2008-2016青岛市一模,立体几何

合集下载

2016届山东省青岛市高考数学一模试卷(文科)解析版

2016届山东省青岛市高考数学一模试卷(文科)解析版

2016年山东省青岛市高考数学一模试卷(文科)一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2016•青岛一模)已知全集U={y|y=x3,x=﹣1,0,1,2},集合A={﹣1,1},B={1,8},则A∩(∁U B)=()A.{﹣1,1} B.{﹣1}C.{1}D.∅2.(5分)(2016•青岛一模)函数的定义域为()A.(﹣∞,1]B.[﹣1,1] C.[1,2)∪(2,+∞)D.3.(5分)(2016•青岛一模)已知数据x1,x2,x3,…,x50,500(单位:公斤),其中x1,x2,x3,…,x50,是某班50个学生的体重,设这50个学生体重的平均数为x,中位数为y,则x1,x2,x3,…,x50,500这51个数据的平均数、中位数分别与x、y比较,下列说法正确的是()A.平均数增大,中位数一定变大B.平均数增大,中位数可能不变C.平均数可能不变,中位数可能不变D.平均数可能不变,中位数可能变小4.(5分)(2016•青岛一模)下列函数为偶函数的是()A.f(x)=x2﹣x B.f(x)=xcosx C.f(x)=xsinx D.5.(5分)(2016•青岛一模)已知a∈R,“关于x的不等式x2﹣2ax+a≥0的解集为R”是“0≤a≤1”()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件6.(5分)(2016•青岛一模)函数f(x)=的图象与函数的图象的交点个数是()A.1 B.2 C.3 D.47.(5分)(2016•青岛一模)如图,非零向量=,=,且NP⊥OM,P为垂足,若向量=,则λ的值为()A.B.﹣C.D.8.(5分)(2016•青岛一模)已知x,y∈R,且满足,则的最大值为()A.3 B.2 C.1 D.9.(5分)(2016•青岛一模)如图,四棱锥P﹣ABCD的底面ABCD为平行四边形,NB=2PN,则三棱锥N﹣PAC与四棱锥P﹣ABCD的体积比为()A.1:2 B.1:3 C.1:6 D.1:810.(5分)(2016•青岛一模)如图所示的程序框图,输出S的值为()A.B.C.D.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2016•青岛一模)已知i是虚数单位,m,n∈R,且m+2i=2﹣ni,则的共轭复数为.12.(5分)(2016•青岛一模)已知圆C的圆心坐标为(3,2),抛物线x2=﹣4y的准线被圆C截得的弦长为2,则圆C的方程为.13.(5分)(2016•青岛一模)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)是偶函数,它的部分图象如图所示.M是函数f(x)图象上的点,K,L是函数f(x)的图象与x轴的交点,且△KLM为等腰直角三角形,则f(x)=.14.(5分)(2016•青岛一模)若a>0,b>0,则的最小值是.15.(5分)(2016•青岛一模)已知点F1,F2为双曲线的左,右焦点,点P在双曲线C的右支上,且满足|PF2|=|F1F2|,∠F1F2P=120°,则双曲线的离心率为.三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16.(12分)(2016•凉山州模拟)2016年1月份,某家电公司为了调查用户对该公司售后服务的满意度,随机调查了10名使用该公司产品的用户,用户通过“10分制”对公司售后服务进行评价.分数不低于9.5分的用户为满意用户,分数低于9分的用户为不满意用户,其它分数的用户为基本满意用户.已知这10名用户的评分分别为:7.6,8.3,8.7,8.9,9.1,9.2,9.3,9.4,9.9,10.(Ⅰ)从这10名用户的不满意用户和基本满意用户中各抽取一人,求这两名用户评分之和大于18的概率;(Ⅱ)从这10名用户的满意用户和基本满意用户中任意抽取两人,求这两名用户至少有一人为满意用户的概率.17.(12分)(2016•青岛一模)在锐角△ABC中,角A,B,C的对边分别为a,b,c,向量,向量,且.(Ⅰ)求角B的大小;(Ⅱ)若sinAsinC=sin2B,求a﹣c的值.18.(12分)(2016•青岛一模)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BCA=45°,AP=AD=AC=2,E、F、H分别为PA、CD、PF的中点.(Ⅰ)设面PAB∩面PCD=l,求证:CD∥l;(Ⅱ)求证:AH⊥面EDC.19.(12分)(2016•青岛一模)已知等差数列{a n}的公差d=2,其前n项和为S n,数列{a n}的首项b1=2,其前n项和为T n,满足.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)求数列{|a n b n﹣14|}的前n项和W n.20.(13分)(2016•青岛一模)已知椭圆的长轴长为,点A,B,C在椭圆E上,其中点A是椭圆E的右顶点,直线BC过原点O,点B在第一象限,且|BC|=2|AB|,.(Ⅰ)求椭圆E的方程;(Ⅱ)与x轴不垂直的直线l与圆x2+y2=1相切,且与椭圆E交于两个不同的点M,N,求△MON的面积的取值范围.21.(14分)(2016•青岛一模)已知函数f(x)=sinx﹣ax,.(Ⅰ)对于x∈(0,1),f(x)>0恒成立,求实数a的取值范围;(Ⅱ)当a=0时,h(x)=x(lnx﹣1)﹣f′(x),证明h(x)存在唯一极值点.2016年山东省青岛市高考数学一模试卷(文科)参考答案与试题解析一、选择题(共10小题,每小题5分,满分50分)1.(5分)(2016•青岛一模)已知全集U={y|y=x3,x=﹣1,0,1,2},集合A={﹣1,1},B={1,8},则A∩(∁U B)=()A.{﹣1,1} B.{﹣1}C.{1}D.∅【分析】化简全集U,求出B在U中的补集,再计算A∩(∁U B).【解答】解:全集U={y|y=x3,x=﹣1,0,1,2}={﹣1,0,1,8},集合A={﹣1,1},B={1,8},∴∁U B={x|x∈Z,且x≠1,x≠8},∴A∩(∁U B)={﹣1}.故选:B.【点评】本题考查了全集与补集的概念与应用问题,是基础题目.2.(5分)(2016•青岛一模)函数的定义域为()A.(﹣∞,1]B.[﹣1,1] C.[1,2)∪(2,+∞)D.【分析】由函数列出不等式组,求出解集即可.【解答】解:由函数,得,解得,即﹣1≤x≤1且x≠﹣;所以函数y的定义域为[﹣1,﹣)∪(﹣,1].故选:D.【点评】本题考查了根据函数解析式求定义域的应用问题,是基础题目.3.(5分)(2016•青岛一模)已知数据x1,x2,x3,…,x50,500(单位:公斤),其中x1,x2,x3,…,x50,是某班50个学生的体重,设这50个学生体重的平均数为x,中位数为y,则x1,x2,x3,…,x50,500这51个数据的平均数、中位数分别与x、y比较,下列说法正确的是()A.平均数增大,中位数一定变大B.平均数增大,中位数可能不变C.平均数可能不变,中位数可能不变D.平均数可能不变,中位数可能变小【分析】根据平均数与中位数的定义,分析这组数据,即可得出正确的结论.【解答】解:根据题意得,数据x1,x2,x3,…,x50,是某班50个学生的体重,其平均数应在50公斤左右,再增加一个数据500,这51个数据的平均数一定增大,而中位数有可能不变,如:按大小顺序排列后,第25、26个数据相等时,其中位数相等.故选:B.【点评】本题考查了平均数与中位数的定义与应用问题,是基础题目.4.(5分)(2016•青岛一模)下列函数为偶函数的是()A.f(x)=x2﹣x B.f(x)=xcosx C.f(x)=xsinx D.【分析】根据函数奇偶性的定义进行判断即可.【解答】解:f(x)=x2﹣x的对称轴是x=,为非奇非偶函数,f(﹣x)=﹣xcosx=﹣f(x),则f(x)=xcosx为奇函数,f(﹣x)=﹣xsin(﹣x)=xsinx=f(x),则f(x)=xsinx为偶函数,f(﹣x)+f(x)=lg(﹣x)+lg(+x)=lg1=0,即f(﹣x)=﹣f(x),函数f(x)为奇函数,故选:C.【点评】本题主要考查函数奇偶性的判断,根据函数奇偶性的定义是解决本题的关键.比较基础.5.(5分)(2016•青岛一模)已知a∈R,“关于x的不等式x2﹣2ax+a≥0的解集为R”是“0≤a≤1”()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要条件【分析】不等式x2﹣2ax+a≥0的解集为R,则△≤0,解出即可.【解答】解:关于x的不等式x2﹣2ax+a≥0的解集为R,∴△≤0,即4a2﹣4a≤0,解得0≤a≤1.∴实数a的取值范围是[0,1].故“关于x的不等式x2﹣2ax+a≥0的解集为R”是“0≤a≤1”的充要条件,故选:C.【点评】本题考查了一元二次不等式的解集与判别式的关系,考查充分必要条件以及学生的运算能力,属于基础题.6.(5分)(2016•青岛一模)函数f(x)=的图象与函数的图象的交点个数是()A.1 B.2 C.3 D.4【分析】在同一个坐标系内分别画出函数的图象,数形结合求交点个数.【解答】解:两个函数图象如图:由图可知两个函数图形交点个数为1:故选A.【点评】本题考查了函数的图象;关键是正确画图、识图.7.(5分)(2016•青岛一模)如图,非零向量=,=,且NP⊥OM,P为垂足,若向量=,则λ的值为()A.B.﹣C.D.【分析】由题意可知,向量与的数量积等于0,把向量与都用向量与表示,整理后即可得到λ的值.【解答】解:由图可知,,即,所以,因为λ≠0,所以.故选C.【点评】本题考查了平面向量数量积的运算,考查了向量加法的几何意义,解答此题的突破口是运用向量与的数量积等于0,此题为中档题.8.(5分)(2016•青岛一模)已知x,y∈R,且满足,则的最大值为()A.3 B.2 C.1 D.【分析】作出不等式组对应的平面区域,利用t的几何意义进行求解即可.【解答】解:作出不等式组对应的平面区域如图,的几何意义是区域内的点到点(0,﹣1)的斜率,由图象知AD的斜率最大,由,得,即A(1,2),则的最大值为t==3,故选:A.【点评】本题主要考查线性规划的应用,根据直线的斜率公式以及数形结合是解决本题的关键.9.(5分)(2016•青岛一模)如图,四棱锥P﹣ABCD的底面ABCD为平行四边形,NB=2PN,则三棱锥N﹣PAC与四棱锥P﹣ABCD的体积比为()A.1:2 B.1:3 C.1:6 D.1:8【分析】V N﹣PAC=V P﹣ABC,而V P﹣ABC=V P﹣ABCD,故V N﹣PAC=V P﹣ABCD.【解答】解:设四棱锥P﹣ABCD的体积为V,∵四边形ABCD是平行四边形,∴S△ABC=S▱ABCD,∴V P﹣ABC=V.∵NB=2PN,∴V N﹣PAC=V P﹣ABC=V.∴三棱锥N﹣PAC与四棱锥P﹣ABCD的体积比为1:6.故选C.【点评】本题考查了棱锥的体积计算公式,属于基础题.10.(5分)(2016•青岛一模)如图所示的程序框图,输出S的值为()A.B.C.D.【分析】题目给出了当型循环结构框图,首先引入累加变量s和循环变量n,由判断框得知,算法执行的是求2n cosnπ的和,n从1取到100,利用等比数列求和公式即可计算得解.【解答】解:通过分析知该算法是求和2cosπ+22cos2π+23cos3π+…+2100cos100π,由于2cosπ+22cos2π+23cos3π+…+2100cos100π=﹣2+22﹣23+24﹣…+2100==.故选:C.【点评】本题考查了程序框图中的当型循环结构,当型循环结构是先判断再执行,若满足条件进入循环,否则结束循环,循环结构主要用在一些规律的重复计算,如累加、累积等,在循环结构中框图中,特别要注意条件应用,如计数变量和累加变量等.二、填空题:本大题共5小题,每小题5分,共25分.11.(5分)(2016•青岛一模)已知i是虚数单位,m,n∈R,且m+2i=2﹣ni,则的共轭复数为i.【分析】利用复数相等,求出m,n然后求解复数的代数形式.【解答】解:m,n∈R,且m+2i=2﹣ni,可得m=2,n=﹣2,====﹣i.它的共轭复数为i.故答案为:i.【点评】本题考查复数的代数形式混合运算,复数相等的充要条件,考查计算能力.12.(5分)(2016•青岛一模)已知圆C的圆心坐标为(3,2),抛物线x2=﹣4y的准线被圆C截得的弦长为2,则圆C的方程为(x﹣3)2+(y﹣2)2=2.【分析】求出准线方程,计算圆心到直线的距离,利用垂径定理计算圆的半径,得出圆的方程.【解答】解:抛物线x2=﹣4y的准线方程为:y=1.∴圆心C(3,2)到直线y=1的距离d=1.∴圆的半径r==,∴圆的方程为:(x﹣3)2+(y﹣2)2=2.故答案为:(x﹣3)2+(y﹣2)2=2.【点评】本题考查了抛物线的准线方程,直线与圆的位置关系,属于基础题.13.(5分)(2016•青岛一模)已知函数f(x)=Asin(ωx+φ)(A>0,ω>0,0<φ<π)是偶函数,它的部分图象如图所示.M是函数f(x)图象上的点,K,L是函数f(x)的图象与x轴的交点,且△KLM为等腰直角三角形,则f(x)=cosπx.【分析】由函数的最值求出A,由函数的奇偶性求出φ的值,由周期求出ω,可得函数的解析式.【解答】解:由题意可得A=,φ=2kπ+,k∈Z,再结合0<φ<π,可得φ=,函数f(x)=sin(ωx+)=cosωx.再根据•=,可得ω=π,函数f(x)=cosπx,故答案为:cosπx.【点评】由函数y=Asin(ωx+φ)的部分图象求解析式,由函数的最值求出A,由周期求出ω,由函数的奇偶性求出φ的值,属于基础题.14.(5分)(2016•青岛一模)若a>0,b>0,则的最小值是2+3.【分析】化简可得=++3,从而利用基本不等式求解即可.【解答】解:=2+++1=++3≥2+3,(当且仅当=,即a=b时,等号成立);故答案为:2+3.【点评】本题考查了基本不等式的应用.15.(5分)(2016•青岛一模)已知点F1,F2为双曲线的左,右焦点,点P在双曲线C的右支上,且满足|PF2|=|F1F2|,∠F1F2P=120°,则双曲线的离心率为.【分析】运用余弦定理可得|PF1|=2c,再由双曲线的定义可得|PF1|﹣|PF2|=2a,即为2c﹣2c=2a,运用离心率公式计算即可得到所求值.【解答】解:由题意可得|PF2|=|F1F2|=2c,∠PF2F1=120°,即有|PF1|2=|PF2|2+|F1F2|2﹣2|PF2|•|F1F2|cos∠PF2F1=4c2+4c2﹣2•4c2•(﹣)=12c2,即有|PF1|=2c,由双曲线的定义可得|PF1|﹣|PF2|=2a,即为2c﹣2c=2a,即有c=a,可得e==.故答案为:.【点评】本题考查双曲线的离心率的求法,注意运用余弦定理和双曲线的定义,考查运算能力,属于中档题.三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16.(12分)(2016•凉山州模拟)2016年1月份,某家电公司为了调查用户对该公司售后服务的满意度,随机调查了10名使用该公司产品的用户,用户通过“10分制”对公司售后服务进行评价.分数不低于9.5分的用户为满意用户,分数低于9分的用户为不满意用户,其它分数的用户为基本满意用户.已知这10名用户的评分分别为:7.6,8.3,8.7,8.9,9.1,9.2,9.3,9.4,9.9,10.(Ⅰ)从这10名用户的不满意用户和基本满意用户中各抽取一人,求这两名用户评分之和大于18的概率;(Ⅱ)从这10名用户的满意用户和基本满意用户中任意抽取两人,求这两名用户至少有一人为满意用户的概率.【分析】(Ⅰ)从不满意有户和基本满意用户中各抽取一人,利用列举法能求出两名用户评价分之和大于18的概率.(Ⅱ)从满意用户和基本满意用户中任意抽取两人,利用列举法能求出这两名用户至少有一人为满意用户的概率.【解答】解:(Ⅰ)从不满意有户和基本满意用户中各抽取一人,包含的所有基本事件为:(7.6,9.1),(7.6,9.2),(7.6,9.3),(7.6,9.4),(8.3,9.1),(8.3,9.2),(8.3,9.3),(8.3,9.4),(8.7,9.1),(8.7,9.2),(8.7,9.3),(8.7,9.4),(8.9,9.1),(8.9,9.2),(8.9,9.3),(8.9,9.4),共16种,设“两名用户评价分之和大于18”为事件M,其包含的基本事件为:(8.7,9.4),(8.9,9.2),(8.9,9.3),(8.9,9.4),共4种,则P(M)==.(Ⅱ)从满意用户和基本满意用户中任意抽取两人,包含的所有基本事件为:(9.1,9.2),(9.1,9.3),(9.1,9.4),(9.1,9.9),(9.1,10),(9.2,9.3),(9.2,9.4),(9.2,9.9),(9.2,10),(9.3,9.4),(9.3,9.9),(9.3,10),(9.4,9.9),(9.4,10),(9.9,10),共15种,设“两名用户至少一人为满意用户”为事件N,其包含的所有基本事件为:(9.1,9.9),(9.1,10),(9.2,9.9),(9.2,10),(9.3,9.9),(9.3,10),(9.4,9.9),(9.4,10),(9.9,10),共9种,∴这两名用户至少有一人为满意用户的概率p=.【点评】本题考查概率的求法,是基础题,解题时要认真审题,注意列举法的合理运用.17.(12分)(2016•青岛一模)在锐角△ABC中,角A,B,C的对边分别为a,b,c,向量,向量,且.(Ⅰ)求角B的大小;(Ⅱ)若sinAsinC=sin2B,求a﹣c的值.【分析】(I)由,可得2sin(A+C)﹣cos2B=0,解得tan2B=,可得B.(II)sinAsinC=sin2B,由正弦定理可得:ac=b2,再利用余弦定理即可得出.【解答】解:(I)∵,∴2sin(A+C)﹣cos2B=0,∴﹣2sinBcosB=cos2B,即sin2B=﹣cos2B,解得tan2B=,∵,∴2B∈(0,π),∴,解得B=.(II)∵sinAsinC=sin2B,由正弦定理可得:ac=b2,由余弦定理可得:b2=a2+c2﹣2accosB,∴ac=a2+c2﹣2accos,化为(a﹣c)2=0,解得a﹣c=0.【点评】本题考查了正弦定理余弦定理的应用、数量积运算性质、和差公式,考查了推理能力与计算能力,属于中档题.18.(12分)(2016•青岛一模)如图,在四棱锥P﹣ABCD中,PA⊥平面ABCD,AC⊥AD,AB⊥BC,∠BCA=45°,AP=AD=AC=2,E、F、H分别为PA、CD、PF的中点.(Ⅰ)设面PAB∩面PCD=l,求证:CD∥l;(Ⅱ)求证:AH⊥面EDC.【分析】(Ⅰ)由已知可证DC⊥BC,又AB⊥BC,可得AB∥CD,根据线面平行的判定定理以及性质定理即可证明CD∥l;(Ⅱ)连接AF,EH,连接EF交AH与G,利用CD⊥AF,CD⊥PA,可证CD⊥平面PAF,从而证明CD⊥AH.在△PAF中,通过证明AG2+GF2=AF2,可证得AH⊥EF,即可证明AH ⊥平面EDC.【解答】(本题满分为12分)证明:(Ⅰ)在四边形ABCD中,∵AC⊥AD,AD=AC=2,∴∠ACD=45°,∵∠BCA=45°,∴∠BCD=∠BCA+∠ACD=90°,DC⊥BC,又∵AB⊥BC,∴AB∥CD,…2分∵CD⊄面PAB,AB⊂面PAB,∴CD∥面PAB,…4分∵CD⊂面PCD,面PAB∩面PCD=l,∴根据线面平行的性质得CD∥l.…6分(Ⅱ)连接AF,EH,连接EF交AH与G,∵F为CD的中点,AD=AC,∴CD⊥AF,∵PA⊥平面ABCD,CD⊂平面ABCD,∴CD⊥PA,∵PA∩AF=A,∴CD⊥平面PAF,∵AH⊂平面PAF,∴CD⊥AH.…8分如图,在△PAF中,∵AC⊥AD,AD=AC=2,∴CD=2,∵F为CD的中点,∴AF=CD=,∵PA⊥平面ABCD,AF⊂平面ABCD,∴PA⊥AF.∵E为PA的中点,∴AE=1,∴EF==,∵E,H为PA,PF的中点,∴EH∥AF,EH=AF=,∴EH⊥PA,∴AH==,∵EH∥AF,∴△EHG∽△FAG,∴,∴AG=AH=,GF=EF=,∴AG2+GF2=AF2,∴AG⊥GF,即AH⊥EF,…11分∵EF∩CD=F,∴AH⊥平面EDC.…12分【点评】本小题主要考查线面平行的性质,直线与平面垂直的判定,考查空间想象能力、运算能力和推理论证能力,综合性较强,运算量较大,属于中档题.19.(12分)(2016•青岛一模)已知等差数列{a n}的公差d=2,其前n项和为S n,数列{a n}的首项b1=2,其前n项和为T n,满足.(Ⅰ)求数列{a n}、{b n}的通项公式;(Ⅱ)求数列{|a n b n﹣14|}的前n项和W n.【分析】(I)由,可得=T1+2=22,解得a1.利用等差数列的通项公式及其前n项和公式可得a n,S n.可得2n+1=T n+2,利用递推关系可得b n.(II)令c n=a n b n﹣14=(2n﹣1)•2n﹣14.可得:c1=﹣12,c2=﹣2,n≥3,c n>0.n≥3,W n=c1+c2+…+c n﹣2c1﹣2c2.W n=1×2+3×22+…+(2n﹣1)2n﹣14n+28,令Q n=1×2+3×22+…+(2n﹣1)2n,利用“错位相减法”与等比数列的前n项和公式即可得出.【解答】解:(I)∵,∴=T 1+2=2+2=4=22,∴+1=2,解得a1=1.∴a n=1+(n﹣1)×2=2n﹣1.∴S n==n2.∴2n+1=T n+2,∴当n≥2时,2n+1﹣2n=T n+2﹣(T n﹣1+2)=b n,∴b n=2n,当n=1时也成立.∴b n=2n.(II)令c n=a n b n﹣14=(2n﹣1)•2n﹣14.∴c1=﹣12,c2=﹣2,n≥3,c n>0.∴n≥3,W n=﹣c1﹣c2+c3+…+c n=c1+c2+…+c n﹣2c1﹣2c2.W n=1×2+3×22+…+(2n﹣1)2n﹣14n+28,令Q n=1×2+3×22+…+(2n﹣1)2n,2Q n=1×22+3×23+…+(2n﹣3)•2n+(2n﹣1)•2n+1,∴﹣Q n=2(2+22+…+2n)﹣2﹣(2n﹣1)•2n+1=2×﹣2﹣(2n﹣1)•2n+1=(3﹣2n)•2n+1﹣6,∴Q n=(2n﹣3)•2n+1+6.∴W n=.【点评】本题考查了递推关系、等差数列的通项公式及其前n项和公式,考查了分类讨论、推理能力与计算能力,属于中档题.20.(13分)(2016•青岛一模)已知椭圆的长轴长为,点A,B,C在椭圆E上,其中点A是椭圆E的右顶点,直线BC过原点O,点B在第一象限,且|BC|=2|AB|,.(Ⅰ)求椭圆E的方程;(Ⅱ)与x轴不垂直的直线l与圆x2+y2=1相切,且与椭圆E交于两个不同的点M,N,求△MON的面积的取值范围.【分析】(I)由题意可得2a=4,解得a.由点A是椭圆E的右顶点,直线BC过原点O,点B在第一象限,且|BC|=2|AB|,可得|BO|=|AB|,又,|OA|=a=2,利用余弦定理解得|BO|.可得B,代入椭圆方程即可得出.(II)设M(x1,y1),N(x2,y2),设直线L的方程为:y=kx+m.与椭圆方程联立化为(1+2k2)x2+4kmx+2m2﹣8=0,△>0,化为8k2+4>m2.利用根与系数的关系可得则|MN|=.由直线l与圆x2+y2=1相切,可得=1,化为m2=1+k2,利用S△MON=|MN|,通过换元再利用二次函数的单调性即可得出.本题考查了椭圆的标准方程及其性质、直线与圆相切的性质、一元二次方程的根与系数的关系、弦长公式、点到直线的距离公式、三角形面积计算公式、二次函数的单调性,考查了推理能力与计算能力,属于难题.【解答】解:(I)∵2a=4,∴a=2.∵点A是椭圆E的右顶点,直线BC过原点O,点B在第一象限,且|BC|=2|AB|,∴|BO|=|AB|,∵,|OA|=a=2,∴|OA|2=|BO|2+|AB|2﹣2|BO||AB|cos∠ABO,∴8=2|BO|2,解得|BO|=.∴B,代入椭圆方程可得:=1=1,解得b2=4.∴椭圆E的方程为=1.(II)设M(x1,y1),N(x2,y2),设直线l的方程为:y=kx+m.联立,化为(1+2k2)x2+4kmx+2m2﹣8=0,∵直线l与椭圆相交于不同的两点,∴△>0,化为8k2+4>m2.∴x1+x2=,x1x2=,则|MN|===,∵直线l与圆x2+y2=1相切,∴=1,化为m2=1+k2,∴|MN|=,则S△MON=|MN|×1=,令1+2k2=t≥1,则k2=代入上式可得:,∵t≥1,∴,∴<S△MON≤.即△MON的面积的取值范围是.【点评】本题考查了椭圆的标准方程及其性质、直线与圆相切的性质、一元二次方程的根与系数的关系、弦长公式、点到直线的距离公式、三角形面积计算公式、二次函数的单调性,考查了推理能力与计算能力,属于难题.21.(14分)(2016•青岛一模)已知函数f(x)=sinx﹣ax,.(Ⅰ)对于x∈(0,1),f(x)>0恒成立,求实数a的取值范围;(Ⅱ)当a=0时,h(x)=x(lnx﹣1)﹣f′(x),证明h(x)存在唯一极值点.【分析】(Ⅰ)由a<,令g(x)=,求出函数的导数,根据函数的单调性求出g(x)的最小值,从而求出a的范围;(Ⅱ)求出h(x)的导数,通过讨论x的范围,求出函数的单调区间,从而证出结论.【解答】解:(Ⅰ)由f(x)>0,得:sinx﹣ax>0,∵0<x<1,∴a<,令g(x)=,g′(x)=,令m(x)=xcosx﹣sinx,m′(x)=cosx﹣xsinx﹣cosx=﹣xsinx<0,∴m(x)在(0,1)递减,∴m(x)<m(0)=0,∴g′(x)<0,g(x)在(0,1)递减,∴g(x)>g(1)=sin1,∴a≤sin1;(Ⅱ)证明:∵h(x)=xsinx﹣x﹣cosx,∴h′(x)=lnx+sinx,x∈[1,e]时,lnx≥0,sinx>0,∴h′(x)>0,x∈(e,+∞)时,lnx>1,sinx≥﹣1,∴h′(x)>0,x∈(0,1)时,令y=lnx+sinx,则y′=+cosx>0,∴y=lnx+sinx在(0,1)递增,由ln2>sin,ln<知:h′()=ln+sin<0,h′()=ln+sin>0,故存在x0∈(,)使得h′(x0)=0,且当x∈(0,x0)时,h′(x)<0,当x∈(x0,1)时,h′(x)>0,综上,当x∈(0,x0)时,h′(x)<0,h(x)在(0,x0)递减,x∈(x0,+∞)时,h′(x)>0,h(x)在(x0,+∞)递增,∴h(x)存在唯一极值点x=x0.【点评】本题考查了函数的单调性、最值问题,看到导数的应用以及三角函数、对数函数的运算,是一道中档题.。

