高中物理万有引力与航天专项训练及答案含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理万有引力与航天专项训练及答案含解析
一、高中物理精讲专题测试万有引力与航天
1.一宇航员在某未知星球的表面上做平抛运动实验:在离地面h 高处让小球以某一初速度水平抛出,他测出小球落地点与抛出点的水平距离为x 和落地时间t ,又已知该星球的半径为R ,己知万有引力常量为G ,求: (1)小球抛出的初速度v o (2)该星球表面的重力加速度g (3)该星球的质量M
(4)该星球的第一宇宙速度v (最后结果必须用题中己知物理量表示)
【答案】(1) v 0=x/t (2) g=2h/t 2 (3) 2hR 2/(Gt 2) (4) t
【解析】
(1)小球做平抛运动,在水平方向:x=vt , 解得从抛出到落地时间为:v 0=x/t
(2)小球做平抛运动时在竖直方向上有:h=12
gt 2
, 解得该星球表面的重力加速度为:g=2h/t 2;
(3)设地球的质量为M ,静止在地面上的物体质量为m , 由万有引力等于物体的重力得:mg=2
Mm
G
R 所以该星球的质量为:M=2
gR G
= 2hR 2/(Gt 2); (4)设有一颗质量为m 的近地卫星绕地球作匀速圆周运动,速率为v ,
由牛顿第二定律得: 2
2Mm v G m R R
=
重力等于万有引力,即mg=2Mm
G
R
,
解得该星球的第一宇宙速度为:v =
=
2.据报道,一法国摄影师拍到“天宫一号”空间站飞过太阳的瞬间.照片中,“天宫一号”的太阳帆板轮廓清晰可见.如图所示,假设“天宫一号”正以速度v =7.7km/s 绕地球做匀速圆周运动,运动方向与太阳帆板两端M 、N 的连线垂直,M 、N 间的距离L =20m ,地磁场的磁感应强度垂直于v ,MN 所在平面的分量B =1.0×10﹣5 T ,将太阳帆板视为导体.
(1)求M 、N 间感应电动势的大小E ;
(2)在太阳帆板上将一只“1.5V 、0.3W”的小灯泡与M 、N 相连构成闭合电路,不计太阳帆板和导线的电阻.试判断小灯泡能否发光,并说明理由;
(3)取地球半径R =6.4×103 km ,地球表面的重力加速度g = 9.8 m/s 2,试估算“天宫一号”距离地球表面的高度h (计算结果保留一位有效数字). 【答案】(1)1.54V (2)不能(3)5410m ⨯ 【解析】 【分析】 【详解】
(1)法拉第电磁感应定律
E=BLv
代入数据得
E =1.54V
(2)不能,因为穿过闭合回路的磁通量不变,不产生感应电流. (3)在地球表面有
2
Mm
G
mg R = 匀速圆周运动
2
2
()Mm v G m R h R h
=++ 解得
2
2gR h R v
=-
代入数据得
h ≈4×105m 【方法技巧】
本题旨在考查对电磁感应现象的理解,第一问很简单,问题在第二问,学生在第一问的基础上很容易答不能发光,殊不知闭合电路的磁通量不变,没有感应电流产生.本题难度不
大,但第二问很容易出错,要求考生心细,考虑问题全面.
3.人类第一次登上月球时,宇航员在月球表面做了一个实验:将一片羽毛和一个铁锤从同一个高度由静止同时释放,二者几乎同时落地.若羽毛和铁锤是从高度为h 处下落,经时间t 落到月球表面.已知引力常量为G ,月球的半径为R . (1)求月球表面的自由落体加速度大小g 月;
(2)若不考虑月球自转的影响,求月球的质量M 和月球的“第一宇宙速度”大小v .
