高中数列的概念知识点和相关练习试题

合集下载
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

一、数列的概念选择题
1.已知数列,21,
n -21是这个数列的( )
A .第10项
B .第11项
C .第12

D .第21项
2.已知数列{}n a 满足11a =),2n N n *=
∈≥,且()2cos
3
n n n a b n N π
*=∈,则数列{}n b 的前18项和为( ) A .120
B .174
C .204-
D .
373
2
3.数列{}n a 的通项公式是2
76n a n n =-+,4a =( )
A .2
B .6-
C .2-
D .1
4.在数列{}n a 中,10a =,1n
a +,则2020
a =( )
A .0
B .1
C .
D 5.已知数列2233331131357135
1,,,,,,,...,,,,...2222222222n n n
,则该数列第2019项是( ) A .
10
19892 B .
10
2019
2
C .
11
1989
2
D .
1120192
6.已知数列{}n a 满足1n n n a a +-=,则20201a a -=( ) A .20201010⨯
B .20191010⨯
C .20202020⨯
D .20192019⨯
7.已知数列{}n a ,若()12*
N
n n n a a a n ++=+∈,则称数列{}n
a 为“凸数列”.已知数列{}
n
b 为“凸数列”,且11b =,22b =-,则数列{}n b 的前2020项和为( ) A .5
B .5-
C .0
D .1-
8.已知数列{}n a 的前n 项和为n S ,且2
1n S n n =++,则{}n a 的通项公式是( )
A .2n a n =
B .3,1
2,2n n a n n =⎧=⎨≥⎩
C .21n a n =+
D .3n a n =
9.已知数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=-,则2019a =( ) A .1
B .3
C .2
D .3-
10.数列{}n a 中,11a =,12n n a a n +=+,则n a =( ) A .2n n 1-+
B .21n +
C .2(1)1n -+
D .2n
11.数列{}n a 前n 项和为n S ,若21n n S a =+,则72019a S +的值为( ) A .2
B .1
C .0
D .1-
12.删去正整数1,2,3,4,5,…中的所有完全平方数与立方数(如4,8),得到一个新数列,则这个数列的第2020项是( ) A .2072
B .2073
C .2074
D .2075
13.已知等差数列{}n a 中,13920a a a ++=,则574a a -=( ) A .30
B .20
C .40
D .50
14.数列{}n a 中,12a =,121n n a a +=-,则10a =( ) A .511
B .513
C .1025
D .1024
15.在数列{}n a 中,12a =,1
1
1n n a a -=-(2n ≥),则8a =( ) A .1-
B .
12
C .1
D .2
16.已知数列{}n a 满足11a =,12
2
n n a a n n
+=++,则10a =( ) A .
259
B .
145 C .
3111
D .
176
17.已知数列{}n a
满足112n a +=+112
a =,则该数列前2016项的和为( ) A .2015
B .2016
C .1512
D .
3025
2
18.设数列{}n a 的通项公式为2
n n a n
+=,要使它的前n 项的乘积大于36,则n 的最小值为( ) A .6
B .7
C .8
D .9
19.在数列{}n a 中,11a =,()*
1
22,21
n n a n n N a -=≥∈-,则3
a =( )
A .6
B .2
C .
23 D .
211
20.在数列{}n a 中,11a =,对于任意自然数n ,都有12n
n n a a n +=+⋅,则15a =
( ) A .151422⋅+
B .141322⋅+
C .151423⋅+
D .151323⋅+
二、多选题
21.已知数列0,2,0,2,0,2,
,则前六项适合的通项公式为( )
A .1(1)n
n a =+-
B .2cos
2
n n a π= C .(1)2sin
2
n n a π
+= D .1cos(1)(1)(2)n a n n n π=--+--
22.已知数列{}n a 满足0n a >,
121
n n n a n
a a n +=+-(N n *∈),数列{}n a 的前n 项和为n S ,则( )
A .11a =
B .121a a =
C .201920202019S a =
D .201920202019S a >
23.已知数列{}n a 是等差数列,前n 项和为,n S 且13522,a a S +=下列结论中正确的是( ) A .7S 最小
B .130S =
C .49S S =
D .70a =
24.已知等差数列{}n a 的公差0d ≠,前n 项和为n S ,若612S S =,则下列结论中正确的有( ) A .1:17:2a d =-
B .180S =
