氧化铜与氧化钛复合
掺铜方法对二氧化钛光催化氧化还原性能的影响

掺铜方法对二氧化钛光催化氧化还原性能的影响吴树新1,2,3,尹燕华2,马 智1,秦永宁1,何 菲1,齐晓周1(1.天津大学化工学院,天津 300072;2.第七一八研究所,河北邯郸 056027;3.唐山师范学院新型催化技术研究所,河北唐山 063000) 摘 要:采用浸渍法、水解沉淀法、机械混合法制备了铜掺杂的TiO 2光催化剂.利用XRD ,XPS ,TPR 等手段对不同样品进行了表征,以乙酸水溶液的光催化氧化降解及二氧化碳光催化还原为反应探针,对3种催化剂光催化活性进行了评价.结果表明,不同方法掺铜影响催化剂表面性质如吸附氧、元素价态及分布,进而影响光催化性能.吸附氧的性能以及存在合适比例的氧化还原对Cu +/Cu 2+导致浸渍法制备的掺铜TiO 2光催化剂具有最好的光催化活性.关键词:光催化氧化;掺铜;浸渍;水解沉淀;机械混合中图分类号:O 643.36 文献标识码:A 文章编号:1000-1565(2005)05-0486-09二氧化钛具有合适的禁带宽度,较大的比表面积,较高的光化学稳定性,较好的光催化活性及无毒、成本低等优点,被广泛用作光催化反应的催化剂,但从其光催化效率看,还存在光生载流子复合率高、光能利用率低等不足.为提高光催化效率,必须采取措施有效抑制光生载流子的复合.过渡金属离子掺杂就是其中一种方法,迄今为止人们对催化剂活性的评价大都仅根据光催化氧化活性[1-4]或光催化还原活性[5]来说明问题.离子掺杂改变的是光生电子-空穴的整体行为,因此必然会在氧化还原反应中有所表现,考察催化剂在光催化氧化和还原反应中的表现,有助于更全面地了解掺杂改性的机制.在前期工作中[6],已经证明在各种离子(Cr ,Mn ,Fe ,Co ,Ni ,Cu )掺杂的催化剂中,铜离子掺杂最能提高催化剂的氧化还原活性.研究了不同的掺铜方法对二氧化钛光催化氧化还原性能的影响.用浸渍法、水解沉淀法、机械混合法制备了铜掺杂的TiO 2光催化剂,并从氧化还原2个角度对光催化性能进行了考察.利用XRD ,XPS ,TPR 等手段对催化剂进行了表征,在此基础上讨论了掺杂方法影响掺铜二氧化钛光催化性能的可能原因.乙酸是各种有机物降解过程中产生的稳定中间物种,同时乙酸也是各种微生物代谢的主要产物.因此,选取乙酸水溶液的降解作为评价体系,对于实现各种有机物废水的完全矿化以及光催化与其他污水水处理方法的配合使用具有重大的现实意义.二氧化碳是引起全球温室效应的气体之一,特别是近些年来,随着人类活动的加剧,大气中二氧化碳的含量提高得更快,进一步加剧了温室效应.在这种背景下,选择二氧化碳还原做目标反应,对于温和条件下CO 2的光催化还原化学转化的研究具有深远的现实意义和理论意义.1 实验部分1.1 催化剂制备基体TiO 2为超声水解法制备,粒径为5~6nm ,详细结果将另文发表[7].以四氯化钛(分析纯,天津化学试剂三厂)为原料,冰水浴条件下将其溶于蒸馏水,置于薄壁烧杯中,超声水解.然后用浓氨水中和至p H 为6~7,陈化10h ,抽滤至无Cl -(硝酸银检验),100℃烘干,450℃焙烧2h 得二氧化钛. 收稿日期:2004-12-03 基金项目:南开大学,天津大学联合研究院教育部重点基金资助项目. 作者简介:吴树新(1968-),男,河北丰润人,唐山师范学院副教授,主要从事绿色化学与新型催化技术研究.第25卷 第5期2005年 9月河北大学学报(自然科学版)Journal of Hebei University (Natural Science Edition )Vol.25No.5Sep.2005 浸渍法:按照所需掺铜量称取一定量的二氧化钛,超声分散于硝酸铜溶液中,超声时间为15min ,80℃烘干,450℃焙烧2h ,得到的催化剂记为CuO x /TiO 2.水解-沉淀法:量取含一定量硝酸铜溶液溶于一定量的0℃去离子水,置于薄壁烧杯中,冰水浴条件下将所需量的四氯化钛溶于蒸馏水,超声水解.然后用浓氨水中和至p H 为6~7,陈化10h ,抽滤至无Cl -(硝酸银检验),100℃烘干,最后在450℃焙烧2h.所得催化剂记为CuO x -TiO 2.机械混合法:称取相应量的氧化铜(由硝酸铜分解得到)和二氧化钛(同上),在研钵中充分混合,然后在450℃焙烧2h ,所得催化剂记为CuO ・TiO 2.1.2 表征采用日本理学D/MAX -2038型X 射线衍射仪分析催化剂的物相结构.催化剂的光电子能谱在美国Pekin Elmer 公司生产的PH Ⅰ1600型能谱仪上测得.采用流动色谱法进行程序还原实验.用Philips XL3000ESEM (Environmental Scanning Electron Microscope )和Oxford Microanalysis 测试了催化剂的表面形貌、元素分布和组成.1.3 活性评价方法1.3.1 光催化氧化活性评价光催化反应在自制的光催化反应器中进行.反应器为3层同心圆筒形装置,最外2层为普通玻璃,中间层由石英玻璃制成.光源为125W 中压汞灯,主波长为365nm ,发光中心与液层中心约0.5cm.称取0.6g 催化剂加入300mL 250mg/L 乙酸水溶液中,摇匀,打开汞灯预热5min ,通冷却水使反应体系温度维持在25℃左右.反应中鼓空气,维持催化剂的分散和满足反应所需氧气.反应2.5h 后将反应液离心分离,利用COD Cr 法测定乙酸的降解率[8].不加催化剂只光照的光解反应及不光照只加催化剂的暗反应对COD 的降低总和在5%~7%之间,为准确起见,计算降解率时将这部分数值扣除掉后作为评价催化剂光催化活性的依据.1.3.2 反应在上述光催化反应器中进行,改通空气为通二氧化碳.根据我们对还原条件的探索结果[9],催化剂投加量为2g/L ;二氧化碳流量为120mL/min ;反应液200mL ,其中,碳酸钠的浓度为0.25mol/L ,亚硫酸钠 a.TiO 2;b.CuO x /TiO 2;c.CuO x -TiO 2;d.CuO ・TiO 2图1 不同方法得到的样品的XRDFig.1 XR D patterns of catalysts prepared with different methods的浓度为0.08mol/L (空穴消除剂).以反应6h 后还原产物的种类及累积浓度作为评价催化剂性能的指标.还原产物分析方法见文献[8].2 结果与讨论2.1 催化剂的物性表征2.1.1 XRD 结果图1是用不同方法掺铜量均为0.2%(质量分数)的催化剂XRD 图.从图中可见,不同方法掺铜TiO 2中均只有单一的锐钛矿型二氧化钛晶相,未出现铜物种的晶相.考虑到掺铜量为0.2%,未出现铜物种的XRD可能与掺铜较小有关或可能在催化剂表面高度分散.2.1.2 XPS 分析XPS 是对催化剂表面元素化学状态进行表征的有力手段.表1是不同方法得到的样品表面元素分析结果,从表中可知催化剂表面都有铜物种的存在.・784・第5期吴树新等:掺铜方法对二氧化钛光催化氧化还原性能的影响表1 不同方法得到的样品的表面元素分析结果T ab.1 XPS results of surface atom of catalysts prepared by different methods 掺铜方法O 原子百分数/%Ti 原子百分数/%Cu 原子百分数/%C 原子百分数/%浸渍法 63.3 22.9 0.8 13.1水解-沉淀法64.324.90.2110.6机械混合法6523.60.2510.15二氧化钛6125.6-13.2为了分析表面元素存在价态,对Ti ,O ,Cu 3种元素的Ti2p 3/2,O1s ,Cu2p 3/2进行了解析.图2,3给出了O1s ,Cu2p 3/2分峰谱图,表2给出了物种解析结果.a.浸渍法;b.水解-沉淀法;c.机械混合法图2 不同方法得到的样品的O1s XPSFig.2 Analysis and f itting of the O 1s XPS spectra of catalysts prepared by differentmethodsa.浸渍法;b.水解-沉淀法;c.机械混合法图3 不同方法得到的样品的Cu2p 3/2XPSFig.3 Analysis and f itting of the Cu 2p 3/2XPS spectra of catalysts prepared by different methods・884・河北大学学报(自然科学版)2005年表2 不同方法得到的样品的元素物种解析T ab.2 Analysis and f itting results of the catalysts prepared by different methods 元素浸渍法水解-沉淀法机械混合法E b /eV 元素物种E b /eV 元素物种E b /eV 元素物种O 529.45晶格氧530.59吸附氧529.26晶格氧531.33吸附氧529.62晶格氧531.05吸附氧Ti 458.53+4价458.53+4价458.33+4价Cu 931.8+1价933.0+2价930.5+1价933.18+2价933.6+2价从图2,3和表2中可知,不同方法制备的样品表面氧物种均有2种形式:结合能在529eV 附近的晶格氧和530eV 附近的吸附氧[6],浸渍法和水解-沉淀法得到的样品铜物种有2种形式:结合能在932eV 附近的低价铜和结合能在933eV 附近的高价铜[9],而机械混合法的样品则只有二价铜.值得注意的是催化剂表面Ti 物种均有一种价态,+4价.一般认为,二氧化钛的表面存在+3价钛和+4价钛,而实验样品中未见到有+3价的存在.认为这可能与四氯化钛水解过程中引入超声场,超声条件下水解所形成的特殊物理化学环境有关[10].在功率超声作用下,液体会发生空化,每个空化气泡都是一个热点,其寿命约为0.1μs ,它在爆炸时可产生大约4000K 和100MPa 的局部高温高压环境,从而产生出非同寻常的能量效应,为在一般条件下难以实现的化学反应提供了特殊的物理化学环境,干扰了结晶过程.当然,超声影响晶化过程的因素可能会是很复杂的,这将在后续文章进行详细讨论.根据分峰数据,将不同方法得到的样品表面氧物种、铜物种的分峰拟合结果分别列于表3,4中.表3 不同方法得到的样品表面氧物种分峰数据T ab.3 Fitting area of the peak of oxygen element in catalysts prepared by different methods掺铜方法晶格氧峰面积吸附氧峰面积吸附氧/晶格氧浸渍法12488074958 0.6水解-沉淀法12045053384 0.44机械混合法16959935893.50.21TiO 214354031631 0.22从表3可看出不同方法得到的样品2类氧种的比例是不同的,以吸附氧/晶格氧计,由大到小的顺序为浸渍法、水解-沉淀法、机械混合法、二氧化钛.由于吸附氧在总氧种中含量的大小反映出样品表面对氧的吸附能力的强弱,因此上述顺序实际反映出不同方法制得的样品表面吸附氧的能力的顺序.表4 不同方法得到的样品的Cu2p 3/2XPS 分峰数据T ab.4 Fitting area of peak of copper element in catalysts prepared by different methods掺铜方法+1价铜峰面积+2价铜峰面积Cu +/Cu 2+浸渍法20506 35716 0.57水解-沉淀法1722862842.70.27机械混合法 08758.50・984・第5期吴树新等:掺铜方法对二氧化钛光催化氧化还原性能的影响从表4可知浸渍法和水解-沉淀法样品铜元素虽然都有2种价态,但2种状态的比例不同,以Cu +/Cu 2+计,浸渍法样品这一比值更大.2.1.3 TPR 结果为了考察不同方法掺铜催化剂表面氧化性能,对各样品进行了TPR 分析.图4给出了氧化铜及3种掺铜方法制得的掺铜催化剂的TPR 谱图.表5给出了3种掺铜方法所得样品的TPR 分析结果.a.水解-沉淀法;b.浸渍法;c.机械混合法d.氧化铜图4 不同样品的TPR 谱图Fig.4 TPR curves of different samples表5 不同方法得到的样品TPR 结果T ab.5 TPR results of catalysts prepared bydifferent methods方法还原温度/℃峰1峰2纯氧化铜—354浸渍法177214水解-沉淀法217266机械混合法—336从图4和表5中可知单纯氧化铜及机械混合法的样品铜物种只有1个还原峰,但后者的峰位置向低温方向移动.而浸渍法和水解-沉淀法得到的样品铜物种还原峰有2个,且前者峰位置明显向低温方向移动,分别由217℃,266℃降低到177℃,214℃.峰个数和峰位置的不同,说明不同掺杂方法制备的催化剂表面铜物种种类不同[9],机械混合法中只有体相氧化铜一种形式,而浸渍法、水解-沉淀法中铜物种有2种存在形式,较高峰温可以认为是体相氧化铜,而较低峰温对应高度分散的铜物种.TPR 实验说明,不同的掺杂方法,影响铜物种在催化剂表面的分散程度.2.2 光催化性能评价结果2.2.1 光催化氧化性能图5是光催化反应2.5h ,不同催化剂对乙酸水溶液的降解率.从图中可以看出,不同方法掺铜改性后的TiO 2光催化氧化活性都有改善,其中浸渍法效果最佳.2.2.2 光催化还原性能图6给出了催化剂光催化还原CO 2所得还原产物的情况.从图中可见,不同方法掺铜对催化剂光催化还原CO 2产物分布具有较大影响.机械混合法样品为催化剂,产物中只有甲酸、甲醛,而水解-沉淀法和浸渍法样品为催化剂,产物中除了甲酸和甲醛外还出现了甲醇.・094・河北大学学报(自然科学版)2005年图5 制备方法对光催化氧化活性的影响Fig.5 E ffect of preparing methods on photo 2catalytic oxid ationactivity 图6 不同方法掺铜对催化剂光催化还原性能的影响Fig.6 E ffect of doping methods on photocatalytic reduction properties3 不同方法掺铜对催化剂光催化氧化还原性能的影响3.1 表面氧种TPR 分析结果表明(见图4和表5),不同方法掺铜催化剂还原峰峰顶温度具有较大差别,按机械混合法、水解-沉淀法、浸渍法的顺序向低温方向移动.由于还原峰峰顶温度反映出催化剂表面氧种还原的难易程度即活泼性的不同,还原温度越低,说明越容易还原,表面氧种越活泼,反之越不易还原,氧种越不活泼,所以我们可以推测不同方法掺铜样品表面氧活泼性按机械混合法、水解-沉淀法、浸渍法的顺序递增.氧种越 a.掺杂法与O a /O L 的关系曲线;b.掺杂法与降解率的关系曲线图7 不同掺杂法对O a /O L 及降解率的影响Fig.7 E ffect of doping methods on O a /O L and degra 2tion rate活泼,越容易接受光生电子,从而越有利于抑制电子-空穴的复合和生成更多的活性氧离子自由基,促进光催化氧化过程的进行.因此,从氧种活泼性的角度可以推测不同掺杂方法样品光催化氧化活性顺序为浸渍法、水解-沉淀法、机械混合法,依次递减,这与实验结果(见图5)是一致的.因此,吸附氧活泼性可能是影响催化剂活性的重要因素之一.XPS 分析结果表明,不同方法掺铜样品表面虽然都存在2类氧种但其分布是不同的,O a /O L 比值(O a 表示吸附氧,O L表示晶格氧)按机械混合法、水解-沉淀法、浸渍法的顺序递增(见表3).图7给出2类氧种的比值和光催化氧化活性数据的关系曲线.