6
a-
是是负整数,即可得
6
6
a-
是正整数.根据a是整数,即可求得a的值2.
【详解】
(1)∵原方程有两实数根,
∴,
∴a≥0且a≠6.
(2)∵x1、x2是关于x的一元二次方程(a﹣6)x2+2ax+a=0的两个实数根,
∴x1+x2=﹣,x1x2=,
∴(x1+1)(x2+1)=x1x2+x1+x2+1=﹣+1=﹣.
∵(x1+1)(x2+1)是负整数,
∴﹣是负整数,即是正整数.
∵a是整数,
∴a﹣6的值为1、2、3或6,
∴a的值为7、8、9或12.
【点睛】
本题考查了根的判别式和根与系数的关系,能根据根的判别式和根与系数的关系得出关于a的不等式是解此题的关键.
6.已知关于x的一元二次方程(x﹣3)(x﹣4)﹣m2=0.
(1)求证:对任意实数m,方程总有2个不相等的实数根;
(2)若方程的一个根是2,求m的值及方程的另一个根.
【答案】(1)证明见解析;(2)m的值为,方程的另一个根是5.
【解析】
【分析】
(1)先把方程化为一般式,利用根的判别式△=b2-4ac证明判断即可;
(2)根据方程的根,利用代入法即可求解m的值,然后还原方程求出另一个解即可.
【详解】
(1)证明:
∵(x﹣3)(x﹣4)﹣m2=0,
∴x2﹣7x+12﹣m2=0,
∴△=(﹣7)2﹣4(12﹣m2)=1+4m2,
∵m2≥0,
∴△>0,
∴对任意实数m,方程总有2个不相等的实数根;
(2)解:∵方程的一个根是2,
∴4﹣14+12﹣m2=0,解得m=±,
∴原方程为x2﹣7x+10=0,解得x=2或x=5,
即m的值为±,方程的另一个根是5.
【点睛】
此题主要考查了一元二次方程根的判别式,熟练掌握一元二次方程的根的判别式与根的关系是关键.
当△=b2-4ac>0时,方程有两个不相等的实数根;
当△=b2-4ac=0时,方程有两个相等的实数根;
当△=b2-4ac<0时,方程没有实数根.
7.“父母恩深重,恩怜无歇时”,每年5月的第二个星期日即为母亲节,节日前夕巴蜀中学学生会计划采购一批鲜花礼盒赠送给妈妈们.
(1)经过和花店卖家议价,可在原标价的基础上打八折购进,若在花店购买80个礼盒最多花费7680元,请求出每个礼盒在花店的最高标价;(用不等式解答)
(2)后来学生会了解到通过“大众点评”或“美团”同城配送会在(1)中花店最高售价的基础上降价25%,学生会计划在这两个网站上分别购买相同数量的礼盒,但实际购买过程
中,“大众点评”网上的购买价格比原有价格上涨5
2
m%,购买数量和原计划一样:“美团”网
上的购买价格比原有价格下降了9
20
m元,购买数量在原计划基础上增加15m%,最终,在
两个网站的实际消费总额比原计划的预算总额增加了15
2
m%,求出m的值.
【答案】(1)120;(2)20.
【解析】
试题分析:(1)本题介绍两种解法:
解法一:设标价为x元,列不等式为0.8x•80≤7680,解出即可;
解法二:根据单价=总价÷数量先求出1个礼盒最多花费,再除以折扣可求出每个礼盒在花店的最高标价;
(2)先假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,表示在“大众点评”
网上的购买实际消费总额:120a(1﹣25%)(1+5
2
m%),在“美团”网上的购买实际消费
总额:a[120(1﹣25%)﹣9
20
m](1+15m%);根据“在两个网站的实际消费总额比原计划
的预算总额增加了15
2
m%”列方程解出即可.
试题解析:(1)解:解法一:设标价为x元,列不等式为0.8x•80≤7680,x≤120;
解法二:7680÷80÷0.8=96÷0.8=120(元).
