基于PLC的交流电机变频调速系统
《2024年基于PLC的变频调速电梯系统设计》范文
《基于PLC的变频调速电梯系统设计》篇一一、引言随着城市化进程的加快,电梯已经成为现代建筑中不可或缺的一部分。
为满足现代社会的需求,电梯系统需要具有高可靠性、高效率和灵活性。
本文旨在介绍一种基于PLC(可编程逻辑控制器)的变频调速电梯系统设计,该系统可有效提高电梯的运行效率、安全性和用户体验。
二、系统设计概述本电梯系统设计采用PLC作为核心控制器,通过变频调速技术实现电梯的精确控制。
系统主要由以下几个部分组成:PLC控制器、变频器、电机、编码器、传感器以及人机界面等。
三、硬件设计1. PLC控制器:选用高性能的PLC控制器,具有高可靠性、高速度和高精度的特点,可实现电梯的逻辑控制和运动控制。
2. 变频器:采用变频调速技术,根据电梯的运行需求,实时调整电机的运行速度,实现电梯的平稳启动和停止。
3. 电机:选用高效、低噪音的电梯专用电机,与变频器配合使用,实现电梯的精确控制。
4. 编码器:通过安装在电机上的编码器,实时监测电机的运行状态,为PLC控制器提供反馈信号。
5. 传感器:包括位置传感器、速度传感器等,用于实时监测电梯的运行状态,确保电梯的安全运行。
6. 人机界面:采用触摸屏或按钮等方式,实现用户与电梯系统的交互。
四、软件设计软件设计是本系统的关键部分,主要涉及PLC控制程序的编写和调试。
1. 逻辑控制程序:根据电梯的运行需求,编写逻辑控制程序,实现电梯的召唤、应答、启停、开门关门等基本功能。
2. 运动控制程序:采用PID(比例-积分-微分)控制算法,根据电梯的运行状态和目标位置,实时调整电机的运行速度和方向,实现电梯的平稳运行。
3. 人机交互程序:编写人机交互程序,实现用户与电梯系统的友好交互,包括显示楼层信息、运行状态等。
4. 故障诊断与保护程序:编写故障诊断与保护程序,实时监测电梯的运行状态和传感器信号,一旦发现异常情况,立即采取相应措施,确保电梯的安全运行。
五、系统实现与测试在完成硬件和软件设计后,进行系统实现与测试。
基于PLC的变频调速电梯控制系统设计.
毕业设计(论文)手册学生姓名:翟大彬指导教师:叶天迟专业:自动化班级:自0745吉林工程技术师范学院教务处制二O一O年十二月毕业设计(论文)选题论证书毕业设计(论文)任务书题目:基于PLC的变频调速电梯控制系统设计电气工程学院(分院)自动化专业自0745 班学生姓名:翟大彬学号: 24 指导教师:叶天迟职称:讲师教研室主任:方建系(分院)主任:许建平任务书下发日期:2010年 2 月 18 日吉林工程技术师范学院教务处制本科生毕业设计(论文)开题报告题目基于PLC的变频调速电梯控制系统设计院(系)_电气工程学院_______专业___自动化__班级_____自0745 _______姓名______翟大彬_______指导教师_______叶天迟_________开题时间2011.3.18吉林工程技术师范学院教务处制一、课题研究意义二、研究方案图1 系统结构框图1.PLC的选型基于学校的调试和试验条件,选择三菱FX2N系列PLC控制。
2.基于PLC的变频调速电梯控制系统实现的功能a)电梯运行到位后,具有手动和自动开关门功能。
b)电梯的每一层面均有升降及轿厢所在的楼层的指示灯显示。
c)每层的楼厅均有输入(分上行或下行)按钮召唤电梯。
d)具有自动定向、顺向截梯、方向保号、外呼记忆、自动开/关门、停梯消号,自动达层等功能。
e) 电梯在一定情况下启动,加速,快速和减速功能。
3.拟实现功能的手段a)当电梯轿厢或者厅门呼叫按钮按下时,根据检测到的上行或下行指令给出相应的信号,从而控制电梯的驱动电机进行相应的动作。
当有多个呼叫信号到达时,执行方式为优先响应电梯运行方向上的信号,再响应另一方向上的信号。
对未及时响应的信号进行保留。
b)电梯正常状态下以快速启动,当要达到需要停止的楼层时,给出换速信号控制拖动电机转为慢速运行,以确保电梯平稳的停止在目标位置。