从图中不难看出,O a /O L 比值与光催化氧化活性具有相同的变化趋势即比值越大,相应的掺杂体系光催化氧化活性越高.这可能是由于吸附氧所占比例大,样品对氧的吸附能力强,而表面吸附氧能捕获光生电子O 2+e -cb →O 2-,O 2-+e -cb →O 22-.不仅有效地阻止了光生电子和空穴的复合,生成的O 22-,O 2-还可以直接氧化有机物或通过质子化作用生成过氧化氢自由基和羟基自由基,从而促进有机物光催化氧化降解,因此催化剂具有较高的活性[11].在光催化还原CO 2反应中,光照反应前通0.5h 的CO 2,反应中也一直通CO 2,因此反应基本上是在无氧状态下进行,表面氧种对光催化还原反应的影响应该很小,应该有其他原因影响光催化还原性能.・194・第5期吴树新等:掺铜方法对二氧化钛光催化氧化还原性能的影响3.2 铜离子价态与分布XPS 结果已经表明不同方法掺杂样品中铜离子的价态和分布是不同的.浸渍法和水解-沉淀法样品中都出现了低价铜,且前者含量更高些(见表4).图8给出了Cu +/Cu 2+比值与降解率的关系曲线.从图中可看 a.掺杂法与Cu +/Cu 2+的关系曲线b.掺杂法与降解率的关系曲线图8 不同掺杂法对Cu +/Cu 2+及降解率的影响Fig.8 E ffect of doping methods on Cu +/Cu 2+and degrad ation rate出,含有低价铜的浸渍法和水解-沉淀法得到的样品光催化活性都高于只有一种价态的机械混合法法样品.从Cu +/Cu 2+比值看,比值较大的浸渍法样品光催化活性好于水解-沉淀法得到的样品.说明低价铜的出现可能影响到了光催化氧化过程.图9给出了不同方法掺铜样品光催化还原CO 2生成甲醇的量、还原产物总量及样品中Cu +/Cu 2+的情况.从图中可知,样品中含低价铜的(Cu +/Cu 2+不为零)的浸渍法和水解-沉淀法样品光催化还原都有甲醇生成,光催化还原产物的总量也较高,而机械混合法法样品光催化还原二氧化碳只有甲酸和甲醛生成,还原产物总量也较小.以上从氧化还原2个角度,考察了低价铜离子的存在对于掺铜催化剂氧化还原活性的影响,结果都显示低价铜离子的存在有利于催化剂性能的改善.认为低价铜的出现可能使光催化氧化反应体系中进行着这样的电子转移过程: a.甲醇浓度与掺铜法关系曲线;b.还原产物总浓度与掺铜法关系曲线 图9 不同掺铜方法对Cu +/Cu 2+、甲醇生成量、还原产物总量的影响 Fig.9 E ffect of doping methods on Cu +/Cu 2+,amount of reduc 2tion products Cu ++O ads →O ads -+Cu 2+, (界面电子传递)Cu 2++e -cb →Cu +.(光生电子捕获)一方面促进了光生电子的捕获,有效抑制了与空穴的复合,另一方面,增加了表面吸附氧捕获电子的机会,因而能生成更多的具有强氧化性的过氧化氢自由基和羟基自由基,使得催化剂光催化氧化性能得以提高.而在光催化还原反应体系中,由于反应在二氧化碳气氛中进行,催化剂表面吸附氧的影响可以忽略,代之的则有可能是碳物种.同时考虑到反应体系中空穴消除剂的存在,催化剂还原性能改善的机制可能过程如・294・河北大学学报(自然科学版)2005年下:Cu 2++e CBCu 1+, (光生电子的捕获)Cu 1++CCu 1++C 3,(捕获的电子传递给碳物种,C 表示碳物种)C 3HCOOH...............e HCHO.......e CH 3OH.Cu 2+通过捕获电子进一步抑制了电子和空穴的复合,同时更有利于电子向吸附碳物种传递,从而提高了光催化还原效率.总之,低价铜的出现对于形成Cu +/Cu 2+,进而对催化剂光催化氧化还原性能的改善起到关键作用.在前面的XRD 研究中发现,掺杂催化剂样品并未出现铜物种的晶相.另外,前文研究结果[4]显示,当掺杂铜的质量分数大于8%时,二氧化钛表面也只有二价铜离子.这说明掺杂铜量很少并且高度分散在催化剂表面,是产生低价铜的条件.高度分散的二价铜离子具有更强的反应活性,TPR 的结果也显示了这种高度分散性和较强的氧化还原活性.郑小明等人[12]在研究二氧化铈负载的氧化铜时发现,负载一定含量的氧化铜时,XPS 分析发现了低价铜,并认为这与Ce 4+/Ce 3+有关,结合他们的研究结果,在本文研究的体系中,高度分散的二价铜离子可能通过以下途径部分生成低价铜:Cu 2++Ti 3+Cu 1++Ti 4+.由于Ti 3+被氧化成Ti 4+,所以XPS 分析中未发现Ti 3+,这和实验结果相吻合.当然,低价铜形成的原因有待进一步研究.3.3 影响掺铜催化剂光催化氧化还原性能的共同因素通过以上讨论可知,不同的掺铜方法影响催化剂的光催化氧化还原活性,兼顾光生电子捕获和随后的反应界面上电子传递2个步骤解释了低价铜离子的存在对催化剂氧化还原性能的影响规律后,认为光催化氧化过程和还原过程所经历的步骤可能大致相同,即都要经历光生电子的捕获和随后的电子传递2个步骤,掺铜催化剂的光催化氧化和还原性能能否得到改善取决于掺铜后催化剂结构是否有利于这2个步骤的进行.掺铜后催化剂中低价铜离子的出现有利于这2个步骤的进行,因而是影响掺铜催化剂光催化氧化和还原性能的共同因素.4 结 论通过考察掺铜方法对催化剂性能的影响,结果发现:1)不同掺铜方法影响掺杂催化剂氧种的活泼性,因而影响催化剂的光催化氧化活性.TPR 分析结果表明,掺杂催化剂表面氧种的活泼性按浸渍法、水解-沉淀法、机械混合法的顺序递减,这一顺序与催化剂光催化氧化活性顺序一致,说明氧种的活泼性影响催化剂的光催化氧化性能.不同掺杂过程也影响表面氧种的分布,按机械混合法、水解-沉淀法、浸渍法顺序吸附氧比例增大,与光催化氧化活性顺序一致,所以表面氧种的活泼性和吸附氧的比例都影响催化剂的光催化氧化活性.2)不同掺杂过程影响催化剂中低价铜离子的分布,Cu +/Cu 2+按机械混合法、水解-沉淀法、浸渍法顺序递增,这一顺序与光催化氧化和还原活性顺序一致,说明低价铜离子的存在是影响掺铜催化剂光催化氧化和还原活性的共同因素.参 考 文 献:[1]CHOI W ,TERMIN A.The role of metal ion do pants in quantum-sized TiO 2:correlation between photoreactivity and charge car 2rier recombination dynamics[J ].J Phys Chem ,1994,98(51):13669-13679.[2]水 淼,岳林海,徐铸德.几种制备方法的掺铁二氧化钛光催化特性[J ].物理化学学报,2001,17(3):282-285.[3]DI P A ,G ARCIA L E ,IKEDA S.Photocatalytic degradation of organic compounds in aqueous systems by transition metal doped polycrystalline TiO 2[J ].Catalysis Today ,2002,75(1-4):87-93.・394・第5期吴树新等:掺铜方法对二氧化钛光催化氧化还原性能的影响[4]吴树新,秦永宁,马 智.掺铜二氧化钛的XPS 研究[J ].物理化学学报,2003,19(10):967-969.[5]TSEN G I H.,WU J C S ,CHOU H Y.E ffects of sol-gel procedures on the photocatalysis of Cu/TiO 2in CO 2photoreduction[J ].J Catal ,2004,221(3):432-440.[6]吴树新,秦永宁,马 智,等.掺杂纳米二氧化钛光催化性能的研究[J ].物理化学学报,2004,20(2):138-143.[7]吴树新,尹燕华,秦永宁,等.超声水解法制备纳米二氧化钛[J ].河北师范大学学报,2005(3):281-283.[8]杨秋华.纳米钙钛矿光催化氧化还原性能的研究[D ].天津:天津大学化学系,2002.[9]KUNDA KOV IC L ,STEPHANOPOULOS M F.Reduction characteristics of co pper oxide in cerium and zirconium oxide system[J ].Applied Catalysis A :G eneral ,1998,171(1):13-29.[10]梁新义,秦永宁.超声共沉淀法制备LaCoO-3纳米微晶的研究[J ].化学物理学报,1998,11(4):375-378.[11]HOFFMANN M R ,MARTIN S T.Environmental a pplications of semiconductor photocatalysis[J ].Chem Rev ,1995,95(1):69-96.[12]蒋晓原,周仁贤,郑小明,等.CuO/Ce 2O 催化剂的催化氧化性能及其表征[J ].中国稀土学报,2002,20(2):111-115.Photocatalytic Activity of Copper Doping TiO 2Prepared by Several MethodsWU Shu-xin 1,2,3,YI N Y an-hua 2,MA Zhi 1,QI N Y ong-ning 1,HE Fei 1,QI X iao-zhou 1(1.School of Chemical Engineering and Technology ,Tianjin University ,Tianjin 300072,China ;2.The 718th Research Institute ,Handan 056027,China ;3.Institute of Advanced Catalysis and Technology ,Tangshan Teacher ′s College ,Tangshan 063000,China )Abstract :The copper doping titanium dioxide was prepared by immersion ,hydrolysis-precipitation and physical mixing methods.The structural properties of these catalysts were characterized by means of XRD ,XPS ,TPR and SEM ,and the photocatalytic activity was evaluated with the degradation reaction of acetic acid and photocatalytic reduction of carbon dioxide as probes.The experimental results show that the different doping methods lead to different surface properties such as adsorption oxygen ,the valence and distribution of elements ,which affect the recombination of the reductive electron/hole pairs ,thus to further affect the photocatalytic ac 2tivity.The high degree of dispersion of copper species ,the enhancement of adsorption oxygen and the existence of perfect proportion of Cu +to Cu 2+are regarded to be responsible for the excellent activity of the copper-dopped catalyst prepared by immersion method.K ey w ords :photocatalytic oxidation ;copper doping ;immersion ;hydrolysis-precipitation ;physical mixing(责任编辑:梁俊红)・494・河北大学学报(自然科学版)2005年。
CuO和TiO2微纳米材料的制备、表征及性质的开题报告

CuO和TiO2微纳米材料的制备、表征及性质的开题报告一、选题背景随着纳米科技的发展,制备微纳米材料已成为研究的热点之一,这种材料由于其特殊的结构和性质,在材料科学、能源领域和生物学中具有广泛的应用。
其中Oxide类的微纳米材料如CuO和TiO2也备受关注。
CuO是一种重要的氧化铜,具有良好的催化和光电性能,已用于锂离子电池、氢气传感器和太阳能电池等领域。
TiO2因其优良的光催化性能,广泛应用于环境保护和清洁能源等领域。
针对这些材料的研究,将有助于深入了解微纳米材料的性质,并且为其在实际应用中的使用提供技术支持。
二、研究内容1.制备方法:采用水热法和溶胶凝胶法来制备CuO和TiO2微纳米材料。
2.表征方法:运用扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X 射线衍射(XRD)等分析手段,对所制备的微纳米材料进行表征。
3.性质研究:测定CuO和TiO2微纳米材料的催化性能、光催化性能、电化学性能和磁性能等特性。
三、研究意义本研究的主要意义如下:1.通过比较不同制备方法所制备的CuO和TiO2微纳米材料的差异,找出最优的制备工艺。
2.研究微纳米材料的性质,为其在实际工业应用中提供技术指标。
3.为相关领域的后续研究提供基础数据和参考文献。
四、实验方案1.制备方法:(1)水热法:将CuSO4·5H2O/TiCl4和NaOH溶液加入密闭釜中,进行水热反应,得到CuO/TiO2微纳米材料。
(2)溶胶凝胶法:将Cu(NO3)2·3H2O/Ti(OC4H9)4和乙二醇、甲醇混合物混合,并在特定条件下进行溶胶凝胶反应,制备CuO/TiO2微纳米材料。
2.实验仪器:扫描电子显微镜(SEM)、透射电子显微镜(TEM)、X射线衍射(XRD)、紫外-可见漫反射光谱(UV-Vis DRS)等。
3.实验步骤:(1)制备CuO和TiO2微纳米材料(2)表征所制备的微纳米材料(3)测定微纳米材料的性质五、预期结果本研究预计可以得到以下结果:1.成功制备出CuO和TiO2微纳米材料;2.通过SEM、TEM、XRD等表征方法,确定所制备的CuO和TiO2微纳米材料的形貌、晶体结构等特性;3.测定微纳米材料的催化性能、光催化性能、电化学性能和磁性能等特性,得出相应的特性参数。
纳米TiO2Cu2O复合膜的制备及其荧光性质的研究

2.2 Ti02.Cu20纳米复合膜的形态
图2(a)是Ti02薄膜的SEM照片,从图中可以看出,Ti02薄膜是由10nm左右的颗粒组成的,相对致
密,平整。图2(b)是复合膜的SEM照片,在TiO:表面形成的Cu20薄膜是由10nm左右的颗粒包覆在
Ti02颗粒表面形成的,表面粗糙程度较大。图2(c)是复合膜的TEM照片,其中颜色较浅的部分是Ti吼
型 :碎 讴
《
型 萆
340
380
420
460
波长.Jnm
500