C .当0d >时,6140a a +>
D .当0d <时,614a a >
25.在等差数列{}n a 中,公差0d ≠,前n 项和为n S ,则( ) A .4619a a a a >
B .130S >,140S <,则78a a >
C .若915S S =,则n S 中的最大值是12S
D .若2
n S n n a =-+,则0a =
26.已知数列{}2n
n
a n +是首项为1,公差为d 的等差数列,则下列判断正确的是( ) A .a 1=3 B .若d =1,则a n =n 2+2n C .a 2可能为6
D .a 1,a 2,a 3可能成等差数列
27.等差数列{}n a 中,n S 为其前n 项和,151115,a S S ==,则以下正确的是( )
A .1d =-
B .413a a =
C .n S 的最大值为8S
D .使得0n S >的最大整数15n =
28.设{}n a 是等差数列,n S 是其前n 项的和,且56S S <,678S S S =>,则下列结论正确的是( ) A .0d > B .70a =
C .95S S >
D .6S 与7S 均为n S 的最大值
29.已知数列{}n a 的前n 项和为n S ,前n 项积为n T ,且3201911
111
a a e e +≤++,则( ) A .当数列{}n a 为等差数列时,20210S ≥ B .当数列{}n a 为等差数列时,20210S ≤ C .当数列{}n a 为等比数列时,20210T >
D .当数列{}n a 为等比数列时,20210T <
30.已知无穷等差数列{}n a 的前n 项和为n S ,67S S <,且78S S >,则( ) A .在数列{}n a 中,1a 最大 B .在数列{}n a 中,3a 或4a 最大 C .310
S S =
D .当8n ≥时,0n a <
31.数列{}n a 满足11,121
n
n n a a a a +=
=+,则下列说法正确的是( ) A .数列1n a ⎧⎫

⎬⎩⎭是等差数列 B .数列1n a ⎧⎫⎨
⎬⎩⎭
的前n 项和2
n S n = C .数列{}n a 的通项公式为21n a n =- D .数列{}n a 为递减数列
32.下面是关于公差0d >的等差数列{}n a 的四个命题,其中的真命题为( ). A .数列{}n a 是递增数列 B .数列{}n na 是递增数列 C .数列{
}n
a n
是递增数列 D .数列{}3n a nd +是递增数列
33.在下列四个式子确定数列{}n a 是等差数列的条件是( )
A .n a kn b =+(k ,b 为常数,*n N ∈);
B .2n n a a d +-=(d 为常数,
*n N ∈);
C .(
)
*
2120n n n a a a n ++-+=∈N ; D .{}n a 的前n 项和2
1
n S n n =++(*n N ∈).
34.已知等差数列{}n a 的前n 项和为S n (n ∈N *),公差d ≠0,S 6=90,a 7是a 3与a 9的等比中项,则下列选项正确的是( ) A .a 1=22
B .d =-2
C .当n =10或n =11时,S n 取得最大值
D .当S n >0时,n 的最大值为21
35.已知{}n a 为等差数列,其前n 项和为n S ,且13623a a S +=,则以下结论正确的是( ). A .10a =0
B .10S 最小
C .712S S =
D .190S =
【参考答案】***试卷处理标记,请不要删除
一、数列的概念选择题
1.B 解析:B 【分析】
根据题中所给的通项公式,令2121n -=,求得n =11,得到结果. 【详解】
令2121n -=,解得n =11
是这个数列的第11项. 故选:B. 【点睛】
该题考查的是有关数列的问题,涉及到的知识点有判断数列的项,属于基础题目.
2.B
解析:B 【分析】
将题干中的等式化简变形得2
11n n a n a n --⎛⎫
= ⎪⎝⎭
,利用累乘法可求得数列{}n a 的通项公式,由
此计算出(
)32313k k k b b b k N *
--++∈,进而可得出数列{}n
b 的前18项和.
【详解】
)1,2n a n N n *
--=
∈≥,将此等式变形得2
11n n a n a n --⎛⎫= ⎪⎝⎭

由累乘法得22
2
3
212
12
11211123n n n a
a a n a a a a a n n
--⎛⎫⎛⎫⎛⎫
=⋅⋅=⨯⨯⨯⨯= ⎪ ⎪ ⎪⎝⎭⎝⎭
⎝⎭, ()
2cos
3n n n a b n N π*=∈,22cos 3
n n b n π
∴=, ()()222
323134232cos 231cos 29cos 233k k k b b b k k k k k k πππππ--⎛⎫⎛
⎫∴++=--+--
+ ⎪ ⎪⎝⎭⎝

592
k =-,
因此,数列{}n b 的前18项和为()5
91234566921151742
⨯+++++-⨯=⨯-=. 故选:B. 【点睛】
本题考查并项求和法,同时也涉及了利用累乘法求数列的通项,求出32313k k k b b b --++是解答的关键,考查计算能力,属于中等题.
3.B
解析:B 【分析】 令4n = 代入即解 【详解】
令4n =,2
447466a =-⨯+=-
故选:B. 【点睛】
数列通项公式n a 是第n 项与序号n 之间的函数关系,求某项值代入求解.