【答案】(1)22h g t =月 (2)2
2
2hR M Gt =;2hR
v =
【解析】 【分析】
(1)根据自由落体的位移时间规律可以直接求出月球表面的重力加速度;
(2)根据月球表面重力和万有引力相等,利用求出的重力加速度和月球半径可以求出月球的质量M ; 飞行器近月飞行时,飞行器所受月球万有引力提供月球的向心力,从而求出“第一宇宙速度”大小. 【详解】
(1)月球表面附近的物体做自由落体运动 h =1
2
g 月t 2 月球表面的自由落体加速度大小 g 月=2
2h t (2)若不考虑月球自转的影响 G 2
Mm
R =mg 月 月球的质量 2
2
2hR M Gt =
质量为m'的飞行器在月球表面附近绕月球做匀速圆周运动m ′g 月=m ′2
v R
月球的“第一宇宙速度”大小 2hR
v g R 月== 【点睛】
结合自由落体运动规律求月球表面的重力加速度,根据万有引力与重力相等和万有引力提供圆周运动向心力求解中心天体质量和近月飞行的速度v .
4.土星是太阳系最大的行星,也是一个气态巨行星。
图示为2017年7月13日朱诺号飞行器近距离拍摄的土星表面的气体涡旋(大红斑),假设朱诺号绕土星做匀速圆周运动,距离土星表面高度为h 。
土星视为球体,已知土星质量为M ,半径为R ,万有引力常量为
.G 求:
()1土星表面的重力加速度g ; ()2朱诺号的运行速度v ; ()3朱诺号的运行周期T 。
【答案】()()()()2
1?2?3?2GM GM R h
R h R R h GM
π+++ 【解析】 【分析】
土星表面的重力等于万有引力可求得重力加速度;由万有引力提供向心力并分别用速度与周期表示向心力可求得速度与周期。
【详解】
(1)土星表面的重力等于万有引力:2
Mm
G mg R = 可得2
GM
g R =
(2)由万有引力提供向心力:2
2()Mm mv G R h R h
=++
可得:GM
v R h
=
+ (3)由万有引力提供向心力:()2
22()()GMm m R h R h T
π=++ 可得:()
2R h T R h GM
π+=+
5.如图所示,宇航员站在某质量分布均匀的星球表面一斜坡上P 点沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡上另一点Q ,斜面的倾角为α,已知该星球半径为R ,万有引力常量为G ,求:
(1)该星球表面的重力加速度; (2)该星球的密度; (3)该星球的第一宇宙速度v ;
(4)人造卫星绕该星球表面做匀速圆周运动的最小周期T . 【答案】(1)02tan v t α;(2)03tan 2v GRt απ;02tana
v R t
;(4)02tan Rt v α【解析】 【分析】
【详解】
(1) 小球落在斜面上,根据平抛运动的规律可得:
200
12tan α2gt y gt x v t v ===
解得该星球表面的重力加速度:
02tan α
v g t
=
(2)物体绕星球表面做匀速圆周运动时万有引力提供向心力,则有:
2
GMm
mg R = 则该星球的质量:
G
gR M 2
= 该星球的密度:
33tan α34423
v M g
GR GRt R ρπππ=
=
=
(3)根据万有引力提供向心力得:
22Mm v G m R R
= 该星球的第一宙速度为:
v =
==
(4)人造卫星绕该星球表面做匀速圆周运动时,运行周期最小,则有:
2R
T v
π=
所以:
22T π==点睛:处理平抛运动的思路就是分解.重力加速度g 是天体运动研究和天体表面宏观物体运动研究联系的物理量.
6.宇航员站在某质量分布均匀的星球表面一斜坡上P 点,沿水平方向以初速度v 0抛出一个小球,测得小球经时间t 落到斜坡另一点Q 上,斜坡的倾角α,已知该星球的半径为R ,引力常量为G ,求该星球的密度(已知球的体积公式是V=
43
πR 3
).
【答案】
03tan 2V RGt α
π
【解析】
试题分析:平抛运动在水平方向上做匀速直线运动,在竖直方向上做自由落体运动,根据平抛运动的规律求出星球表面的重力加速度.根据万有引力等于重力求出星球的质量,结合密度的公式求出星球的密度.