图5不同激发波长下的Tiq-Cu20复合膜的荧光光谱 Hg·5 The fluorescence日pectra of Ti饥。Cu20 camlⅫtte
film at different excitation wavelength器
国家自然科学基金资助项目(20207002) 20064)6.29收稿,2007.03-08接受
万方数据
化学通报2007年第8期
1实验部分
1.1试剂 钛酸四丁酯,化学纯,无锡飞达化学试剂厂;无水乙醇,分析纯,上海振兴试剂厂;氢氧化钠,分析纯,
上海化学试剂有限公司;硫代硫酸钠,分析纯,上海化学试剂有限公司;其它试剂均为分析纯。 1.2二氧化钛膜的制备
万方数据
化学通报2007年第8期
薄膜,黑色的部分是Cu:0颗粒,从图中可以看出Cu:O和TiO:结合得非常紧密。图2(d)是TiO,一Cu:0复 台膜的HRTEM照片。区域I和区域Ⅲ是Ti02和Cu:0,区域U是TiO:和Ca:0的重叠区域。
图2(al Ti02脯的SEM照片 Fig.2Ial The SEM picture ofTi02
and蚰oil,The composite filnuq 8陀coJlrposed of n0/lt)partich with about 10hm in diameter.The surface nf the fihns is
CuO-ZnO复合体系异质结材料制备及其气敏性能的开题报告

CuO-ZnO复合体系异质结材料制备及其气敏性能的
开题报告
一、研究背景及意义
氧化物半导体材料由于其稳定性、可控制性和相对便宜等优点,在
气敏传感领域中具有广泛应用。
CuO和ZnO都是典型的氧化物半导体材料,具有良好的气敏性能。
CuO和ZnO在溶液中的混合可以产生复合体系,组成的CuO-ZnO异质结材料具有优异的电学和光学性能,并且能够对气体进行响应,因此成为研究的对象。
二、研究目的
本论文旨在制备CuO-ZnO复合体系异质结材料,并通过气体敏感测试研究其气敏性能和灵敏度,为其在气敏传感领域中的应用提供理论依
据和技术支持。
三、研究内容及方法
1.材料制备:采用共沉淀法在室温下制备CuO-ZnO异质结材料,并以XRD、SEM和TEM等手段进行结构和形貌分析。
2.气体敏感测试:通过气体敏感测试仪器对CuO-ZnO异质结材料在不同气体环境下的电学性能进行测试,并计算其灵敏度。
四、研究预期成果
1.成功制备CuO-ZnO复合体系异质结材料,并分析其结构和形貌特征。
2.得到CuO-ZnO异质结材料在不同气态环境下的电学性能,并计算其灵敏度,为其在气敏传感领域中应用提供理论依据和技术基础。
五、研究进展
正在准备制备CuO-ZnO复合体系异质结材料,并准备气体敏感测试。
MnO2、ZnO复合半导体改性TiO2的光催化氧化VOCs的性能研究

杜欢1 邹渝1 赵忠2*(1. 四川水利职业技术学院资源环境工程系,四川 成都 610000; 2. 河北工业大学能源与环境Байду номын сангаас程学院,天津 300000)
摘要:为了提高光催化TiO2 的光催化活性与可见光利用率,文章采用浸渍法按不同质量比制备了MnO2/ZnO/TiO2 复合改性光催化 剂,利用SEM、XRD、DRS 等方法对制备的复合型光催化剂进行了表征,在紫外灯照射下以甲苯为污染物对复合型光催化剂的光 催化活性进行了测试,并考察了停留时间和相对湿度对其光催化效率的影响。实验结果表明:改性后催化剂的光催化净化效率得 到大幅度提高,可见光利用率也得到提升,当MnO2 与ZnO 的质量和与TiO2 的质量比为1:2 时,催化剂的光催化效果最佳。 关键词:MnO2;ZnO;TiO2;光催化;VOCs
末XRD 形貌。以10°/min 的扫描速率记录数据。
通 过 在 电 压 为20kV 的Quanta 200F 场 发 射 扫 描 电 子 显 微 镜 上 记 录 的 场 发 射 扫 描 电 子 显 微 镜(Scanning Electron Microscope,SEM) 观察纳米材料的形貌。
1.3 催化剂光催化活性评价
2 结果与讨论
图1 是MnO2-ZnO-TiO2 复合半导体催化剂的SEM 谱图, 图1d 是锐钛矿型TiO2 的SEM 谱图,由下图可以看出催化剂二 氧化钛表面有物体附着,分析应该是二氧化锰和氧化锌在二氧 化钛表面附着,能明显看出图1c(MZT1 催化剂) 中MnO2 和ZnO 负载量比图1a、b 中的要多。并且在图中可以看出MnO2 和ZnO 分散均匀,达到了改性预期的效果。
《双Z型CuO-CuFe2O4-Fe2O3复合光催化剂的制备及光催化性能研究》

《双Z型CuO-CuFe2O4-Fe2O3复合光催化剂的制备及光催化性能研究》双Z型CuO-CuFe2O4-Fe2O3复合光催化剂的制备及光催化性能研究一、引言随着环境污染与能源危机的日益加剧,光催化技术已成为当前科学研究的重要领域。
其中,双Z型复合光催化剂以其优异的可见光响应能力和高效的电子-空穴分离效率,在光催化领域展现出巨大的应用潜力。
本文以双Z型CuO/CuFe2O4/Fe2O3复合光催化剂为研究对象,详细介绍其制备过程及光催化性能的研究。
二、材料与方法1. 材料准备实验所需材料包括:氧化铜(CuO)、铜铁氧体(CuFe2O4)和氧化铁(Fe2O3)等。
所有材料均需为分析纯,并经过预处理以去除杂质。
2. 制备方法(1)采用溶胶-凝胶法分别制备CuO、CuFe2O4和Fe2O3纳米粒子。
(2)将制备好的纳米粒子按照一定比例混合,在高温下进行热处理,得到双Z型CuO/CuFe2O4/Fe2O3复合光催化剂。
3. 实验方法(1)利用X射线衍射(XRD)和扫描电子显微镜(SEM)对制备的复合光催化剂进行表征。
(2)通过紫外-可见漫反射光谱(UV-Vis DRS)分析其光学性质。
(3)以某有机污染物为模型反应,在可见光照射下评价其光催化性能。
三、结果与讨论1. 制备结果通过溶胶-凝胶法和高温热处理,成功制备出双Z型CuO/CuFe2O4/Fe2O3复合光催化剂。
通过XRD和SEM表征,发现复合光催化剂具有较高的结晶度和良好的形貌。
2. 光学性质分析紫外-可见漫反射光谱表明,双Z型CuO/CuFe2O4/Fe2O3复合光催化剂具有优异的可见光响应能力,能够充分利用太阳光中的可见光部分。
3. 光催化性能研究以某有机污染物为模型反应,在可见光照射下,双Z型CuO/CuFe2O4/Fe2O3复合光催化剂表现出优异的光催化性能。
其降解效率明显高于单一组分的光催化剂,且具有较高的稳定性和可重复使用性。
这主要归因于双Z型结构的构建使得电子-空穴对得到有效分离,提高了光能利用率。
氧化钛与氧化铬之间的化学反应

氧化钛与氧化铬之间的化学反应
氧化钛和氧化铬之间可以发生化学反应。
当氧化钛和氧化铬混
合在一起并加热时,它们可能发生下列反应:
TiO2 + Cr2O3 → TiO2·Cr2O3。
这是一种固态反应,产生了钛铬酸化合物。
在这个化学反应中,氧化钛(TiO2)和氧化铬(Cr2O3)的原子重新排列,形成了一种新
的化合物TiO2·Cr2O3,这是一种钛铬酸盐。
这种化合物可能具有
特定的物理和化学性质,可以用于陶瓷、颜料、催化剂等领域。
另外,氧化钛和氧化铬也可以在一些氧化还原反应中发生化学
反应。
例如,在高温下,氧化钛可以被还原为金属钛,而氧化铬可
以被氢气还原为金属铬。
这些还原反应会释放出大量的热量和气体,产生相应的金属产物。
总的来说,氧化钛和氧化铬之间可以发生多种类型的化学反应,包括固态反应和氧化还原反应,这些反应产物可能具有不同的性质
和用途。
希望这些信息能够全面回答你的问题。
cu单原子,tio2,氧空位

cu单原子,tio2,氧空位
Cu单原子指的是铜原子的单个存在,而TiO2是二氧化钛,氧空位则是指晶体结构中氧原子缺失所形成的空位。
这三者之间存在着一定的关联。
首先,Cu单原子可以被引入TiO2晶体结构中,形成Cu/TiO2复合材料。
Cu单原子的引入可以改变TiO2的光电性能,增强其光催化活性等方面。
此外,Cu单原子也可以与TiO2表面的氧原子发生作用,形成Cu-O-Ti键,从而影响TiO2的表面化学性质。
其次,氧空位在TiO2晶体结构中可能会影响Cu单原子与TiO2的相互作用。
氧空位的存在会改变TiO2的晶体结构和化学性质,从而影响Cu单原子在TiO2上的吸附、扩散和反应性能。
此外,氧空位还可能为Cu单原子提供吸附位点,影响Cu单原子在TiO2表面的分布和稳定性。
另外,Cu单原子和氧空位的共同作用也可能影响TiO2的光催化性能。
Cu单原子可以作为光催化剂,而氧空位则可能影响TiO2的光吸收和电子传输特性,进而影响Cu单原子的光催化活性。
总的来说,Cu单原子、TiO2和氧空位之间存在着复杂的相互作用关系,它们共同影响着材料的结构和性能。
研究这些相互作用对于深入理解Cu/TiO2复合材料的性能,并为其在光催化、光电化学等领域的应用提供理论基础和实验指导具有重要意义。
《双Z型CuO-CuFe2O4-Fe2O3复合光催化剂的制备及光催化性能研究》

《双Z型CuO-CuFe2O4-Fe2O3复合光催化剂的制备及光催化性能研究》双Z型CuO-CuFe2O4-Fe2O3复合光催化剂的制备及光催化性能研究一、引言随着环境问题的日益严重,光催化技术作为一种绿色、高效的污染治理手段,受到了广泛关注。
双Z型光催化剂因其独特的电子传输机制和高效的光催化性能,在污水处理、二氧化碳还原、有机物降解等领域具有巨大的应用潜力。
本文以双Z型CuO/CuFe2O4/Fe2O3复合光催化剂为研究对象,详细探讨了其制备方法及光催化性能。
二、材料与方法1. 材料准备本实验所需材料包括:氧化铜(CuO)、四氧化三铁(Fe2O3)、二价铁氧化物(CuFe2O4)等。
所有试剂均为分析纯,购买自国内知名化学试剂公司。
2. 制备方法(1)通过共沉淀法分别制备出CuO和CuFe2O4纳米粒子。
(2)将两种粒子混合,加入适量黏合剂进行球磨处理,形成前驱体。
(3)将前驱体在高温下进行热处理,最终形成双Z型CuO/CuFe2O4/Fe2O3复合光催化剂。
3. 实验方法采用紫外-可见光谱法对光催化剂进行表征,通过光催化实验评估其性能。
具体实验条件为:光源为模拟太阳光,反应时间为60分钟。
三、结果与讨论1. 制备结果通过上述方法成功制备出双Z型CuO/CuFe2O4/Fe2O3复合光催化剂。
SEM图像显示,催化剂粒子分布均匀,形态良好。
XRD谱图表明,催化剂的晶型结构符合预期。
2. 光催化性能分析(1)紫外-可见光谱分析:双Z型CuO/CuFe2O4/Fe2O3复合光催化剂在可见光区域具有较好的吸收性能,表明其具有较高的光响应能力。
(2)光催化性能实验:在模拟太阳光照射下,该复合光催化剂对有机污染物的降解效果显著。
与单一组分相比,复合光催化剂具有更高的光催化活性,能有效降解有机污染物。
此外,该催化剂具有较好的稳定性和重复使用性。
3. 机制探讨双Z型结构使得光生电子和空穴得到有效分离,从而提高光催化性能。
Cu2OTiO2复合材料的制备及其可见光催化还原二氧化碳的研究的开题报告

Cu2OTiO2复合材料的制备及其可见光催化还原二氧化碳的研究的开题报告一、研究背景随着世界人口的增加和经济的快速发展,人类对能源和面临的环境问题的需求越来越迫切。
太阳能是一种清洁、可再生的能源,其转换为可使用的能量是当前广泛关注的研究领域之一。
可见光催化二氧化碳还原是一种绿色的、温和的方法,可以将二氧化碳转化为高附加值的化学品,同时通过利用可见光实现化学反应,实现能源转换。
因此,可见光催化还原二氧化碳已成为研究的热点。
二、研究目的本研究旨在制备Cu2OTiO2复合材料,并对其可见光催化还原二氧化碳的催化性能进行评价,探究其在可见光催化还原二氧化碳方面的应用潜力。
三、研究内容1.制备Cu2OTiO2复合材料。
2.对Cu2OTiO2复合材料的结构、形貌和光学性能进行表征。
3.评价Cu2OTiO2复合材料在可见光催化还原二氧化碳中的活性和稳定性,探究其影响因素。
4.探索改进或优化Cu2OTiO2复合材料的可见光催化还原二氧化碳性能的方法。
四、研究意义1.研究可见光催化还原二氧化碳的新材料,促进清洁能源的发展。
2.对Cu2OTiO2复合材料的制备和性能进行研究,有助于深入理解材料层次结构和光物理过程,为复合材料的设计和合成提供新思路。
3.促进中国绿色化学的发展,推进环保产业的向前发展。
五、研究方案1.材料合成策略。
采用水热法、共沉淀法等方法制备具有各自特点的Cu2OTiO2复合材料,考察不同制备方法对复合材料结构、形貌和催化性能的影响。
2.表征方法。
采用X射线粉末衍射仪、扫描电子显微镜、透射电子显微镜、吸收光谱等手段对Cu2OTiO2复合材料进行表征。
3.催化活性的测试。
采用可见光反应器,研究Cu2OTiO2复合材料在可见光催化还原二氧化碳的催化性能,并结合催化反应机理进行分析。
4.方案安排。
第一年进行材料合成和表征;第二年开展催化实验和机理分析;第三年针对实验结果进行优化和改进,撰写学位论文。
六、研究难点1.制备高性能的Cu2OTiO2复合材料。
CuOTiO2ZnO三元复合催化剂的研制和性能研究

收稿日期:2019-12-25作者简介:李永荃(1970-),高级工程师,研究方向:化工及高分子材料,liyongquan111@ 。
CuO/TiO 2/ZnO 三元复合催化剂的研制和性能研究李永荃1,张霞2,卫庆2,朱仁发2,王敬泽2(1.安徽国风塑业股份有限公司,安徽合肥230088;2.合肥学院,安徽合肥230601)摘要:通过水热合成法制备CuO/TiO 2/ZnO 三元复合催化剂。
利用XRD 、SEM 、Uv-vis 等对CuO/TiO 2/ZnO 复合材料的样品进行表征、性能的测试。
研究结果表明,CuO/TiO 2/ZnO 复合粉体对日光与紫外光的吸收强度高于单体粉体。
通过表征和性能对比发现,TiO 2/CuSO 4/ZnO 的效果没有CuO/TiO 2/ZnO 的复合效果好,另外模拟了在太阳光下测试了它们对亚甲基蓝的催化吸附性能,具有较好的应用前景。
关键词:三元复合;二氧化钛;氧化铜;氧化锌;催化剂doi :10.3969/j.issn.1008-553X.2020.02.013中图分类号:TB33文献标识码:A文章编号:1008-553X (2020)02-0053-03在催化剂的材料中,TiO 2因具有良好的稳定性和还原性以及催化效率高等优点,从而成为人们重点研究的催化剂。
尤其在催化降解染料废水中的有机物方面得到了广泛的应用,同时也避免了二次污染和节约了成本[1-3]。
ZnO 和TiO 2有着相近的性质,都属于半导体,也是一种催化剂,它比TiO 2的太阳光吸收光谱要宽,有可见光的光催化活性,但稳定性差,在水中容易失去活性。
CuO 既是半导体,也是一种催化剂,能够充分利用光能,提高催化剂的稳定性。
将三种材料进行复合,可以提高材料的稳定性,也让TiO 2吸收光的范围扩大到了可见光,也扩大了对太阳光的利用率。
TiO 2和ZnO-CuO 的复合体在太阳光、自然光下的光催化效果要比单一的ZnO-CuO 和TiO 2要好。
MnO2与TiO2应用于锂离子电池负极材料的研究

摘要锂离子电池已经成为现代电子设备和移动终端的能源核心,在全球能源消费市场中所占的比率不断增长。
但是,随着锂离子电池在电动汽车、智能移动设备和大功率电器、电网储能领域的发展,人们对商业化的锂离子电池在比容量和循环稳定性、高倍率性能方面提出了更高的要求。