4.A
解析:A 【分析】
写出数列的前几项,找寻规律,求出数列的周期,问题即可解. 【详解】
10a =
,1n a +1n =
时,2a 2n =
时,3a 3n =
时,4a ; ∴ 数列{}n a 的周期是3
20206733110a a a ⨯+∴===
故选:A. 【点睛】
本题考查周期数列. 求解数列的周期问题时,周期数列的解题方法:根据给出的关系式求出数列的若干项,通过观察归纳出数列的周期,进而求有关项的值或者前n 项的和.
5.C
解析:C 【分析】 由观察可得()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫
⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
项数为21,1,2,4,8,...,2,...k -,注意到101110242201922048=<<=,第2019项是第12个括号
里的第995项. 【详解】 由数列()22333311313571351,,,,,,,...,,,,...2222222222n n n ⎛⎫⎛⎫⎛⎫⎛⎫
⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭
,可发现其项数为 21,1,2,4,8,...,2,...k -,则前11个括号里共有1024项,前12个括号里共有2048项,
故原数列第2019项是第12个括号里的第995项,第12个括号里的数列通项为11
21
2m -, 所以第12个括号里的第995项是
11
1989
2.
故选:C. 【点睛】
本题考查数列的定义,考查学生观察找出已知数列的特征归纳出其项数、通项,是一道中档题.
6.B
解析:B 【分析】
由题意可得211a a -=,322a a -=,433a a -=,……202020192019a a -=,再将这2019个式子相加得到结论. 【详解】
由题意可知211a a -=,322a a -=,433a a -=,……202020192019a a -=, 这2019个式子相加可得()
20201201912019123 (2019201910102)
a a +-=++++==⨯.
故选:B. 【点睛】
本题考查累加法,重点考查计算能力,属于基础题型.
7.B
解析:B 【分析】
根据数列的递推关系可求得数{}n b 的周期为6,即可求得数列{}n b 的前2020项和. 【详解】
()*21N n n n b b b n ++=-∈,且11b =,22b =-, ∴345673,1,2,3,1,b b b b b =-=-===
∴{}n b 是以6为周期的周期数列,且60S =, ∴20203366412345S S b b b b ⨯+==+++=-,
故选:B. 【点睛】
本题考查数列的新定义、数列求和,考查运算求解能力,求解时注意通过计算数列的前6项,得到数列的周期.
8.B
解析:B 【分析】 根据11,1
,2
n n S n a S S n -=⎧=⎨-≥⎩计算可得;
【详解】
解:因为2
1n S n n =++①,
当1n =时,2
11113S =++=,即13a =
当2n ≥时,()()2
1111n S n n -=-+-+②,
①减②得,()()2
2
11112n n n n n n a ⎡⎤++--+-+=⎦
=⎣
所以3,1
2,2
n n a n n =⎧=⎨≥⎩
故选:B 【点睛】
本题考查利用定义法求数列的通项公式,属于基础题.
9.C
解析:C 【分析】
根据数列{}n a 的前两项及递推公式,可求得数列的前几项,判断出数列为周期数列,即可求得
2019a 的值.
【详解】
数列{}n a 中,11a =,23a =且对*n N ∈,总有21n n n a a a ++=- 当1n =时,321322a a a =-=-= 当2n =时,432231a a a =-=-=- 当3n =时,543123a a a =-=--=- 当4n =时,()654312a a a =-=---=- 当5n =时,()765231a a a =-=---= 当6n =时,()876123a a a =-=--= 由以上可知,数列{}n a 为周期数列,周期为6T = 而201933663=⨯+ 所以201932a a == 故选:C 【点睛】
本题考查了数列递推公式的简单应用,周期数列的简单应用,属于基础题.
10.A
解析:A 【分析】
由题意,根据累加法,即可求出结果. 【详解】
因为12n n a a n +=+,所以12n n a a n +-=,
因此212a a -=,324a a -=,436a a -=,…,()121n n a a n --=-, 以上各式相加得:()()()21246.1221..212
n n n a a n n n ⎡⎤-+-⎣⎦
-=
+++==+--,
又11a =,所以2
1n a n n =-+.
故选:A. 【点睛】
本题主要考查累加法求数列的通项,属于基础题型.
11.A
解析:A 【分析】
根据21n n S a =+,求出1a ,2a ,3a ,4a ,⋯
⋯,寻找规律,即可求得答案. 【详解】
21n n S a =+
当1n =,1121a a =+,解得:11a = 当2n =,122221a a a +=+,解得:21a =- 当3n =,32132221a a a a ++=+,解得:31a = 当4n =,4321422221a a a a a +++=+,解得:41a =-
⋯⋯
当n 奇数时,1n a = 当n 偶数时,1n a =-
∴71a =,20191S =
故720192a S += 故选:A. 【点睛】
本题主要考查了根据递推公式求数列值,解题关键是掌握数列的基础知识,考查了分析能力和计算能力,属于中档题.
