2020-2021初中数学几何图形初步基础测试题含答案解析(1)

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020-2021初中数学几何图形初步基础测试题含答案解析(1)
一、选择题
1.如图是某个几何体的展开图,该几何体是( )
A .三棱柱
B .圆锥
C .四棱柱
D .圆柱
【答案】A
【解析】
【分析】 侧面为三个长方形,底边为三角形,故原几何体为三棱柱.
【详解】
解:观察图形可知,这个几何体是三棱柱.
故选A .
【点睛】
本题考查的是三棱柱的展开图,对三棱柱有充分的理解是解题的关键..
2.如图,一个正六棱柱的表面展开后恰好放入一个矩形内,把其中一部分图形挪动了位置,发现矩形的长留出5cm ,宽留出1,cm 则该六棱柱的侧面积是( )
A .210824(3) cm -
B .(2108123cm -
C .(254243cm -
D .(254123cm -
【答案】A
【解析】
【分析】 设正六棱柱的底面边长为acm ,高为hcm ,分别表示出挪动前后所在矩形的长与宽,由题意列出方程求出a =2,h =9−36ah 求解.
【详解】
解:设正六棱柱的底面边长为acm ,高为hcm ,
如图,正六边形边长AB =acm 时,由正六边形的性质可知∠BAD =30°,
∴BD =12a cm ,AD =32
a cm , ∴AC =2AD =3a cm ,
∴挪动前所在矩形的长为(2h +23a )cm ,宽为(4a +12
a )cm , 挪动后所在矩形的长为(h +2a +3a )cm ,宽为4acm , 由题意得:(2h +23a )−(h +2a +3a )=5,(4a +
12a )−4a =1, ∴a =2,h =9−23,
∴该六棱柱的侧面积是6ah =6×2×(9−23)=210824(3) cm ;
故选:A .
【点睛】
本题考查了几何体的展开图,正六棱柱的性质,含30度角的直角三角形的性质;能够求出正六棱柱的高与底面边长是解题的关键.
3.下面四个图形中,是三棱柱的平面展开图的是( )
A .
B .
C .
D .
【答案】C
【解析】
【分析】
根据三棱柱的展开图的特点作答.
【详解】
A 、是三棱锥的展开图,故不是;
B 、两底在同一侧,也不符合题意;
C 、是三棱柱的平面展开图;
D 、是四棱锥的展开图,故不是.
故选C .
【点睛】
本题考查的知识点是三棱柱的展开图,解题关键是熟练掌握常见立体图形的平面展开图的特征.
4.如图,有A ,B ,C 三个地点,且AB BC ⊥,从A 地测得B 地在A 地的北偏东43︒的方向上,那么从B 地测得C 地在B 地的( )
A .北偏西43︒
B .北偏西90︒
C .北偏东47︒
D .北偏西47︒
【答案】D
【解析】
【分析】 根据方向角的概念和平行线的性质求解.
【详解】
如图,过点B 作BF ∥AE ,则∠DBF=∠DAE=43︒,
∴∠CBF=∠DBC-∠DBF=90°-43°=47°,
∴从B 地测得C 地在B 地的北偏西47°方向上,
故选:D.
【点睛】
此题考查方位角,平行线的性质,正确理解角度间的关系求出能表示点位置的方位角是解题的关键.
5.如图,在正方形ABCD 中,E 是AB 上一点,2,3BE AE BE ==,P 是AC 上一动点,则PB PE +的最小值是( )
A.8 B.9 C.10 D.11
【答案】C
【解析】
【分析】
连接DE,交AC于P,连接BP,则此时PB+PE的值最小,进而利用勾股定理求出即可.【详解】
+的值最小
解:如图,连接DE,交AC于P,连接BP,则此时PB PE
∵四边形ABCD是正方形
∴、关于AC对称
B D

=
PB PD
∴+=+=
PB PE PD PE DE
Q
==
BE AE BE
2,3
AE AB
∴==
6,8
22
∴=+=;
6810
DE
+的最小值是10,
故PB PE
故选:C.
【点睛】
本题考查了轴对称——最短路线问题,正方形的性质,解此题通常是利用两点之间,线段最短的性质得出.
6.如图,将矩形纸片沿EF折叠,点C在落线段AB上,∠AEC=32°,则∠BFD等于()
A.28°B.32°C.34°D.36°
【答案】B
【解析】
【分析】
根据折叠的性质和矩形的性质,结合余角的性质推导出结果即可.
【详解】
解:如图,设CD和BF交于点O,由于矩形折叠,
∴∠D=∠B=∠A=∠ECD=90°,∠ACE+∠BCO=90°,∠BCO+∠BOC=90°,
∵∠AEC=32°,
∴∠ACE=90°-32°=58°,
∴∠BCO=90°-∠ACE=32°,
∴∠BOC=90°-32°=58°=∠DOF,
∴∠BFD=90°-58°=32°.
