绥阳县高中2018-2019学年上学期高二数学12月月考试题含解析
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
绥阳县高中2018-2019学年上学期高二数学12月月考试题含解析 班级__________ 座号_____ 姓名__________ 分数__________
一、选择题
1. 以的焦点为顶点,顶点为焦点的椭圆方程为( )
A .
B .
C .
D .
2. 在ABC ∆中,内角A ,B ,C 所对的边分别是,,,已知85b c =,2C B =,则cos C =( ) A .
725
B .725- C. 725± D .2425
3. 设x ,y 满足线性约束条件,若z=ax ﹣y (a >0)取得最大值的最优解有数多个,则实数a
的值为( )
A .2
B .
C .
D .3
4. 随机变量x 1~N (2,1),x 2~N (4,1),若P (x 1<3)=P (x 2≥a ),则a=( ) A .1
B .2
C .3
D .4
5. 已知平面向量与的夹角为
3
π
,且32|2|=+b a ,1||=b ,则=||a ( ) A . B .3 C . D .
6. 数列﹣1,4,﹣7,10,…,(﹣1)n (3n ﹣2)的前n 项和为S n ,则S 11+S 20=( )
A .﹣16
B .14
C .28
D .30 7. 设f (x )=asin (πx+α)+bcos (πx+β)+4,其中a ,b ,α,β均为非零的常数,f (1988)=3,则f (2008)
的值为( )
A .1
B .3
C .5
D .不确定
8. 已知 m 、n 是两条不重合的直线,α、β、γ是三个互不重合的平面,则下列命题中 正确的是( ) A .若 m ∥α,n ∥α,则 m ∥n B .若α⊥γ,β⊥γ,则 α∥β
C .若m ⊥α,n ⊥α,则 m ∥n
D .若 m ∥α,m ∥β,则 α∥β
9. 如图,正方体ABCD ﹣A 1B 1C 1D 1中,点E ,F 分别是AA 1,AD 的中点,则CD 1与EF 所成角为( )
A .0°
B .45°
C .60°
D .90°
10.记集合{
}
22
(,)1A x y x y =+?和集合{
}(,)1,0,0B x y x y x
y =+3?表示的平面区域分别为Ω1,Ω2,
若在区域Ω1内任取一点M (x ,y ),则点M 落在区域Ω2内的概率为( ) A .
12p B .1p C .2
p
D .13p
【命题意图】本题考查线性规划、古典概型等基础知识,意在考查数形结合思想和基本运算能力. 11.已知圆C 方程为2
2
2x y +=,过点(1,1)P -与圆C 相切的直线方程为( )
A .20x y -+=
B .10x y +-=
C .10x y -+=
D .20x y ++=
12.在正方体1111ABCD A BC D -中,,E F 分别为1,BC BB 的中点,则下列直线中与直线
EF 相交
的是( )
A .直线1AA
B .直线11A B C. 直线11A D D .直线11B C
二、填空题
13.抛物线
的准线与双曲线
的两条渐近线所围成的三角形面积为__________
14.如图:直三棱柱ABC ﹣A ′B ′C ′的体积为V ,点P 、Q 分别在侧棱AA ′和CC ′上,AP=C ′Q ,则四棱锥B ﹣
APQC 的体积为 .
15.在4次独立重复试验中,随机事件A 恰好发生1次的概率不大于其恰好发生两次的概率,则事件A 在一次试验中发生的概率P 的取值范围是 .
16.在棱长为1的正方体ABCD ﹣A 1B 1C 1D 1中,M 是A 1D 1的中点,点P 在侧面BCC 1B 1上运动.现有下列命题:
①若点P 总保持PA ⊥BD 1,则动点P 的轨迹所在曲线是直线;
②若点P 到点A 的距离为
,则动点P 的轨迹所在曲线是圆;
③若P 满足∠MAP=∠MAC 1,则动点P 的轨迹所在曲线是椭圆;
④若P 到直线BC 与直线C 1D 1的距离比为1:2,则动点P 的轨迹所在曲线是双曲线; ⑤若P 到直线AD 与直线CC 1的距离相等,则动点P 的轨迹所在曲线是抛物丝. 其中真命题是 (写出所有真命题的序号)
17.【南通中学2018届高三10月月考】定义在
上的函数满足,为的导函数,且
对
恒成立,则
的取值范围是__________________.