12.C
解析:C 【分析】
由于数列2
2
2
2
1,2,3,2,5,6,7,8,3,45⋯共有2025项,其中有45个平方数,12个立方数,有3个既是平方数,又是立方数的数,所以还剩余20254512+31971--=项,所以去掉平方数和立方数后,第2020项是在2025后的第()20201971=49-个数,从而求得结果. 【详解】
∵2452025=,2462116=,20202025<,所以从数列2
2
2
2
1,2,3,2,5,6,7,8,3,45

中去掉45个平方数,
因为331217282025132197=<<=,所以从数列2
2
2
2
1,2,3,2,5,6,7,8,3,45⋯中去掉
12个立方数,
又66320254<<,所以在从数列22221,2,3,2,5,6,7,8,3,45⋯中有3个数即是平方数, 又是立方数的数,重复去掉了3个即是平方数,又是立方数的数, 所以从数列2
2
2
2
1,2,3,2,5,6,7,8,3,45⋯中去掉平方数和立方数后还有
20254512+31971--=项,此时距2020项还差2020197149-=项, 所以这个数列的第2020项是2025492074+=, 故选:C. 【点睛】
本题考查学生的实践创新能力,解决该题的关键是找出第2020项的大概位置,所以只要
弄明白在数列2
2
2
2
1,2,3,2,5,6,7,8,3,45⋯去掉哪些项,去掉多少项,问题便迎刃而解,属于中档题.
13.B
解析:B 【分析】
利用等差数列{}n a 的通项公式代入可得574a a -的值. 【详解】
由13920a a a ++=,得131020a d +=,
则有5711144(4)631020a a a d a d a d -=+--=+=. 故选:B. 【点睛】
考查等差数列通项公式的运用,知识点较为简单.
14.B
解析:B 【分析】
根据递推公式构造等比数列{}1n a -,求解出{}n a 的通项公式即可求解出10a 的值. 【详解】
因为121n n a a +=-,所以121n n a a +=-,所以()1121n n a a +-=-, 所以
11
21
n n a a +-=-且1110a -=≠, 所以{}1n a -是首项为1,公比为2的等比数列,
所以112n n a --=,所以121n n a -=+,所以9
1021513a =+=,
故选:B. 【点睛】
本题考查利用递推公式求解数列通项公式,难度一般.对于求解满足
()11,0,0n n a pa q p p q +=+≠≠≠的数列{}n a 的通项公式,可以采用构造等比数列的方
法进行求解.
15.B
解析:B 【分析】
通过递推公式求出234,,a a a 可得数列{}n a 是周期数列,根据周期即可得答案. 【详解】 解:211111=1=22a a =-
-,3211121a a =-=-=-,43
1
1112a a =-=+=, 则数列{}n a 周期数列,满足3n n a a -=,4n ≥
8521
2
a a a ∴===
, 故选:B. 【点睛】
本题考查数列的周期性,考查递推公式的应用,是基础题.
16.B
解析:B 【分析】 由122n n a a n n +=++转化为11
121n n a a n n +⎛⎫-=- ⎪+⎝⎭
,利用叠加法,求得23n
a n =-,即可求解. 【详解】 由12
2n n a a n n +=+
+,可得121
12(1)1n n a a n n n n +⎛⎫-==- ⎪++⎝⎭
, 所以()()()()11223211n n n n n n n a a a a a a a a a a -----=-+-+-++-+
11111
111222*********n n n n n n ⎛⎫⎛⎫⎛⎫⎛⎫
=-+-+-+
+-+ ⎪ ⎪ ⎪ ⎪-----⎝⎭⎝⎭⎝⎭
⎝⎭
122113n n ⎛⎫
=-+=- ⎪⎝⎭

所以102143105
a =-=. 故选:B. 【点睛】
数列的通项公式的常见求法:
1、对于递推关系式可转化为1()n n a a f n +-=的数列,通常采用叠加法(逐差相加法)求其通项公式;
2、对于递推关系式可转化为
1
()n n
a f n a +=的数列,并且容易求数列{()}f n 前n 项积时,通常采用累乘法求其通项公式; 3、对于递推关系式形如1
n n a pa q +=+的数列,可采用构造法求解数列的通项公式.
17.C
解析:C 【分析】
通过计算出数列的前几项确定数列{}n a 是以2为周期的周期数列,进而计算可得结论. 【详解】 依题意,112
a =,
211122a =

3111222
a =
+=, ⋯
从而数列{}n a 是以2为周期的周期数列, 于是所求值为20161
(1)151222
⨯+=, 故选:C 【点睛】
关键点睛:解答本题的关键是联想到数列的周期性并找到数列的周期.