答:每个礼盒在花店的最高标价是120元;
(2)解:假设学生会计划在这两个网站上分别购买的礼盒数为a个礼盒,由题意得:
120×0.8a(1﹣25%)(1+5
2
m%)+a[120×0.8(1﹣25%)﹣
9
20
m](1+15m%)=120×0.8a
(1﹣25%)×2(1+ 15
2
m%),即72a(1+
5
2
m%)+a(72﹣
9
20
m)(1+15m%)=144a
(1+ 15
2
m%),整理得:0.0675m2﹣1.35m=0,m2﹣20m=0,解得:m1=0(舍),
m2=20.
答:m的值是20.
点睛:本题是一元二次方程的应用,第二问有难度,正确表示出“大众点评”或“美团”实际消费总额是解题关键.
8.将m看作已知量,分别写出当0<x<m和x>m时,与之间的函数关系式;
9. y与x的函数关系式为:y=1.7x(x≤m);
或( x≥m) ;
10.∵1.7×35=59.5,1.7×80=136<151
∴这家酒店四月份用水量不超过m吨(或水费是按y=1.7x来计算的),
五月份用水量超过m吨(或水费是按来计算的)
则有151=1.7×80+(80-m)×
即m2-80m+1500=0
解得m1=30,m2=50.
又∵四月份用水量为35吨,m1=30<35,∴m1=30舍去.
∴m=50
【解析】
11.已知为正整数,二次方程
的两根为
,求下式的值:
【答案】
【解析】 由韦达定理,有
,
.于是,对正整数
,有
原式=
12.如图,在Rt ABC 中,90B =∠,10AC cm =,6BC cm =,现有两点P 、Q 的分别从点A 和点B 同时出发,沿边AB ,BC 向终点C 移动.已知点P ,Q 的速度分别为
2/cm s ,1/cm s ,且当其中一点到达终点时,另一点也随之停止移动,设P ,Q 两点移动时间为xs .问是否存在这样的x ,使得四边形APQC 的面积等于216cm ?若存在,请
求出此时x 的值;若不存在,请说明理由.
【答案】假设不成立,四边形APQC 面积的面积不能等于216cm ,理由见解析 【解析】 【分析】
根据题意,列出BQ 、PB 的表达式,再列出方程,判断根的情况. 【详解】
解:∵90B ∠=,10AC =,6BC =, ∴8AB =.
∴BQ x =,82PB x =-;
假设存在x 的值,使得四边形APQC 的面积等于216cm ,
则
()11
68821622
x x ⨯⨯--=, 整理得:2480x x -+=, ∵1632160=-=-<,
∴假设不成立,四边形APQC 面积的面积不能等于216cm . 【点睛】
本题考查了一元二次方程的应用,熟练掌握方程根的判别方法、理解方程的意义是本题的解题关键.
13.自2018年1月10日零时起,高铁开通,某旅行社为吸引广大市民组团去仙都旅游,推出了如下收费标准:如果人数不超过10人,人均旅游费用为200元,如果人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150元.
()1如果某单位组织12人参加仙都旅游,那么需支付旅行社旅游费用________元; () 2现某单位组织员工去仙都旅游,共支付给该旅行社旅游费用2625元,那么该单位有
多少名员工参加旅游? 【答案】(1)2280;(2)15 【解析】 【分析】
对于(1)根据人数超过10人,每增加1人,人均旅游费用降低5元,但人均旅游费用不得低于150来求解;
对于(2)设这次旅游可以安排x 人参加,而由10×200=2000<2625,可以得出人数大于10人,则根据x 列出方程:(10+x )(200-5x )=2625,求出x ,然后根据人均旅游费用降低5元,但人均旅游费用不得低于150来求出x 的范围,最后得出x 的值. 【详解】 (1)2280
()2因为1020020002625⨯=<.
因此参加人比10人多, 设在10人基础上再增加x 人,
由题意得:()()1020052625x x +-=. 解得 15x = 225x =, ∵2005150x -≥, ∴010x <≤,
经检验 15x =是方程的解且符合题意,225x =(舍去).
1010515x +=+=
答:该单位共有15名员工参加旅游. 【点睛】
本题主要考查一元二次方程的应用和一元一次不等式的应用,根据题意作出判断,列出一
元二次方程,求解方程,舍去不符合题意的解,从而得出结果.
14.已知:关于x 的一元二次方程221
(1)204
x m x m +++-=.