其中,过渡金属氧化物负极材料是一种新的高比容量材料,由于锂转化反应加快,同时也有良好的储锂性能,经过材料优化和结构升级,可尝试用作锂离子电池的负极材料。
MnO2具有较高的理论比容量(1233 mAh·g-1),但是在放电过程中容易粉化,而TiO2具有充放电循环稳定性好的优点。
因此,我们使用MnO2/TiO2作为锂离子电池的负极材料,并通过其电化学测试研究了储锂性能。
X射线衍射(XRD)和傅里叶变换红外光谱(FT-IR)和元素分析结果表明所制备的材料为MnO2/TiO2的复合材料。
电化学测试结果表明,在100mA·g-1的电流密度下,TiO2的首次放电比容量为106.7 mAh·g-1,而MnO2/TiO2复合材料的首次放电比容量提高到了740.7 mAh·g-1;100次循环后MnO2/TiO2复合材料的放电比容量仅为38.7 mAh·g-1,比纯TiO2的48.1 mAh·g-1还低,说明在充放电过程中MnO2还是发生了明显的粉化,二氧化钛的结构稳定作用不太明显。
倍率性能结果表示,1000 mA·g-1的高电流密度下可以获得的放电容量是在100 mA·g-1的低电流密度下放电容量的5.2%,表明制备的MnO2/TiO2 材料结构在大电流密度下结构破坏更加迅速。
MnO2/TiO2的复合材料能够提高其储锂比容量,但是循环稳定性和倍率性能并没有得到提升,需要进一步研究。
关键词:锂离子电池;负极材料;MnO2/TiO2AbstractLithium-ion batteries have become the core of modern electronic equipment and mobile terminals, and the market share in the globalenergy consumption is growing. However, with the development of lithium-ion batteries in the field of electric vehicles, intelligent mobile devices, high-power electrical appliances and power grid energy storage, the higher specific capacity and cycle stability and rate performanceare requested. Among them, the transition metal oxide anode material isa new high specific capacity material, because of the rapid lithium conversion reaction and good lithium storage performance. Through material optimization and structural upgrading, the transition metal oxide can be used as a lithium ion battery anode material.MnO2 has a high theoretical specific capacity (1233 mAh/g), but itis easy to pulverize during the charge/discharge process. However, TiO2 has the advantages of good stability of charge and discharge cycle. Therefore, we use MnO2/TiO2 as the anode material of lithium ion battery, and the electrochemical performance of lithium storage has been studied.X-ray diffraction (XRD), Fourier transform infrared spectroscopy (FT-IR) and elemental analysis show that the prepared materials were MnO2/TiO2 composites. The electrochemical test results show that thefirst discharge capacity of TiO2 is 106.7 mAh/g at the current densityof 100 mA/g, and the first discharge capacity of MnO2/TiO2 composites is increased to 740.7 mAh/g. The discharge capacity of MnO2/TiO2 compositeis only 38.7 mAh/g after 100 cycles, which is lower than that of pureTiO2 (48.1 mAh/g). The results indicate that MnO2 is obviouslypulverized during charging and discharging process and the structural stability effect of titanium dioxide is not obvious. The results of rate performance show that the discharge capacity at 1000 mA/g is 5.2% ofthat under the low current density of 100 mA/g, indicating that the prepared MnO2/TiO2 material has a obvious structure damage at high current density.MnO2/TiO2 composite material can improve the specific capacity of the lithium storage capacity, but the cycle stability and magnification performance have not been improved, which need further study.Key words:Lithium-ion batteries;Anode material;MnO2/TiO2目录1 文献综述 11.1 锂离子电池的应用与发展 11.1.1 电力电网储能领域 11.1.2 消费电子和移动终端领域 11.1.3 运载工具的动力领域 11.2 商业化锂离子电池目前面临的问题 21.3 国内外研究进展 21.3.1 负极将是能量密度提升的关键 21.3.2 有机物包覆过渡金属氧化物电极材料 31.3.3 以TiO2为骨架结构混合其它过渡金属氧化物作为电极材料 31.4 本课题研究内容 42 实验部分 42.1 实验仪器 42.2 实验药品 52.3 实验步骤 62.3.1 电极材料的制备 62.3.2 材料的表征 72.3.3 锂离子电池的组装 72.3.4 样品的电化学性能测试 73 结果与讨论 83.1 材料的表征 83.1.1 样品的X射线衍射分析 8 3.1.2 样品的红外谱图分析 8 3.1.3 样品的元素分析 93.2 材料的电化学性能测试 10 3.2.1 恒电流充放电曲线 103.2.2 100次循环充放电曲线 123.2.3 不同电流密度下充放电测试 144 结论 15参考文献 17致谢 191 文献综述1.1 锂离子电池的应用与发展1.1.1 电力电网储能领域核能、太阳能、风能等新的高效绿色清洁能源已经开始的到大规模应用。
金属氧化物与非金属氧化物反应生成盐的化学方程式

金属氧化物与非金属氧化物反应生成盐的化学方程式
金属氧化物与非金属氧化物反应生成盐的反应方程式:
1.金属氧化物与酸反应生成盐:
–金属氧化物 + 酸→ 盐 + 水
例子:氧化钠与盐酸反应生成氯化钠和水Na2O + 2HCl → 2NaCl + H2O
2.金属氧化物与酸性氧化物反应生成盐:
–金属氧化物 + 酸性氧化物→ 盐
例子:二氧化钛与硫酸反应生成钛硫酸盐TiO2 + H2SO4 →
Ti(SO4)2
3.金属氧化物与非金属氧化物直接反应生成盐:
–金属氧化物 + 非金属氧化物→ 盐
例子:氧化铜与氯气反应生成氯化铜CuO + Cl2 → CuCl2
4.金属氧化物与酸性氧化物反应生成盐和水:
–金属氧化物 + 酸性氧化物→ 盐 + 水
例子:氧化铜与硝酸反应生成硝酸铜和水2CuO + 2HNO3 →
2Cu(NO3)2 + H2O
5.金属氧化物与非金属氧化物反应生成盐和水:
–金属氧化物 + 非金属氧化物→ 盐 + 水
例子:氧化铝与硫酸反应生成硫酸铝和水Al2O3 + 3H2SO4 → Al2(SO4)3 + 3H2O
这些反应方程式展示了金属氧化物和非金属氧化物之间可以发生的反应,产生相应的盐和其他生成物。
这些反应在化学实验和工业生产中具有重要的应用,帮助我们理解化学反应的基本原理。
二氧化钛负载氧化物催化剂上CO的氧化反应_董国利

二氧化钛负载氧化物催化剂上CO 的氧化反应董国利,王建国,高荫本,陈诵英(中国科学院山西煤炭化学研究所国家重点实验室,太原 030001)摘 要:对浸渍法和共沉淀法制备得到的各种TiO 2负载氧化物催化剂进行了活性组分的筛选,结果发现,两种方法得到的Cu O 催化剂均具有优良的CO 氧化催化性能。
在此基础上,考察了不同TiO 2载体,活性组分含量以及催化剂焙烧温度对其催化能力的影响。
结果表明,具有高比表面、大孔体积的TiO 2载体负载的CuO 催化剂具有较好的催化性能,活性组分CuO 的最佳含量范围在10%~15%之间,催化剂最佳焙烧温度为400℃。
关键词:TiO 2载体;CO 氧化;CuO ;催化中图分类号:X511 文献标识码:A 文章编号:0253-2409(2000)01-0001-04 由于环保的需要,C O 的催化氧化越来越成为燃烧过程中废气控制的重要反应。
用于CO 催化燃烧的催化剂一般分为贵金属和非贵金属两大类。
由于贵金属的价格昂贵,且耐硫性差,因而人们逐渐把研究的兴趣转移到非贵金属催化剂上。
氧化铜,氧化锰等一些过渡金属氧化物是常用的活性组分[1]。
SiO 2,Al 2O 3是用来负载这些氧化物的常用载体。
近年来,由于对一些新型载体的开发,使得CO 氧化反应的研究领域变得更为广阔。
如对CuO /Zr O 2[2,3]、MnO x /Zr O 2[4]、CuO /CeO 2[5,6]等催化剂上的CO 氧化反应的研究。
TiO 2作为一种新型载体,从七十年代被成功的用于DeNO x 反应以来[7],人们对其研究越来越多,由于TiO 2载体表现出对SO x 的化学惰性[8],TiO 2负载型催化剂在含硫气氛中常具有很长寿命。
因此,后来TiO 2被逐渐引入到汽车尾气催化剂中[9]。
但是,单纯的TiO 2负载过渡金属氧化物用于CO 氧化反应的研究并不多见。
本文以超细TiO 2为载体,过渡金属氧化物为活性组分,对活性组分的筛选,制备方法,活性相含量,焙烧温度以及载体性质对C O 氧化反应的影响,进行了系统的考察。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
F U L L P A P E RPPS/ppsHighly stable CuO incorporated TiO 2catalyst for photocatalytic hydrogen production from H 2OJ.Bandara,*a C.P .K.Udawatta b and C.S.K.Rajapakse a aInstitute of Fundamental Studies,Hantana Road,Kandy,Sri Lanka.E-mail:jayasundera@;Fax:+94812232131;Tel:+94812232002bDepartment of Chemistry,University of Peradeniya,Peradeniya,Sri LankaReceived 3rd June 2005,Accepted 16th August 2005First published as an Advance Article on the web 8th September 2005A CuO incorporated TiO 2catalyst was found to be an active photocatalyst for the reduction of H 2O under sacrificial conditions.The catalytic activity originates from the photogeneration of excited electrons in the conduction bands of both TiO 2and CuO resulting in a build-up of excess electrons in the conduction band of CuO.Consequently,the accumulation of excess electrons in CuO causes a negative shift in the Fermi level of CuO.The efficient interparticle charge transfer leads to a higher catalytic activity and the formation of highly reduced states of TiO 2/CuO,which are stable even under oxygen saturated condition.Negative shift in the Fermi level of CuO of the catalyst TiO 2/CuO gains the required overvoltage necessary for efficient water reduction reaction.The function of CuO is to help the charge separation and to act as a water reduction site.The amount of CuO and crystalline structure were found to be crucial for the catalytic activity and the optimum CuO loading was ca.