山东省青岛市2007-2008学年度高三数学第一次质量检测试题

山东省青岛市2007-2008学年度高三数学第一次质量检测试题

左视图 主视图 俯视图(第7题) 山东省青岛市2007-2008学年度高三数学第一次质量检测试题第Ⅰ部分(满分160分,答卷时间120分钟)一、填空题:本大题共10小题,每小题5分,共50分.把答案填写在答题纸相应位置上. 1. 复数z =(m -1)i + m 2-1是纯虚数,则实数m 的值是 . 2. 化简:AB DF CD BC +++= .3. 设211()1x x f x x x-<⎧⎪=⎨⎪⎩≥1,,,,则f (f (2))的值是 .4. 若数列{a n }的通项公式a n =21(1)n +,记12()2(1)(1)(1)n f n a a a =--⋅⋅⋅-,试通过计算(1)f ,(2)f ,(3)f 的值,推测出()f n = . 5. 函数y =cos x 的图象在点(π3,12)处的切 线方程是 .6. 已知α,β均为锐角,且21sin sin -=-βα,1cos cos 3αβ-=,则cos()αβ-= .7. 已知某个几何体的三视图如下(主视图的弧线是半圆),根据图中标出的尺寸(单位:cm ),可得这个几何体的体积是 cm 3. 8. 某海域上有A ,B ,C 三个小岛,已知A ,B之间相距8 n mile ,A ,C 之间相距5 n mile ,在A 岛测得∠BAC 为60°,则B 岛与C 岛相 距 n mile .9. 某班级共有学生54人,现根据学生的学号,用系统抽样的方法,抽取一个容量为4的样本.已知3号,29号,42号同学在样本中,那么样本中还有一个同学的学号是 . 10.若经过点P (-1,0)的直线与圆224230x y x y ++-+=相切,则这条直线在y 轴上的截距是 . 二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的. 11.集合A ={x | | x |<2=,B ={x | x 2-5x -6<0 =,则A ∩B = ( )A .(-2,6)B .(-2,-1)C .(-1,2)D .(2,3) 12.直线l 1∥l 2的一个充分条件是 ( )A .l 1,l 2都平行于同一个平面B .l 1,l 2与同一个平面所成的角相等C .l 1平行于l 2所在的平面D .l 1,l 2都垂直于同一个平面 13.下列各函数中,最小值为2的函数是 ( )A .1y x x=+ B .1sin sin y x x =+,π0 2x ∈(, C.2y =D .42x xy e e =+- 14. 依据下列算法的伪代码:x ←2i←1s←0While i≤4s←s×x+1i←i+1End WhilePrint s运行后输出的结果是()A.3 B.7 C.15 D.17三、解答题:本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤.15.(本题满分14分)一颗正方体骰子,其六个面上的点数分别是1,2,3,4,5,6.(1)将这颗骰子先后抛掷2次,观察向上的点数,问两数之和是3的倍数的概率是多少?(2)将这颗骰子先后抛掷3次,观察向上的点数,问三数之和为16的概率是多少?16.(本题满分14分)已知直三棱柱ABC-A1B1C1的侧棱长与底面三角形的各边长都等于a,点D为BC的中点.求证:(1)平面AC1D⊥平面BCC1B1;(2)A1B∥平面AC1D.17.(本题满分15分)已知向量a=(3sinα,cosα),b=(2sinα, 5sinα-4cosα),α∈(3π2π2,),且a⊥b.(1)求tanα的值;(2)求cos(π23α+)的值.(第16题)AB CA1B1 C1D18.(本题满分15分)已知双曲线过点(3,-2),且与椭圆224936x y +=有相同的焦点. (1)求双曲线的标准方程;(2)求以双曲线的右准线为准线的抛物线的标准方程.19.(本题满分16分)已知各项均为正数的等差数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6;等比数列{b n }满足b 1=a 1,b 2=a 3,b 3=a 15;数列{c n }满足c n =a n b n .(1)求数列{b n }的通项公式; (2)求数列{c n }的前n 项和T n . 20.(本题满分16分)已知函数()3225f x x ax x =+-+. (1)若函数f x ()在(23,1)上单调递减,在(1,+∞)上单调递增,求实数a 的值; (2)是否存在正整数a ,使得f x ()在(13,12)上既不是单调递增函数也不是单调递减函数?若存在,试求出a 的值,若不存在,请说明理由.第Ⅱ部分(满分40分,答卷时间30分钟)一、填空题:本大题共6小题,其中第3题~第6题为选做题,只要在这四题中任选两题作答,如果多做,则按所做题的前两题记分.每小题5分,共20分.把答案填写在答题纸相应位置上.1.计算:421d x x=⎰. 2.若ξ的分布列为:A OEC(第8题)OAA 1B 1C 1其中m ∈(0,1),则E ξ= . 3.(选修4-1:几何证明选讲)过⊙O 外一点P 作⊙O 的两条切线P A ,PB ,切点为A ,B ,若AB =8cm ,AB 的弦心距为3cm ,则P A = cm . 4.(选修4-2:矩阵与变换)矩阵1001⎡⎤⎢⎥-⎣⎦的属于特征值-1的一个特征向量是 . 5.(选修4-4:坐标系与参数方程)若曲线的极坐标方程为22240016cos 25sin ρθθ=+ ,则这条曲线化为直角坐标方程为 . 6.(选修4-5:不等式选讲)设| a +b |<-c ,给出下列四个不等式:①a <-b -c ;②a +b >c ;③| a |+c <| b | ;④a +c <b .其中成立的不等式是 .二、解答题:本大题共2小题,每小题10分,共20分.解答下列各题必须写出必要的步骤. 7. 在某市的一次调研测试中,8道填空题中有4道必做题和4道选做题,某考生按规定做4道必做题和2道选做题. (1)该考生有多少种选题方案?(2)若该考生必做题不放在最后做,他可以选择多少种不同的答题顺序?8. 如图,已知三棱锥O -ABC 的侧棱OA ,OB ,OC 两两垂直,且OA =1,OB =OC =2,E 是OC 的中点.(1)求异面直线BE 与A C 所成角的余弦值;(2)求二面角A -BE -C 的余弦值.参考答案第I部分(满分160分,答卷时间120分钟)一、填空题:本大题共10小题,每小题5分,共50分.把答案填写在答题纸相应位置上.1.-1 2.AF 3.0 4.21n n ++ 5.12y +-0 6.59727.640+80π 8.7 9.16 10.1二、选择题:本大题共4小题,每小题5分,共20分.在每小题给出的四个选项中,只有一项是符合题目要求的. 11.C 12.D 13.D 14.C三、解答题:本大题共6小题,共90分.解答应写出文字说明、证明过程或演算步骤. 15.(本题满分14分)一颗正方体骰子,其六个面上的点数分别是1,2,3,4,5,6.(1)将这颗骰子先后抛掷2次,观察向上的点数,问两数之和是3的倍数的概率是多少? (2)将这颗骰子先后抛掷3次,观察向上的点数,问三数之和为16的概率是多少?解:(1)P (A )=25411663+++=⨯; …………………………………………7分 (2)P (B )=33166636+=⨯⨯. 答:两数之和是3的倍数的概率是13;三数之和为16的概率是136.…………14分 16.(本题满分14分)已知直三棱柱ABC -A 1B 1C 1的侧棱长与底面三角形 的各边长都等于a ,点D 为BC 的中点.求证: (1)平面AC 1D ⊥平面BCC 1B 1; (2)A 1B ∥平面AC 1D .证明:(1)在直三棱柱ABC -A 1B 1C 1中,侧棱BB 1⊥平面ABC . 又BB 1⊂平面BCC 1B 1,∴侧面BCC 1B 1⊥平面ABC . 在正三角形ABC 中,D 为BC 的中点,∴AD ⊥BC . 由面面垂直的性质定理,得AD ⊥平面BCC 1B 1. 又AD ⊂平面AC 1D ,∴平面AC 1D ⊥平面BCC 1B 1.……………………7分(2)连A 1C 交AC 1于点O ,四边形ACC 1A 1是平行四边形,O 是A 1C 的中点.又D 是BC 的中点,连OD ,由三角形 中位线定理,得A 1B 1∥OD .∵OD ⊂平面AC 1D ,A 1B ⊄平面AC 1D ,∴A 1B ∥平面AC 1D . …………………14分 17.(本题满分15分)已知向量a =(3sin α,cos α),b =(2sin α, 5sin α-4cos α),α∈(3π2π2,),且a ⊥b . (1)求tan α的值;(2)求cos(π23α+)的值.解:(1)∵a ⊥b ,∴a ·b =0.而a =(3sin α,cos α),b =(2sin α, 5sin α-4cos α), 故a ·b =6sin 2α+5sin αcos α-4cos 2α=0.……………………………………2分 由于cos α≠0,∴6tan 2α+5tan α-4 =0.解之,得tan α=-43,或tan α=12.……………………………………………6分∵α∈(3π2π2,),tan α<0,故tan α=12(舍去).∴tan α=-43.…………7分 (2)∵α∈(3π2π2,),∴3ππ24α∈(,). 由tan α=-43,求得1tan 22α=-,tan 2α=2(舍去).∴sin cos 22αα==12分 cos(π23α+)=ππcos cos sin sin 2323αα-=12 = ………………………………15分18.(本题满分15分)已知双曲线过点(3,-2),且与椭圆224936x y +=有相同的焦点. (1)求双曲线的标准方程;(2)求以双曲线的右准线为准线的抛物线的标准方程.解:(1)由题意,椭圆224936x y +=的焦点为(),…………………………2分即c ,∴设所求双曲线的方程为222215x y a a-=-.……………………………… 4分 ∵双曲线过点(3,-2),∴229415a a -=-.∴23a =,或215a =(舍去). …………………………………………………………7分∴所求双曲线的方程为22132x y -=.……………………………………………………8分(2)由(1),可知双曲线的右准线为x .设所求抛物线的标准方程为220y px p =->(),则p =. ……………………12分∴所求抛物线的标准方程为2y x =. …………………………………………15分 19.(本题满分16分)已知各项均为正数的等差数列{a n },其前n 项和S n 满足10S n =a n 2+5a n +6;等比数列{b n }满足b 1=a 1,b 2=a 3,b 3=a 15;数列{c n }满足c n =a n b n .(1)求数列{b n }的通项公式; (2)求数列{c n }的前n 项和T n .解(1)∵10S n =a n 2+5a n +6, ① ∴10a 1=a 12+5a 1+6.解之,得a 1=2,或a 1=3.……………………………………………………………2分 又10S n -1=a n -12+5a n -1+6(n ≥2), ②由①-②,得 10a n =(a n 2-a n -12)+6(a n -a n -1),即(a n +a n -1)(a n -a n -1-5)=0.∵a n +a n -1>0,∴a n -a n -1=5(n ≥2).………………………………………………5分 当a 1=3时,a 3=13,a 15=73.a 1, a 3,a 15不成等比数列,∴a 1≠3.当a 1=2时,a 3=12,a 15=72,有 a 32=a 1a 15.…………………………………………7分∴数列{b n }是以6为公比,2为首项的等比数列,b n =2×6n -1. ……………………9分(2)由(1)知,a n =5n -3 ,c n =2(5n -3)6n -1.∴T n =2[2+7×6+12×62+…+(5n -3)6n -1], ……………………………………11分 6 T n =2[2×6+7×62+12×63+…+(5n -3)6n ],∴-5 T n =2[5×6+5×62+…+5×6n -1] +4-2(5n -3)6n ………………………13分=1106(16)16n -⨯--+4-2(5n -3)6n =(8-10n )6n -8.T n =8(810)655nn --.…………………………………………………………………16分20.(本题满分16分)已知函数()3225f x x ax x =+-+. (1)若函数f x ()在(23,1)上单调递减,在(1,+∞)上单调递增,求实数a 的值;(2)是否存在正整数a ,使得f x ()在(13,12)上既不是单调递增函数也不是单调递减函数?若存在,试求出a 的值,若不存在,请说明理由.解 (1)∵()3225f x x ax x =+-+在(23,1)上单调递减,在(1,+∞)上单调递增, ∴f′(x )=3x 2+2ax -2, ……………………………………………………………2分 f′(1)=0,∴a =-12. ………………………………………………………………6分 (2)令f′(x )=3x 2+2ax -2=0.∵△=4a 2+24>0,∴方程有两个实根,………………………………………………8分分别记为x 1 x 2.由于x 1·x 2=-23,说明x 1,x 2一正一负, 即在(23,1)内方程f′(x )=0不可能有两个解.…………………………………10分 故要使得f x ()在(13,12)上既不是单调增函数也不是单调减函数的充要条件是 f′(13)·f′(12)<0,即(13+23a -2)(34+a -2)<0.……………………… 13分解得5542a <<. ………………………………………………………………………15分∵a 是正整数,∴a =2.………………………………………………………………16分第Ⅱ部分(满分40分,答卷时间30分钟)1.ln2 2.n 3.203 4.01⎡⎤⎢⎥⎣⎦5.2212516x y += 6.①②③ 二、解答题:本大题共2小题,每小题10分,共20分.解答下列各题必须写出必要的步骤. 7.在某市的一次调研测试中,8道填空题中有4道必做题和4道选做题,某考生按规定做4道必做题和2道选做题.(1)该考生有多少种选题方案?(2)若该考生必做题不放在最后做,他可以选择多少种不同的答题顺序? 解(1)24C =6(种). …………………………………………………………………5分 (2)解法一:第一步选择2道选做题,有24C =6种方法,第二步,先确定最后解答的一题,有12C =2种方法, 第三步,确定其它各题的解答顺序。

2016山东青岛一模理综试题详解

2016山东青岛一模理综试题详解

B.a l < a2 C.E pl> E p2 D.v l< v218.2016年2月11日,美国科学家宣布探测到引力波的存在,引力波的发现将为人类探索宇宙提供新视角,这是一个划时代的发现。

在如图所示的双星系统中,A、B两个恒星靠着相互之间的引力正在做匀速圆周运动,已知恒星A的质量为太阳质量的29倍,恒星B的质量为太阳质量的36倍,两星之间的距离L=2×105m,太阳质量M=2×1030Kg,万有引力常量G=6.67×10-11N·m2/kg2。

若两星在环绕过程中会辐射出引力波,该引力波的频率与两星做圆周运动的频率具有相同的数量级,则根据题目所给信息估算该引力波频率的数量级是A.102Hz B.104Hz C.106Hz D.108Hz19.如图所示,一理想变压器原、副线圈匝数之比为5:l,原线圈与一可变电阻R0串联后,接入一正弦交流电源;副线圈电路中固定电阻的阻值为R1,负载电阻的阻值R2=7R1,电路中所连接的电流表是理想电流表。

现保持变压器输入电流不变,将负载电阻的阻值=5R1,此时电流表读数为5.0A,则减少为RA.此时流过原线圈的电流最大值约为1.7AB.此时流过原线圈的电流最大值约为1.2AC.原先电流表的示数为0.75AD.原先电流表的示数为5.25Aθ=的光滑斜面体固定在水平面上,斜面长度L=0.8m,一质量20.如图所示,倾角30om=l×10-3Kg、带电量q=+1×104C的带电小球静止在斜面底端。

现要使小球能够到达斜面顶端,可施加一沿斜面向上、场强大小为E=100V/m的匀强电场,重力加速度g=10m/s2,则这个匀强电场存在的时间t可能为A.0.5s B.0.4s C.0.3s D.0.2s21.如图所示,光滑水平面上放置一平行金属导轨,其左端与平行板电容器C相连,一金属棒垂直金属导轨放置,整个装置处于垂直导轨平面向上的匀强磁场中。

山东省青岛市崂山区2016年中考数学一模试卷及参考答案

山东省青岛市崂山区2016年中考数学一模试卷及参考答案

A. B.
C.
D.
4. 报纸上刊登了一则新闻,标题为“保健食品合格率80%”,下列说法中,正确的是( ) ①这则新闻是否说明市面上所有的保健食品中恰好有20%为不合格产品;
②你认为这则消息来源于抽样调查;
③这则消息来源于普查
④已知在这次质量监督中各项指标合格的商品有96种,则可以知道有120种保健品接受了本次检查.
每人销售台数
20
17
13
8
5
4
人数
1
1
2
5
3
2
(1) 该月销售冰箱的平均数、众数、中位数各是多少? (2) 销售部选择哪个数据作为月销售冰箱定额更合适?请你结合上述数据作出合理的分析. 20. 某水果公司向某地运输一批水果,由甲公司运输每千克只需运费0.6元;由乙公司运输,每千克需运费0.3元,运完 这批水果还需其他费用600元.设公司运输的这批水果为xkg(0<x<5000),选择甲公司运输所需的费用为y1元,选择乙 公司运输所需的费用为y2元.
12. 汛期来临前,某地要对辖区内的4800米河堤进行加固,施工单位在加固600米后,采用新的加固模式,这样每天加 固的长度是原来的2倍,结果仅用9天便出色完成了全部任务.请求出施工单位原来每天加固河堤多少米?设原来每天加固 河堤x米,根据题意得________
13. 如图一次函数y1=k1x+b的图象与反比例函数y2= 的图象交于点A、B两点,其中点A的横坐标为2,在y轴右侧, 当y1<y2时,x的取值范围是________.
A. B. C.4D.3 8. 直线y=kx经过二、四象限,则抛物线y=kx2+2x+k2图象的大致位置是( )
A.
B.