18.在空间直角坐标系中,设)1,3(,
m A ,)1,1,1(-B ,且22||=AB ,则=m . 三、解答题
19.(本小题满分12分)已知圆()()2
2
:1225C x y -+-=,直线
()()():211740L m x m y m m R +++--=∈.
(1)证明: 无论m 取什么实数,L 与圆恒交于两点; (2)求直线被圆C 截得的弦长最小时L 的方程.
20.如图,在三棱柱ABC ﹣A 1B 1C 1中,底面△ABC 是边长为2的等边三角形,D 为AB 中点. (1)求证:BC 1∥平面A 1CD ;
(2)若四边形BCC
1B 1是正方形,且A 1D=
,求直线A 1D 与平面CBB 1C 1所成角的正弦值.
21.(本小题满分10分)选修4—5:不等式选讲 已知函数3212)(-++=x x x f .
(I )若R x ∈∃0,使得不等式m x f ≤)(0成立,求实数m 的最小值M ; (Ⅱ)在(I )的条件下,若正数,a b 满足3a b M +=,证明:31
3b a
+≥.
22.已知函数y=x+有如下性质:如果常数t >0,那么该函数在(0,]上是减函数,在[
,+∞)上是增
函数.
(1)已知函数f (x )=x+,x ∈[1,3],利用上述性质,求函数f (x )的单调区间和值域;
(2)已知函数g (x )=
和函数h (x )=﹣x ﹣2a ,若对任意x 1∈[0,1],总存在x 2∈[0,1],
使得h (x 2)=g (x 1)成立,求实数a 的值.
23.【常州市2018届高三上武进区高中数学期中】已知函数()()2
21ln f x ax a x x =+--,R a ∈.
⑴若曲线()y f x =在点()()
1,1f 处的切线经过点()2,11,求实数a 的值; ⑵若函数()f x 在区间()2,3上单调,求实数a 的取值范围; ⑶设()1
sin 8
g x x =,若对()10,x ∀∈+∞,[]20,πx ∃∈,使得()()122f x g x +≥成立,求整数a 的最小值.
24.已知椭圆()22
22:10x y C a b a b +=>>的左右焦点分别为12,F F ,椭圆C 过点1,2P ⎛⎫ ⎪ ⎪⎝⎭,直线1PF 交y 轴于Q ,且22,PF QO O =为坐标原点.
(1)求椭圆C 的方程;
(2)设M 是椭圆C 上的顶点,过点M 分别作出直线,MA MB 交椭圆于,A B 两点,设这两条直线的斜率 分别为12,k k ,且122k k +=,证明:直线AB 过定点.
绥阳县高中2018-2019学年上学期高二数学12月月考试题含解析(参考答案)
一、选择题
1. 【答案】D
【解析】解:双曲线的顶点为(0,﹣2
)和(0,2
),焦点为(0,
﹣4)和(0,4).
∴椭圆的焦点坐标是为(0,﹣2)和(0,2
),顶点为(0,﹣4)和(0,4).
∴椭圆方程为.
故选D .
【点评】本题考查双曲线和椭圆的性质和应用,解题时要注意区分双曲线和椭圆的基本性质.
2. 【答案】A 【解析】
考
点:正弦定理及二倍角公式.
【思路点晴】本题中用到了正弦定理实现三角形中边与角的互化,同角三角函数间的基本关系及二倍角公式,如θθθθθ2222
sin cos 2cos ,1cos sin -==+,这要求学生对基本公式要熟练掌握解三角形时常借助于正弦定
理
R C
c
B b A 2sin sin sin a ===,余弦定理A bc c b a cos 2222-+=, 实现边与角的互相转化. 3. 【答案】B
【解析】解:作出不等式组对应的平面区域如图:(阴影部分). 由z=ax ﹣y (a >0)得y=ax ﹣z , ∵a >0,∴目标函数的斜率k=a >0. 平移直线y=ax ﹣z ,
由图象可知当直线y=ax ﹣z 和直线2x ﹣y+2=0平行时,当直线经过B 时,此时目标函数取得最大值时最优解只有一个,不满足条件.
当直线y=ax ﹣z 和直线x ﹣3y+1=0平行时,此时目标函数取得最大值时最优解有无数多个,满足条件.
此时a=.
故选:B.
4.【答案】C
【解析】解:随机变量x1~N(2,1),图象关于x=2对称,x2~N(4,1),图象关于x=4对称,因为P(x1<3)=P(x2≥a),
所以3﹣2=4﹣a,
所以a=3,
故选:C.