18.C
解析:C 【分析】
先求出数列{}n a 的前n 项的乘积为n D ,令0n D >解不等式,结合*n N ∈,即可求解. 【详解】
记数列{}n a 的前n 项的乘积为n D ,则
()()12
112451232312
n n n n n n n D a a a a n n -++++=⋅⋅=⨯⨯⨯

⨯=- 依题意有
()()12362
n n ++>
整理得()()2
3707100n n n n +-=-+> 解得:7n >,
因为*n N ∈,所以min 8n =, 故选:C
19.C
【分析】
利用数列的递推公式逐项计算可得3a 的值. 【详解】
()*
1
22,21
n n a n n N a -=
≥∈-,1
1a =,212221
a a ∴=
=-,3222
213a a =
=-. 故选:C. 【点睛】
本题考查利用数列的递推公式写出数列中的项,考查计算能力,属于基础题.
20.D
解析:D 【分析】
在数列的递推公式中依次取1,2,3,1n n =- ,得1n -个等式,累加后再利用错位相减
法求15a . 【详解】
12n n n a a n +=+⋅, 12n n n a a n +-=⋅, 12112a a ∴-=⋅, 23222a a -=⋅,
34332a a -=⋅
11(1)2n n n a a n ---=-⋅,
以上1n -个等式,累加得123
11122232(1)2n n a a
n --=⋅+⋅+⋅+
+-⋅①

2341122122232(2)2(1)2n n n a a n n --=⋅+⋅+⋅++-⋅+-⋅②
①- ②得23
112222(1)2n n n a a n --=++++--⋅
12(12)(1)2(2)2212n n n n n --=--⋅=-⋅--,
(2)23n n a n ∴=-⋅+ ,
151515(152)231323a ∴=-⋅+=⋅+,
故选:D 【点睛】
本题主要考查了累加法求数列通项,乘公比错位相减法求数列的和,由通项公式求数列中的项,属于中档题.
二、多选题
【分析】
对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案. 【详解】
对于选项A ,取前六项得:,满足条件; 对于选项B ,取前六项得:,不满足条件; 对于选项C ,取前六项得:,
解析:AC 【分析】
对四个选项中的数列通项公式分别取前六项,看是否满足题意,得出答案. 【详解】
对于选项A ,1(1)n
n a =+-取前六项得:0,2,0,2,0,2,满足条件;
对于选项B ,2cos 2
n n a π
=取前六项得:0,2,0,2,0,2--,不满足条件; 对于选项C ,(1)2sin
2
n n a π
+=取前六项得:0,2,0,2,0,2,满足条件; 对于选项D ,1cos(1)(1)(2)n a n n n π=--+--取前六项得:0,2,2,8,12,22,不满足条件; 故选:AC
22.BC 【分析】
根据递推公式,得到,令,得到,可判断A 错,B 正确;根据求和公式,得到,求出,可得C 正确,D 错. 【详解】 由可知,即,
当时,则,即得到,故选项B 正确;无法计算,故A 错; ,所以,则
解析:BC 【分析】
根据递推公式,得到11n n n
n n a a a +-=-,令1n =,得到121
a a =,可判断A 错,B 正确;
根据求和公式,得到1
n n n
S a +=,求出201920202019S a =,可得C 正确,D 错. 【详解】
由121n n n a n a a n +=+-可知2111
n n n n n a n n n a a a a ++--==+,即11n n n
n n a a a +-=-,
当1n =时,则12
1
a a =
,即得到121a a =,故选项B 正确;1a 无法计算,故A 错; 1221321111
102110n n n n n n n n n n S a a a a a a a a a a a a +++⎛⎫⎛⎫⎛⎫-=++
+=-+-+
+-=-= ⎪ ⎪
⎪⎝⎭⎝⎭⎝⎭,所以1n n S a n +=,则201920202019S a =,故选项C 正确,选项D 错误. 故选:BC. 【点睛】 方法点睛:
由递推公式求通项公式的常用方法:
(1)累加法,形如()1n n a a f n +=+的数列,求通项时,常用累加法求解; (2)累乘法,形如
()1
n n
a f n a +=的数列,求通项时,常用累乘法求解; (3)构造法,形如1n n a pa q +=+(0p ≠且1p ≠,0q ≠,n ∈+N )的数列,求通
项时,常需要构造成等比数列求解;
(4)已知n a 与n S 的关系求通项时,一般可根据11,2
,1n n n S S n a a n --≥⎧=⎨=⎩求解.
23.BCD 【分析】
由是等差数列及,求出与的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】
设等差数列数列的公差为. 由有,即 所以,则选项D 正确.
选项A. ,无法判断其是否有最小
解析:BCD 【分析】
由{}n a 是等差数列及13522,a a S +=,求出1a 与d 的关系,结合等差数列的通项公式及求和公式即可进行判断. 【详解】
设等差数列数列{}n a 的公差为d .