山东省青岛市2008年高三教学第一次质量检测

山东省青岛市2008年高三教学第一次质量检测

山东省青岛市2008年高三教学第一次质量检测理科综合试题本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页,满分240分,考试用时150分钟。

考试结束后,将本试卷、答题卡和答题纸一并交回。

答卷前,考生务必将自已的姓名、准考证号、考试科目填涂在试卷、答题卡和答题纸规定的地方。

第Ⅰ卷(必做,共88分)注意事项:1.每小题选出答案后,用2B铅笔把答题上对应的答案涂黑。

如需改动,用橡皮擦干净以后,再涂写其他正确答案标号。

不涂答题止,只答在试卷上不得分。

2.第Ⅰ卷共22小题,每小题4分,共88分。

以下数据可供答题时参考:相对原子质量:H―1 C―12 N―14 O―16 Na―23 Mg―24 AI―27K―39 P―31 S―32 CI―36.5一、选择题(本题包括15小题。

每小题只有一个选项符合题意)1.不同代谢类型的生物,需氧型生物(a)和厌氧型生物(b),处在下列条件时,不可能出现的方式是( )。

A.(a)在无氧条件下,出现无氧呼吸 B.(a)在有氧条件下,出现无氧呼吸C.(b)在有氧条件下,暂时出现有氧呼吸 D.(b)在无氧条件下,只能进行无氧呼吸2.图示生物体部分代谢过程。

下列有关分析正确的是A.过程②需要的酶存在于线粒体内膜和基质 B.能进行过程③的生物无核膜,属于生产者C.②和④过程只能发生于不同的细胞中 D.过程①只能在植物细胞的叶绿体中进行3. 细胞增殖过程中DNA含量会发生变化。

通过测定一定数量细胞的DNA含量,可分析其细胞周期。

根据细胞 DNA含量不同,将某种连续增殖的细胞株细胞分为三组,每组的细胞数如下图。

从图中所示结果分析其细胞周期,不正确...的是A.乙组细胞正在进行DNA复制B.细胞分裂间期的时间比分裂期长C.丙组中只有部分细胞的染色体数目加倍D.将周期阻断在DNA复制前会导致甲组细胞数减少4.有人设计实验探究有机肥是否能提高土壤肥力并优于化肥。

实验分为两组,一组农田实施有机肥,一组农田施化肥。

2016年山东省青岛市市北区中考数学一模试卷

2016年山东省青岛市市北区中考数学一模试卷

2016年山东省青岛市市北区中考数学一模试卷一、选择题(本题满分24分,共有8道小题,每小题3分)1.(3分)的绝对值是()A.﹣6 B.6 C.﹣ D.2.(3分)如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形统计图,(两图都不完整),则下列结论中正确的是()A.步行人数为30人B.骑车人数占总人数的10%C.该班总人数为50人D.乘车人数是骑车人数的40%3.(3分)下列四个图形能围成棱柱的有几个()A.0个 B.1个 C.2个 D.3个4.(3分)据研究,一种H7N9病毒直径为30纳米(1纳米=10﹣9米).下列用科学记数法表示这个病毒直径的大小,正确的是()A.30×10﹣9米B.3.0×10﹣8米 C.3.0×10﹣10米D.0.3×10﹣7米5.(3分)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连结BC,若,则∠C等于()A.15°B.30°C.45°D.60°6.(3分)当﹣2<x<2时,下列函数中,函数值y随自变量x增大而增大的有()个.①y=2x;②y=2﹣x;③y=﹣;④y=x2+6x+8.A.1 B.2 C.3 D.47.(3分)如图,在△ABC为等边三角形,P为BC上一点,△APQ为等边三角形,PQ与AC相交于点M,则下列结论中正确的是()①AB∥CQ;②∠ACQ=60°;③AP2=AM•AC;④若BP=PC,则PQ⊥AC.A.只有①②B.只有①③C.只有①②③D.①②③④8.(3分)抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y=在同一坐标系内的图象大致为()A.B.C.D.二、填空题:(本题满分18分,共有6道小题,每小题3分)9.(3分)计算:=.10.(3分)在一个不透明的口袋中装有5个白球和n个黄球,它们出颜色外完全相同,若从中随机摸出一球,摸到白球的概率为,则n的值是.11.(3分)已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x千米/时,根据题意,可列方程为.12.(3分)如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为.13.(3分)如图,线段AB与⊙O相切于点C,连接OA、OB,OB交⊙O于点D,已知OA=OB=3cm,AB=3cm,则图中阴影部分的面积为.14.(3分)将n+1个腰长为1的等腰直角三角形,按如图所示放在同一直线上.设阴影部分△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,B n+1D n C n的面积为S n,则S2=;S n=.(用含n的式子表示)三、解答题(本大题共10小题,满分78分)15.(4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,线段a.求做:Rt△ABC,使∠A=90°,AB=AC=a.结论:.16.(8分)(1)化简:(2)解不等式组:.17.(6分)某餐厅为了吸引顾客,举行吃套餐优惠活动,套餐每套20元,每消费一套即可直接获得10元餐劵,或者参与游戏赢得餐劵.游戏规则如下:设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),顾客每消费一套套餐,就可以获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐劵,下次就餐时可以代替现金消费.(1)求顾客任意转动一次转盘的平均收益是多少;(2)如果你是餐厅经理,你希望顾客参与游戏还是直接获得10元餐劵?请说明理由.18.(6分)某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛,在最近的10次选拔赛中,这两个人的跳远成绩(单位:cm)如图所示,请根据图中信息,解答下列问题:(1)通过计算,补充完成下面的统计分析表.(2)请依据对上述统计信息的数据分析,说明这两名运动员的成绩各有什么特点?19.(6分)某厂家新开发的一种电动车如图,它的大灯A射出的光线AB,AC 与地面MN 所夹的锐角分别为8°和10°,大灯A与地面离地面的距离为1m求该车大灯照亮地面的宽度BC.(不考虑其它因素)(参数数据:sin8°=,tan8°=,sin10°=,tan10°=)20.(8分)某水果店计划购进苹果和丑桔共140千克,这两种水果的进价、售价如表所示:(1)若该水果店购进这两种水果的进货款为1000元,求水果店购进这两种水果各多少千克.(2)若该水果店决定丑桔的进货量不超过苹果进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?21.(8分)如图,在△ABC中,AD是BC边上的中线,过点A作AF∥BC,且AF=BC,连接BF、BF,线段BF与AD相交于点E.(1)求证:E是AD的中点;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.22.(10分)某公园有一个抛物线形状的观景拱桥ACB,其横截面如图所示,量得该拱桥占地面最宽处AB=20米,最高处点C距地面5米(即OC=5米)(1)分别以AB、OC所在直线为x轴、y轴,建立如图所示的平面直角坐标系,求该抛物线的解析式;(2)夜晚,公园沿着抛物线ACB用彩灯勾勒拱桥的形状;现公园管理处打算在观景拱桥ABC的横截面前放置一个长为10米的矩形广告牌EFMN,为安全起见,要求广告牌离拱桥的桥面至少0.35米,求矩形广告牌的最大高度,并说明理由.23.(10分)设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆,延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFFH与ABCD等积.理由:连接AH,EH.∵AE为直径∴∠AHE=90°∴∠HAE+∠HEA=90°.∵DH⊥AE∴∠ADH=∠EDH=90°∴∠HAD+∠AHD=90°∴∠AHD=∠HED∴△ADH∽.∴=,即DH2=AD×DE.又∵DE=DC∴DH2=.即正方形DFGH与矩形ABCD等积.(2)类比思考平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.(3)解决问题三角形的“化方”思路是:先把三角形转化为等积的(填写图形各称),再转化为等积的正方形.如图②,△ABC的顶点在正方形网格的格点上,请用尺规或借助作出与△ABC等积的正方形的一条边.(不要求写具体作法,但要保留作图痕迹)(4)拓展探究n边形(n>3)的“化方”思路之一是:把n边形转化为n﹣1边形,…,直至转化为等积三角形,从而可以化方.如图③,四边形ABCD的顶点在正方形网格的格点上,请用尺规或借助网格作出与四边形ABCD等积的三角形(不要求写具体作法,但要保留作图痕迹).24.(12分)已知:如图,在平行四边形ABCD中,AB=10cm,BC=12cm,对角线AC=10cm,点P从点C出发沿着边CB向点B匀速运动,速度为每秒1个单位:同时,点Q从点B开始沿着边AB向点A匀速运动,到达A点后立刻以原来的速度沿AB返回,点Q的速度为每秒1个单位,过P点与AB平行的直线交线段AD 于点E,交AC于点F,连接PQ,设运动时间为t(s).(1)当0<t<10时,设四边形AQPE的面积为y(cm2),求y与t之间的函数关系式;(2)当0<t<10时,是否存在某一时刻t,使四边形AQPE的面积为平行四边形ABCD面积的一半?若存在,求出t的值;若不存在,请说明理由;(3)当0<t<10时,是否存在某一时刻t,使PQ⊥PE?若存在,求出t的值;不存在,请说明理由;(4)当0<t<12时,是否存在某一时刻t,使线段PQ的垂直平分线恰好经过点B?存在,请直接给出相应的t值;若不存在,请说明理由.2016年山东省青岛市市北区中考数学一模试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)1.(3分)的绝对值是()A.﹣6 B.6 C.﹣ D.【分析】根据计算绝对值的方法可以得到的绝对值,本题得以解决.【解答】解:∵,∴的绝对值是,故选D.【点评】本题考查绝对值,解题的关键是明确绝对值的含义.2.(3分)如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形统计图,(两图都不完整),则下列结论中正确的是()A.步行人数为30人B.骑车人数占总人数的10%C.该班总人数为50人D.乘车人数是骑车人数的40%【分析】根据乘车的人数和所占的百分比求出总人数,用总人数乘以步行所占的百分比求出步行的人数,用骑车的人数除以总人数求出骑车人数占总人数的百分比,用乘车的人数除以骑车人数,求出乘车人数是骑车人数的倍数.【解答】解:A、步行的人数有:×30%=15人,故本选项错误;B、骑车人数占总人数10÷=20%,故本选项错误;C、该班总人数为=50人,故本选项正确;D、乘车人数是骑车人数的=2.5倍,故本选项错误;故选:C.【点评】本题考查了频数(率)分布直方图和扇形统计图,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.3.(3分)下列四个图形能围成棱柱的有几个()A.0个 B.1个 C.2个 D.3个【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:第一个图形缺少一个面,不能围成棱柱;第三个图形折叠后底面重合,不能折成棱柱;第二个图形,第四个图形都能围成四棱柱;故选:C.【点评】此题考查了展开图折叠成几何体,熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.4.(3分)据研究,一种H7N9病毒直径为30纳米(1纳米=10﹣9米).下列用科学记数法表示这个病毒直径的大小,正确的是()A.30×10﹣9米B.3.0×10﹣8米 C.3.0×10﹣10米D.0.3×10﹣7米【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【解答】解:由题意可得:30×10﹣9=3.0×10﹣8.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连结BC,若,则∠C等于()A.15°B.30°C.45°D.60°【分析】连接OB,构造直角△ABO,结合已知条件推知直角△ABO的直角边OB 等于斜边OA的一半,则∠A=30°.【解答】解:如图,连接OB.∵AB与⊙O相切于点B,∴∠ABO=90°.∵OB=OC,,∴∠C=∠OBC,OB=OA,∴∠A=30°,∴∠AOB=60°,则∠C+∠OBC=60°,∴∠C=30°.故选B.【点评】本题考查了切线的性质、含30度角的直角三角形.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.6.(3分)当﹣2<x<2时,下列函数中,函数值y随自变量x增大而增大的有()个.①y=2x;②y=2﹣x;③y=﹣;④y=x2+6x+8.A.1 B.2 C.3 D.4【分析】一次函数当a>0时,函数值y总是随自变量x增大而增大,反比例函数当k<0时,在每一个象限内,y随自变量x增大而增大,二次函数根据对称轴及开口方向判断增减性.【解答】解:①为一次函数,且a>0时,函数值y总是随自变量x增大而增大;②为一次函数,且a<0时,函数值y总是随自变量x增大而减小;③为反比例函数,当x>0或者x<0时,函数值y随自变量x增大而增大,当﹣2<x<2时,就不能确定增减性了;④为二次函数,对称轴为x=﹣3,开口向上,故当﹣2<x<2时,函数值y随自变量x增大而增大,符合题意的是①④,故选B.【点评】本题考查了一次函数、反比例函数、二次函数的增减性;熟练掌握一次函数、二次函数、反比例函数的性质是关键.7.(3分)如图,在△ABC为等边三角形,P为BC上一点,△APQ为等边三角形,PQ与AC相交于点M,则下列结论中正确的是()①AB∥CQ;②∠ACQ=60°;③AP2=AM•AC;④若BP=PC,则PQ⊥AC.A.只有①②B.只有①③C.只有①②③D.①②③④【分析】根据等边三角形性质得出AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,求出∠BAP=∠CAQ,根据SAS证△ABP≌△ACQ,推出∠ACQ=∠B=60°=∠BAC,根据平行线的判定推出即可,再根据等腰三角形性质求出∠BAP=30°,求出∠PMA=90°,即可得出答案.【解答】证明:如图,∵△ABC和△APQ是等边三角形,∴AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,∴∠BAP=∠CAQ=60°﹣∠PAC,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),∴∠ACQ=∠B=60°=∠BAC,故②正确,∴AB∥CQ,故①正确,∵∠APQ=∠ACQ=60°,∠PAC=∠PAC,∴△APM∽△ACP,∴,∴AP2=AC•AM,故③正确,∵BP=PC,∴∠BAP=30°,∴∠PAC=30°,∵∠APM=60°,∴∠AMP=90°,∴PQ⊥AC,故④正确.故选D.【点评】本题考查了相似三角形的判定和性质,等边三角形性质,全等三角形的性质和判定,平行线性质和判定,等腰三角形性质的应用,主要考查学生的推理能力.8.(3分)抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y=在同一坐标系内的图象大致为()A.B.C.D.【分析】首先观察抛物线y=ax2+bx+c图象,由抛物线的对称轴的位置由其开口方向,即可判定﹣b的正负,由抛物线与x轴的交点个数,即可判定﹣4ac+b2的正负,则可得到一次函数y=﹣bx﹣4ac+b2的图象过第几象限,由当x=1时,y=a+b+c <0,即可得反比例函数y=过第几象限,继而求得答案.【解答】解:∵抛物线y=ax2+bx+c开口向上,∴a>0,∵抛物线y=ax2+bx+c的对称轴在y轴右侧,∴x=﹣>0,∴b<0,∴﹣b>0,∵抛物线y=ax2+bx+c的图象与x轴有两个交点,∴△=b2﹣4ac>0,∴一次函数y=﹣bx﹣4ac+b2的图象过第一、二、三象限;∵由函数图象可知,当x=1时,抛物线y=a+b+c<0,∴反比例函数y=的图象在第二、四象限.故选D.【点评】此题考查了一次函数、反比例函数与二次函数的图象与系数的关系.此题难度适中,解题的关键是注意数形结合思想的应用,注意函数的图象与系数的关系.二、填空题:(本题满分18分,共有6道小题,每小题3分)9.(3分)计算:=﹣.【分析】先把各二次根式化为最简二次根式,然后把分子合并后进行二次根式的除法运算.【解答】解:原式===﹣.故答案为﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.10.(3分)在一个不透明的口袋中装有5个白球和n个黄球,它们出颜色外完全相同,若从中随机摸出一球,摸到白球的概率为,则n的值是10.【分析】根据摸到白球的概率为,列出方程求解即可.【解答】解:∵在一个不透明的布袋中装有5个白球和n个黄球,∴共有(5+n)个球,根据古典型概率公式知:P(白球)=,解得n=10.故答案为:10.【点评】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.11.(3分)已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x千米/时,根据题意,可列方程为.【分析】设原来的平均速度为x千米/时,列车大提速后平均速度为x+70千米/时,根据走过相同的距离时间缩短了3小时,列方程即可.【解答】解:设原来的平均速度为x千米/时,可得:,故答案为:【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.12.(3分)如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为(﹣2a,﹣2b).【分析】先找一对应点是如何变化,那么所求点也符合这个变化规律.【解答】解:小鱼最大鱼翅的顶端坐标为(5,3),大鱼对应点坐标为(﹣10,﹣6);小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为(﹣2a,﹣2b).【点评】解决本题的关键是找到所给图形中象限内的一对对应点的变化规律.13.(3分)如图,线段AB与⊙O相切于点C,连接OA、OB,OB交⊙O于点D,已知OA=OB=3cm,AB=3cm,则图中阴影部分的面积为.【分析】由AB为圆的切线,得到OC⊥AB,再由OA=OB,利用三线合一得到C 为AB中点,且OC为角平分线,在直角三角形AOC中,利用30度所对的直角边等于斜边的一半求出OC的长,利用勾股定理求出AC的长,进而确定出AB的长,求出∠AOB度数,阴影部分面积=三角形AOB面积﹣扇形AOB面积,求出即可.【解答】解:连接OC,∵AB与圆O相切,∴OC⊥AB,∵OA=OB,∴AC=BC=AB=,∴sin∠AOC==,∴∠AOC=60°,∴∠AOB=120°∴OC=OA=,∴S阴影=S△AOB﹣S扇形=×3×﹣,故图中阴影部分的面积为,故答案为:.【点评】此题考查了切线的性质,含30度直角三角形的性质,以及扇形面积计算,熟练掌握切线的性质是解本题的关键.14.(3分)将n+1个腰长为1的等腰直角三角形,按如图所示放在同一直线上.设阴影部分△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,B n+1D n C n的面积为S n,则S2=;S n=.(用含n的式子表示)【分析】连接B1、B2、B3、B4、B5点,显然它们共线且平行于AC1,依题意可知△B1C1B2是等腰直角三角形,知道△B1B2D1与△C1AD1相似,求出相似比,根据三角形面积公式可得出S1,同理:B2B3:AC2=1:2,所以B2D2:D2C2=1:2,进而S2的值可求出,同样的道理,即可求出S3,S4…S n的值.【解答】解:∵n+1个边长为1的等腰三角形有一条边在同一直线上,∴S=×1×1=,△AB1C1连接B1、B2、B3点,显然它们共线且平行于AC1∵∠B1C1B2=90°∴A1B1∥B2C1∴△B1C1B2是等腰直角三角形,且边长=1,∴△B1B2D1∽△C1AD1,∴B1D1:D1C1=1:1,∴S1=×=,同理:B2B3:AC2=1:2,∴B2D2:D2C2=1:2,∴S2=×=,同理:B3B4:AC3=1:3,∴B3D3:D3C3=1:3,∴S3=×=,∴S4=×=,…∴S n=故答案为:;.【点评】本题主要考查相似三角形的判定和性质,等腰直角三角形的定义和性质、三角形的面公式等知识点、本题关键在于作好辅助线,得到相似三角形,求出相似比,就很容易得出答案了,意在提高同学们总结归纳的能力.三、解答题(本大题共10小题,满分78分)15.(4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,线段a.求做:Rt△ABC,使∠A=90°,AB=AC=a.结论:△ABC为等腰直角三角形.【分析】先在一直线上截取AB=a,再过A作AB的垂线,接着在此垂线上截取AC=a,则△ABC满足条件.【解答】解:如图,△ABC为所作,△ABC为等腰直角三角形.故答案为△ABC为等腰直角三角形.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.16.(8分)(1)化简:(2)解不等式组:.【分析】(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)原式=+===;(2),由①得:x>﹣,由②得:x≤3,则不等式组的解集为﹣<x≤3.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.17.(6分)某餐厅为了吸引顾客,举行吃套餐优惠活动,套餐每套20元,每消费一套即可直接获得10元餐劵,或者参与游戏赢得餐劵.游戏规则如下:设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),顾客每消费一套套餐,就可以获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐劵,下次就餐时可以代替现金消费.(1)求顾客任意转动一次转盘的平均收益是多少;(2)如果你是餐厅经理,你希望顾客参与游戏还是直接获得10元餐劵?请说明理由.【分析】(1)根据转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐劵得:顾客任意转动一次转盘的平均收益是×(20+15×2+10×3+5×6),再计算即可;(2)根据(1)的结果与10比较即可.【解答】解:(1)顾客任意转动一次转盘的平均收益是×(20+15×2+10×3+5×6)=(元),答:顾客任意转动一次转盘的平均收益是元;(2)∵<10,∴如果是餐厅经理,希望顾客参与游戏,这样能减少支出.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18.(6分)某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛,在最近的10次选拔赛中,这两个人的跳远成绩(单位:cm)如图所示,请根据图中信息,解答下列问题:(1)通过计算,补充完成下面的统计分析表.(2)请依据对上述统计信息的数据分析,说明这两名运动员的成绩各有什么特点?【分析】(1)根据中位数、众数的概念求值即可;(2)答案不惟一,如:甲的成绩比较稳定,波动小;乙成绩不稳定,波动较大.【解答】解:(1)根据折线统计图知乙10次成绩从小到大依次排列为:574,580,585,590,593,598,613,618,618,624,则其众数为:618,中位数为:=595.5;(2)甲的平均水平和跳远在600及以上要优于乙且甲的方差小说明甲成绩比乙的成绩稳定,乙跳远的最好成绩大于甲的最好成绩.故答案为:(1)618,595.5.【点评】此题主要考查中位数、众数的求法以及从折线统计图得到信息的能力,掌握中位数、众数、方差等知识点的求法和意义是根本.19.(6分)某厂家新开发的一种电动车如图,它的大灯A射出的光线AB,AC 与地面MN 所夹的锐角分别为8°和10°,大灯A与地面离地面的距离为1m求该车大灯照亮地面的宽度BC.(不考虑其它因素)(参数数据:sin8°=,tan8°=,sin10°=,tan10°=)【分析】通过构造直角三角形来解答,过A作AD⊥MN于D,就有了∠ABN、∠ACN的度数,又已知AE的长,可在直角三角形ABE、ACE中分别求出BE、CE的长,BC就能求出.【解答】解:如图,过A作AD⊥MN于点D,在Rt△ACD中,tan∠ACD==,CD=5.6(m),在Rt△ABD中,tan∠ABD==,BD=7(m),则BC=7﹣5.6=1.4(m).答:该车大灯照亮地面的宽度BC是1.4m.【点评】此题考查解直角三角形的应用,将实际问题转化为直角三角形中的数学问题,可通过作辅助线构造直角三角形,再把条件和问题转化到这个直角三角形中,使问题解决.20.(8分)某水果店计划购进苹果和丑桔共140千克,这两种水果的进价、售价如表所示:(1)若该水果店购进这两种水果的进货款为1000元,求水果店购进这两种水果各多少千克.(2)若该水果店决定丑桔的进货量不超过苹果进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?【分析】(1)设购进苹果x千克,则购进丑桔(140﹣x)千克,根据进货钱数=单价×数量,列出关于x的一元一次方程,解方程即可得出结论;(2)设购进苹果x千克时售完这批水果将获利y元,由丑桔的进货量不超过苹果进货量的3倍可列出关于x的一元一次不等式,解不等式可找出x的取值范围,再根据总利润=每千克利润×千克数可找出y关于x的函数关系式,根据函数的性质即可解决最值问题.【解答】解:(1)设购进苹果x千克,则购进丑桔(140﹣x)千克,依题意得:5x+9(140﹣x)=1000,解得:x=65,则140﹣65=75(千克),答:水果店购进苹果65千克,丑桔75千克.(2)设购进苹果x千克时售完这批水果将获利y元,由题意得:140﹣x≤3x,解得:x≥35.获得利润y=(8﹣5)x+(13﹣9)(140﹣x)=﹣x+560.故当x=35时,y有最大值,最大值为525元.140﹣35=105(千克).答:购进苹果35千克,丑桔105千克时水果店在销售完这批水果时获利最多.【点评】本题考查了一元一次不等式的应用、一元一次方程的应用以及一次函数的性质,解题的关键是:(1)根据数量关系列出关于x的一元一次方程;(2)根据函数的单调性解决最值问题.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.21.(8分)如图,在△ABC中,AD是BC边上的中线,过点A作AF∥BC,且AF=BC,连接BF、BF,线段BF与AD相交于点E.(1)求证:E是AD的中点;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.【分析】(1)先连接DF,判定四边形ABDF是平行四边形,再根据平行四边形的性质,得出DE=AE即可;(2)先判定四边形ADCF是平行四边形,再根据直角三角形的性质,得出AD=CD,最后判断四边形ADCF是菱形.【解答】(1)连接DF,∵AD是BC边上的中线,∴DB=BC,∵AF=BC,∴DB=AF,又∵AF∥BC,∴四边形ABDF是平行四边形,∴DE=AE即E是AD的中点;(2)四边形ADCF是菱形.∵AD是BC边上的中线,∴DC=BC,∵AF=BC,∴DC=AF,又∵AF∥BC,∴四边形ADCF是平行四边形,又∵AB⊥AC,AD是BC边上的中线,∴AD=BC=CD,∴四边形ADCF是菱形.【点评】本题主要考查了平行四边形的判定与性质、菱形的判定以及直角三角形的性质,解题时注意:一组对边平行且相等的四边形的是平行四边形,有一组邻边相等的平行四边形的是菱形.22.(10分)某公园有一个抛物线形状的观景拱桥ACB,其横截面如图所示,量得该拱桥占地面最宽处AB=20米,最高处点C距地面5米(即OC=5米)(1)分别以AB、OC所在直线为x轴、y轴,建立如图所示的平面直角坐标系,求该抛物线的解析式;(2)夜晚,公园沿着抛物线ACB用彩灯勾勒拱桥的形状;现公园管理处打算在观景拱桥ABC的横截面前放置一个长为10米的矩形广告牌EFMN,为安全起见,要求广告牌离拱桥的桥面至少0.35米,求矩形广告牌的最大高度,并说明理由.【分析】(1)根据题意可设抛物线解析式为y=ax2+c,将点C(0,5),点B(10,0)代入求得a、c的值即可求解;(2)令x=5求得y的值,将y的值减去0.35可得广告牌最大高度.【解答】解:(1)根据题意,设抛物线解析式为y=ax2+c,将点C(0,5),点B(10,0)代入,得:,解得:.故抛物线解析式为:y=﹣x2+5;(2)当x=5时,y=﹣×25+5=3.75(m),3.75﹣0.35=3.4(m).答:矩形广告牌的最大高度为3.4m.【点评】本题主要考查二次函数的实际应用,根据题意设出函数解析式是根本,待定系数法求得抛物线解析式是解题关键.23.(10分)设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆,延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFFH与ABCD等积.理由:连接AH,EH.∵AE为直径∴∠AHE=90°∴∠HAE+∠HEA=90°.∵DH⊥AE∴∠ADH=∠EDH=90°∴∠HAD+∠AHD=90°∴∠AHD=∠HED∴△ADH∽△HDE.∴=,即DH2=AD×DE.又∵DE=DC∴DH2=AD•DC.即正方形DFGH与矩形ABCD等积.(2)类比思考平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化。