故选B.
【点睛】
本题考查了折叠的性质和矩形的性质和余角的性质,解题的关键是掌握折叠是一种对称变换,折叠前后图形的形状和大小不变,位置变化,对应角相等.
7.如图,如果用剪刀沿直线将一个正方形图片剪掉一部分,发现剩下部分的周长比原正方形图片的周长要小,能正确解释这一现象的数学知识是()
A.线段比曲线短B.经过一点有无数条直线
C.经过两点,有且仅有一条直线D.两点之间,线段最短
【答案】D
【解析】
【分析】
如下图,只需要分析AB+BC<AC即可
【详解】
∵线段AC是点A和点C之间的连线,AB+BC是点A和点C经过弯折后的路径
又∵两点之间线段最短
∴AC<AB+BC
故选:D
【点睛】
本题考查两点之间线段最短,在应用的过程中,要弄清楚线段长度表示的是哪两个点之间的距离
8.下列语句正确的是()
A.近似数0.010精确到百分位
B.|x-y|=|y-x|
C.如果两个角互补,那么一个是锐角,一个是钝角
D.若线段AP=BP,则P一定是AB中点
【答案】B
【解析】
【分析】
A中,近似数精确位数是看小数点后最后一位;B中,相反数的绝对值相等;C中,互补性质的考查;D中,点P若不在直线AB上则不成立
【详解】
A中,小数点最后一位是千分位,故精确到千分位,错误;
B中,x-y与y-x互为相反数,相反数的绝对值相等,正确;
C中,若两个角都是直角,也互补,错误;
D中,若点P不在AB这条直线上,则不成立,错误
故选:B
【点睛】
概念的考查,此类题型,若能够举出反例来,则这个选项是错误的
9.如图,直线AB,CD交于点O,射线OM平分∠AOC,若∠AOC=76°,则∠BOM等于()
A.38°B.104°C.142°D.144°
【答案】C
【解析】
∵∠AOC=76°,射线OM平分∠AOC,
∴∠AOM=1
2
∠AOC=
1
2
×76°=38°,
∴∠BOM=180°−∠AOM=180°−38°=142°,
故选C.
点睛:本题考查了对顶角相等的性质,角平分线的定义,准确识图是解题的关键.
10.一个立方体的表面展开图如图所示,将其折叠成立方体后,“你”字对面的字是()
A.中B.考C.顺D.利
【答案】C
【解析】
试题解析:正方体的表面展开图,相对的面之间一定相隔一个正方形,
“祝”与“考”是相对面,
“你”与“顺”是相对面,
“中”与“立”是相对面.
故选C.
考点:正方体展开图.
11.将下面平面图形绕直线l旋转一周,可得到如图所示立体图形的是()
A.B.C.D.
【答案】B
【解析】
分析:根据面动成体,所得图形是两个圆锥体的复合体确定答案即可.
详解:由图可知,只有B 选项图形绕直线l 旋转一周得到如图所示立体图形.
故选:B .
点睛:本题考查了点、线、面、体,熟悉常见图形的旋转得到立体图形是解题的关键.
12.下列说法,正确的是( )
A .经过一点有且只有一条直线
B .两条射线组成的图形叫做角
C .两条直线相交至少有两个交点
D .两点确定一条直线
【答案】D
【解析】
【分析】
根据直线的性质、角的定义、相交线的概念一一判断即可.
【详解】
A 、经过两点有且只有一条直线,故错误;
B 、有公共顶点的两条射线组成的图形叫做角,故错误;
C 、两条直线相交有一个交点,故错误;
D 、两点确定一条直线,故正确,
故选D .
【点睛】
本题考查直线的性质、角的定义、相交线的概念,熟练掌握相关知识是解题的关键.
13.如图将两块三角板的直角顶点重叠在一起,DOB ∠与DOA ∠的比是2:11,则BOC ∠的度数为( )
A .45︒
B .60︒
C .70︒
D .40︒
【答案】C
【解析】
【分析】 设∠DOB=2x ,则∠DOA=11x ,可推导得到∠AOB=9x=90°,从而得到角度大小
【详解】
∵∠DOB 与∠DOA 的比是2:11
∴设∠DOB=2x ,则∠DOA=11x
∴∠AOB=9x
∵∠AOB=90°
∴x=10°
∴∠BOD=20°
∴∠COB=70°
故选:C
【点睛】
本题考查角度的推导,解题关键是引入方程思想,将角度推导转化为计算的过程,以便简化推导
14.如图,已知AB∥DC,BF平分∠ABE,且BF∥DE,则∠ABE与∠CDE的关系是()
A.∠ABE=2∠CDE B.∠ABE=3∠CDE
C.∠ABE=∠CDE+90°D.∠ABE+∠CDE=180°
【答案】A
【解析】
【分析】
延长BF与CD相交于M,根据两直线平行,同位角相等可得∠M=∠CDE,再根据两直线平行,内错角相等可得∠M=∠ABF,从而求出∠CDE=∠ABF,再根据角平分线的定义解答.【详解】
解:延长BF与CD相交于M,
∵BF∥DE,
∴∠M=∠CDE,
∵AB∥CD,
∴∠M=∠ABF,
∴∠CDE=∠ABF,
∵BF平分∠ABE,
∴∠ABE=2∠ABF,
∴∠ABE=2∠CDE.