∼5–10%(w/w).A.IntroductionThe construction of an artificial photosynthetic system that generates O 2and H 2by sunlight irradiation using an aqueous semiconductor suspension is of great interest and the subject of active research because H 2is a clean energy source.1–7The direct photosplitting of water to hydrogen and oxygen has been regarded as the most promising approach ever since Fujishima and Honda reported the photoelectrochemical water splitting at a TiO 2electrode.1The direct photosplitting systems have received considerable attention and several efforts have been made to improve the catalytic activity.Recently Domen et al.reported the layered catalysts of K 4Nb 6O 17and A 4Ta 6−x O 17(A =K,Rb)for the stoichiometric formation of H 2and O 2from H 2O splitting.8–10The higher catalytic activity of the layered perovskite structure was due to the layered structure which retards the electron–hole recombination leading to high photocatalytic activity.A new type of water splitting system mimicking the Z-scheme in photosynthesis and IO 3/I −shuttle redox mediator was reported by Abe et al.11–13in which the quantum efficiency of the stoichiometric water splitting was ca.0.1%at 420.7nm.Some of these authors reported the direct water splitting using an oxide semiconductor photocatalyst of In 1−x Ni x TaO 4(x =0–0.2),with a quantum yield of about 0.66%.14However low quantum yield is the major concern of the direct water splitting systems and to date they do not guarantee practical H 2generation.The difficulty of the direct water splitting into H 2and O 2is the oxidation of H 2O to O 2,which involves high overvoltage.15–16RuO 2or IrO 2have been introduced to decrease the oxygen overpotential and the kinetics of an effective RuO 2oxygen electrocatalyst have been attributed to catalysis by the inter-vening RuO 4/RuO 2redox couple.17–19Attempts have been made to optimize the H 2O oxidation process by introducing electron acceptors such as Ce 4+and Fe 3+ions.20However,the direct water oxidation to O 2is an undiminished challenge.On the other hand,it has been demonstrated that the photoreduction of water to H 2at the expense of consuming some sacrificial electron donors can be achieved with high efficiency.21–26Since the oxidation of water by holes is a slower process than the reduction by electrons,hole scavengers are introduced to expedite the water oxidation.The sacrificial agentsreact irreversibly with the photogenerated holes suppressing the recombination of photogenerated electrons and holes on the semiconductor surface leading to higher photocatalytic H 2O reduction to H 2.However,the problem of using sacrificial agents is the cost of the sacrificial compounds.If the sacrificial agents are sorts of industrial waste,the use of sacrificial agents is beneficial.In this report,H 2production using a CuO coated TiO 2catalyst and methanol as a model sacrificial agent has been investigated.B.ExperimentalThe CuO incorporated TiO 2catalyst was prepared by the following method.The desired amount of Degussa P25TiO 2powder was suspended in distilled water and various amounts of Cu(NO 3)2(0.1M,Fluka analytical grade)were added.The suspension was then stirred for 1h at room temperature followed by evaporation to dryness by drying at 5◦C min −1.The dried sample was finally washed with distilled water several times to remove unbound copper.In this way,the TiO 2surface was coated by copper through physical and chemical interactions.Finally the copper loaded TiO 2sample was calcined at the desired temperature at a rate of 10◦C min −1.Photolysis experiments were carried out in a Photophysics reactor with 125W medium pressure mercury lamp.A quantity of catalyst equivalent to 200mg of (TiO 2/CuO)was suspended in the reaction mixture,which contained ∼5%of methanol (v/v)in water.Experiments were conducted with and without UV filters and several other liquid filters.The blank experiments were conducted with the catalysts in the absence of light and without the catalysts in the presence of light.The XPS spectra of the samples were measured using a XPS spectrophotometer (Leybold EA200)with Mg K a radiation at 75W .The back-ground pressure during the data acquisition was kept below 10−10bar.The flat-band potentials of the oxides were determined from Mott–Schottky plots (i.e.a plot of C −2vs.V ,where C was the capacitance and V was the potential across the space charge layer)and using photocurrent onset potential methods.27–28For electrochemical measurements,thin films of nanocrystalline TiO 2,CuO and TiO 2/CuO were prepared by mixing TiO 2,CuO or TiO 2/CuO in an agate motor and adding a few drops ofD O I :10.1039/b 507816dThis journal is©The Royal Society of Chemistry and Owner Societies 2005P h o t o c h e m .P h o t o b i o l .S c i .,2005,4,857–861857D o w n l o a d e d b y J i l i n U n i v e r s i t y o n 17 J a n u a r y 2013P u b l i s h e d o n 08 S e p t e m b e r 2005 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/B 507816DView Article Online / Journal Homepage / Table of Contents for this issueCarbowax and polyethylene glycol.The final slurry was applied on a clean conducting glass by the doctor blade method and sintered in air at 450◦C for 30min.To measure the capacitance,oxide coated plates were immersed in a Na 2SO 4solution and the capacitance was measured as a function of the potential across the space charge layer at frequencies of 500Hz and 1kHz.The onset potential was determined by measuring the photocur-rent under applied voltage.27Using the flat-band values and the band gap energies of the oxides,conduction and valence band positions were calculated.27–28Hydrogen was analyzed by gas chromatography (Shimadzu 2000)using a TCD detector,Ar as a carrier gas and molecular sieve as column material.UV-Vis absorption spectra were recorded using a Shimadzu UV-1601spectrophotometer.The powder samples were characterized by X-ray diffraction anal-ysis (XRD).The onset potential method was employed to determine the Fermi levels of the samples.Dissolved copper was analyzed by atomic absorption spectroscopy (Philips 800-2AAS,sensitivity ∼1ppm).The sample was first digested with conc.HNO 3and the filtrate was analyzed for copper.Diffuse reflectance spectra were measured with a Shimadzu 3000UV-Vis spectrophotometer.C.Results and discussionCatalyst characterizationFig.1shows the XRD patterns of the catalyst powders used.As shown in Fig.1-a,the Degussa P25TiO 2contains both anatase and rutile forms.The XRD pattern of the copper oxide,which was prepared by heating Cu(NO 3)2at 400◦C,is also shown in Fig.1-b.According to the diffraction peaks at 2h =35.5(2.520)◦,38.5(2.322)◦and 49(1.861)◦,the structure of copper oxide corresponds to the CuO crystalline structure.In Fig.1-b,the diffraction peaks due to Cu 2O