山东省13市2016届高三3月模拟数学理试题分类汇编:立体几何

山东省13市2016届高三3月模拟数学理试题分类汇编:立体几何

山东省13市2016届高三3月模拟数学理试题分类汇编立体几何一、选择题1、(滨州市2016高三3月模拟)已知,αβ是两个不同的平面,,m n 是两条不同的直线,给出了下列命题,正确的有①若,m m αβ⊥⊂,则αβ⊥;②若,m n m α⊥⊥,则//n α;③若//,m ααβ⊥,则;m β⊥④若,//,m n m αβ=I 且,n n αβ⊄⊄,则//,//.n n αβ(A ) ②④ (B )①②④ (C )①④ (D )①③2、(菏泽市2016高三3月模拟)某几何体的三视图如图所示,则该几何体的体积是( ) A. 23π B. 2π C.223π D. π 3、(济宁市2016高三3月模拟)一个几何体的三视图如图所示,则该几何体的体积是A. 24π+B.243π+ C.2π+D.4π+4、(青岛市2016高三3月模拟)如图,四棱锥P ABCD -的底面ABCD为平行四边形,2NB PN =,则三棱锥N PAC -与三棱锥D PAC-的体积比为A.1:2B.1:8C.1:6D.1:35、(泰安市2016高三3月模拟)高为4的直三棱柱被削去一部分后得到一个几何体,它的直观图和三视图中的侧视图、俯视图如图所示,则该几何体的体积是原直三棱柱的体积的 A. 34 B. 14C. 12D. 386、(潍坊市2016高三3月模拟)已知两条不同的直线,m n 和两个不同的平面,αβ,以下四个命题:①若//,//,//,//m n m n αβαβ且则②若,//,//,m n m n αβαβ⊥⊥且则 ③若//,,,//m n m n αβαβ⊥⊥且则④若,,,m n m n αβαβ⊥⊥⊥⊥且则其中正确命题的个数是A.4B.3C.2D.1 7、(烟台市2016高三3月模拟)某几何体的三视图如右图所示,则该几何体的体积与其外接球的体积之比为A. 13π:B. 3π:C. 133π:D. 13π:8、(淄博市2016高三3月模拟)三棱锥P ABC -及其三视图中的正视图和俯视图如图所示,则PB =A. 211B. 42C. 38D. 1639、(济南市2016高三3月模拟)某几何体的三视图如图所示,则该几何体的是(A)28+65(B)40(C)403(D)30+65参考答案:1、C2、A3、D4、D5、C6、C7、D8、B9、C二、填空题1、(德州市2016高三3月模拟)某三棱锥的三视图如图所示,其侧(左)视图为直角三角形,则该三棱锥外接球的表面积为2、(临沂市2016高三3月模拟)在三棱柱111ABC A B C -(右上图),侧棱1AA ⊥平面111,1AB C AA =底面ABC V 是边长为2的正三角形,则此三棱柱的体积为_________.3、(日照市2016高三3月模拟)某几何体的三视图如图所示,则该几何体中,面积最大的侧面的面积为_______.4、(枣庄市2016高三3月模拟)圆锥被一个平面截去一部分,剩余部分再被另一个平面截去一部分后,与半球(半径为r )组成一个几何体,该几何体三视图中的正视图和俯视图如图所示.若1r =,则该几何体的体积为 .参考答案:1、50π2、23、5 4、5π6三、解答题 1、(滨州市2016高三3月模拟) 如图,在四棱柱1111ABCD A B C D -中,AB//CD,12AB BC CC CD ===,E 为线段AB 的中点,F 是线段1DD 上的动点.(Ⅰ)求证:EF//平面11BCC B ;(Ⅱ)若160BCD C CD ∠=∠=o ,且平面11D C CD ⊥平面ABCD ,求平面11BCC B 与11DC B 平面所成的角(锐角)的余弦值.2、(德州市2016高三3月模拟)在四棱锥P-ABCD 中,PA ⊥平面ABCD ,△ABC 是正三角形,AC 与BD 的交点M 恰好是AC 中点,又PA =4,AB =43,∠CDA =120°,点N 在线段PB 上,且PN =2。

2016年青岛市高三统一一模真题(带答案)

2016年青岛市高三统一一模真题(带答案)

2016年青岛市高三统一质量检测理科综合能力测试本试卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分。

第I卷1至5页,第Ⅱ卷6至16页,共300分。

考试时间150分钟。

考生注意:1.答题前,考生务必将自己的准考证号、姓名填写在答题卡上。

考生要认真核对答题卡上粘贴的条形码的“准考证号、姓名、考试科目”与考生本人准考证号、姓名是否一致。

2.第I卷每小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其他答案标号,第Ⅱ卷用黑色墨水签字笔在答题卡上书写作答,在试题卷上作答,答案无效。

3.考试结束,监考员将答题卡收回。

可能用到的相对原子质量:H 1 N 14 O 16 Na 23 S 32 Fe 56第I卷(选择题共126分)本卷共21小题,每小题6分,共126分。

一、选择题:本题共13小题,每小题6分。

在每小题给出的四个选项中。

只有一项是符合题目要求的。

1.下列关于细胞结构和功能的说法,错误的是A.植物细胞“生命系统的边界”是细胞膜B.胃蛋白酶分泌到消化道内不需要载体蛋白C.胰岛B细胞分泌胰岛素的过程中一定会发生膜的融合D.经核糖体合成到达细胞膜的膜蛋白必须经过高尔基体的加工和包装2.下列关于基因表达的叙述,正确的是A.T细胞受病毒刺激后有特定mRNA的合成B.线粒体、叶绿体和核糖体中均存在A-T和U-A的配对方式C.转运20种氨基酸的tRNA总共有64种D.基因的两条链可分别作模板进行转录,以提高蛋白质合成的效率3.下列有关实验的描述,正确的是A.鉴定还原糖的实验中,刚加入斐林试剂时组织样液呈无色,加热后变成砖红色B.在观察口腔上皮细胞DNA和RNA分布时,盐酸的作用是对该细胞进行解离C.选取经低温诱导的洋葱根尖制成的临时装片,在显微镜下观察不到联会现象D.探究温度对酶活性的影响时,将酶与底物溶液混合后置于不同温度下保温4.下列有关遗传和变异的叙述,正确的是A.基因重组可以产生新的性状,但不能改变基因频率B.一对表现正常的夫妇生一患某遗传病的孩子,正常情况下母方是致病基因的携带者C.花药离体培养过程中,基因突变、基因重组、染色体变异均有可能发生D.基因型为AAbb和aaBB的个体杂交,F2双显性性状中能稳定遗传的个体占1/16 5.下列关于人体内环境稳态及调节的叙述,错误的是A.血浆和组织液都有运输激素的作用B.内环境稳态是指内环境的温度、PH、渗透压保持相对稳定C.兴奋沿反射弧的传递过程离不开内环境D.神经元细胞膜内心外流是形成静息电位的基础6.用不同浓度的生长素类似物溶液处理某植物插条使其生根,结果如下表。