【点评】本题主要考查正态分布的图象,结合正态曲线,加深对正态密度函数的理解.
5.【答案】C
考点:平面向量数量积的运算.
6.【答案】B
【解析】解:∵a n=(﹣1)n(3n﹣2),
∴S11=()+(a2+a4+a6+a8+a10)
=﹣(1+7+13+19+25+31)+(4+10+16+22+28)
=﹣16,
S20=(a1+a3+…+a19)+(a2+a4+…+a20)
=﹣(1+7+...+55)+(4+10+ (58)
=﹣+
=30,
∴S11+S20=﹣16+30=14.
故选:B.
【点评】本题考查数列求和,是中档题,解题时要认真审题,注意分组求和法和等差数列的性质的合理运用.7.【答案】B
【解析】解:∵f(1988)=asin(1988π+α)+bcos(1998π+β)+4=asinα+bcosβ+4=3,
∴asinα+bcosβ=﹣1,
故f(2008)=asin(2008π+α)+bcos(2008π+β)+4=asinα+bcosβ+4=﹣1+4=3,
故选:B.
【点评】本题主要考查利用诱导公式进行化简求值,属于中档题.
8.【答案】C
【解析】解:对于A,若m∥α,n∥α,则m与n相交、平行或者异面;故A错误;
对于B,若α⊥γ,β⊥γ,则α与β可能相交,如墙角;故B错误;
对于C,若m⊥α,n⊥α,根据线面垂直的性质定理得到m∥n;故C正确;
对于D,若m∥α,m∥β,则α与β可能相交;故D错误;
故选C.
【点评】本题考查了空间线线关系.面面关系的判断;熟练的运用相关的定理是关键.
9.【答案】C
【解析】解:连结A1D、BD、A1B,
∵正方体ABCD﹣A1B1C1D1中,点E,F分别是AA1,AD的中点,∴EF∥A1D,
∵A1B∥D1C,∴∠DA1B是CD1与EF所成角,
∵A1D=A1B=BD,
∴∠DA1B=60°.
∴CD1与EF所成角为60°.
故选:C.
【点评】本题考查异面直线所成角的求法,是基础题,解题时要认真审题,注意空间思维能力的培养.
10.【答案】A
【解析】画出可行域,如图所示,Ω1表示以原点为圆心, 1为半径的圆及其内部,Ω2表示OAB D
及其内部,由几何概型得点M 落在区域Ω2内的概率为1
1
2P ==p 2p
,故选A.
11.【答案】A 【解析】
试题分析:圆心(0,0),C r =,设切线斜率为,则切线方程为1(1),10y k x kx y k -=
+∴-+
+=,由
,1d r k =∴=,所以切线方程为20x y -+=,故选A.
考点:直线与圆的位置关系. 12.【答案】D 【解析】
试题分析:根据已满治安的概念可得直线11111,,AA A B A D 都和直线
EF 为异面直线,11B C 和EF 在同一个平面内,且这两条直线不平行;所以直线11B C 和EF 相交,故选D. 考点:异面直线的概念与判断.
二、填空题
13.【答案】
【解析】【知识点】抛物线双曲线
【试题解析】抛物线的准线方程为:x=2;
双曲线的两条渐近线方程为:
所以
故答案为:
14.【答案】V
【解析】
【分析】四棱锥B﹣APQC的体积,底面面积是侧面ACC′A′的一半,B到侧面的距离是常数,求解即可.【解答】解:由于四棱锥B﹣APQC的底面面积是侧面ACC′A′的一半,不妨把P移到A′,Q移到C,
所求四棱锥B﹣APQC的体积,转化为三棱锥A′﹣ABC体积,就是:
故答案为:
15.【答案】[].
【解析】解:由题设知C41p(1﹣p)3≤C42p2(1﹣p)2,
解得p,
∵0≤p≤1,
∴,
故答案为:[].