由13522,a a S +=有()111254
2252
a a a d d ⨯+=++,即160a d += 所以70a =,则选项D 正确. 选项A. ()71176
773212
S a d a d d ⨯=+
=+=-,无法判断其是否有最小值,故A 错误.
选项B. 113
137131302
a S a a +=
⨯==,故B 正确. 选项C. 9876579450a a a a S a a S -=++++==,所以49S S =,故C 正确. 故选:BCD 【点睛】
关键点睛:本题考查等差数列的通项公式及求和公式的应用,解答本题的关键是由条件
13522,a a S +=得到160a d +=,即70a =,然后由等差数列的性质和前n 项和公式判断,
属于中档题.
24.ABC 【分析】
因为是等差数列,由可得,利用通项转化为和即可判断选项A ;利用前项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质即可判断选项C ;由可得且,即可判断选项D ,进而得出正确选项
解析:ABC 【分析】
因为{}n a 是等差数列,由612S S =可得9100a a +=,利用通项转化为1a 和d 即可判断选项A ;利用前n 项和公式以及等差数列的性质即可判断选项B ;利用等差数列的性质
961014a d a a d a =++=+即可判断选项C ;由0d <可得6140a a d +=<且60a >,
140a <即可判断选项D ,进而得出正确选项.
【详解】
因为{}n a 是等差数列,前n 项和为n S ,由612S S =得:
1267891011120S S a a a a a a -=+++++=,即()91030a a +=,即9100a a +=,
对于选项A :由9100a a +=得12170a d +=,可得1:17:2a d =-,故选项A 正确; 对于选项B :()
()
11891018181802
2
a a a a S ++=
=
=,故选项B 正确;
对于选项C :911691014a a a a a a d d =+=++=+,若0d >,则6140a a d +=>,故选项C 正确;
对于选项D :当0d <时,6140a a d +=<,则614a a <-,因为0d <,所以60a >,140a <,
所以614a a <,故选项D 不正确, 故选:ABC 【点睛】
关键点点睛:本题的关键点是由612S S =得出9100a a +=,熟记等差数列的前n 项和公式和通项公式,灵活运用等差数列的性质即可.
25.AD
【分析】
对于,作差后利用等差数列的通项公式运算可得答案;
对于,根据等差数列的前项和公式得到和, 进而可得,由此可知,故不正确; 对于,由得到,,然后分类讨论的符号可得答案; 对于,由求出及
解析:AD 【分析】
对于A ,作差后利用等差数列的通项公式运算可得答案;
对于B ,根据等差数列的前n 项和公式得到70a >和780a a +<, 进而可得80a <,由此可知78||||a a <,故B 不正确;
对于C ,由915S S =得到,12130a a +=,然后分类讨论d 的符号可得答案; 对于D ,由n S 求出n a 及1a ,根据数列{}n a 为等差数列可求得0a =. 【详解】
对于A ,因为46191111(3)(5)(8)a a a a a d a d a a d -=++-+215d =,且0d ≠,
所以2
4619150a a a a d -=>,所以4619a a a a >,故A 正确;
对于B ,因为130S >,140S <,所以
77713()
1302
a a a +=>,即70a >,
787814()
7()02a a a a +=+<,即780a a +<,因为70a >,所以80a <,所以
7878||||0a a a a -=+<,即78||||a a <,故B 不正确;
对于C ,因为915S S =,所以101114150a a a a ++
++=,所以12133()0a a +=,即
12130a a +=,当0d >时,等差数列{}n a 递增,则12130,0a a <>,所以n S 中的最小值
是12S ,无最大值;当0d <时,等差数列{}n a 递减,则12130,0a a ><,所以n S 中的最大值是12S ,无最小值,故C 不正确;
对于D ,若2
n S n n a =-+,则11a S a ==,2n ≥时,
221(1)(1)n n n a S S n n a n n a -=-=-+--+--22n =-,因为数列{}n a 为等差数列,
所以12120a a =⨯-==,故D 正确. 故选:AD 【点睛】
关键点点睛:熟练掌握等差数列的通项公式、前n 项和公式是解题关键.