were not observed and hence it can be concluded that heating Cu(NO 3)2in air would not produce the Cu 2O crystallineform.Fig.1XRD patterns of (a)P25TiO 2,and (b)CuO prepared by heating Cu(NO 3)2at 400◦C.Fig.2A and 2B show the XRD patterns for 7%and 20%CuO coated TiO 2respectively at different sintering temperatures.For 7%CuO loaded TiO 2,at 100◦C,weak signals due to amorphous CuO are noticeable.As the temperature increases,crystallinity begins at ∼300◦C,and the crystalline peaks which appeared at 2h =35.5(2.520)◦,38.5(2.322)◦and 49(1.861)◦correspond to the CuO crystalline structure.Therefore,from diffraction patterns it can be concluded that crystalline CuO on TiO 2has been formed.Also it was noticed that other crystalline forms of copper oxide i.e.Cu 2O were not observed during the heat treatment of the copper oxide coated TiO 2catalysts.The diffraction peaks of 7%CuO coated TiO 2were weak,probably due to the formation of a thin CuO layer on TiO 2.Therefore,to confirm the crystalline nature of the copper oxide,we recorded the diffraction patterns of 20%Cu oxide loaded TiO 2and these are shown in Fig.2B.By comparing Fig.2A and 2B,it canbeFig.2(A)XRD patterns of TiO 2/CuO (7%)at the sintering tempera-tures:(a)100◦C,(b)200◦C,(c)300◦C,(d)400◦C,(e)500◦C.(B)XRD patterns of TiO 2/CuO (20%)at the sintering temperatures:(a)100◦C,(b)200◦C,(c)300◦C,(d)400◦C,(e)500◦C,(f)600◦C.concluded that the diffraction patterns of 20%CuO loaded TiO 2catalyst were the same as those of 7%Cu loaded TiO 2catalyst.This result confirms the crystalline form of copper oxide is CuO on the TiO 2catalyst.The diffuse reflectance spectra of TiO 2,CuO and CuO coated TiO 2catalysts are shown in Fig.3.The bare TiO 2catalyst absorbs light mainly in the UV region while CuO absorbs mainly in the visible region.The CuO coated TiO 2catalyst which was ash-yellow possesses absorption bands in the visible region whose intensity increases with the increase of the CuOcontent.Fig.3Diffuse reflectance spectra of (a)TiO 2,(b)TiO 2/CuO (7%),(c)TiO 2/CuO (15%)and (d)CuO.The XPS analyses of the samples TiO 2/CuO before and after irradiation (Fig.4)show the appearance of spin–orbit split Cu2p 1/2and Cu2p 3/2with their shake-up satellites which indicates that Cu 2+species are formed on the titania film.The XPS peak intensity ratio of I Cu2p /I Ti2p is only 0.085which is less than that of the threshold indicating highly dispersed CuO on the TiO 2surface.858P h o t o c h e m .P h o t o b i o l .S c i .,2005,4,857–861D o w n l o a d e d b y J i l i n U n i v e r s i t y o n 17 J a n u a r y 2013P u b l i s h e d o n 08 S e p t e m b e r 2005 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/B 507816DView Article OnlineFig.4Cu2p XPS spectra of samples:(a)TiO 2/CuO before irradiation and (b)TiO 2/CuO after irradiation.Table 1Calculated flat-band potential values of TiO 2,CuO and copper oxide loaded TiO 2catalystsCatalyst Flat-band potential (vs.SCE)/eV TiO 2−0.35CuO+0.12TiO 2/CuO (3%)−(0.30–0.33)TiO 2/CuO (7%)−(0.25–0.27)TiO 2/CuO (10%)−(0.22–0.25)TiO 2/CuO (30%)−(0.12–0.11)The flat bands of TiO 2,CuO and CuO coated TiO 2were mea-sured using photocurrent onset potential and Mott–Schottky methods and the calculated conduction band (CB)and valence band (VB)positions are given in Table 1.The measured CB potentials of TiO 2and CuO are −0.35V and +0.12V (vs.SCE)respectively and match well with the literature values.Coating of TiO 2with 3%CuO,results in the formation of a CB at −0.30V (vs.SCE)and the increase of the CuO content results in a slight movement of the Fermi potential in the anodic direction i.e.at 5%CuO coverage,the reported CB potential is −0.29V and at 30%CuO coverage,the measured CB potential is −0.25V .Catalytic activityFig.5shows the H 2evolution from an aqueous solution containing 5%methanol under UV light irradiation in the presence of CuO coated TiO 2catalysts with the variation of the CuOcontent.Fig.5Total hydrogen production amount for the catalyst TiO 2/CuO with the variation of the CuO content in the presence of UV light and methanol solution (95%H 2O,5%methanol).The experiment was carried out for 2h.For bare TiO 2,the total amount of H 2produced in 2h is 1.25ml (0.63ml h −1),while CuO alone did not give a measurable amount of H 2.At the optimum CuO loading,the H 2production rate was found to be ∼20ml h −1.Considering the CB potentials of CuO and TiO 2,the reason for not detecting H 2with CuO could be understood.Further it was noticed that when UV cut-off filters (built in UV cut-off filter and NaNO 2liquid cut-off filters)were used,no H 2was generated.However,production of H 2was noticed when a CuO cut-off filter (wavelength 500–700nm)was used.The H 2production rate with the CuO cut-off filter is 9ml h −1which is higher than the H 2production rate for bare TiO 2,however it is less than the H 2production rate when no filters were used.From the above results,one could conclude that the presence of both TiO 2and CuO is essential for higher catalytic activity:TiO 2plays an essential role for the reaction while CuO has a supportive role (i.e.catalytic)and the H 2production reaction starts with the excitation of TiO 2particles.The H 2yield is highly dependent on the sintering temperature of the catalyst.Shown in Fig.6is the H 2yield for the catalyst TiO 2/CuO (7%)at different sintering temperatures.As prepared the TiO 2/CuO (7%)catalyst shows lower activity for H 2production.However as the temperature increases,the H 2production rate increases.The maximum H 2production rate was observed at ∼300–500◦C.Further increase of the sintering temperature,results in a decrease of the H 2production rate.On the basis of the crystalline structure described in Fig.2,the above results could be explained.The crystalline structure of CuO in as prepared TiO 2/CuO (7%)catalyst at 100◦C is amorphous.The crystallinity increases with the sintering temperature and at a temperature of ∼300◦C,at which CuO is fully crystalline,the highest catalytic activity for H 2production was observed.Therefore,it can be assumed that the crystalline nature of CuO is important for the H 2production.As the sintering temperature is increased further,the surface area decreases and also the contact between the CuO–TiO 2becomes weaker resulting in a decrease in the catalyticactivity.Fig.6Hydrogen production amount for 2h UV irradiation of the catalyst TiO 2/CuO (7%)with the variation of the sintering temperature.The solution contained 95%H 2O and 5%methanol.The stability of the TiO 2/CuO (7%)catalyst was studied by using the same catalyst for H 2production several times.Fig.7shows the H 