2016年山东省青岛市市北区中考数学一模试卷

2016年山东省青岛市市北区中考数学一模试卷

2016年山东省青岛市市北区中考数学一模试卷一、选择题(本题满分24分,共有8道小题,每小题3分)1.(3分)的绝对值是()A.﹣6 B.6 C.﹣D.2.(3分)如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形统计图,(两图都不完整),则下列结论中正确的是()A.步行人数为30人B.骑车人数占总人数的10%C.该班总人数为50人D.乘车人数是骑车人数的40%3.(3分)下列四个图形能围成棱柱的有几个()A.0个B.1个C.2个D.3个4.(3分)据研究,一种H7N9病毒直径为30纳米(1纳米=10﹣9米).下列用科学记数法表示这个病毒直径的大小,正确的是()A.30×10﹣9米B.3.0×10﹣8米C.3.0×10﹣10米D.0.3×10﹣7米5.(3分)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连结BC,若,则∠C等于()A.15° B.30° C.45° D.60°6.(3分)当﹣2<x<2时,下列函数中,函数值y随自变量x增大而增大的有()个.①y=2x;②y=2﹣x;③y=﹣;④y=x2+6x+8.A.1 B.2 C.3 D.47.(3分)如图,在△ABC为等边三角形,P为BC上一点,△APQ为等边三角形,PQ与AC相交于点M,则下列结论中正确的是()①AB∥CQ;②∠ACQ=60°;③AP2=AM•AC;④若BP=PC,则PQ⊥AC.A.只有①②B.只有①③C.只有①②③ D.①②③④8.(3分)抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y=在同一坐标系内的图象大致为()A.B.C.D.二、填空题:(本题满分18分,共有6道小题,每小题3分)9.(3分)计算:= .10.(3分)在一个不透明的口袋中装有5个白球和n个黄球,它们出颜色外完全相同,若从中随机摸出一球,摸到白球的概率为,则n的值是.11.(3分)已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x千米/时,根据题意,可列方程为.12.(3分)如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为.13.(3分)如图,线段AB与⊙O相切于点C,连接OA、OB,OB交⊙O于点D,已知OA=OB=3cm,AB=3cm,则图中阴影部分的面积为.14.(3分)将n+1个腰长为1的等腰直角三角形,按如图所示放在同一直线上.设阴影部分△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,B n+1D n C n的面积为S n,则S2= ;S n= .(用含n的式子表示)三、解答题(本大题共10小题,满分78分)15.(4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,线段a.求做:Rt△ABC,使∠A=90°,AB=AC=a.结论:.16.(8分)(1)化简:(2)解不等式组:.17.(6分)某餐厅为了吸引顾客,举行吃套餐优惠活动,套餐每套20元,每消费一套即可直接获得10元餐劵,或者参与游戏赢得餐劵.游戏规则如下:设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),顾客每消费一套套餐,就可以获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐劵,下次就餐时可以代替现金消费.(1)求顾客任意转动一次转盘的平均收益是多少;(2)如果你是餐厅经理,你希望顾客参与游戏还是直接获得10元餐劵?请说明理由.18.(6分)某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛,在最近的10次选拔赛中,这两个人的跳远成绩(单位:cm)如图所示,请根据图中信息,解答下列问题:(1)通过计算,补充完成下面的统计分析表.(2)请依据对上述统计信息的数据分析,说明这两名运动员的成绩各有什么特点?19.(6分)某厂家新开发的一种电动车如图,它的大灯A射出的光线AB,AC 与地面MN 所夹的锐角分别为8°和10°,大灯A与地面离地面的距离为1m求该车大灯照亮地面的宽度BC.(不考虑其它因素)(参数数据:sin8°=,tan8°=,sin10°=,tan10°=)20.(8分)某水果店计划购进苹果和丑桔共140千克,这两种水果的进价、售价如表所示:(1)若该水果店购进这两种水果的进货款为1000元,求水果店购进这两种水果各多少千克.(2)若该水果店决定丑桔的进货量不超过苹果进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?21.(8分)如图,在△ABC中,AD是BC边上的中线,过点A作AF∥BC,且AF=BC,连接BF、BF,线段BF与AD相交于点E.(1)求证:E是AD的中点;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.22.(10分)某公园有一个抛物线形状的观景拱桥ACB,其横截面如图所示,量得该拱桥占地面最宽处AB=20米,最高处点C距地面5米(即OC=5米)(1)分别以AB、OC所在直线为x轴、y轴,建立如图所示的平面直角坐标系,求该抛物线的解析式;(2)夜晚,公园沿着抛物线ACB用彩灯勾勒拱桥的形状;现公园管理处打算在观景拱桥ABC的横截面前放置一个长为10米的矩形广告牌EFMN,为安全起见,要求广告牌离拱桥的桥面至少0.35米,求矩形广告牌的最大高度,并说明理由.23.(10分)设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆,延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFFH与ABCD等积.理由:连接AH,EH.∵AE为直径∴∠AHE=90°∴∠HAE+∠HEA=90°.∵DH⊥AE∴∠ADH=∠EDH=90°∴∠HAD+∠AHD=90°∴∠AHD=∠HED∴△ADH∽.∴=,即DH2=AD×DE.又∵DE=DC∴DH2= .即正方形DFGH与矩形ABCD等积.(2)类比思考平行四边形的“化方”思路是,先把平行四边形转化为等积的矩形,再把矩形转化为等积的正方形.(3)解决问题三角形的“化方”思路是:先把三角形转化为等积的(填写图形各称),再转化为等积的正方形.如图②,△ABC的顶点在正方形网格的格点上,请用尺规或借助作出与△ABC等积的正方形的一条边.(不要求写具体作法,但要保留作图痕迹)(4)拓展探究n边形(n>3)的“化方”思路之一是:把n边形转化为n﹣1边形,…,直至转化为等积三角形,从而可以化方.如图③,四边形ABCD的顶点在正方形网格的格点上,请用尺规或借助网格作出与四边形ABCD 等积的三角形(不要求写具体作法,但要保留作图痕迹).24.(12分)已知:如图,在平行四边形ABCD中,AB=10cm,BC=12cm,对角线AC=10cm,点P从点C出发沿着边CB向点B匀速运动,速度为每秒1个单位:同时,点Q从点B开始沿着边AB向点A匀速运动,到达A点后立刻以原来的速度沿AB返回,点Q的速度为每秒1个单位,过P点与AB平行的直线交线段AD于点E,交AC于点F,连接PQ,设运动时间为t(s).(1)当0<t<10时,设四边形AQPE的面积为y(cm2),求y与t之间的函数关系式;(2)当0<t<10时,是否存在某一时刻t,使四边形AQPE的面积为平行四边形ABCD面积的一半?若存在,求出t的值;若不存在,请说明理由;(3)当0<t<10时,是否存在某一时刻t,使PQ⊥PE?若存在,求出t的值;不存在,请说明理由;(4)当0<t<12时,是否存在某一时刻t,使线段PQ的垂直平分线恰好经过点B?存在,请直接给出相应的t值;若不存在,请说明理由.2016年山东省青岛市市北区中考数学一模试卷参考答案与试题解析一、选择题(本题满分24分,共有8道小题,每小题3分)1.(3分)的绝对值是()A.﹣6 B.6 C.﹣D.【分析】根据计算绝对值的方法可以得到的绝对值,本题得以解决.【解答】解:∵,∴的绝对值是,故选D.【点评】本题考查绝对值,解题的关键是明确绝对值的含义.2.(3分)如图是某班全体学生外出时乘车、步行、骑车的人数分布直方图和扇形统计图,(两图都不完整),则下列结论中正确的是()A.步行人数为30人B.骑车人数占总人数的10%C.该班总人数为50人D.乘车人数是骑车人数的40%【分析】根据乘车的人数和所占的百分比求出总人数,用总人数乘以步行所占的百分比求出步行的人数,用骑车的人数除以总人数求出骑车人数占总人数的百分比,用乘车的人数除以骑车人数,求出乘车人数是骑车人数的倍数.【解答】解:A、步行的人数有:×30%=15人,故本选项错误;B、骑车人数占总人数10÷=20%,故本选项错误;C、该班总人数为=50人,故本选项正确;D、乘车人数是骑车人数的=2.5倍,故本选项错误;故选:C.【点评】本题考查了频数(率)分布直方图和扇形统计图,利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题.3.(3分)下列四个图形能围成棱柱的有几个()A.0个B.1个C.2个D.3个【分析】由平面图形的折叠及立体图形的表面展开图的特点解题.【解答】解:第一个图形缺少一个面,不能围成棱柱;第三个图形折叠后底面重合,不能折成棱柱;第二个图形,第四个图形都能围成四棱柱;故选:C.【点评】此题考查了展开图折叠成几何体,熟练掌握常见立体图形的平面展开图的特征,是解决此类问题的关键.4.(3分)据研究,一种H7N9病毒直径为30纳米(1纳米=10﹣9米).下列用科学记数法表示这个病毒直径的大小,正确的是()A.30×10﹣9米B.3.0×10﹣8米C.3.0×10﹣10米D.0.3×10﹣7米【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:由题意可得:30×10﹣9=3.0×10﹣8.故选:B.【点评】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.5.(3分)如图,AB与⊙O相切于点B,AO的延长线交⊙O于点C,连结BC,若,则∠C等于()A.15° B.30° C.45° D.60°【分析】连接OB,构造直角△ABO,结合已知条件推知直角△ABO的直角边OB等于斜边OA 的一半,则∠A=30°.【解答】解:如图,连接OB.∵AB与⊙O相切于点B,∴∠ABO=90°.∵OB=OC,,∴∠C=∠OBC,OB=OA,∴∠A=30°,∴∠AOB=60°,则∠C+∠OBC=60°,∴∠C=30°.故选B.【点评】本题考查了切线的性质、含30度角的直角三角形.运用切线的性质来进行计算或论证,常通过作辅助线连接圆心和切点,利用垂直构造直角三角形解决有关问题.6.(3分)当﹣2<x<2时,下列函数中,函数值y随自变量x增大而增大的有()个.①y=2x;②y=2﹣x;③y=﹣;④y=x2+6x+8.A.1 B.2 C.3 D.4【分析】一次函数当a>0时,函数值y总是随自变量x增大而增大,反比例函数当k<0时,在每一个象限内,y随自变量x增大而增大,二次函数根据对称轴及开口方向判断增减性.【解答】解:①为一次函数,且a>0时,函数值y总是随自变量x增大而增大;②为一次函数,且a<0时,函数值y总是随自变量x增大而减小;③为反比例函数,当x>0或者x<0时,函数值y随自变量x增大而增大,当﹣2<x<2时,就不能确定增减性了;④为二次函数,对称轴为x=﹣3,开口向上,故当﹣2<x<2时,函数值y随自变量x增大而增大,符合题意的是①④,故选B.【点评】本题考查了一次函数、反比例函数、二次函数的增减性;熟练掌握一次函数、二次函数、反比例函数的性质是关键.7.(3分)如图,在△ABC为等边三角形,P为BC上一点,△APQ为等边三角形,PQ与AC相交于点M,则下列结论中正确的是()①AB∥CQ;②∠ACQ=60°;③AP2=AM•AC;④若BP=PC,则PQ⊥AC.A.只有①②B.只有①③C.只有①②③ D.①②③④【分析】根据等边三角形性质得出AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,求出∠BAP=∠CAQ,根据SAS证△ABP≌△ACQ,推出∠ACQ=∠B=60°=∠BAC,根据平行线的判定推出即可,再根据等腰三角形性质求出∠BAP=30°,求出∠PMA=90°,即可得出答案.【解答】证明:如图,∵△ABC和△APQ是等边三角形,∴AB=AC,AP=AQ,∠BAC=∠B=∠PAQ=60°,∴∠BAP=∠CAQ=60°﹣∠PAC,在△ABP和△ACQ中,,∴△ABP≌△ACQ(SAS),∴∠ACQ=∠B=60°=∠BAC,故②正确,∴AB∥CQ,故①正确,∵∠APQ=∠ACQ=60°,∠PAC=∠PAC,∴△APM∽△ACP,∴,∴AP2=AC•AM,故③正确,∵BP=PC,∴∠BAP=30°,∴∠PAC=30°,∵∠APM=60°,∴∠AMP=90°,∴PQ⊥AC,故④正确.故选D.【点评】本题考查了相似三角形的判定和性质,等边三角形性质,全等三角形的性质和判定,平行线性质和判定,等腰三角形性质的应用,主要考查学生的推理能力.8.(3分)抛物线y=ax2+bx+c图象如图所示,则一次函数y=﹣bx﹣4ac+b2与反比例函数y=在同一坐标系内的图象大致为()A.B.C.D.【分析】首先观察抛物线y=ax2+bx+c图象,由抛物线的对称轴的位置由其开口方向,即可判定﹣b的正负,由抛物线与x轴的交点个数,即可判定﹣4ac+b2的正负,则可得到一次函数y=﹣bx ﹣4ac+b2的图象过第几象限,由当x=1时,y=a+b+c<0,即可得反比例函数y=过第几象限,继而求得答案.【解答】解:∵抛物线y=ax2+bx+c开口向上,∴a>0,∵抛物线y=ax2+bx+c的对称轴在y轴右侧,∴x=﹣>0,∴b<0,∴﹣b>0,∵抛物线y=ax2+bx+c的图象与x轴有两个交点,∴△=b2﹣4ac>0,∴一次函数y=﹣bx﹣4ac+b2的图象过第一、二、三象限;∵由函数图象可知,当x=1时,抛物线y=a+b+c<0,∴反比例函数y=的图象在第二、四象限.故选D.【点评】此题考查了一次函数、反比例函数与二次函数的图象与系数的关系.此题难度适中,解题的关键是注意数形结合思想的应用,注意函数的图象与系数的关系.二、填空题:(本题满分18分,共有6道小题,每小题3分)9.(3分)计算:= ﹣.【分析】先把各二次根式化为最简二次根式,然后把分子合并后进行二次根式的除法运算.【解答】解:原式===﹣.故答案为﹣.【点评】本题考查了二次根式的计算:先把各二次根式化为最简二次根式,再进行二次根式的乘除运算,然后合并同类二次根式.在二次根式的混合运算中,如能结合题目特点,灵活运用二次根式的性质,选择恰当的解题途径,往往能事半功倍.10.(3分)在一个不透明的口袋中装有5个白球和n个黄球,它们出颜色外完全相同,若从中随机摸出一球,摸到白球的概率为,则n的值是10 .【分析】根据摸到白球的概率为,列出方程求解即可.【解答】解:∵在一个不透明的布袋中装有5个白球和n个黄球,∴共有(5+n)个球,根据古典型概率公式知:P(白球)=,解得n=10.故答案为:10.【点评】本题考查概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.11.(3分)已知甲、乙两地间的铁路长1480千米,列车大提速后,平均速度增加了70千米/时,列车的单程运行时间缩短了3小时.设原来的平均速度为x千米/时,根据题意,可列方程为.【分析】设原来的平均速度为x千米/时,列车大提速后平均速度为x+70千米/时,根据走过相同的距离时间缩短了3小时,列方程即可.【解答】解:设原来的平均速度为x千米/时,可得:,故答案为:【点评】本题考查了由实际问题抽象出分式方程,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系,列方程.12.(3分)如图,小“鱼”与大“鱼”是位似图形,已知小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为(﹣2a,﹣2b).【分析】先找一对应点是如何变化,那么所求点也符合这个变化规律.【解答】解:小鱼最大鱼翅的顶端坐标为(5,3),大鱼对应点坐标为(﹣10,﹣6);小“鱼”上一个“顶点”的坐标为(a,b),那么大“鱼”上对应“顶点”的坐标为(﹣2a,﹣2b).【点评】解决本题的关键是找到所给图形中象限内的一对对应点的变化规律.13.(3分)如图,线段AB与⊙O相切于点C,连接OA、OB,OB交⊙O于点D,已知OA=OB=3cm,AB=3cm,则图中阴影部分的面积为.【分析】由AB为圆的切线,得到OC⊥AB,再由OA=OB,利用三线合一得到C为AB中点,且OC为角平分线,在直角三角形AOC中,利用30度所对的直角边等于斜边的一半求出OC的长,利用勾股定理求出AC的长,进而确定出AB的长,求出∠AOB度数,阴影部分面积=三角形AOB 面积﹣扇形AOB面积,求出即可.【解答】解:连接OC,∵AB与圆O相切,∴OC⊥AB,∵OA=OB,∴AC=BC=AB=,∴sin∠AOC==,∴∠AOC=60°,∴∠AOB=120°∴OC=OA=,∴S阴影=S△AOB﹣S扇形=×3×﹣,故图中阴影部分的面积为,故答案为:.【点评】此题考查了切线的性质,含30度直角三角形的性质,以及扇形面积计算,熟练掌握切线的性质是解本题的关键.14.(3分)将n+1个腰长为1的等腰直角三角形,按如图所示放在同一直线上.设阴影部分△B2D1C1的面积为S1,△B3D2C2的面积为S2,…,B n+1D n C n的面积为S n,则S2= ;S n= .(用含n的式子表示)【分析】连接B1、B2、B3、B4、B5点,显然它们共线且平行于AC1,依题意可知△B1C1B2是等腰直角三角形,知道△B1B2D1与△C1AD1相似,求出相似比,根据三角形面积公式可得出S1,同理:B2B3:AC2=1:2,所以B2D2:D2C2=1:2,进而S2的值可求出,同样的道理,即可求出S3,S4…S n的值.【解答】解:∵n+1个边长为1的等腰三角形有一条边在同一直线上,=×1×1=,∴S△AB1C1连接B1、B2、B3点,显然它们共线且平行于AC1∵∠B1C1B2=90°∴A1B1∥B2C1∴△B1C1B2是等腰直角三角形,且边长=1,∴△B1B2D1∽△C1AD1,∴B1D1:D1C1=1:1,∴S1=×=,同理:B2B3:AC2=1:2,∴B2D2:D2C2=1:2,∴S2=×=,同理:B3B4:AC3=1:3,∴B3D3:D3C3=1:3,∴S3=×=,∴S4=×=,…∴S n=故答案为:;.【点评】本题主要考查相似三角形的判定和性质,等腰直角三角形的定义和性质、三角形的面公式等知识点、本题关键在于作好辅助线,得到相似三角形,求出相似比,就很容易得出答案了,意在提高同学们总结归纳的能力.三、解答题(本大题共10小题,满分78分)15.(4分)用圆规、直尺作图,不写作法,但要保留作图痕迹.已知:如图,线段a.求做:Rt△ABC,使∠A=90°,AB=AC=a.结论:△ABC为等腰直角三角形.【分析】先在一直线上截取AB=a,再过A作AB的垂线,接着在此垂线上截取AC=a,则△ABC 满足条件.【解答】解:如图,△ABC为所作,△ABC为等腰直角三角形.故答案为△ABC为等腰直角三角形.【点评】本题考查了作图﹣复杂作图:复杂作图是在五种基本作图的基础上进行作图,一般是结合了几何图形的性质和基本作图方法.解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作.16.(8分)(1)化简:(2)解不等式组:.【分析】(1)原式通分并利用同分母分式的减法法则计算即可得到结果;(2)分别求出不等式组中两不等式的解集,找出解集的公共部分即可.【解答】解:(1)原式=+===;(2),由①得:x>﹣,由②得:x≤3,则不等式组的解集为﹣<x≤3.【点评】此题考查了分式的加减法,熟练掌握运算法则是解本题的关键.17.(6分)某餐厅为了吸引顾客,举行吃套餐优惠活动,套餐每套20元,每消费一套即可直接获得10元餐劵,或者参与游戏赢得餐劵.游戏规则如下:设立了一个可以自由转动的转盘(如图,转盘被平均分成12份),顾客每消费一套套餐,就可以获得一次转动转盘的机会,如果转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐劵,下次就餐时可以代替现金消费.(1)求顾客任意转动一次转盘的平均收益是多少;(2)如果你是餐厅经理,你希望顾客参与游戏还是直接获得10元餐劵?请说明理由.【分析】(1)根据转盘停止后,指针正好对准红色、黄色、绿色、空白区域,那么顾客就可以分别获得20元、15元、10元、5元餐劵得:顾客任意转动一次转盘的平均收益是×(20+15×2+10×3+5×6),再计算即可;(2)根据(1)的结果与10比较即可.【解答】解:(1)顾客任意转动一次转盘的平均收益是×(20+15×2+10×3+5×6)=(元),答:顾客任意转动一次转盘的平均收益是元;(2)∵<10,∴如果是餐厅经理,希望顾客参与游戏,这样能减少支出.【点评】此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.18.(6分)某校要从甲、乙两名跳远运动员中挑选一人参加一项校际比赛,在最近的10次选拔赛中,这两个人的跳远成绩(单位:cm)如图所示,请根据图中信息,解答下列问题:(1)通过计算,补充完成下面的统计分析表.(2)请依据对上述统计信息的数据分析,说明这两名运动员的成绩各有什么特点?【分析】(1)根据中位数、众数的概念求值即可;(2)答案不惟一,如:甲的成绩比较稳定,波动小;乙成绩不稳定,波动较大.【解答】解:(1)根据折线统计图知乙10次成绩从小到大依次排列为:574,580,585,590,593,598,613,618,618,624,则其众数为:618,中位数为:=595.5;(2)甲的平均水平和跳远在600及以上要优于乙且甲的方差小说明甲成绩比乙的成绩稳定,乙跳远的最好成绩大于甲的最好成绩.故答案为:(1)618,595.5.【点评】此题主要考查中位数、众数的求法以及从折线统计图得到信息的能力,掌握中位数、众数、方差等知识点的求法和意义是根本.19.(6分)某厂家新开发的一种电动车如图,它的大灯A射出的光线AB,AC 与地面MN 所夹的锐角分别为8°和10°,大灯A与地面离地面的距离为1m求该车大灯照亮地面的宽度BC.(不考虑其它因素)(参数数据:sin8°=,tan8°=,sin10°=,tan10°=)【分析】通过构造直角三角形来解答,过A作AD⊥MN于D,就有了∠ABN、∠ACN的度数,又已知AE的长,可在直角三角形ABE、ACE中分别求出BE、CE的长,BC就能求出.【解答】解:如图,过A作AD⊥MN于点D,在Rt△ACD中,tan∠ACD==,CD=5.6(m),在Rt△ABD中,tan∠ABD==,BD=7(m),则BC=7﹣5.6=1.4(m).答:该车大灯照亮地面的宽度BC是1.4m.【点评】此题考查解直角三角形的应用,将实际问题转化为直角三角形中的数学问题,可通过作辅助线构造直角三角形,再把条件和问题转化到这个直角三角形中,使问题解决.20.(8分)某水果店计划购进苹果和丑桔共140千克,这两种水果的进价、售价如表所示:(1)若该水果店购进这两种水果的进货款为1000元,求水果店购进这两种水果各多少千克.(2)若该水果店决定丑桔的进货量不超过苹果进货量的3倍,应怎样安排进货才能使水果店在销售完这批水果时获利最多?【分析】(1)设购进苹果x千克,则购进丑桔(140﹣x)千克,根据进货钱数=单价×数量,列出关于x的一元一次方程,解方程即可得出结论;(2)设购进苹果x千克时售完这批水果将获利y元,由丑桔的进货量不超过苹果进货量的3倍可列出关于x的一元一次不等式,解不等式可找出x的取值范围,再根据总利润=每千克利润×千克数可找出y关于x的函数关系式,根据函数的性质即可解决最值问题.【解答】解:(1)设购进苹果x千克,则购进丑桔(140﹣x)千克,依题意得:5x+9(140﹣x)=1000,解得:x=65,则140﹣65=75(千克),答:水果店购进苹果65千克,丑桔75千克.(2)设购进苹果x千克时售完这批水果将获利y元,由题意得:140﹣x≤3x,解得:x≥35.获得利润y=(8﹣5)x+(13﹣9)(140﹣x)=﹣x+560.故当x=35时,y有最大值,最大值为525元.140﹣35=105(千克).答:购进苹果35千克,丑桔105千克时水果店在销售完这批水果时获利最多.【点评】本题考查了一元一次不等式的应用、一元一次方程的应用以及一次函数的性质,解题的关键是:(1)根据数量关系列出关于x的一元一次方程;(2)根据函数的单调性解决最值问题.本题属于基础题,难度不大,解决该题型题目时,根据数量关系列出方程(或方程组)是关键.21.(8分)如图,在△ABC中,AD是BC边上的中线,过点A作AF∥BC,且AF=BC,连接BF、BF,线段BF与AD相交于点E.(1)求证:E是AD的中点;(2)若AB⊥AC,试判断四边形ADCF的形状,并证明你的结论.【分析】(1)先连接DF,判定四边形ABDF是平行四边形,再根据平行四边形的性质,得出DE=AE 即可;(2)先判定四边形ADCF是平行四边形,再根据直角三角形的性质,得出AD=CD,最后判断四边形ADCF是菱形.【解答】(1)连接DF,∵AD是BC边上的中线,∴DB=BC,∵AF=BC,∴DB=AF,又∵AF∥BC,∴四边形ABDF是平行四边形,∴DE=AE即E是AD的中点;(2)四边形ADCF是菱形.∵AD是BC边上的中线,∴DC=BC,∵AF=BC,∴DC=AF,又∵AF∥BC,∴四边形ADCF是平行四边形,又∵AB⊥AC,AD是BC边上的中线,∴AD=BC=CD,∴四边形ADCF是菱形.【点评】本题主要考查了平行四边形的判定与性质、菱形的判定以及直角三角形的性质,解题时注意:一组对边平行且相等的四边形的是平行四边形,有一组邻边相等的平行四边形的是菱形.22.(10分)某公园有一个抛物线形状的观景拱桥ACB,其横截面如图所示,量得该拱桥占地面最宽处AB=20米,最高处点C距地面5米(即OC=5米)(1)分别以AB、OC所在直线为x轴、y轴,建立如图所示的平面直角坐标系,求该抛物线的解析式;(2)夜晚,公园沿着抛物线ACB用彩灯勾勒拱桥的形状;现公园管理处打算在观景拱桥ABC的横截面前放置一个长为10米的矩形广告牌EFMN,为安全起见,要求广告牌离拱桥的桥面至少0.35米,求矩形广告牌的最大高度,并说明理由.【分析】(1)根据题意可设抛物线解析式为y=ax2+c,将点C(0,5),点B(10,0)代入求得a、c的值即可求解;(2)令x=5求得y的值,将y的值减去0.35可得广告牌最大高度.【解答】解:(1)根据题意,设抛物线解析式为y=ax2+c,将点C(0,5),点B(10,0)代入,得:,解得:.故抛物线解析式为:y=﹣x2+5;(2)当x=5时,y=﹣×25+5=3.75(m),3.75﹣0.35=3.4(m).答:矩形广告牌的最大高度为3.4m.【点评】本题主要考查二次函数的实际应用,根据题意设出函数解析式是根本,待定系数法求得抛物线解析式是解题关键.23.(10分)设ω是一个平面图形,如果用直尺和圆规经过有限步作图(简称尺规作图),画出一个正方形与ω的面积相等(简称等积),那么这样的等积转化称为ω的“化方”.(1)阅读填空如图①,已知矩形ABCD,延长AD到E,使DE=DC,以AE为直径作半圆,延长CD交半圆于点H,以DH为边作正方形DFGH,则正方形DFFH与ABCD等积.理由:连接AH,EH.∵AE为直径∴∠AHE=90°∴∠HAE+∠HEA=90°.∵DH⊥AE∴∠ADH=∠EDH=90°∴∠HAD+∠AHD=90°∴∠AHD=∠HED∴△ADH∽△HDE .。

山东省青岛市2016届高三数学第一次模拟试题1

山东省青岛市2016届高三数学第一次模拟试题1

青岛市高三统一质量检测数学(理科)本试卷分第I 卷(选择题)和第Ⅱ卷(非选择题)两部分.共150分.考试时间120分钟.注意事项:1.答卷前,考生务必用2B 铅笔和0.5毫米黑色签字笔(中性笔)将姓名、准考证号、考试科目、试卷类型填涂在答题卡规定的位置上。

2.第I 卷每小题选出答案后,用2B 铅笔把答题卡上对应的答案标号涂黑;如需改动,用橡皮擦干净后,再选涂其他答案标号.答案不能答在试题卷上。

3.第Ⅱ卷必须用0.5毫米黑色签字笔(中性笔)作答,答案必须写在答题卡各题目指定区域内相应的位置,不能写在试题卷上;如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带.不按以上要求作答的答案无效。

第I 卷(选择题 共50分)一、选择题:本大题共10小题。

每小题5分,共50分.在每小题给出的四个选项中,只有一项是符合题目要求的。

1.已知全集21log ,,1,2,162U y y x x ⎧⎫===⎨⎬⎩⎭,集合{}{}1,1,1,4A B =-=,则()U A C B⋂= A. {}1,1- B. {}1- C. {}1 D. ∅2.已知数据12350,,,,,500x x x x ⋅⋅⋅(单位:公斤),其中12350,,,,,x x x x ⋅⋅⋅是某班50个学生的体重,设这50个学生体重的平均数为x ,中位数为y ,则12350,,,,,500x x x x ⋅⋅⋅这51个数据的平均数、中位数分别与x y 、比较,下列说法正确的是A.平均数增大,中位数一定变大B.平均数增大,中位数可能不变C.平均数可能不变,中位数可能不变D.平均数可能不变,中位数可能变小3.设随机变量ξ服从正态分布()21N σ,,则函数()2=2f x x x ξ++不存在零点的概率为 A. 12 B. 23 C. 34 D. 454.已知a R ∈,则“1a <”是“2x x a -+>恒成立”的A.充分而不必要条件 B .必要而不充分条件C.充要条件D.既不充分也不必要条件5.定义{}()2,1min ,min ,,a a b a b f x x b a bx ≤⎧⎧⎫==⎨⎨⎬>⎩⎭⎩,设,则由函数()f x 的图象与x 轴、直线2x =所围成的封闭图形的面积为 A. 712 B. 512 C. 1ln 23+ D. 1ln 26+ 6.已知点12F F ,为双曲线()222210,0x y C a b a b-=>>:的左,右焦点,点P 在双曲线C 的右支上,且满足21212,120PF F F F F P =∠=o ,则双曲线的离心率为A. B. C. D. 7.如图所示的程序框图,输出S 的值为 A. 99223- B. 100223- C. 101223- D. 102223-8.已知,x y R ∈,且满足34,2y x x y x ≥⎧⎪+≤⎨⎪≥-⎩则2z x y =+的最大值为A.10B.8C.6D.3 9.如图,四棱锥P ABCD -的底面ABCD 为平行四边形,2NB PN =,则三棱锥N PAC -与三棱锥D PAC -的体积比为A.1:2B.1:8C.1:6D.1:310.已知抛物线24x y =,直线y k =(k 为常数)与抛物线交于A,B 两个不同点,若在抛物线上存在一点P(不与A,B 重合),满足0PA PB ⋅=uu r uu r ,则实数k 的取值范围为A. 2k ≥B. 4k ≥C. 02k <≤D. 04k <≤第II 卷(非选择题 共100分) 二、填空题:本大题共5小题,每小题5分,共25分.11.已知i 是虚数单位,,m n R ∈,且22m i ni +=-,则m ni m ni+-的共轭复数为_______;12.在二项式6213x x ⎛⎫+ ⎪⎝⎭的展开式中,常数项等于________(用数字作答);13.已知函数()()()sin 0,0,0f x A x A ωϕωϕπ=+>><<是偶函数,它的部点,分图象如图所示.M 是函数()f x图象上的K ,L 是函数()f x 的图象与x 轴的交点,且KLM ∆为等腰直角三角形,则()f x =___________;14.若0,0a b >>,则()21a b a b ⎛⎫++ ⎪⎝⎭的最小值是___________; 15.定义在区间[]12,x x 上的函数()y f x =的图象为C ,M 是C 上任意一点,O 为坐标原点,设向量()()()()()1122,,,,,OA x f x OB x f x OM x y ===uu r uu u r uuu r ,且实数λ满足()121x x x λλ=+-,此时向量()1O N O AO B λλ=+-uuu r uu r uu u r .若MN K ≤uuu r 恒成立,则称函数()y f x =在区间[]12,x x 上可在标准K 下线性近似,其中K 是一个确定的实数.已知函数()22f x x x =-在区间[]1,2上可在标准K 下线性近似,那么K 的最小值是________.三、解答题:本大题共6小题,共75分,解答时应写出必要的文字说明、证明过程或演算步骤.16. (本小题满分12分)已知函数()22sin sin 6f x x x πωω⎛⎫=-- ⎪⎝⎭(,x R ω∈为常数且112ω<<),函数()f x 的图象关于直线x π=对称.(I )求函数()f x 的最小正周期;(II )在ABC ∆中,角A,B,C 的对边分别为,,a b c ,若311,54a f A ⎛⎫== ⎪⎝⎭,求ABC ∆面积的最大值.17. (本小题满分12分)为迎接2022年北京冬奥会,推广滑雪运动,某滑雪场开展滑雪促销活动.该滑雪场的收费标准是:滑雪时间不超过1小时免费,超过1小时的部分每小时收费标准为40元(不足1小时的部分按1小时计算).有甲、乙两人相互独立地来该滑雪场运动,设甲、乙不超过1;1小时以上且不超过2小时离开的概率小时离开的概率分别为11,46分别为12,;两人滑雪时间都不会超过3小时.23(I)求甲、乙两人所付滑雪费用相同的概率;(II)设甲、乙两人所付的滑雪费用之和为随机变量ξ,求ξ的分布列与数学期望()Eξ.18. (本小题满分12分)如图,在四棱锥P ABCD-中,PA⊥平面ABCD,AC AD AB BC⊥⊥,,o,E为PA的∠====45,2BCA AP AD AC中点.(I )设面PAB ⋂面PCD l =,求证://CD l ;(II )求二面角B CE D --的余弦值.19. (本小题满分12分)已知等差数列{}n a 的公差d=2,其前n 项和为n S ,数列{}n a 的首项12b =,其前n 项和为n T ,满足)122,n T n N *=+∈.(I )求数列{}n a 、{}n b 的通项公式;(II )求数列{}14n n a b -的前n 项和n W .20. (本小题满分13分) 已知椭圆22:184x y E +=,A 、B 分别是椭圆E 的左、右顶点,动点M 在射线):0l x y =>上运动,MA 交椭圆E 于点P ,MB 交椭圆E 于点Q.(I )若MAB ∆垂心的纵坐标为-,求点P 的坐标;(II )试问:直线PQ 是否过定点?若过定点,求出定点坐标;若不过定点,请说明理由.21. (本小题满分14分) 已知函数()sin f x x ax =-. (I )对于()()0,1,0x f x ∈>恒成立,求实数a 的取值范围; (II )当1a =时,令()()sin ln 1h x f x x x =-++,求()h x 的最大值; (III )求证:()()1111ln 11231n n N n n*+<+++⋅⋅⋅++∈-.沁园春·雪 <毛泽东>北国风光,千里冰封,万里雪飘。