(1)若此方程有两个实数根,求没m 的最小整数值; (2)若此方程的两个实数根为1x ,2x ,且满足2
2211221184
x x x m x +=--,求m 的值. 【答案】(1)-4;(2)m=3 【解析】 【分析】
(1)利用根的判别式的意义得到△≥0,然后解不等式得到m 的范围,再在此范围内找出最小整数值即可;
(2)利用根与系数的关系得到12(1)x x m +=-+,2
12124
x x m =-,然后解关于m 的一元二次方程,即可确定m 的值. 【详解】
解:(1)∵2
21(1)204
x m x m +++-=有两个实数根,
∴2
2
1(1)41(2)04
m m ∆=+-⨯⨯-≥, ∴290m +≥, ∴92
m ≥-
; ∴m 的最小整数值为:4m =-;
(2)由根与系数的关系得:12(1)x x m +=-+,2
12124
x x m =-, 由2
2
2
12121184
x x x x m ++=-
得: ()22211121844m m m ⎛⎫
⎡⎤-+--=- ⎪⎣⎦⎝⎭
∴22150m m +-=, 解得:3m =或5m =-;
∵9
2
m ≥-, ∴3m =.
【点睛】
本题考查了根与系数的关系:若x 1,x 2是一元二次方程ax 2
+bx+c=0(a≠0)的两根时,则
12b
x x a +=-
,12c x x a
=.也考查了根的判别式.解题的关键是熟练掌握根与系数的关系
和根的判别式.
15.今年以来猪肉价格不断走高,引起了民众与区政府的高度关注,当市场猪肉的平均价格每 千克达到一定的单价时,政府将投入储备猪肉以平抑猪肉价格.据统计:从今年年初至 11月 10 日,猪排骨价格不断走高,11 月 10 日比年初价格上涨了 75%.今年 11 月 10 日某市 民于 A 超市购买 5 千克猪排骨花费 350 元.
(1)A 超市 11 月排骨的进货价为年初排骨售价的32
倍,按 11 月 10 日价格出售,平均一天能销售出 100 千克,超市统计发现:若排骨的售价每千克下降 1 元,其日销售量就增加 20千克,超市为了实现销售排骨每天有 1000 元的利润,为了尽可能让顾客优惠应该将排骨的 售价定位为每千克多少元?
(2)11 月 11 日,区政府决定投入储备猪肉并规定排骨在 11 月 10 日售价的基础上下调 a %出售,A 超市按规定价出售一批储备排骨,该超市在非储备排骨的价格不变情况下,该天的两种猪排骨总销量比 11 月 10 日增加了 a %,且储备排骨的销量占总销量的57
,两种排骨销售的总金额比 11 月 10 日提高了
128
a %,求 a 的值. 【答案】(1)售价为每千克65元;(2)a =35.
【解析】
【分析】 (1)先根据题意计算出11月10的售价和11月的进货价,设每千克降价x 元,则每千克的利润为10-x 元,日销量为100+20x 千克,根据销量×单利润=总利润列出方程求解,并根据为了尽可能让顾客优惠,对所得的解筛选;
(2)根据销售总金额=储备排骨销售单价×储备排骨销售数量+非储备排骨销售单价×非储备排骨销售数量,即可得出关于a 的一元二次方程,解之取其正值即可得出结论.
【详解】
解:(1)11月10日的售价为350÷5=70元/千克
年初的售价为:350÷5÷175%=40元/千克,
11月的进货价为: 3
40602?元/千克
设每千克降价x 元,则每千克的利润为70-60-x=10-x 元,日销量为100+20x 千克 则(10020)(10)1000x x +-=,
解得10x =,25x =
因为为了尽可能让顾客优惠,所以降价5元,则售价为每千克65元.
(2)根据题意可得52170(1%)100(1%)
70100(1%)701001%7728a a a a ⎛⎫-++⨯+=⨯+ ⎪⎝⎭
解得135a =,20a =(舍去)
所以a =35.
【点睛】
本题考查一元二次方程的应用,(1)中理清销售量随着单价的变化而变化的数量关系是解题关键;(2)中在求解时有些难度,可先设令%a t ,解方程求出t 后再求a 的值.。