2production rates with repeated use of the catalyst for H 2production.As shown in Fig.7,the catalytic activity decreases slightly after several experiments (curves a–e)but the original catalytic activity can be regained once the catalyst is again subjected to a heat treatment (curve f).The decrease in the catalytic activity with use could be due to accumulation of by-products on the catalyst surface which could easily be removed by the heat treatment without altering the surface properties.Copper was not detected in the reaction solution even after several hours of reaction and repeated use,which confirms that copper does not dissolve and leach into the reaction medium.MechanismThe results presented above clearly indicate that the TiO 2/CuO is a highly stable and active catalyst for the reduction of H 2O to H 2under sacrificial conditions.No H 2was observed when the reaction was carried out in absolute methanol indicating that the source of H 2is H 2O.It was also noticed that there was total retardation of H 2production when the excitation of TiO 2was hindered.However,a comparable H 2production rate was observed even when the excitation of CuO was prevented.The low H 2production rate with the bare TiO 2and the higher H 2P h o t o c h e m .P h o t o b i o l .S c i .,2005,4,857–861859D o w n l o a d e d b y J i l i n U n i v e r s i t y o n 17 J a n u a r y 2013P u b l i s h e d o n 08 S e p t e m b e r 2005 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/B 507816DFig.7Catalytic activity of TiO 2/CuO (7%)with repeated use of the catalyst (a)1–6h,(b)7–12h,(c)13–18h,(d)19–24h,(e)25–30h,(f)after cycle (e),the catalyst was sintered at 400◦C and the catalytic activity was checked for 1–6h.Each time a fresh solution of 5%methanol was introduced.production rate for TiO 2/CuO suggest that the coexistence of TiO 2and CuO is necessary for higher catalytic activity.A metal coated TiO 2photocatalyst (TiO 2–Pt)for the photoreduction of water where metal centers act as reducing centers by trapping excited electrons in the CB of TiO 2has been reported.29–30Considering the CB potentials of TiO 2and CuO,one can argue that CuO may act similarly.However,XPS analyses showed that CuO was present as Cu 2+on the TiO 2surface and metallic copper was not observed before or after irradiation of the TiO 2/CuO catalyst.This observation excludes the possibility of metal promoted photocatalytic hydrogen production from the water–methanol solution with the TiO 2/CuO catalyst.Considering the catalytic activity presented above,it can be assumed that the TiO 2acts as the primary catalyst and CuO acts as a co-catalyst,helping charge separation as explained below.A recent research article by Slamet et al.,31in which they reported the reduction of CO 2using impregnated CuO on TiO 2and assigned the higher catalytic activity of CuO to the redox cycle of Cu 2+/Cu +,further supports the above observation.An energy level diagram showing the positions of the bands of TiO 2and CuO is presented in Fig.8.Absorption of light greater than the band-gap energy of TiO 2generates electrons and holes in the CB and VBrespectively.Fig.8Schematic diagram showing the energy band positions of TiO 2,CuO and the electron transfer direction.The sacrificial electron donor consumes holes in the VB rapidly leaving electrons in the CB of TiO 2.The CB position of CuO below the CB of TiO 2permits the transfer of electrons from the CB of TiO 2to the CB of CuO.The catalyst turned to a purple–blue colour during irradiation.It has been reported that the purple colour is due to trapped electrons in TiO 2which arereadily bleached on exposure to atmospheric oxygen because of the rapid transfer of trapped electrons to O 2molecules.Additionally,the blue colour due to trapped electrons has not been observed when the reaction was carried out under O 2saturated conditions.Surprisingly,the purple–blue colour developed in our system did not bleach instantly on exposure to air and the colour is quite stable for several hours in the atmosphere.Also the H 2production rates under Ar,O 2and air saturated conditions are 23,15and 20ml h −1respectively and the catalyst turned to a purple–blue colour during irradiation no matter what the reaction atmosphere was.This observation strongly suggests that the transfer of excited electrons from the CB to O 2is competitive and,in the presence of CuO,the electrons in the CB of the TiO 2particles are efficiently separated from the surface of TiO 2.One way of separating electrons from the CB of TiO 2is to transfer the electrons to the CB of CuO.Since the CB of CuO is situated below the CB of TiO 2,the electrons in the CB of TiO 2can rapidly transfer to the CB of CuO competing with the electron transfer to O 2.Once the electrons are transferred to CuO,the Fermi level of CuO is raised which results in a more negative CB potential of CuO.The negative shift of the CB potential was confirmed by the flat-band potential measurements obtained using the onset potential method and which are given in Table 1.The negative movement of the CB potential of CuO facilitates the interparticle electron transfer from CuO to trapped states of TiO 2resulting in Fermi level equilibration and the appearance of a blue colour.Earlier it was shown that no H 2was observed with the irradiation of CuO particles and the inability of CuO to reduce water was attributed to its inappropriate band energy position.However,in the composite catalyst,the measured band position is situated at −0.20–0.25V (vs.SCE)favouring the water reduction.Therefore we believe that the purple colour developed during irradiation is due to reduced states of both TiO 2and CuO and the rapid interparticle electron transfer increases the catalytic activity.The TiO 2/CuO catalyst was found to be very stable with prolonged use and the stability of the catalyst could be under-stood on the basis of rapid electron transfer.In the TiO 2/CuO catalyst,CuO is the unstable catalyst compared to the stable TiO 2catalyst because photodissolution of Cu 2+particles by accepting photogenerated electrons (as shown below)and leaching to the reaction solution 32may occur.≡Cu(II )O +e −→≡Cu(I )O (1)≡Cu(I )O →I ≡+Cu(I )(2)≡represents the oxide surface and I ≡represents the Cu(I )detached surface.However,no copper ions were detected in our reaction solution even after many hours of irradiation and repeated use of the catalyst.