山东青岛市崂山区第一中学立体几何多选题试题含答案

山东青岛市崂山区第一中学立体几何多选题试题含答案

山东青岛市崂山区第一中学立体几何多选题试题含答案一、立体几何多选题1.在正三棱柱111ABC A B C -中,AC =11CC =,点D 为BC 中点,则以下结论正确的是( ) A .111122A D AB AC AA =+-B .三棱锥11D ABC -的体积为6C .1AB BC ⊥且1//AB 平面11AC DD .ABC 内到直线AC 、1BB 的距离相等的点的轨迹为抛物线的一部分 【答案】ABD 【分析】A .根据空间向量的加减运算进行计算并判断;B .根据1111D ABC A DB C V V --=,然后计算出对应三棱锥的高AD 和底面积11DB C S,由此求解出三棱锥的体积;C .先假设1AB BC ⊥,然后推出矛盾;取AB 中点E ,根据四点共面判断1AB //平面11AC D 是否成立;D .将问题转化为“ABC 内到直线AC 和点B 的距离相等的点”的轨迹,然后利用抛物线的定义进行判断. 【详解】A .()11111111222A D A A AD AD AA AB AC AA AB AC AA =+=-=+-=+-,故正确; B .1111D AB C A DB C V V --=,因为D 为BC 中点且AB AC =,所以AD BC ⊥, 又因为1BB ⊥平面ABC ,所以1BB AD ⊥且1BB BC B =,所以AD ⊥平面11DB C ,又因为AD ===11111122DB C S BB B C =⨯⨯=,所以1111111133226D AB C A DB C DB C V V AD S --==⨯⨯=⋅=,故正确;C .假设1AB BC ⊥成立,又因为1BB ⊥平面ABC ,所以1BB BC ⊥且111BB AB B =,所以BC ⊥平面1ABB ,所以BC AB ⊥,显然与几何体为正三棱柱矛盾,所以1AB BC ⊥不成立;取AB 中点E ,连接11,,ED EA AB ,如下图所示:因为,D E 为,BC AB 中点,所以//DE AC ,且11//AC A C ,所以11//DE AC ,所以11,,,D E A C 四点共面,又因为1A E 与1AB 相交,所以1AB //平面11AC D 显然不成立,故错误;D .“ABC 内到直线AC 、1BB 的距离相等的点”即为“ABC 内到直线AC 和点B 的距离相等的点”,根据抛物线的定义可知满足要求的点的轨迹为抛物线的一部分,故正确; 故选:ABD. 【点睛】方法点睛:求解空间中三棱锥的体积的常用方法:(1)公式法:直接得到三棱锥的高和底面积,然后用公式进行计算;(2)等体积法:待求三棱锥的高和底面积不易求出,采用替换顶点位置的方法,使其求解高和底面积更容易,由此求解出三棱锥的体积.2.在长方体1111ABCD A B C D -中,4AB BC ==,18AA =,点P 在线段11A C 上,M 为AB 的中点,则( ) A .BD ⊥平面PACB .当P 为11AC 的中点时,四棱锥P ABCD -外接球半径为72C .三棱锥A PCD -体积为定值D .过点M 作长方体1111ABCD A B C D -的外接球截面,所得截面圆的面积的最小值为4π 【答案】ACD 【分析】利用线面垂直的判定定理可判断A 选项的正误;判断出四棱锥P ABCD -为正四棱锥,求出该四棱锥的外接球半径,可判断B 选项的正误;利用等体积法可判断C 选项的正误;计算出截面圆半径的最小值,求出截面圆面积的最小值,可判断D 选项的正误. 【详解】对于A 选项,因为AB BC =,所以,矩形ABCD 为正方形,所以,BD AC ⊥, 在长方体1111ABCD A B C D -中,1AA ⊥底面ABCD ,BD ⊂平面ABCD ,1BD AA ∴⊥,1AC AA A ⋂=,AC 、1AA ⊂平面PAC ,所以,BD ⊥平面PAC ,A 选项正确;对于B 选项,当点P 为11A C 的中点时,PA ===同理可得PB PC PD ===因为四边形ABCD 为正方形,所以,四棱锥P ABCD -为正四棱锥, 取AC 的中点N ,则PN 平面ABCD ,且四棱锥P ABCD -的外接球球心在直线PN上,设该四棱锥的外接球半径为R ,由几何关系可得222PN R AN R -+=, 即2288R R -+=,解得92R =,B 选项错误; 对于C 选项,2114822ACDSAD CD =⋅=⨯=, 三棱锥P ACD -的高为18AA =,因此,116433A PCD P ACD ACD V V S AA --==⋅=△,C 选项正确;对于D 选项,设长方体1111ABCD A B C D -的外接球球心为E ,则E 为1BD 的中点, 连接EN 、MN ,则1142EN DD ==,122MN AD ==, E 、N 分别为1BD 、BD 的中点,则1//EN DD , 1DD ⊥平面ABCD ,EN ∴⊥平面ABCD ,MN ⊂平面ABCD ,EN MN ∴⊥,2225EM EN MN ∴=+=.过点M 作长方体1111ABCD A B C D -的外接球截面为平面α,点E 到平面α的距离为d ,直线EM 与平面α所成的角为θ,则sin 25sin 25d EM θθ==≤, 当且仅当2πθ=时,等号成立,长方体1111ABCD A B C D -的外接球半径为222126AB AD AA R ++'==,所以,截面圆的半径()()222226252r R d '=-≥-=,因此,截面圆面积的最小值为4π,D 选项正确.故选:ACD. 【点睛】方法点睛:求空间多面体的外接球半径的常用方法:①补形法:侧面为直角三角形,或正四面体,或对棱二面角均相等的模型,可以还原到正方体或长方体中去求解;②利用球的性质:几何体中在不同面均对直角的棱必然是球大圆直径,也即球的直径; ③定义法:到各个顶点距离均相等的点为外接球的球心,借助有特殊性底面的外接圆圆心,找其垂线,则球心一定在垂线上,再根据带其他顶点距离也是半径,列关系求解即可.3.在三棱锥M ABC -中,下列命题正确的是( ) A .若1233AD AB AC =+,则3BC BD =B .若G 为ABC 的重心,则111333MG MA MB MC =++ C .若0MA BC ⋅=,0MC AB ⋅=,则0MB AC ⋅=D .若三棱锥M ABC -的棱长都为2,P ,Q 分别为MA ,BC 中点,则2PQ = 【答案】BC 【分析】作出三棱锥M ABC -直观图,在每个三角形中利用向量的线性运算可得. 【详解】对于A ,由已知12322233AD AB AC AD AC AB AD AC AB AD =+⇒=+⇒-=-,即2CD DB =,则32BD BD DC BC =+=,故A 错误; 对于B ,由G 为ABC 的重心,得0GA GB GC ++=,又MG MA AG =+,MG MB BG =+,MG MC CG =+,3MA MB MC MG ∴++=,即111333MG MA MB MC =++,故B 正确;对于C ,若0MA BC ⋅=,0MC AB ⋅=,则0MC MA BC AB ⋅+⋅=,即()00MA BC AC CB MA BC AC C MC C M B M C ⋅++=⇒⋅++⋅⋅=⋅()00MA BC A MC MC MC MC C BC MA BC AC ⋅⋅⋅⇒⋅+-=⇒-+=⋅()000MC M CA BC AC AC CB AC CB AC C MC ⇒+=⇒+=⇒+=⋅⋅⋅⋅⋅,即0MB AC ⋅=,故C 正确;对于D ,111()()222PQ MQ MP MB MC MA MB MC MA ∴=-=+-=+- ()21122PQ MB MC MA MB MC MA ∴=+-=+-,又()2222222MB MC MA MB MC MA MB MC MB MA MC MA+-=+++⋅-⋅-⋅2221112222222222228222=+++⨯⨯⨯-⨯⨯⨯-⨯⨯⨯=,1822PQ ∴==,故D 错误. 故选:BC 【点睛】关键点睛:本题考查向量的运算,用已知向量表示某一向量的三个关键点: (1)用已知向量来表示某一向量,一定要结合图形,以图形为指导是解题的关键.(2)要正确理解向量加法、减法与数乘运算的几何意义,如首尾相接的若干向量之和,等于由起始向量的始点指向末尾向量的终点的向量. (3)在立体几何中三角形法则、平行四边形法则仍然成立.4.如图,已知四棱锥P ABCD -所有棱长均为4,点M 是侧棱PC 上的一个动点(不与点,P C 重合),若过点M 且垂直于PC 的截面将该四棱锥分成两部分,则下列结论正确的是( )A .截面的形状可能为三角形、四边形、五边形B .截面和底面ABCD 所成的锐二面角为4π C .当1PM =时,截面的面积为52D .当2PM =时,记被截面分成的两个几何体的体积分别为()1212,>V V V V ,则123=V V 【答案】BCD 【分析】点M 是侧棱PC 上的一个动点,根据其不同位置,对选项逐一进行判断即可. 【详解】A 选项中,如图,连接BD ,当M 是PC 中点时,2MC =,由题意知三角形PDC 与三角形PBC 都是边长为4的正三角形,所以DM PC ⊥,BM BC ⊥,又DM ,BM 在面MBD 内,且相交,所以PC ⊥平面PBD ,三角形MBD 即为过点M 且垂直于PC 的截面,此时是三角形,点M 向下移动时,2MC <,如图,仍是三角形;若点M 由中点位置向上移动,2MC >,在平面PDC 内作EM PC ⊥,交PD 于E ,在平面PBC 内作FM PC ⊥交PB 于F ,平面MEF 交平面PAD 于EG ,交PAB 于FH ,即交平面ABCD 于GH ,则五边形MEGHF 即为过点M 且垂直于PC 的截面,此时是五边形; 故截面的形状可能为三角形、五边形,A 错误;B 选项中,因为截面总与PC 垂直,所以不同位置的截面均平行,截面与平面ABCD 所成的锐角为定值,不妨取M 是中点,连接AC ,BD ,MB ,MD ,设AC ,BD 交点是N ,连接PN ,由题意知,四边形ABCD 是边长为4的菱形,BD AC ⊥,因为MB =MD ,所以MN BD ⊥,故MNC ∠是截面与平面ABCD 所成的锐角,过点M 作MQ AC ⊥,垂足Q.在三角形PAC中,MN =2,NQ=2,故在直角三角形MNQ 中,2cos 2NQ MNC MN ∠==,故4MNC π∠=,故B 正确;C 选项中,当PM =1时,M 是PC 中点,如图,五边形MEGHF 即为过点M 且垂直于PC 的截面,依题意,直角三角形PME 中,2cos PMPE EPM==∠,故E 为PD 的中点,同理,F是PB 的中点,则EF 是三角形PBD 的中位线,1222EF BD ==,G ,H 分别在,AD AB 的中点上,证明如下,当G ,H ,也是中点时,1//,2GH BD GH BD =,有//,22GH EF GH EF ==,四边形EFHG 是平行四边形.依题意,三角形PAC 中4,42PA PC AC ===,故PA PC ⊥,故PC GE ⊥,易见,正四棱锥中BD ⊥平面PAC ,故BD PC ⊥,GH PC ∴⊥,因为 ,GE GH 均在平面EFHG 内,且相交,所以PC ⊥平面EFHG ,故此时平面EFHG 和平面MEF 即同一平面.又BD ⊥平面PAC ,有GH ⊥面平面PAC ,GH GM ⊥,根据对称性有GH GE ⊥,四边形EFHG 是矩形. 即五边形MEGHF 即为过点M 且垂直于PC 的截面,平面图如下:依题意,22GH EF ==2EG FG ==,三角形高为()()22321h =-=,面积是122122⨯=,四边形面积是22242=,故截面面积是52 故C 正确;D 选项中,若PM =2,看B 选项中的图可知,21124M BCD P BCD P ABCD V V V V ---===,故剩余部分134P ABCD V V -=,所以123=V V ,故D 正确.故选:BCD. 【点睛】本题考查了棱锥的截面问题,考查了二面角、体积等计算问题,属于难题.5.已知正方体1111ABCD A B C D -棱长为2,如图,M 为1CC 上的动点,AM ⊥平面α.下面说法正确的是()A .直线AB 与平面α所成角的正弦值范围为32⎣⎦B .点M 与点1C 重合时,平面α截正方体所得的截面,其面积越大,周长就越大 C .点M 为1CC 的中点时,若平面α经过点B ,则平面α截正方体所得截面图形是等腰梯形D .已知N 为1DD 中点,当AM MN +的和最小时,M 为1CC 的中点 【答案】AC 【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,利用空间向量法可判断A 选项的正误;证明出1AC ⊥平面1A BD ,分别取棱11A D 、11A B 、1BB 、BC 、CD 、1DD 的中点E 、F 、Q 、N 、G 、H ,比较1A BD 和六边形EFQNGH 的周长和面积的大小,可判断B 选项的正误;利用空间向量法找出平面α与棱11A D 、11A B 的交点E 、F ,判断四边形BDEF 的形状可判断C 选项的正误;将矩形11ACC A 与矩形11CC D D 延展为一个平面,利用A 、M 、N 三点共线得知AM MN +最短,利用平行线分线段成比例定理求得MC ,可判断D 选项的正误. 【详解】对于A 选项,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则点()2,0,0A 、()2,2,0B 、设点()()0,2,02M a a ≤≤,AM ⊥平面α,则AM 为平面α的一个法向量,且()2,2,AM a =-,()0,2,0AB =, 2232cos ,,32288AB AM AB AM AB AMa a ⋅<>===⎢⋅⨯++⎣⎦, 所以,直线AB 与平面α所成角的正弦值范围为32⎣⎦,A 选项正确; 对于B 选项,当M 与1CC 重合时,连接1A D 、BD 、1A B 、AC , 在正方体1111ABCD A B C D -中,1CC ⊥平面ABCD ,BD ⊂平面ABCD ,1BD CC ∴⊥,四边形ABCD 是正方形,则BD AC ⊥,1CC AC C =,BD ∴⊥平面1ACC ,1AC ⊂平面1ACC ,1AC BD ∴⊥,同理可证11AC A D ⊥, 1A D BD D ⋂=,1AC ∴⊥平面1A BD ,易知1A BD 是边长为22(12322234A BD S =⨯=△为22362=.设E 、F 、Q 、N 、G 、H 分别为棱11A D 、11A B 、1BB 、BC 、CD 、1DD 的中点,易知六边形EFQNGH 是边长为2的正六边形,且平面//EFQNGH 平面1A BD , 正六边形EFQNGH 的周长为62,面积为()236233⨯⨯=,则1A BD 的面积小于正六边形EFQNGH 的面积,它们的周长相等,B 选项错误; 对于C 选项,设平面α交棱11A D 于点(),0,2E b ,点()0,2,1M ,()2,2,1AM =-,AM ⊥平面α,DE ⊂平面α,AM DE ∴⊥,即220AM DE b ⋅=-+=,得1b =,()1,0,2E ∴,所以,点E 为棱11A D 的中点,同理可知,点F 为棱11A B 的中点,则()2,1,2F ,()1,1,0EF =,而()2,2,0DB =,12EF DB ∴=,//EF DB ∴且EF DB ≠, 由空间中两点间的距离公式可得2222015DE =++=()()()2222212205BF =-+-+-=,DE BF ∴=,所以,四边形BDEF 为等腰梯形,C 选项正确;对于D 选项,将矩形11ACC A 与矩形11CC D D 延展为一个平面,如下图所示:若AM MN +最短,则A 、M 、N 三点共线,11//CC DD ,2222222MC AC DN AD ∴===+, 11222MC CC =≠,所以,点M 不是棱1CC 的中点,D 选项错误.故选:AC. 【点睛】本题考查线面角正弦值的取值范围,同时也考查了平面截正方体的截面问题以及折线段长的最小值问题,考查空间想象能力与计算能力,属于难题.6.在边长为2的等边三角形ABC 中,点,D E 分别是边,AC AB 上的点,满足//DE BC 且AD ACλ=,(()01λ∈,),将ADE 沿直线DE 折到A DE '△的位置.在翻折过程中,下列结论不成立的是( )A .在边A E '上存在点F ,使得在翻折过程中,满足//BF 平面A CD 'B .存在102λ∈⎛⎫⎪⎝⎭,,使得在翻折过程中的某个位置,满足平面A BC '⊥平面BCDEC .若12λ=,当二面角A DE B '--为直二面角时,||104A B '= D .在翻折过程中,四棱锥A BCDE '-体积的最大值记为()f λ,()f λ23【答案】ABC 【分析】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,即可判断出结论.对于B ,102λ∈⎛⎫⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,即可判断出结论.对于C ,12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,可得AM ⊥平面BCDE .可得22A B AM BM '=+,结合余弦定理即可得出.对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,利用导数研究函数的单调性即可得出.【详解】对于A.在边A E '上点F ,在A D '上取一点N ,使得//FN ED ,在ED 上取一点H ,使得//NH EF ,作//HG BE 交BC 于点G ,如图所示,则可得FN 平行且等于BG ,即四边形BGNF 为平行四边形, ∴//NG BE ,而GN 始终与平面ACD 相交,因此在边A E '上不存在点F ,使得在翻折过程中,满足//BF 平面A CD ',A 不正确.对于B ,102λ∈⎛⎫ ⎪⎝⎭,,在翻折过程中,点A '在底面BCDE 的射影不可能在交线BC 上,因此不满足平面A BC '⊥平面BCDE ,因此B 不正确. 对于C.12λ=,当二面角A DE B '--为直二面角时,取ED 的中点M ,如图所示:可得AM ⊥平面BCDE , 则22223111010()1()21cos12022224A B AM BM '=+=++-⨯⨯⨯︒=≠,因此C 不正确;对于D.在翻折过程中,取平面AED ⊥平面BCDE ,四棱锥A BCDE '-体积()3133BCDE f S λλλλ=⋅⋅=-,()01λ∈,,()213f λλ'=-,可得33λ=时,函数()f λ取得最大值()31231339f λ⎛⎫=-=⎪⎝⎭,因此D 正确. 综上所述,不成立的为ABC. 故选:ABC. 【点睛】本题考查了利用运动的观点理解空间线面面面位置关系、四棱锥的体积计算公式、余弦定理、利用导数研究函数的单调性极值与最值,考查了推理能力空间想象能力与计算能力,属于难题.7.如图,点O 是正四面体P ABC -底面ABC 的中心,过点O 的直线交AC ,BC 于点M ,N ,S 是棱PC 上的点,平面SMN 与棱PA 的延长线相交于点Q ,与棱PB 的延长线相交于点R ,则( )A .若//MN 平面PAB ,则//AB RQ B .存在点S 与直线MN ,使PC ⊥平面SRQC .存在点S 与直线MN ,使()0PS PQ PR ⋅+= D .111PQPRPS++是常数【答案】ABD 【分析】对于选项A ,根据线面平行的性质定理,进行推理判断即可;对于选项B ,当直线MN 平行于直线AB , 13SC PC =时,通过线面垂直的判定定理,证明此时PC ⊥平面SRQ ,即可证明,存在点S 与直线MN ,使PC ⊥平面SRQ ;对于选项C ,假设存在点S 与直线MN ,使()0PS PQ PR ⋅+=,利用线面垂直的判定定理可证得PC ⊥平面PAB ,此时通过反证法说明矛盾性,即可判断; 对于选项D ,利用S PQR O PSR O PSQ O PQR V V V V ----=++,即可求得111PQPRPS++是常数.【详解】 对于选项A ,若//MN 平面PAB ,平面SMN 与棱PA 的延长线相交于点Q ,与棱PB 的延长线相交于点R ,∴平面SMN 平面PAB =RQ ,又MN ⊂平面SMN ,//MN 平面PAB ,∴//MN RQ ,点O 在面ABC 上,过点O 的直线交AC ,BC 于点M ,N ,∴MN ⊂平面ABC ,又//MN 平面PAB ,平面ABC平面PAB AB =,∴//MN AB , ∴//AB RQ ,故A 正确; 对于选项B ,当直线MN 平行于直线AB ,S 为线段PC 上靠近C 的三等分点,即13SC PC =, 此时PC ⊥平面SRQ ,以下给出证明: 在正四面体P ABC -中,设各棱长为a ,∴ABC ,PBC ,PAC △,PAB △均为正三角形,点O 为ABC 的中心,//MN AB ,∴由正三角形中的性质,易得23CN CM a ==, 在CNS 中,23CN a =,13SC a =,3SCN π∠=,∴由余弦定理得,3SN a ==, ∴222249SC SN a CN +==,则SN PC ⊥, 同理,SM PC ⊥,又SM SN S =,SM ⊂平面SRQ ,SN ⊂平面SRQ ,∴PC ⊥平面SRQ ,∴存在点S 与直线MN ,使PC ⊥平面SRQ ,故B 正确; 对于选项C ,假设存在点S 与直线MN ,使()0PS PQ PR ⋅+=, 设QR 中点为K ,则2PQ PR PK +=,∴PS PK ⊥,即PC PK ⊥,()cos cos 0PC AB PC PB PA PC PB CPB PC PA CPA ⋅=⋅-=⋅∠-⋅∠=,∴PC AB ⊥,又易知AB 与PK 为相交直线,AB 与PK 均在平面PQR 上,∴PC ⊥平面PQR ,即PC ⊥平面PAB ,与正四面体P ABC -相矛盾,所以假设不成立, 故C 错误; 对于选项D ,易知点O 到面PBC ,面PAC ,面PAB 的距离相等,记为d , 记PC 与平面PAB 所处角的平面角为α,α为常数,则sin α也为常数, 则点S 到PQR 的距离为sin PS α, 又13sin 234PQRSPQ PR PQ PR π=⋅=⋅ ∴()()1133sin sin sin 33412S PQR PQRV PS S PS PQ PR PQ PR PS ααα-=⋅=⋅⋅=⋅⋅, 又13sin 234PSRSPS PR PS PR π=⋅=⋅, 13sin 234PSQS PS PQ PS PQ π=⋅=⋅, 13sin23PQRSPQ PR PQ PR π=⋅=⋅,()S PQR O PSR O PSQ O PQR V V V V PS PR PS PQ PQ PR ----=++=⋅+⋅+⋅,∴()3sin 12PQ PR PS d PS PR PS PQ PQ PR α⋅⋅=⋅+⋅+⋅, ∴111sin d PQPRPSα++=为常数,故D 正确. 故选:ABD. 【点睛】本题考查了线面平行的性质定理、线面垂直的判定定理,考查了三棱锥体积的计算,考查了向量的运算,考查了转化能力与探究能力,属于较难题.8.如图所示,正方体ABCD A B C D ''''-的棱长为1,E ,F 分别是棱AA ',CC '的中点,过直线EF 的平面分别与棱BB ',DD '交于点M ,N ,以下四个命题中正确的是( )A .0MN EF ⋅=B .ME NE =C .四边形MENF 的面积最小值与最大值之比为2:3D .四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3 【答案】ABD 【分析】证明EF ⊥平面BDD B '',进而得EF MN ⊥,即可得A 选项正确;证明四边形MENF 为菱形即可得B 选项正确;由菱形性质得四边形MENF 的面积12S MN EF =⋅,再分别讨论MN 的最大值与最小值即可;根据割补法求解体积即可. 【详解】对于A 选项,如图,连接BD ,B D '',MN .由题易得EF BD ⊥,EFBB '⊥,BD BB B '⋂=,所以EF ⊥平面BDD B '',又MN ⊂平面BDD B '',所以EF MN ⊥,因此0MN EF ⋅=,故A 正确.对于B 选项,由正方体性质得:平面''//BCC B 平面''ADD A ,平面''BCC B 平面EMFN MF =,平面''ADD A 平面EMFN EN =, 所以//MF EN ,同理得//ME NF ,又EF MN ⊥,所以四边形MENF 为菱形, 因此ME NE =,故B 正确.对于C 选项,由B 易得四边形MENF 的面积12S MN EF =⋅, 所以当点M ,N 分别为BB ',DD '的中点时,四边形MENF 的面积S 最小, 此时2MN EF ==,即面积S 的最小值为1;当点M ,N 分别与点B (或点B '),D (或D )重合时,四边形MENF 的面积S 最大,此时3MN =,即面积S 的最大值为6, 所以四边形MENF 的面积最小值与最大值之比为2:6,故C 不正确. 对于D 选项,四棱锥A MENF -的体积1112123346M AEF N AEF AEF V V V DB S --=+=⋅=⨯⨯=△; 因为E ,F 分别是AA ',CC '的中点,所以BM D N '=,DN B M '=,于是被截面MENF 平分的两个多面体是完全相同的,则它们的体积也是相同的,因此多面体ABCD EMFN -的体积21122ABCD A B C D V V ''''-==正方体,所以四棱锥A MENF -与多面体ABCD EMFN -体积之比为1:3,故D 正确. 故选:ABD .【点睛】本题考查立体几何与向量的综合、截面面积的最值、几何体的体积,考查空间思维能力与运算求解能力,是中档题.本题解题的关键在于证明四边形MENF 为菱形,利用割补法将四棱锥A MENF -的体积转化为三棱锥M AEF - 和N AEF -的体积之和,将多面体ABCD EMFN -的体积转化为正方体的体积的一半求解.。