设该星球表现的重力加速度为g ,根据平抛运动规律: 水平方向:0x v t = 竖直方向:212
y gt =
平抛位移与水平方向的夹角的正切值2012tan gt y x v t
α== 得:02tan v g t
α
=
设该星球质量M ,对该星球表现质量为m 1的物体有112GMm m g R =,解得G
gR M 2
= 由343V R π=
,得:03tan 2v M V RGt α
ρπ
==
7.我国科学家正在研究设计返回式月球软着陆器,计划在2030年前后实现航天员登月,对月球进行科学探测。
宇航员在月球上着陆后,自高h 处以初速度v 0水平抛出小球,测量出小球的水平射程为L (这时月球表面可以看成是平坦的),已知月球半径为R ,万有引力常量为G 。
(1)试求月球表面处的重力加速度g . (2)试求月球的质量M
(3)字航员着陆后,发射了一颗绕月球表面做匀速圆周运动的卫星,周期为T ,试求月球的平均密度ρ.
【答案】(1)2022hv g L =(2)22
02
2hv R
M GL = (3)23GT πρ=
【解析】 【详解】
(1)根据题目可得小球做平抛运动, 水平位移: v 0t =L
竖直位移:h =
12
gt 2 联立可得:20
22hv g L
=
(2)根据万有引力黄金代换式2
mM
G
mg R =, 可得2220
2
2hv R gR M G GL
== (3)根据万有引力公式2224mM G m R R T π=;可得23
2
4R M GT
π=, 而星球密度M V ρ=,3
43
V R π= 联立可得2
3GT πρ=
8.某双星系统中两个星体 A 、B 的质量都是 m ,且 A 、B 相距 L ,它们正围绕两者连线上的某一点做匀速圆周运动.实际观测该系统的周期 T 要小于按照力学理论计算出的周期理论值 T 0,且= k (
) ,于是有人猜测这可能是受到了一颗未发现的星体 C 的影响,并认
为 C 位于双星 A 、B 的连线中点.求: (1)两个星体 A 、B 组成的双星系统周期理论值; (2)星体C 的质量.
【答案】(1);(2)
【解析】 【详解】
(1)两星的角速度相同,根据万有引力充当向心力知:
可得:
两星绕连线的中点转动,则
解得:
(2)因为C 的存在,双星的向心力由两个力的合力提供,则
再结合:= k
可解得:
故本题答案是:(1);(2)
【点睛】
本题是双星问题,要抓住双星系统的条件:角速度与周期相同,再由万有引力充当向心力进行列式计算即可.
9.在月球表面上沿竖直方向以初速度v 0抛出一个小球,测得小球经时间t 落回抛出点,已知该月球半径为R ,万有引力常量为G ,月球质量分布均匀。
求: (1)月球的密度; (2)月球的第一宇宙速度。
【答案】(1)0
32v RGt ρπ=(2)02v R
v t
=
【解析】 【详解】
(1)根据竖直上抛运动的特点可知:01
02
v gt -= 所以:g=
2v t
设月球的半径为R,月球的质量为M,则:2
GMm
mg R
= 体积与质量的关系:34
·3
M V R ρπρ== 联立得:0
32v RGt
ρπ=
(2)由万有引力提供向心力得
2
2GMm v m R R
= 解得;02v R
v t
=
综上所述本题答案是:(1)0
32v RGt ρπ=(2)02v R
v t
=
【点睛】
会利用万有引力定律提供向心力求中心天体的密度,并知道第一宇宙速度等于v gR =。
10.宇航员驾驶一飞船在靠近某行星表面附近的圆形轨道上运行,已知飞船运行的周期为T ,行星的平均密度为.试证明(万有引力恒量G为已知,是恒量)【答案】证明见解析
【解析】
【分析】
【详解】
设行星半径为R、质量为M,飞船在靠近行星表面附近的轨道上运行时,有
即①
又行星密度②
将①代入②得证毕。