26.ACD 【分析】
利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】
因为,,所以a1=3,an =[1+(n-1)d](n+2n).若d =1,则an =n(n+2n);若d =0,则a2=
解析:ACD 【分析】
利用等差数列的性质和通项公式,逐个选项进行判断即可求解 【详解】 因为
1
112a =+,1(1)2
n n a n d n =+-+,所以a 1=3,a n =[1+(n -1)d ](n +2n ).若d =1,则a n =n (n +2n );若d =0,则a 2=6.因为a 2=6+6d ,a 3=11+22d ,所以若a 1,a 2,a 3成等差数列,则a 1+a 3=a 2,即14+22d =12+12d ,解得1
5
d =-. 故选ACD
27.BCD 【分析】
设等差数列的公差为,由等差数列的通项公式及前n 项和公式可得,再逐项判断即可得解. 【详解】
设等差数列的公差为, 由题意,,所以,故A 错误; 所以,所以,故B 正确; 因为, 所以当
解析:BCD 【分析】
设等差数列{}n a 的公差为d ,由等差数列的通项公式及前n 项和公式可得1
2
15d a =-⎧⎨=⎩,再逐
项判断即可得解. 【详解】
设等差数列{}n a 的公差为d ,
由题意,11154111051122
15
a d a d a ⨯⨯⎧
+
=+⎪⎨⎪=⎩,所以1215d a =-⎧⎨=⎩,故A 错误; 所以1131439,129a a d a d a =+==+=-,所以413a a =,故B 正确; 因为()()2
211168642
n n n a n d n n n S -=+
=-+=--+,
所以当且仅当8n =时,n S 取最大值,故C 正确;
要使()2
8640n S n =--+>,则16n <且n N +∈, 所以使得0n S >的最大整数15n =,故D 正确. 故选:BCD.
28.BD 【分析】
设等差数列的公差为,依次分析选项即可求解. 【详解】
根据题意,设等差数列的公差为,依次分析选项: 是等差数列,若,则,故B 正确; 又由得,则有,故A 错误; 而C 选项,,即,可得,
解析:BD 【分析】
设等差数列{}n a 的公差为d ,依次分析选项即可求解. 【详解】
根据题意,设等差数列{}n a 的公差为d ,依次分析选项:
{}n a 是等差数列,若67S S =,则7670S S a -==,故B 正确;
又由56S S <得6560S S a -=>,则有760d a a =-<,故A 错误; 而C 选项,95S S >,即67890a a a a +++>,可得()7820a a +>, 又由70a =且0d <,则80a <,必有780a a +<,显然C 选项是错误的. ∵56S S <,678S S S =>,∴6S 与7S 均为n S 的最大值,故D 正确; 故选:BD. 【点睛】
本题考查了等差数列以及前n 项和的性质,需熟记公式,属于基础题.
29.AC 【分析】
将变形为,构造函数,利用函数单调性可得,再结合等差数列与等比数列性质即可判断正确选项 【详解】 由,可得,令, ,
所以是奇函数,且在上单调递减,所以, 所以当数列为等差数列时,;
解析:AC 【分析】

3201911111a a e e +≤++变形为320191111
01212
a a e e -+-≤++,构造函数()11
12
x
f x e =
-+,利用函数单调性可得320190a a +≥,再结合等差数列与等比数列性质即可判断正确选项 【详解】 由
3201911111a a e e +≤++,可得32019111101212a a e e -+-≤++,令()11
12
x f x e =-+, ()()1111101111
x x x x x e f x f x e e e e --+=+-=+-=++++,
所以()1112
x f x e =
-+是奇函数,且在R 上单调递减,所以320190a a +≥, 所以当数列{}n a 为等差数列时,()
320192*********
a a S +=
≥;
当数列{}n a 为等比数列时,且3a ,1011a ,2019a 同号,所以3a ,1011a ,2019a 均大于零, 故()2021
202110110T a =>.
故选:AC 【点睛】
本题考查等差数列与等比数列,考查逻辑推理能力,转化与化归的数学思想,属于中档题
30.AD 【分析】
由已知得到,进而得到,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为,可知不一定成立,从而判定C 错误. 【详解】 由已知得:,
结合等差数列的性质可知,,该等差
解析:AD 【分析】
由已知得到780,0a a ><,进而得到0d <,从而对ABD 作出判定.对于C,利用等差数列的和与项的关系可等价转化为160a d +=,可知不一定成立,从而判定C 错误. 【详解】
由已知得:780,0a a ><,
结合等差数列的性质可知,0d <,该等差数列是单调递减的数列, ∴A 正确,B 错误,D 正确,
310S S =,等价于1030S S -=,即45100a a a ++⋯+=,等价于4100a a +=,即160a d +=,
这在已知条件中是没有的,故C 错误.
【点睛】
本题考查等差数列的性质和前n 项和,属基础题,关键在于掌握和与项的关系.
31.ABD
【分析】
首项根据得到,从而得到是以首项为,公差为的等差数列,再依次判断选项即可.
【详解】
对选项A ,因为,,
所以,即
所以是以首项为,公差为的等差数列,故A 正确.
对选项B ,由A 知:
解析:ABD
【分析】 首项根据11,121n n n a a a a +==+得到1112n n a a +-=,从而得到1n a ⎧⎫⎨⎬⎩⎭
是以首项为1,公差为2的等差数列,再依次判断选项即可.