青岛市选修一第一单元《空间向量与立体几何》检测(有答案解析)

青岛市选修一第一单元《空间向量与立体几何》检测(有答案解析)

一、选择题1.如图,在四棱锥P ABCD -中,底面ABCD 是平行四边形,且1,2AB BC ==,60ABC ∠=,AP ⊥平面ABCD ,AE PC ⊥于E ,下列四个结论:①AB AC ⊥;②AB ⊥平面PAC ;③PC ⊥平面ABE ;④BE PC ⊥ .其中正确的个数是( )A .1B .2C .3D .42.在棱长为2的正四面体ABCD 中,点M 满足()1AM xAB yAC x y AD =+-+-,点N 满足()1BN BA BC λλ=+-,当AM 、BN 最短时,AM MN ⋅=( ) A .43-B .43C .13-D .133.已知()1,1,2P -,()23,1,0P 、()30,1,3P ,则向量12PP 与13PP 的夹角是( ) A .30B .45C .60D .904.在直三棱柱111ABC A B C -中,120ABC ∠=,1AB BC CC ==,则异面直线1AB 与1BC 所成角的余弦值为( )A .3-B .34-C .34D .345.给出下列两个命题:命题:p 空间任意三个向量都是共面向量;命题:q 若0a >,0b >,则方程221ax by +=表示的曲线一定是椭圆.那么下列命题中为真命题的是( )A .p q ∧B .p q ∨C .()p q ⌝∧D .()p q ⌝∨6.如图,已知棱长为2的正方体1111ABCD A B C D -中,点G 是1B C 的中点,点,H E 分别为1,GD C D 的中点,GD ⊥平面,HE α⊂平面α,平面11AC D 与平面α相交于一条线段,则该线段的长度是( )A 14B 11C 14D 117.两直线14127x y z -+==-和623511x y z +--==-的夹角的余弦是( ) A .2227-B .2227C .227D .227-8.ABC 中,90ACB ∠=︒,22AB BC ==,将ABC 绕BC 旋转得PBC ,当直线PC 与平面PAB 所成角正弦值为66时,P 、A 两点间的距离为( )A .2B .22C .42D .49.在底面为锐角三角形的直三棱柱111ABC A B C -中,D 是棱BC 的中点,记直线1B D 与直线AC 所成角为1θ,直线1B D 与平面111A B C 所成角为2θ,二面角111C A B D --的平面角为3θ,则( ) A .2123,θθθθ<<B .2123 ,θθθθ><C .2123 ,θθθθD .2123 ,θθθθ>>10.已知正四面体ABCD 的棱长为a ,点E ,F 分别是,BC AD 的中点,则AE AF ⋅的值为( ) A .2aB .212a C .214a D .234a 11.如图所示,在平行六面体1111ABCD A B C D -中,AB a =,ADb =,1AAc =,M 是1D D 的中点,点N 是1AC 上的点,且113AN AC =,用,,a b c 表示向量MN 的结果是( )A .12a b c ++ B .114555a b c ++C .1315105a b c --D .121336a b c --12.点P 是棱长为1的正方体1111ABCD A B C D -的底面ABCD 上一点,则1PA PC ⋅的取值范围是( ) A .1[1,]4--B .11[,]24--C .[1,0]-D .1[,0]2-13.如图在一个120︒的二面角的棱上有两点,A B ,线段,AC BD 分别在这个二面角的两个半平面内,且均与棱AB 垂直,若2AB =,1AC =,2BD =,则CD 的长为( ).A .2B .3C .23D .4二、填空题14.如图所示,长方体1111ABCD A B C D -中,2AB BC ==,14CC =,点E 是线段1CC 的中点,点F 是正方形ABCD 的中心,则直线1A E 与直线1B F 所成角的余弦值为___15.三棱锥O ABC -中,OA 、OB 、OC 两两垂直,且OA OB OC ==.给出下列四个命题:①()()223OA OB OCOA ++=;②()0BC CA CO ⋅-=;③()OA OB +和CA 的夹角为60;④三棱锥O ABC -的体积为()16AB AC BC ⋅. 其中所有正确命题的序号为______________.16.如图:二面角α﹣l ﹣β等于120°,A 、B 是棱l 上两点,AC 、BD 分别在半平面α、β内,AC ⊥l ,BD ⊥l ,AB =AC =BD =1,则CD 的长等于__.17.如图,四棱锥P ABCD -中,ABCD 是矩形,PA ⊥平面ABCD ,1==PA AB ,2BC =,四棱锥外接球的球心为O ,点E 是棱AD 上的一个动点,给出如下命题:①直线PB 与直线CE 所成的角中最小的角为45︒;②BE 与PC 一定不垂直;③三棱锥E BCO -的体积为定值;④CE PE +的最小值为22,其中正确命题的序号是__________.(将你认为正确的命题序号都填上)18.平行六面体1111ABCD A B C D -中,已知底面四边形ABCD 为正方形,且113A AB A AD π∠=∠=,其中,设1AB AD ==,1AA c =,体对角线12AC=,则c 的值是______.19.设空间任意一点O 和不共线三点A B C ,,,且点P 满足向量关系OP xOA yOB zOC =++,若,,,P A B C 四点共面,则x y z ++=______.20.已知向量(1,2,1)a =-,(2,2,0)b =-,则a 在b 方向上的投影为________. 21.已知向量()()2,1,3,1,2,1a b =-=-,若()a ab λ⊥-,则实数λ的值为______. 22.如图,在三棱柱111ABC A B C -中,1AC CC ⊥,AC BC ⊥,2AC BC ==,160C CB ∠=︒,13CC =,点D ,E 分别在棱1AA 和棱1CC 上,且1AD =,2CE =,则二面角1B B E D --的正切值_______23.如图,在四棱锥P ABCD -中,底面ABCD 是底边为1的菱形,60BAD ∠=,2PB =,PA PD =,当直线PB 与底面ABCD 所成角为30时,二面角P CD A --的正弦值为______.24.如图,在长方体1111ABCD A B C D -中,11AD AA ==,2AB =,点E 在棱AB 上.若二面角1D EC D --的大小为4π,则AE =__________.25.给出下列命题:①直线l 的方向向量为a =(1,﹣1,2),直线m 的方向向量b =(2,1,﹣12),则l 与m 垂直;②直线l 的方向向量a =(0,1,﹣1),平面α的法向量n =(1,﹣1,﹣1),则l ⊥α; ③平面α、β的法向量分别为1n =(0,1,3),2n =(1,0,2),则α∥β;④平面α经过三点A (1,0,﹣1),B (0,1,0),C (﹣1,2,0),向量n =(1,u ,t )是平面α的法向量,则u+t=1.其中真命题的是______.(把你认为正确命题的序号都填上)26.已知ABC ∆的顶点A ∈平面α,点B ,C 在平面α异侧,且2AB =,3AC =若AB ,AC 与α所成的角分别为3π,6π,则线段BC 长度的取值范围为______.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【详解】已知1260AB BC ABC ==∠=︒,,, 由余弦定理可得2222cos60AC AB BC AB BC =+-︒3=, 所以22AC AB +2BC =,即AB AC ⊥,①正确;由PA ⊥平面ABCD ,得AB PA ⊥,所以AB ⊥平面PAC ,②正确;AB ⊥平面PAC ,得AB ⊥PC ,又AE PC ⊥,所以PC ⊥平面ABE ,③正确;由PC ⊥平面ABE ,得PC BE ⊥,④正确,故选D .2.A解析:A 【分析】根据题意可知M ∈平面BCD ,N ∈直线AC ,根据题意知,当M 为BCD ∆的中心、N 为线段AC 的中点时,AM 、BN 最短,然后利用MC 、MA 表示MN ,利用空间向量数量积的运算律和定义可求出AM MN ⋅的值. 【详解】由共面向量基本定理和共线向量基本定理可知,M ∈平面BCD ,N ∈直线AC , 当AM 、BN 最短时,AM ⊥平面BCD ,BN AC ⊥, 所以,M 为BCD ∆的中心,N 为AC 的中点,此时,242sin 603MC ==,233MC ∴=, AM ⊥平面BCD ,MC ⊂平面BCD ,AM MC ∴⊥,2223MA AC MC ∴=-==⎝⎭. 又()12MN MC MA =+,()2114223AM MN AM MC AM MA MA ∴⋅=⋅+⋅=-=-. 故选:A. 【点睛】本题考查空间向量数量积的计算,同时也涉及了利用共面向量和共线向量来判断四点共面和三点共线,确定动点的位置是解题的关键,考查计算能力,属于中等题.3.D解析:D【分析】设向量12PP 与13PP 的夹角为θ,计算出向量12PP 与13PP 的坐标,然后由12131213cos PP PP PP PP θ⋅=⋅计算出cos θ的值,可得出θ的值.【详解】设向量12PP 与13PP 的夹角为θ, ()()()123,1,01,1,22,2,2PP =--=-,()()()130,1,31,1,21,2,1PP =--=-,则12131213cos 0PP PP PP PP θ⋅==⋅,所以,90θ=,故选D.【点睛】本题考查空间向量的坐标运算,考查利用向量的坐标计算向量的夹角,考查计算能力,属于中等题.4.C解析:C 【分析】作出图形,分别取AC 、11A C 的中点O 、1O ,连接OB 、1OO ,然后以点O 为坐标原点,OA 、OB 、1OO 所在直线分别为x 、y 、z 轴建立空间直角坐标系,设12AB BC CC ===,利用空间向量法可求出异面直线1AB 与1BC 所成角的余弦值.【详解】设12AB BC CC ===,分别取AC 、11A C 的中点O 、1O ,连接OB 、1OO , 在直三棱柱111ABC A B C -中,四边形11AAC C 为平行四边形,则11//AC A C 且11AC A C =,O 、1O 分别为AC 、11A C 的中点,所以,11//AO AO 且11AO A O =,所以,四边形11AAO O 为平行四边形,11//OO AA ∴,1AA ⊥底面ABC ,1OO ∴⊥底面ABC ,AB BC =,O 为AC 的中点,OB AC ∴⊥,以点O 为坐标原点,OA 、OB 、1OO 所在直线分别为x、y 、z 轴建立空间直角坐标系O xyz -,由于120ABC ∠=,则)A、()0,1,0B 、()10,1,2B 、()12C ,()12AB =-,()11,2BC =--, 1111113cos ,42AB BC AB BC AB BC ⋅===⋅,因此,异面直线1AB 与1BC 所成角的余弦值为34. 故选:C.【点睛】本题考查利用空间向量法求异面直线所成角的余弦值,考查计算能力,属于中等题.5.D解析:D 【分析】判断命题p 和命题q 为假命题,再判断复合命题的真假得到答案. 【详解】命题:p 空间任意三个向量都是共面向量,为假命题; 当0a b =>时,方程221ax by +=表示圆,故q 为假命题;故p q ∧,p q ∨,()p q ⌝∧为假命题,()p q ⌝∨为真命题. 故选:D . 【点睛】本题考查了命题的真假判断,意在考查学生的推断能力.6.C解析:C 【分析】以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,由题意得到E 是两个平面的一个交点,分析另一个交点的位置,可能在11A C 或1A D 上,设其交点坐标用向量计算可得答案. 【详解】如图,以D 为原点,DA 为x 轴,DC 为y 轴,1DD 为z 轴,建立空间直角坐标系,()0,0,0D ,()12,0,2A ,()()1,2,10,1,1G E ,,()1,2,1DG =,因为HE ⊂平面α,所以E ∈平面α,因为E ∈1C D ,所以E ∈平面11AC D , 所以E 是两个平面的一个交点,如果另一个交点在11A C 上,设为M 且设(),2,2M a a -,02a ≤≤所以(),1,1EM a a =-,因为EM ⊂平面α,DG ⊥平面α,所以0EM DG ⋅=, 即2210a a +-+=,解得3a =不合题意,所以另一个交点在1A D 上,不妨设为F , 所以平面11AC D ⋂平面EF α=,即求EF 的长度,且(),0,F b b ,02b ≤≤, 因为EF ⊂平面α,DG ⊥平面α,所以0EF DG ⋅=,(),1,1EF b b =--, 即210b b -+-=,解得32b =,所以33,0,22F ⎛⎫⎪⎝⎭, 所以2231141222EF ⎛⎫⎛⎫=++=⎪ ⎪⎝⎭⎝⎭. 故选:C.【点睛】本题考查了用向量解决线面垂直、线线垂直的问题,关键点是建立空间直角坐标系和分析两个平面的交线的位置,考查了学生的空间想象力、推理能力和计算能力.7.B解析:B 【分析】写出直线的方向向量,求出方向向量的夹角的余弦值,其绝对值为两直线夹角余弦. 【详解】由题意两直线的方向向量分别为(1,2,7)m =-,(5,1,1)n =-,cos ,271m n m n m n⋅<>===-+∵两直线夹角为锐角或直角,∴所求余弦值为27. 故选:B . 【点睛】本题考查求空间两直线的夹角,求出两直线的方向向量,由方向向量的夹角与两直线夹角相等或互补求解.8.B解析:B 【分析】取PA 的中点D ,连接CD ,因为CA =CP ,则CD ⊥PA ,连接BD ,过C 作CE ⊥BD ,E 为垂足,由题意得到∠CPE 就是直线PC 与平面PAB 所成角,利用直线PC 与平面PAB 所成角的PC CE ,再求出CD ,可得PD ,即可得出结论. 【详解】取PA 的中点D ,连接CD ,因为CA =CP ,则CD ⊥PA ,连接BD ,过C 作CE ⊥BD ,E 为垂足,由已知得BC ⊥CA , BC ⊥CP , CA CP C =,则BC ⊥平面PAC , 得到BC ⊥PA ,CD BC C ⋂=,可得PA ⊥平面BCD ,又PA ⊂平面PAC ∴平面BCD ⊥平面PBA ,平面BCD 平面PBA =BD ,由两个平面互相垂直的性质可知:CE ⊥平面PBA , ∴∠CPE 就是直线PC 与平面PAB 所成角,∵直线PC 与平面PAB 所成角的正弦值为6,PC =AC∴CE =62PC =设CD =x ,则BD ,111222x ∴⋅⋅=, ∴x =1,∵PC ,∴PD,∴PA =2PD =. 故选:B .【点睛】本题考查直线与平面所成角的求法,考查空间想象能力和分析推理能力以及计算能力,属于中档题.9.A解析:A 【分析】以A 为坐标原点,建立空间直角坐标系,写出点的坐标,分别求出直线的方向向量以及平面的法向量,通过向量法即可求得各个角度的余弦值,再结合余弦函数的单调性即可判断. 【详解】由题可知,直三棱柱111ABC A B C -的底面为锐角三角形,D 是棱BC 的中点, 设三棱柱111ABC A B C -是棱长为2的正三棱柱,以A 为原点,在平面ABC 中,过A 作AC 的垂线为x 轴,AC 为y 轴,1AA 为z 轴,建立空间直角坐标系,则1(0,0,2)A ,1(3,1,2)B ,(0,2,0)C ,33,02D ⎫⎪⎪⎝⎭,(0,0,0)A , (0,2,0)AC =,131,222B D ⎛⎫=-- ⎪ ⎪⎝⎭,11(3,1,0)A B =,因为直线1B D 与直线AC 所成的角为1θ,10,2πθ⎛⎤∈ ⎥⎝⎦,111||cos ||||2θ⋅∴==⋅B D AC B D AC ,因为直线1B D 与平面111A B C 所成的角为2θ,20,2πθ⎡⎤∈⎢⎥⎣⎦, 平面111A B C 的法向量()0,0,1n =,121||sin ||5∣θ⋅∴==⋅B D nB D n ,2cos θ∴==, 设平面11A B D 的法向量(,,)m a b c =,则1113031202m A B ab m B D bc ⎧⋅=+=⎪⎨⋅=-+-=⎪⎩, 取a =33,3,2m ⎛⎫=-- ⎪⎝⎭,因为二面角111C A B D --的平面角为3θ, 由图可知,其为锐角,33||2cos ||57m n m n θ⋅∴===⋅∣,231cos cos cos θθθ>>, 由于cos y θ=在区间(0,)π上单调递减,故231θθθ<<, 则2123,θθθθ<<. 故选:A . 【点睛】本题考查利用向量法研究空间中的线面角以及二面角,属综合基础题.10.C解析:C 【分析】把要求数量积的两个向量表示成以四面体的棱长为基底的向量的表示形式,写出向量的数量积,问题转化成四面体的棱之间的关系,因为棱长和夹角已知,得到结果. 【详解】解:11()22AE AF AB AC AD =+1()4AB AD AC AD =+ 1(cos60cos60)4a a a a =⨯⨯︒+⨯⨯︒2221111()4224a a a =+= 故选:C.【点睛】本题考查空间向量的数量积,解题的关键是把要用的向量写成以已知几何体的一个顶点为起点的向量为基地的形式,再进行运算.11.D解析:D 【分析】在平行六面体1111ABCD A B C D -中根据空间向量的加法合成法则,对向量MN 进行线性表示,即可求得答案. 【详解】 连接1C M113AN AC =可得:1123C N C A =()111AC AA AC AA AD AB c a b =+=++=++∴1122223333C N C A c a b ==--- 又112C M a c =--∴11MN C N C M =-22213332c a b a c ⎛⎫=------ ⎪⎝⎭121336a b c --= ∴121336a b N c M =--故选: D. 【点睛】本题考查了空间向量的加法运算,解题关键是掌握向量的加法运算和数形结合,属于基础题.12.D解析:D 【分析】以点D 为原点,以DA 所在的直线为x 轴,以DC 所在的直线为y 轴,以1DD 所在的直线为z 轴,建立空间直角坐标系,写出各点坐标,同时设点P 的坐标为(,,)x y z ,其中01,01,1x y z ≤≤≤≤=,用坐标运算计算出1PA PC ⋅,配方后可得其最大值和最小值,即得其取值范围. 【详解】以点D 为原点,以DA 所在的直线为x 轴,以DC 所在的直线为y 轴,以1DD 所在的直线为z 轴,建立空间直角坐标系,如图所示;则点1(1,0,0),(0,1,1)A C 设点P 的坐标为(,,)x y z ,由题意可得 01,01,1x y z ≤≤≤≤=,1(1,,1),(,1,0)PA x y PC x y ∴=---=--22221111(1)(1)0222PA PC x x y y x x y y x y ⎛⎫⎛⎫∴⋅=----+=-+-=-+-- ⎪ ⎪⎝⎭⎝⎭, 由二次函数的性质可得,当12x y ==时1PA PC ⋅取得最小值为12-;当0x =或1,且0y =或1时,1PA PC ⋅取得最大值为0, 则1PA PC ⋅的取值范围是1,02⎡⎤-⎢⎥⎣⎦故选D .【点睛】本题考查空间向量的数量积运算,解题方法量建立空间直角坐标系,引入坐标后,把向量的数量积用坐标表示出来,然后利用函数的性质求得最大值和最小值.13.B解析:B 【分析】由CD CA AB BD =++,两边平方后展开整理,即可求得2CD ,则CD 的长可求. 【详解】 解:CD CA AB BD =++,∴2222222CD CA AB BD CA AB CA BD AB BD =+++++,CA AB ⊥,BD AB ⊥,∴0CA AB =,0BD AB =,()1||||cos 1801201212CA BD CA BD =︒-︒=⨯⨯=.∴2124219CD =+++⨯=,||3CD ∴=,故选:B . 【点睛】本题考查了向量的多边形法则、数量积的运算性质、向量垂直与数量积的关系,考查了空间想象能力,考查了推理能力与计算能力,属于中档题.二、填空题14.【分析】以点为坐标原点所在直线分别为轴建立空间直角坐标系写出向量的坐标利用空间向量法可求得直线与直线所成角的余弦值【详解】如下图所示以点为坐标原点所在直线分别为轴建立空间直角坐标系则点因此直线与直线解析:9【分析】以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系,写出向量1A E 、1B F 的坐标,利用空间向量法可求得直线1A E 与直线1B F 所成角的余弦值. 【详解】如下图所示,以点D 为坐标原点,DA 、DC 、1DD 所在直线分别为x 、y 、z 轴建立空间直角坐标系D xyz -,则点()12,0,4A 、()12,2,4B、()0,2,2E 、()1,1,0F , ()12,2,2A E =--,()11,1,4B F =---,11111126cos ,2332A EB F A E B F A E B F⋅<>===⨯⋅, 因此,直线1A E 与直线1B F 26. 故答案为:269. 【点睛】思路点睛:平移线段法是求异面直线所成角的常用方法,其基本思路是通过平移直线,把异面直线的问题化归为共面直线问题来解决,具体步骤如下: (1)平移:平移异面直线中的一条或两条,作出异面直线所成的角; (2)认定:证明作出的角就是所求异面直线所成的角; (3)计算:求该角的值,常利用解三角形; (4)取舍:由异面直线所成的角的取值范围是0,2π⎛⎤⎥⎝⎦,当所作的角为钝角时,应取它的补角作为两条异面直线所成的角.15.①②③【分析】设以点为坐标原点所在直线分别为轴建立空间直角坐标系利用空间向量数量积的坐标运算可判断①②③④的正误【详解】设由于两两垂直以点为坐标原点所在直线分别为轴建立空间直角坐标系如下图所示:则对解析:①②③ 【分析】设OA OB OC a ===,以点O 为坐标原点,OA 、OB 、OC 所在直线分别为x 、y 、z 轴建立空间直角坐标系,利用空间向量数量积的坐标运算可判断①②③④的正误.【详解】设OA OB OC a ===,由于OA 、OB 、OC 两两垂直,以点O 为坐标原点,OA 、OB 、OC 所在直线分别为x 、y 、z 轴建立空间直角坐标系, 如下图所示:则()0,0,0O、(),0,0A a 、()0,,0B a 、()0,0,C a .对于①,(),,OA OB OC a a a ++=,所以,()()22233OA OB OC a OA ++==,①正确;对于②,(),0,0CA CO OA a -==,()0,,BC a a =-,则()0BC CA CO ⋅-=,②正确;对于③,(),,0OA OB a a +=,(),0,CA a a =-,()()221cos ,22OA OB CA a OA OB CA OA OB CAa+⋅<+>===+⋅, 0,180OA OB CA ≤<+>≤,所以,()OA OB +和CA 的夹角为60,③正确;对于④,(),,0AB a a =-,(),0,AC a a =-,()0,,BC a a =-,则2AB AC a ⋅=,所以,()2231226666a a AB AC BC BC a a ⋅===,而三棱锥O ABC -的体积为3111326V OA OB OC a =⨯⋅⋅=,④错误. 故答案为:①②③. 【点睛】关键点点睛:在立体几何中计算空间向量的相关问题,可以选择合适的点与直线建立空间直角坐标系,利用空间向量的坐标运算即可.16.2【分析】求CD 的长即为由向量的加法可得利用向量的数量积运算即可得出答案【详解】∵AB 是棱l 上两点ACBD 分别在半平面αβ内AC ⊥lBD ⊥l 因为所以因为所以故答案为:2【点睛】本题主要考查空间向量的解析:2 【分析】求CD 的长即为CD ,由向量的加法可得CD CA AB BD =++,利用向量的数量积运算即可得出答案. 【详解】∵A 、B 是棱l 上两点,AC 、BD 分别在半平面α、β内,AC ⊥l ,BD ⊥l ,0,0∴⋅=⋅=CA AB BD AB ,,60︒<>=CA BD因为1AB AC BD ===,所以111cos602︒⋅=⨯⨯=CA BD , 因为CD CA AB BD =++, 所以2()12=++==CD CA AB BD故答案为:2 【点睛】本题主要考查空间向量的加法,减法及几何意义和空间向量的数量积,考查了运算求解能力和转化的数学思想,属于一般题目.17.①③④【分析】由三垂直可采用以为轴建立空间直角坐标系①中通过异面直线的夹角公式和不等式性质即可判断正确;②中结合向量数量积公式可判断错误;③采用补形法将四棱锥还原为长方体再结合等体积法即可求解三棱锥解析:①③④ 【分析】由,,AB AD AP 三垂直,可采用以,,AB AD AP 为,,x y z 轴建立空间直角坐标系,①中通过异面直线的夹角公式和不等式性质即可判断正确;②中结合向量数量积公式可判断错误;③采用补形法将四棱锥还原为长方体,再结合等体积法即可求解三棱锥E BCO -的体积为定值;④中将平面ABCD 以AD 为轴旋转到平面PAD 内形成平面''AB C D ,结合两点间直线最短即可判断正确 【详解】如图所示:以,,AB AD AP 为,,x y z 轴建立空间直角坐标系,则(0,0,1)P ,()1,0,0B ,(1,2,0)C ,设(0,,0)E y ,[]0,2y ∈,则(1,0,1)BP =-,(1,2,0)CE y =--,||cos ,2||||2BP CE BP CE BP CE ⋅〈〉==≤⋅,当2y =时等号成立, 此时,4BP CE π〈〉=,故直线PB 与直线CE 所成的角中最小的角为45︒,①正确;(1,,0)(1,2,1)21BE PC y y ⋅=-⋅-=-,当12y =时,BE PC ⊥,②错误; 将四棱锥放入对应的长方体中,则球心为体对角线交点, 1111112323226BCE E BCO O BCE AP V V S --==⨯⨯=⨯⨯⨯⨯=△,③正确;如图所示:将平面ABCD 以AD 为轴旋转到平面PAD 内形成平面''AB C D , 则22''2222CE PE C E PE PC +=+≥=+=,当'PEC 共线时等号成立,④正确.故答案为:①③④.【点睛】本题考查向量法在立体几何中的实际应用,合理建系,学会将所求问题有效转化是解决问题的关键,如本题求线线角的最小值转化为求线线夹角的余弦值,求两直线垂直转化为数量积为0,求三棱锥体积的补形法和等体积法,利用旋转将异面直线的距离转化为共面直线的距离,属于中档题18.【分析】根据平方得到计算得到答案【详解】故解得故答案为:【点睛】本题考查了平行六面体的棱长意在考查学生的计算能力和空间想象能力 解析:13【分析】根据11AC AB AD AA =+-,平方得到2224c c +-=,计算得到答案. 【详解】11AC AB AD AA =+-, 故2222211111222AC AB AD AA AB AD AA AB AD AA AB AD AA =+-=+++⋅-⋅-⋅ 2224c c =+-=,解得31c =.31. 【点睛】本题考查了平行六面体的棱长,意在考查学生的计算能力和空间想象能力.19.【分析】先根据不共线三点用平面向量基底表示;再根据平面向量基本定理表示求和即得结果【详解】因为四点共面三点不共线所以因为因为是任意一点故可不共面所以故故答案为:1【点睛】本题考查用基底表示向量以及平解析:1【分析】先根据不共线三点A B C ,,,用平面向量基底AB AC ,表示PA ;再根据平面向量基本定理表示,,x y z ,求和即得结果.【详解】因为,,,P A B C 四点共面,三点A B C ,,不共线,所以,,,m n R PA mAB nAC ∃∈=+()(),(1)OA OP m OB OA n OC OA OP m n OA mOB nOC -=-+-∴=++--因为OP xOA yOB zOC =++,因为O 是任意一点,故,,OA OB OC 可不共面,所以1,,x m n y m z n =++=-=-, 故1x y z ++=.故答案为:1【点睛】本题考查用基底表示向量以及平面向量基本定理应用,考查基本分析求解能力,属基础题. 20.【分析】根据向量投影的计算公式计算出在方向上的投影【详解】依题意在方向上的投影为【点睛】本小题主要考查向量在另一个向量上的投影的计算考查空间向量的数量积的坐标运算属于基础题解析:2-【分析】根据向量投影的计算公式,计算出a 在b 方向上的投影.【详解】依题意a 在b 方向上的投影为()22222a b b ⋅===-+-. 【点睛】 本小题主要考查向量在另一个向量上的投影的计算,考查空间向量的数量积的坐标运算,属于基础题. 21.2【分析】由题意知向量所以由空间向量的坐标运算即可求解【详解】由题意知向量所以又由解得【点睛】本题主要考查了空间向量的坐标运算及空间向量的数量积的运算其中解答中熟记空间向量的数量积的运算公式准确运算 解析:2【分析】由题意知,向量()a a b λ⊥-,所以()0a a b λ⋅-=,由空间向量的坐标运算,即可求解.【详解】由题意知,向量()a a b λ⊥-,所以()0a a b λ⋅-=,又由()()()()22222132112311470a a b a a b λλλλ⎛⎡⎤⋅-=-⋅=-++--⨯-+⨯+⨯=-= ⎪⎣⎦⎝⎭, 解得2λ=.【点睛】本题主要考查了空间向量的坐标运算,及空间向量的数量积的运算,其中解答中熟记空间向量的数量积的运算公式,准确运算是解答的关键,着重考查了运算与求解能力,属于基础题.22.【分析】根据题意先得到平面所以向量为平面的一个法向量;分别以为轴轴以垂直于平面过点的直线为轴建立空间直角坐标系根据题意求出平面的一个法向量根据向量夹角公式求出二面角的夹角余弦值进而可求出结果【详解】【分析】根据题意,先得到AC ⊥平面11BCC B ,所以向量AC 为平面11BCC B 的一个法向量;分别以CA ,CB 为x 轴,y 轴,以垂直于平面ABC 过点C 的直线为z 轴,建立空间直角坐标系C xyz -,根据题意求出平面1B ED 的一个法向量,根据向量夹角公式求出二面角的夹角余弦值,进而可求出结果.【详解】因为AC BC ⊥,1AC CC ⊥,1BC CC C =,且1,BC CC ⊂平面11BCC B , 所以AC ⊥平面11BCC B ,所以向量AC 为平面11BCC B 的一个法向量;分别以CA ,CB 为x 轴,y 轴,以垂直于平面ABC 过点C 的直线为z 轴,建立空间直角坐标系C xyz -,因为2AC BC ==,160C CB ∠=︒,13CC =,所以()2,0,0A ,()0,0,0C ,()2,0,0B ,则12,2D ⎛ ⎝⎭,(E ,170,2B ⎛ ⎝⎭,所以12,,2ED ⎛=- ⎝⎭,150,2EB ⎛= ⎝⎭,()2,0,0AC =- 设平面1B ED 的一个法向量为(),,m x y z =,则 1m ED m EB ⎧⊥⎪⎨⊥⎪⎩,即11320253022m ED x y z m EB y z⎧⋅=--=⎪⎪⎨⎪⋅=+=⎪⎩, 解353x z y z ⎧=⎪⎪⎨⎪=-⎪⎩,令5z =,则()3,3,5m =-, 所以233cos ,4332531AC mAC m AC m ⋅-<>===-⨯++, 由图像可得,二面角1B B E D --为锐角,记为θ,所以co 3cos 1s ,3AC m θ>=<=, 因此328sin 13131θ=-=, 所以sin 28221tan cos 3θθθ===.221. 【点睛】 本题主要考查求二面角的正切值,根据向量的方法求解即可,属于常考题型.23.1【分析】取中点过作于点;由等腰三角形三线合一和线面垂直的判定定理可证得平面从而得到;再根据线面垂直判定定理得到面由线面角定义可知通过勾股定理可求得由此可知在直线上从而得到面面垂直关系可知二面角为从 解析:1【分析】取AD 中点E ,过P 作PF BE ⊥于F 点;由等腰三角形三线合一和线面垂直的判定定理可证得AD ⊥平面PBE ,从而得到AD PF ⊥;再根据线面垂直判定定理得到PF ⊥面ABCD ,由线面角定义可知30PBF ∠=,通过勾股定理可求得EF BE =,由此可知F 在直线CD 上,从而得到面面垂直关系,可知二面角为90,从而得到正弦值.【详解】取AD 中点E ,连接BE 并延长,过P 作PF BE ⊥于F 点PA PD =,E 为AD 中点 PE AD ⊥∴四边形ABCD 为菱形,60BAD ∠= ABD ∴∆为等边三角形 BE AD ∴⊥ ,PE BE ⊂平面PBE ,PE BE E ⋂= AD ∴⊥平面PBEPF ⊂平面PBE AD PF ∴⊥又PF BF ⊥,,BF AD ⊂平面ABCD ,BFAD E = PF ∴⊥面ABCD ∴直线PB 与底面ABCD 所成角为PBF ∠ sin 2sin301PF PB PBF ∴=⋅∠=⨯=在PBE ∆中,由余弦定理得:22233372cos 444PE PB BE PB BE PBE =+-⋅∠=+-= 2232EF PE PF ∴=-=,又32BE = F ∴在CD 延长线上 PF ∴⊂平面PCD ∴平面PCF ⊥平面ABCD∴二面角P CD A --的大小为90,正弦值为1故答案为:1【点睛】本题考查立体几何中二面角的求解问题,涉及到线面垂直的判定与性质、面面垂直的判定定理、直线与平面所成角、勾股定理等知识的应用;关键是能够通过线面垂直关系确定直线与平面所成角的位置.24.【解析】分析:以D 为原点建立空间直角坐标系设再求出平面和平面的法向量利用法向量所成的角表示出二面角的平面角解方程即可得出答案详解:以D 为原点以为轴的正方向建立空间直角坐标系设平面的法向量为由题可知平 解析:23- 【解析】 分析:以D 为原点,建立空间直角坐标系,设(02)AE λλ=≤≤,再求出平面AECD 和平面1D EC 的法向量,利用法向量所成的角表示出二面角的平面角,解方程即可得出答案. 详解:以D 为原点,以DA ,DC ,1DD 为,,x y z 轴的正方向,建立空间直角坐标系,设(02)AE λλ=≤≤,平面1D EC 的法向量为(,,)m x y z =由题可知,1(0,0,1)D ,(0,2,0)C ,(1,,0)E λ,1(0,2,1)DC =-,(1,2,0)CE λ=- 平面AECD 的一个法向量为z 轴,∴可取平面AECD 的法向量为(0,0,1)n = (,,)m x y z =为平面1D EC 的法向量,∴120(2)0m D C y z m CE x y λ⎧⋅=-=⎨⋅=+-=⎩ 令1y =,则(2,1,2)m λ=-二面角1D EC D --的大小为4π ∴cos 4m nm n π⋅=⋅,即 222(2)12λ=-++ 解得 23λ=-,23λ=+(舍去)∴23AE =-故答案为23-点睛:空间向量法求二面角(1)如图1,AB 、CD 是二面角α-l -β的两个面内与棱l 垂直的直线,则二面角的大小θ=〈AB ,CD 〉.(2)如图2、3,12,n n 分别是二面角α-l -β的两个半平面α,β的法向量,则二面角的大小12,n n θ=(或12,n n π-).25.①④【解析】则则直线与垂直故①正确则则或故②错误与不共线不成立故③错误点向量是平面的法向量即解得故④正确综上所述其中真命题是①④点睛:本题主要考查的知识点是命题的真假判断与应用①求数量积利用数量积进解析:①④【解析】()112a =-,,,1212b ⎛⎫=- ⎪⎝⎭,,,则11211202a b ⎛⎫=⨯-⨯+⨯-= ⎪⎝⎭ 则a b ⊥,∴直线l 与m 垂直,故①正确()011a =-,,,()111n =--,,,则()()()0111110a n =⨯+⨯-+-⨯-=则a n ⊥,l α∴或l α⊂,故②错误()1013n ,,=,()2102n =,,,1n ∴与2n 不共线, αβ∴不成立,故③错误点()101A -,,,()010B ,,,()120C -,, ()111AB ∴=-,,,()110BC =-,, 向量()1n u t =,,是平面α的法向量 00n AB n BC ⎧=⎪∴⎨=⎪⎩,即1010u t u -++=⎧⎨-+=⎩,解得1u t +=,故④正确 综上所述,其中真命题是①,④点睛:本题主要考查的知识点是命题的真假判断与应用.①求数量积a b ,利用数量积进行判断,②求数量积a n ,利用数量积进行判断,③求利用1n 与2n 的关系进行判断,④利用法向量的定义判断,即可得到答案.26.【分析】由题意画出图形分别过作底面的垂线垂足分别为根据可知线段长度的最大值或最小值取决于的长度而即可分别求出的最小值与最大值【详解】如图所示:分别过作底面的垂线垂足分别为由已知可得∵而∴当所在平面与解析:7,13⎡⎤⎣⎦ 【分析】 由题意画出图形,分别过,B C 作底面的垂线,垂足分别为1B ,1C , 根据()222111111274BC BB B C C C B C =++=+可知,线段BC 长度的最大值或最小值取决于11B C 的长度,而111111AB AC B C AB AC -≤≤+,即可分别求出BC 的最小值与最大值.【详解】如图所示:分别过,B C 作底面的垂线,垂足分别为1B ,1C .由已知可得,13BB =13CC =11AB =,132AC =. ∵1111BC BB BC C C =++, ()22222221111111111111132723344BC BB B C C C BB B C C C BB C C B C B C =++=+++⋅=+++=+而111111AB AC B C AB AC -≤≤+,∴当AB ,AC 所在平面与α垂直,且,B C 在底面上的射影1B ,1C ,在A 点同侧时,BC 长度最小,此时111131122B C AB AC =-=-=,BC 2127724⎛⎫+= ⎪⎝⎭当AB ,AC 所在平面与α垂直,且,B C 在底面上的射影1B ,1C ,在A 点异侧时,BC长度最大,此时111135122B C AB AC =+=+=,BC 25271324⎛⎫+= ⎪⎝⎭. ∴线段BC 长度的取值范围为7,13⎡⎣.故答案为:7,13⎡⎤⎣⎦.【点睛】本题主要考查直线与平面所成的角的定义以及应用,向量数量积的应用,意在考查学生的直观想象能力,逻辑推理能力和数学运算能力,属于中档题.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