16.【答案】①②④
【解析】解:对于①,∵BD1⊥面AB1C,∴动点P的轨迹所在曲线是直线B1C,①正确;
对于②,满足到点A的距离为的点集是球,∴点P应为平面截球体所得截痕,即轨迹所在曲线为圆,
②正确;
对于③,满足条件∠MAP=∠MAC1的点P应为以AM为轴,以AC1为母线的圆锥,平面BB1C1C是一个与轴AM平行的平面,
又点P在BB1C1C所在的平面上,故P点轨迹所在曲线是双曲线一支,③错误;
对于④,P到直线C1D1的距离,即到点C1的距离与到直线BC的距离比为2:1,
∴动点P的轨迹所在曲线是以C1为焦点,以直线BC为准线的双曲线,④正确;
对于⑤,如图建立空间直角坐标系,作PE⊥BC,EF⊥AD,PG⊥CC1,连接PF,
设点P坐标为(x,y,0),由|PF|=|PG|,得,即x2﹣y2=1,
∴P点轨迹所在曲线是双曲线,⑤错误.
故答案为:①②④.
【点评】本题考查了命题的真假判断与应用,考查了圆锥曲线的定义和方方程,考查了学生的空间想象能力和思维能力,是中档题.
17.【答案】
【解析】点睛:函数的单调性是函数的重要性质之一,它的应用贯穿于整个高中数学的教学之中。
某些数学问题从表面上看似乎与函数的单调性无关,但如果我们能挖掘其内在联系,抓住其本质,那么运用函数的单调性解题,能起到化难为易、化繁为简的作用。
因此对函数的单调性进行全面、准确的认识,并掌握好使用的技巧和方法,这
是非常必要的。
根据题目的特点,构造一个适当的函数,利用它的单调性进行解题,是一种常用技巧。
许多问题,如果运用这种思想去解决,往往能获得简洁明快的思路,有着非凡的功效。
18.【答案】1 【解析】 试题分析:()()()()22131112
22=-+--+-=
m AB ,解得:1=m ,故填:1.
考点:空间向量的坐标运算
三、解答题
19.【答案】(1)证明见解析;(2)250x y --=. 【解析】
试题分析:(1)L 的方程整理为()()4270x y m x y +-++-=,列出方程组,得出直线过圆内一点,即可
证明;(2)由圆心()1,2M ,当截得弦长最小时, 则L AM ⊥,利用直线的点斜式方程,即可求解直线的方程.
1111]
(2)圆心()1,2M ,当截得弦长最小时, 则L AM ⊥, 由1
2
AM k =-
得L 的方程()123y x -=-即250x y --=. 考点:直线方程;直线与圆的位置关系. 20.【答案】
【解析】证明:(1)连AC 1,设AC 1与A 1C 相交于点O ,连DO ,则O 为AC 1中点, ∵D 为AB 的中点, ∴DO ∥BC 1,
∵BC 1⊄平面A 1CD ,DO ⊂平面A 1CD , ∴BC 1∥平面A 1CD .
解:∵底面△ABC 是边长为2等边三角形,D 为AB 的中点, 四边形BCC
1B 1是正方形,且A 1D=,
∴CD ⊥AB ,CD=
=
,AD=1,
∴AD2+AA12=A1D2,∴AA1⊥AB,
∵,∴,
∴CD⊥DA1,又DA1∩AB=D,
∴CD⊥平面ABB1A1,∵BB1⊂平面ABB1A1,∴BB1⊥CD,
∵矩形BCC1B1,∴BB1⊥BC,
∵BC∩CD=C∴BB1⊥平面ABC,
∵底面△ABC是等边三角形,
∴三棱柱ABC﹣A1B1C1是正三棱柱.
以C为原点,CB为x轴,CC1为y轴,过C作平面CBB1C1的垂线为z轴,建立空间直角坐标系,
B(2,0,0),A(1,0,),D(,0,),A1(1,2,),
=(,﹣2,﹣),平面CBB1C1的法向量=(0,0,1),
设直线A1D与平面CBB1C1所成角为θ,
则sinθ===.
∴直线A1D与平面CBB1C1所成角的正弦值为.
21.【答案】
【解析】【命题意图】本题考查基本不等式、绝对值三角不等式等基础知识,意在考查转化思想和基本运算能力.
22.【答案】
【解析】解:(1)由已知可以知道,函数f (x )在x ∈[1,2]上单调递减,在x ∈[2,3]上单调递增,
f (x )min =f (2)=2+2=4,又f (1)=1+4=5,f (3)=3+=;
f (1)>f (3)所以f (x )max =f (1)=5 所以f (x )在x ∈[1,3]的值域为[4,5].