(The copper detection limit is 1ppm).This could be probably due to rapid interparticle electron transfer and efficient water reduction reaction which retard the photodissolution of CuO catalyst.D.ConclusionThe TiO 2/CuO catalyst was found to be an active and stable photocatalyst for H 2evolution from an aqueous solution under sacrificial conditions.The TiO 2particles act as the primary catalyst and CuO acts as the co-catalyst.Bare CuO was found to be an inactive catalyst for water reduction and in the TiO 2/CuO catalyst,CuO acts as the water reduction site.Highly stable reduced states of TiO 2and CuO were observed even under aerobic conditions,which was due to efficient interparticle charge transfer process.Higher catalytic activity and increasing stability of TiO 2/CuO also arise due to an efficient interparticle charge transfer process.860P h o t o c h e m .P h o t o b i o l .S c i .,2005,4,857–861D o w n l o a d e d b y J i l i n U n i v e r s i t y o n 17 J a n u a r y 2013P u b l i s h e d o n 08 S e p t e m b e r 2005 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/B 507816DReferences1A.Fujishima and K.Honda,Electrochemical photolysis of water at a semiconductor electrode,Nature ,1972,238,37–38.2E.Borgarello,J.Kiwi,E.Pelizzetti,M.Visca and M.Gratzel,Sustained water cleavage by visible light,J.Am.Chem.Soc.,1981,103,6324–6329.3S.Tabata,H.Nishida,Y .Masaki and K.Tabata,Stoichiometric photocatalytic decomposition of pure water in Pt/TiO 2aqueous suspension system,Catal.Lett.,1995,34,245–249.4K.Sayama,R.Y oshida,H.Kusama,K.Okabe,Y .Abe and H.Arakawa,Photocatalytic decomposition of water into H 2and O 2by a two-step photoexcitation reaction using a WO 3suspension catalyst and an Fe 3+/Fe 2+redox system,Chem.Phys.Lett.,1997,277,387–391.5G.R.Bamwenda,K.Sayama and H.Arakawa,The effect of selected reaction parameters on the photoproduction of oxygen and hydrogen from a WO 3–Fe 2+–Fe 3+aqueous suspension,J.Photochem.Photobiol.,A ,1999,122,175–183.6T.Ohno,D.Haga,K.Fujihara,K.Kaizaki and M.Matsumura,Unique Effects of Iron(III )Ions on Photocatalytic and Photoelectro-chemical Properties of Titanium Dioxide,J.Phys.Chem.B ,1997,101,6415–6419.7A.Kudo,A.Nagane,I.Tsuji and K.Kato,H 2Evolution from Aqueous Potassium Sulfite Solutions under Visible Light Irradiation over a Novel Sulfide Photocatalyst NaInS 2with a Layered Structure,Chem.Lett.,2002,882–883.8K.Domen,J.N.Kondo,M.Hara and T.Takata,Photo-and Mechano-Catalytic Overall Water Splitting Reactions to Form Hydrogen and Oxygen on Heterogeneous Catalysts,Bull.Chem.Soc.Jpn.,2000,73,1307–1331.9T.Takata,Y .Furumi,K.Shinohara,A.Tanaka,M.Hara,J.N.Kondo and K.Domen,Photocatalytic Decomposition of Water on Spontaneously Hydrated Layered Perovskites,Chem.Mater.,1997,9,1063–1064.10A.Kudo,K.Sayama,A.Tanaka,K.Asakuara,K.Domen,K.Maruya and T.Onishi,Nickel-loaded K 4Nb 6O 17photocatalyst in the decomposition of H 2O into H 2and O 2:Structure and reaction mechanism,J.Catal.,1989,120,337–352.11R.Abe,K.Sayama,K.Domen and H.Arakawa,A new type of water splitting system composed of two different TiO 2photocatalysts (anatase,rutile)and a IO 3−/I −shuttle redox mediator,Chem.Phys.Lett.,2001,344,339–344.12K.Sayama,K.Mukasa,R.Abe,Y .Abe and H.Arakawa,A new photocatalytic water splitting system under visible light irradiation mimicking a Z-scheme mechanism in photosynthesis,J.Photochem.Photobiol.,A ,2002,148,77.13K.Sayama,K.Mukasa,R.Abe,Y .Abe and H.Arakawa,Stoichio-metric water splitting into H 2and O 2using a mixture of two different photocatalysts and an IO 3−/I −shuttle redox mediator under visible light irradiation,mun.,2001,2416–2417.14Z.Zou,J.Y e,K.Sayama and H.Arakawa,Direct splitting of water under visible light irradiation with an oxide semiconductor photocatalyst,Nature ,2001,414,625–627.15Energy Resources through Photochemistry and Catalysis ,ed.M.Gratzel,Academic Press,London,1983,p.145.16S.Claesson and B.Holmstrom,in Solar Energy-Photochemical Processes Available for Energy Conversion ,National Swedish Board for Energy Source Development,Uppsala,1982,pp.305–310.17N.Alonso-Vante,H.Colell and H.Tributsch,Anomalous low-temperature kinetic effects for oxygen evolution on ruthenium dioxide and platinum electrodes,J.Phys.Chem.,1993,97,7381–7384.18E.R.K¨otz and S.Stucki,Ruthenium dioxide as a hydrogen-evolving cathode,J.Appl.Electrochem.,1987,17,1190–1197.19P .Salvador,N.Alonso-Vante and H.Tributsch,Photoelectrocatalytic Study of Water Oxidation at n-RuS 2Electrodes,J.Electrochem.Soc.,1998,145,216–225.20G.R.Bamwenda,T.Uesigi,Y .Abe,K.Sayama and H.Arakawa,The photocatalytic oxidation of water to O 2over pure CeO 2,WO 3,and TiO 2using Fe 3+and Ce 4+as electron acceptors,Appl.Catal.,A ,2001,205,117–128.21A.Harriman and M.A.West,in Photogeneration of Hydrogen ,Academic Press,1982,p.54.22K.Hashimoto,T.Kawai and T.Sakata,Photocatalytic reactions of hydrocarbons and fossil fuels with water.Hydrogen production and oxidation,J.Phys.Chem.,1984,88,4083–4088.23J.Handman,A.Harriman and G.Porter,Photochemical dehydro-genation of ethanol in dilute aqueous solution,Nature ,1984,307,534–535.24M.S.Wrighton,A.B.Ellis,P .T.Wolczanski,D.L.Morse,H.B.Abrahamson and D.S.Ginley,Strontium titanate photoelectrodes.Efficient photoassisted electrolysis of water at zero applied potential,J.Am.Chem.Soc.,1976,98,2774–2779.25J.M.Darwent,H 2Production photosensitized by aqueous semi-conductor dispersions,J.Chem.Soc.,Faraday Trans.2,1981,77,1703–1709.26Y .Li,G.Lu and S.Li,Photocatalytic hydrogen generation and decomposition of oxalic acid over platinized TiO 2,Appl.Catal.,A ,2001,214,179–185.27J.F .McCann and J.O’M.Bockris,Photoelectrochemical properties of n-type In 2O 3,J.Electrochem.Soc.,1981,128,1719–1723.28A.J.Bard and L.R.Faulkner,Electrochemical Methods,Fundamen-tals and Applications ,John Wiley &Sons,New Y ork,1st edn,1980,pp.577–696.29R.Fretwell and P .Douglas,Nanocrystalline-TiO 2–Pt photo-electrochemical cells-UV induced hydrogen evolution from aqueous solutions of alcohols,Photochem.Photobiol.Sci.,2002,1,793–798.30E.Smotkin,A.J.Bard,A.Campion,M.A.Fox,T.Mallouk,S.E.Webber and J.M.White,Bipolar titanium dioxide/platinum semi-conductor photoelectrodes and multielectrode arrays for unassisted photolytic water splitting,J.Phys.Chem.,1986,90,4604–4607.31Slamet,H.W .Nasution,E.Purnama,S.Kosela and J.Gunlazuardi,Photocatalytic reduction of CO 2on copper-doped Titania catalysts prepared by improved-impregnation method,mun.,2005,6,313–319.32W .Stumm and J.J.Morgan,Aquatic Chemistry ,John Wiley &Sons,New Y ork,1996,pp.760–817.P h o t o c h e m .P h o t o b i o l .S c i .,2005,4,857–861861D o w n l o a d e d b y J i l i n U n i v e r s i t y o n 17 J a n u a r y 2013P u b l i s h e d o n 08 S e p t e m b e r 2005 o n h t t p ://p u b s .r s c .o r g | d o i :10.1039/B 507816DView Article Online。