B
A
C
D
P
E
1。

(08青岛一模19).如图,在底面是正方形的四棱锥ABCD P -中,2==AC PA ,
6==PD PB ,点E 在PD 上,且1:2:=ED PE .
(Ⅰ)在棱PC 上是否存在一点F ,使得BF //平面AEC ?证明你的结论; (Ⅱ)求二面角E AC P --的平面角的大小.
1-1(09青岛一模20).在四棱锥ABCD P -中,⊥PA 平面ABCD ,底面ABCD 为矩形,
1
(0)AB PA BC a a
==>.
(Ⅰ)当1a =时,求证:BD PC ⊥;
(Ⅱ)若BC 边上有且只有一个点Q ,使得QD PQ ⊥,
求此时二面角Q PD A --的余弦值.
1-2(10青岛一模19)下图分别为三棱锥ABC S -的直观图与三视图,在直观图中,
SA SC =,N M 、分别为SB AB 、的中点.
(Ⅰ)求证:SB AC ⊥;
(Ⅱ)求二面角B NC M --的余弦值.
1-3(11青岛一模18).如图,PDCE 为矩形,ABCD 为梯形,平面PDCE ⊥平面
A
B
Q
D
C
P A
B
C
M
S
N
侧视图
俯视图
4
ABCD ,90BAD ADC ∠=∠= ,1
2
AB AD CD a ==
=,PD =. (Ⅰ)若M 为PA 中点,求证://AC 平面MDE ;
(Ⅱ)求平面PAD 与PBC 所成锐二面角的余弦值.
1-4(12青岛一模18).如图,在直四棱柱1111ABCD A BC D -中,底面ABCD 为平行四边
形,且2AD =,13AB AA ==,60BAD ∠=
,E 为
AB 的中点.(Ⅰ) 证明:1AC ∥平面1EBC ;(Ⅱ)求直线1ED 与平面1
EBC 所成角的正弦值.
答案:
1.(08青岛一模19).(理) 证明(Ⅰ)当F 是棱PC 的中点,则有//BF 平面AEC
取PE 中点M ,连接,FM BM ,连接BD
交AC 于O ,连接OE
,F M 分别是,PC PE 的中点 //,FM CE ∴
又,FM AEC CE AEC ⊄⊂面面
//FM AEC ∴面…………3分
y
A
1
A D C
1D 1C 1
B B
E
又E 是DM 的中点
//,OE BM OE ⊂面,AEC BM ⊄面AEC //BM ∴面AEC 且BM FM M =
∴平面//BFM 平面ACE
又BF ⊂平面BFM
//BF ∴平面ACE …………6分
(Ⅱ)在底面是正方形的四棱锥ABCD P -中,2==AC PA ,6=
=PD PB ,
AB AD ∴==222222,PB PA AB PD PA AD ∴=+=+
,7PA AB PA AD PA ABCD ∴⊥⊥∴⊥ 面分
建立如图所示坐标系A xyz -
则有(0,0,0),(0,0,2),A P D O
B D ,且BD ⊥面PAC
∴面PAC
的法向量为1(n BD ==
…………9分 设面AEC 的法向量2(,,1)n x y =
,
由AC =
,2263OE ⎛⎫=- ⎪ ⎪⎝⎭
且220,0n OE n AC ⋅=⋅=

:
2202102
630x x y y n ⎧⎧=⎪-++=⎪⎪⇒⎨⎨⎪+==⎪⎩∴= 分
121212
cos ,n n n n n n ⋅∴<>==
P
M
∴二面角P AC E --的平面角的值为4
π
…………12分
1-1.(09青岛一模)20. 解:(Ⅰ)当1a =时,底面ABCD 为正方形,∴BD AC ⊥ 又因为BD PA ⊥,BD ∴⊥面PAC …………………………2分 又PC ⊂面PAC
BD PC ∴⊥…………………………3分
(Ⅱ) 因为AP AD AB ,,两两垂直,分别以它们所在直线
为x 轴、y 轴、z 轴建立坐标系,如图所示,令1AB =,可得BC a = 则)1,0,0(),0,,1()0,,0(),0,0,1(P a C a D B …………………4分 设m BQ =,则)0)(0,,1(a m m Q ≤≤
要使QD PQ ⊥,只要0)(1=-+-=⋅m a m QD PQ 即2
10m am -+=………6分 由0∆=2a ⇒=,此时1m =。

所以BC 边上有且只有一个点Q ,使得QD PQ ⊥
Q 为BC 的中点,且2=a …………………………8分设面PQD 的法向量)1,,(y x =
则00p QD p DP ⎧⋅=⎪⎨⋅=⎪⎩
即⎩⎨⎧=+-=+-0
120y y x 解得)1,21,21(=…………………………10分 取平面PAD 的法向量)0,0,1(=
则〉〈.的大小与二面角Q PD A --的大小相等 所以6
6
.cos =
=
〉〈
因此二面角Q PD A --的余弦值为6
6
…………………………12分
1-2(10青岛一模) 19.(本题满分12分)
解: 由题意知: 32==SC SA ,侧面⊥SAC 底面ABC , 底面ABC ∆为正三角形…………2分 (Ⅰ) 取AC 的中点O ,连结OB OS ,. 因为BC AB SC SA ==,, 所以OB AC SO AC ⊥⊥,. 所以⊥AC 平面OSB .
所以SB AC ⊥ …………4分
(Ⅱ) 如图所示建立空间直角坐标系xyz O -,
则)2,3,0(),0,3,1(),22,0,0(),0,0,2(),0,32,0(),0,0,2(N M S C B A -
.
(4,0,0),AC SB ∴=-=-
.).2,0,1(),0,3,3(-==MN CM …………6分
设=n ),,(z y x 为平面CMN 的一个法向量,
则⎪⎩⎪⎨⎧=+-=⋅=+=⋅0
2033z x MN n y x CM n ,取1=z ,得6,2-==y x . 所以)1,6,2(-=n …………8分
又由上可得).2,3,2(),0,32,2(==CN CB 设),,(c b a m =为平面NBC 的法向量,
由⎪⎩⎪⎨⎧=++=⋅=+=⋅0
2320322c b a b a ,得02=+c a , 令1=c ,则)1,3
6
,2(-=…………10分 所以1133
3
33
3122|
|||,cos -=⨯
+--=
>=
<n m
所以二面角B NC M --的余弦值为
11
33
. …………12分
1-3(11青岛一模)18.(本小题满分12分)
(Ⅰ) 证明:连结PC ,交DE 与N ,连结MN ,PAC ∆中,,M N 分别为两腰,PA PC 的中 点 ∴//MN AC …………2分
因为MN ⊂面MDE ,又AC ⊄面MDE ,所以//AC 平面MDE …………4分
(Ⅱ) 设平面PAD 与PBC 所成锐二面角的大小为θ,以D 为空间坐标系的原点,分别以
,,DA DC DP 所在直线为,,x y z 轴建立空间直角坐标系,
则),(,,0),(0,2,0)P B a a C a
(,,),(,,0)PB a a BC a a ==-
…………6分
设平面PAD 的单位法向量为1n

则可设1(0,1,0)n =
…………7分
设面PBC 的法向量2(,,1)n x y =
,应有
22(,,1)(,,)0(,,1)(,,0)0n PB x y a a n BC x y a a ⎧==⎪⎨=-=⎪⎩
即:00ax ay ax ay ⎧+-=⎪⎨-+=⎪⎩
,解得:2
x y ⎧=⎪⎪⎨
⎪=⎪⎩
,所以
2(,1)22
n = …………10分
∴12
121
cos 2
||||n n n n θ⋅===
…………11分 所以平面PAD 与PBC 所成锐二面角的余弦值为1
2
…………12分 1-4(12青岛一模)18.(本小题满分12分)
解(Ⅰ) 证明:连接1BC ,11B C BC F = 因为AE EB =,1FB FC =,所以EF ∥1AC ……………2分
因为1AC ⊄面1EBC ,EF ⊂面1EBC 所以1AC ∥面1
EBC ……………4分
x
1
A
(Ⅱ)作DH AB ⊥,分别令1,,DH DC DD 为x 轴,y 轴,z 轴,建立坐标系如图因为
60BAD ∠= ,2AD =,所以1AH =
,DH =
所以1
,0)2
E ,1(0,0,3)D ,(0,3,0)C
,1B ,……………6分
11135(,3),(0,,3),(,0)222
ED EB EC =-==
设面1
EBC 的法向量为(,,)n x y z =
,所以10n EB ⋅= ,0n EC ⋅=
化简得3
302
50
2
y z y ⎧+=⎪⎪⎨⎪+=⎪⎩,令1y =
,则1)2n =- ………10分
设1,n ED θ=
,则11
cos 70n ED n ED θ⋅==-⋅
设直线1ED 与面1EB C 所成角为α,则
cos cos(90)sin θαα=+=-
所以sin 70
α=
,则直线1ED 与面1
EBC 所成角的正弦值
……12分。

相关文档
最新文档