故选:A.
【点睛】
本题考查了平行线的性质和角平分线的定义,作辅助线,是利用平行线的性质的关键,也
是本题的难点.
15.如图,在△ABC中,∠ABC=90°,∠C=52°,BE为AC边上的中线,AD平分∠BAC,交BC边于点D,过点B作BF⊥AD,垂足为F,则∠EBF的度数为()
A.19°B.33°C.34°D.43°
【答案】B
【解析】
【分析】
根据等边对等角和三角形内角和定理可得∠EBC=52°,再根据角平分线的性质和垂直的性质可得∠FBD=19°,最后根据∠EBF=∠EBC﹣∠FBD求解即可.
【详解】
解:∵∠ABC=90°,BE为AC边上的中线,
∴∠BAC=90°﹣∠C=90°﹣52°=38°,BE=1
2
AC=AE=CE,
∴∠EBC=∠C=52°,∵AD平分∠BAC,
∴∠CAD=1
2
∠BAC=19°,
∴∠ADB=∠C+∠DAC=52°+19°=71°,
∵BF⊥AD,
∴∠BFD=90°,
∴∠FBD=90°﹣∠ADB=19°,
∴∠EBF=∠EBC﹣∠FBD=52°﹣19°=33°;
故选:B.
【点睛】
本题考查了三角形的角度问题,掌握等边对等角、三角形内角和定理、角平分线的性质、垂直的性质是解题的关键.
16.如图,圆柱形玻璃板,高为12cm,底面周长为18cm,在杯内离杯底4cm的点C处有一滴蜂蜜,此时一只蚂蚁正好在杯外壁,离杯上沿4cm与蜂蜜相对的A处,则蚂蚁到达蜂蜜的最短距离()cm.
A.14 B.15 C.16 D.17
【答案】B
【解析】
【分析】
在侧面展开图中,过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则AP+PC就是蚂蚁到达蜂蜜的最短距离,求出A′Q,CQ,根据勾股定理求出A′C 即可.
【详解】
解:沿过A的圆柱的高剪开,得出矩形EFGH,
过C作CQ⊥EF于Q,作A关于EH的对称点A′,连接A′C交EH于P,连接AP,则
AP+PC就是蚂蚁到达蜂蜜的最短距离,
∵AE=A′E,A′P=AP,
∴AP+PC=A′P+PC=A′C,
∵CQ=1
2
×18cm=9cm,A′Q=12cm﹣4cm+4cm=12cm,
在Rt△A′QC中,由勾股定理得:A′C=22
129
=15cm,
故选:B.
【点睛】
本题考查了圆柱的最短路径问题,掌握圆柱的侧面展开图、勾股定理是解题的关键.
17.下列说法中不正确的是()
①过两点有且只有一条直线
②连接两点的线段叫两点的距离
③两点之间线段最短
④点B在线段AC上,如果AB=BC,则点B是线段AC的中点
A.①B.②C.③D.④
【答案】B
【解析】
【分析】
依据直线的性质、两点间的距离、线段的性质以及中点的定义进行判断即可.
【详解】
①过两点有且只有一条直线,正确;
②连接两点的线段的长度叫两点间的距离,错误
③两点之间线段最短,正确;
④点B在线段AC上,如果AB=BC,则点B是线段AC的中点,正确;
故选B.
18.如图,把一块含有45°角的直角三角板的两个顶点放在直尺的对边上.如果∠1=20°,那么∠2的度数是()
A.30°B.25°
C.20°D.15°
【答案】B
【解析】
根据题意可知∠1+∠2+45°=90°,∴∠2=90°﹣∠1﹣45°=25°,
19.如图,点A、B、C是直线l上的三个点,图中共有线段条数是()
A.1条B.2条C.3条D.4条
【答案】C
【解析】
解:图中线段有:线段AB、线段AC、线段BC,共三条.故选C.
20.如图,是一个正方体的表面展开图,将其折成正方体后,则“扫”的对面是()
A.黑B.除C.恶D.☆
【答案】B
【解析】
【分析】
正方体的空间图形,从相对面入手,分析及解答问题.
【详解】
解:将其折成正方体后,则“扫”的对面是除.
故选B.
【点睛】
本题考查了正方体的相对面的问题.能够根据正方体及其表面展开图的特点,找到相对的面是解题的关键.。

相关文档
最新文档