(2)y=g (x )=
=2x+1+
﹣8
设μ=2x+1,x ∈[0,1],1≤μ≤3,则y=﹣8,
由已知性质得,
当1≤u ≤2,即0≤x ≤时,g (x )单调递减,所以递减区间为[0,];
当2≤u ≤3,即≤x ≤1时,g (x )单调递增,所以递增区间为[,1];
由g (0)=﹣3,g ()=﹣4,g (1)=﹣
,得g (x )的值域为[﹣4,﹣3].
因为h (x )=﹣x ﹣2a 为减函数,故h (x )∈[﹣1﹣2a ,﹣2a],x ∈[0,1]. 根据题意,g (x )的值域为h (x )的值域的子集,
从而有,所以a=.
23.【答案】⑴2a =⑵11,,64
⎛⎤⎡⎫-∞⋃+∞ ⎪⎥⎢⎝
⎦⎣⎭
⑶2
【解析】试题分析:(1)根据题意,对函数f x ()求导,由导数的几何意义分析可得曲线y f x =()
在点
11f (,())处的切线方程,代入点
211(,),计算可得答案; (2)由函数的导数与函数单调性的关系,分函数在(23,)上单调增与单调减两种情况讨论,综合即可得答案;
(3)由题意得,2min max f x g x +≥()(),
分析可得必有()()2
15
218
f x ax a x lnx +--≥= ,对f x ()求导,对a 分类讨论即可得答案. 试题解析:
⑵
()()()
211'ax x f x x
-+=
,
∴若函数()f x 在区间()2,3上单调递增,则210y ax =-≥在()2,3恒成立,
410{ 610
a a -≥∴-≥,得14a ≥;
若函数()f x 在区间()2,3上单调递减,则210y ax =-≤在()2,3恒成立,
410{
610
a a -≤∴-≤,得1
6a ≤,
综上,实数a 的取值范围为11,,64
⎛⎤
⎡⎫-∞⋃+∞ ⎪⎥⎢⎝
⎦
⎣⎭
;
⑶由题意得,()()min max 2f x g x +≥,
()max 1
28g x g π⎛⎫== ⎪⎝⎭,
()min 158f x ∴≥,即()()215
21ln 8
f x ax a x x =+--≥,
由()()()()()2
22112111'221ax a x ax x f x ax a x x x
+---+=+--==, 当0a ≤时,()10f <,则不合题意;
当0a >时,由()'0f x =,得1
2x a
=
或1x =-(舍去),
当1
02x a
<<时,()'0f x <,()f x 单调递减, 当1
2x a
>
时,()'0f x >,()f x 单调递增. ()min 115
28
f x f a ⎛⎫∴=≥ ⎪⎝⎭,即117ln 428a a --≥, 整理得,()117
ln 2228a a -⋅
≥, 设()1ln 2h x x x =-,()211
02h x x x
∴=+>',()h x ∴单调递增,
a Z ∈,2a ∴为偶数,
又()172ln248h =-<,()17
4ln488
h =->,
24a ∴≥,故整数a 的最小值为2。
24.【答案】(1)2
212
x y +=;(2)证明见解析. 【解析】
试
题解析:
(1)22PF QO =,∴212PF F F ⊥,∴1c =,
2222
221121,1a b c b a b +==+=+, ∴22
1,2b a ==,
即2
212
x y +=;
(2)设AB 方程为y kx b =+代入椭圆方程
222
12102k x kbx b ⎛⎫+++-= ⎪⎝⎭,22
221
,112
2
A B A B kb b x x x x k k --+==++,
11,A B MA MB A B y y k k x x --==,∴()
11
2A B A B A B A B MA MB A B
A B
y x x y x x y y k k x x x x +-+--+=+=
=,
∴1k b =+代入y kx b =+得:1y kx k =+-所以, 直线必过()1,1--.1 考点:直线与圆锥曲线位置关系.
【方法点晴】求曲线方程主要方法是方程的思想,将向量的条件转化为垂直.直线和圆锥曲线的位置关系一方面要体现方程思想,另一方面要结合已知条件,从图形角度求解.联立直线与圆锥曲线的方程得到方程组,化为一元二次方程后由根与系数的关系求解是一个常用的方法. 涉及弦长的问题中,应熟练地利用根与系数关系、设而不求法计算弦长;涉及垂直关系时也往往利用根与系数关系、设而不求法简化运算;涉及过焦点的弦的问题,可考虑用圆锥曲线的定义求解.。