【详解】
对选项A ,因为121
n n n a a a +=+,11a =, 所以121112n n n n a a a a ++==+,即1112n n
a a +-= 所以1n a ⎧⎫⎨⎬⎩⎭
是以首项为1,公差为2的等差数列,故A 正确. 对选项B ,由A 知:
1
12121n n n a 数列1n a ⎧⎫⎨⎬⎩⎭
的前n 项和()21212n n n S n +-==,故B 正确. 对选项C ,因为121n n a =-,所以121
n a n =-,故C 错误. 对选项D ,因为121
n a n =
-,所以数列{}n a 为递减数列,故D 正确. 故选:ABD
【点睛】 本题主要考查等差数列的通项公式和前n 项和前n 项和,同时考查了递推公式,属于中档题.
32.AD
根据等差数列的性质,对四个选项逐一判断,即可得正确选项.
【详解】
, ,所以是递增数列,故①正确,
,当时,数列不是递增数列,故②不正确,
,当时,不是递增数列,故③不正确,
,因
解析:AD
【分析】
根据等差数列的性质,对四个选项逐一判断,即可得正确选项.
【详解】
0d >,10n n a a d +-=> ,所以{}n a 是递增数列,故①正确,
()()2111n na n a n d dn a d n =+-=+-⎡⎤⎣⎦,当12d a n d
-<时,数列{}n na 不是递增数列,故②不正确,
1n a a d d n n -=+,当10a d -<时,{}n a n
不是递增数列,故③不正确, 134n a nd nd a d +=+-,因为0d >,所以{}3n a nd +是递增数列,故④正确, 故选:AD
【点睛】
本题主要考查了等差数列的性质,属于基础题.
33.AC
【分析】
直接利用等差数列的定义性质判断数列是否为等差数列.
【详解】
A 选项中(,为常数,),数列的关系式符合一次函数的形式,所以是等差数列,故正确,
B 选项中(为常数,),不符合从第二项起
解析:AC
【分析】
直接利用等差数列的定义性质判断数列是否为等差数列.
【详解】
A 选项中n a kn b =+(k ,b 为常数,*n N ∈),数列{}n a 的关系式符合一次函数的形式,所以是等差数列,故正确,
B 选项中2n n a a d +-=(d 为常数,*n N ∈),不符合从第二项起,相邻项的差为同一个常数,故错误;
C 选项中()
*2120n n n a a a n ++-+=∈N ,对于数列{}n a 符合等差中项的形式,所以是等差数列,故正确;
D 选项{}n a 的前n 项和21n S n n =++(*n N ∈),不符合2n S An Bn =+,所以{}n a 不
为等差数列.故错误.
故选:AC
【点睛】
本题主要考查了等差数列的定义的应用,如何去判断数列为等差数列,主要考查学生的运算能力和转换能力及思维能力,属于基础题型.
34.BC
【分析】
分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由Sn>0解不等式可判断D .
【详解】
由公差,可得,即,①
由a7是a
解析:BC
【分析】
分别运用等差数列的通项公式和求和公式,解方程可得首项和公差,可判断A ,B ;由配方法,结合n 为正整数,可判断C ;由S n >0解不等式可判断D .
【详解】
由公差60,90d S ≠=,可得161590a d +=,即12530a d +=,①
由a 7是a 3与a 9的等比中项,可得2739a a a =,即()()()2
111628a d a d a d +=++,化简得110a d =-,②
由①②解得120,2a d ==-,故A 错,B 对; 由()()2
2121441201221224n S n n n n n n ⎛⎫=+-⨯-=-=--+ ⎪⎝
⎭ *n N ∈,可得10n =或11时,n S 取最大值110,C 对;
由S n >0,解得021n <<,可得n 的最大值为20,D 错;
故选:BC
【点睛】
本题考查等差数列的通项公式和求和公式的运用,考查方程思想和运算能力,属于基础题. 35.ACD
【分析】
由得,故正确;当时,根据二次函数知识可知无最小值,故错误;根据等差数
列的性质计算可知,故正确;根据等差数列前项和公式以及等差数列的性质可得,故正确.
【详解】
因为,所以,所以,即
解析:ACD
【分析】
由13623a a S +=得100a =,故A 正确;当0d <时,根据二次函数知识可知n S 无最小值,故B 错误;根据等差数列的性质计算可知127S S =,故C 正确;根据等差数列前n 项和公式以及等差数列的性质可得190S =,故D 正确.
【详解】
因为13623a a S +=,所以111236615a a d a d ++=+,所以190a d +=,即100a =,故A 正确;
当0d <时,1(1)(1)922n n n n n S na d dn d --=+
=-+2(19)2d n n =-无最小值,故B 错误;
因为127891*********S S a a a a a a -=++++==,所以127S S =,故C 正确; 因为()1191910191902a a S a +⨯===,故D 正确.
故选:ACD.
【点睛】
本题考查了等差数列的通项公式、前n 项和公式,考查了等差数列的性质,属于中档题.。

相关文档
最新文档