c)轿厢内各层门厅控制按钮,轿厢内楼层选择数字键1—14,各层门厅按钮,除一层只设置上升按钮,十四层只设置下降按钮外,其他楼层设置上升和下降按钮。
基于PLC和触摸屏的电机变频调速控制系统设计与实现
基于PLC和触摸屏的电机变频调速控制系统设计与实现文章以西门子S7-200系列PLC的CPU224XP作为核心控制处理器,以西门子SMART700触摸屏作为人机交互界面,通过人机交互界面对电动机的运行状态进行监视及控制,完成电动机的启停、变频调速、正反转运行。
实验结果表明:该系统工作稳定、运行可靠、控制精度较高。
标签:PLC;触摸屏;变频调速引言PLC以其编程简单方便、控制稳定可靠、功能强大等优点通常作为控制器广泛应用于现代工业控制领域,触摸屏作为人机交互界面在一定程度上减少PLC 的外部I/O点的使用以及减轻系统外部按钮开关的连线复杂程度,同时也提高了运行维护的方便性。
本设计选择西门子PLC的CPU224XP为核心控制处理器,西门子SMART700触摸屏,通过PLC、触摸屏软、硬件设计与调试,在实验室实现三相异步电动机的启停、变频调速、正反转运行。
1 系统设计总体方案电机变频调速控制系统原理框图如图1所示,计算机下载程序到PLC和触摸屏,通过触摸屏输入指令,PLC将信号传给变频器,由变频器实现三相异步电动机的启停、变频调速、正反转运行。
2 控制系统硬件设计2.1 硬件的选择PLC型号为西门子14输入10输出的CPU224XP,可连接7个扩展模块,6个独立的高速计数器(100KHz),2个100KHz的高速脉冲输出,2个RS485通讯/编程口,具有PPI通讯协议、MPI通讯协议和自由方式通讯能力,能够满足变频调速的要求。
SMART700触摸屏分辨率较高,具备强大的通信能力,它可以同西门子PLC之间进行通讯,并且为用户提供一个友好的界面,便于用户对控制系统中的设备运行情况进行监控和控制。
变频器选择西门子MICROMASTER440,是专门针对与通常相比需要更加广泛的功能和更高动态响应的应用而设计的,具有快速响应输入和定位减速斜坡功能,是实现变频调速的主要部件,三相异步电动机选择功率为750W。
2.2 硬件电路设计3 控制系统软件设计3.1 PLC程序设计3.1.1 PLC程序流程图PLC经初始化后,可通过触摸屏和外部按钮发出信号,经变频器控制电机的启停、正反转、加速和减速,当完成指令之后,一个周期结束,PLC的流程图如图3所示。
基于PLC的电机变频调速系统设计
1 M
异 步 电动机 转 子转 速 的表达 式 可记 为 :
n=
。、 ,
上吣l 源自 I I IB 2 S: 13 1 S 4 B
I l
直 1S = 1. U (— ) n(一 ) s
P
() 3
I 1 1 1 1
S I B
() 1
异 步 电动 机 转 子 n与 定 子旋 转 磁 场 转速 n 之 间存 在 着 转 速 。 差, 可用 转 差率 J表 示 : s
S tn  ̄n - 一
1
() 2
I L
牛 KK MM 43 I K M 3
Q1 . 1 Q1 2 Q1 3 Q1 . 4 Q 1 5
图 1 PL C控 制 变 频 调 速 系 统 原 理 框 图
根 据 数控 机 床 系统 控 制 功 能要 求 , 统 共 有 l 点 , 中输 系 2个 其
入 控 制 点 7个 , 出控制 点 5 , 输 个 根据 输 入 ( / 出 ( ) 址 分配 I输 ) 0地 表 ,可 设 计 出 P C开关 量 输入 / 出控 制 点端 子接 线 图 如 图 2 L 输 所
羹 量 sj × hve eun iF
基于 P C的电机变频调速 系统设 计 L
张 雪 琴 常 荣 胜 - 张立 涛 - 刘 媛z
(. 拉玛 依职业技术学院 , 1 克 新疆 克拉玛 依 83 0 : . 36 0 2克拉玛依区天 山路街道社 区卫 生服务中心, 新疆 克拉玛依 8 3 0 ) 3 6 0 摘 要 : 出 了基于 S — 0 L 给 7 2 0P C的电机变频调速试验系统 的组 成、 控制方案及信号处 理方法 , 设计 了以单片机 为核 心的硬件 电路 。采用软
毕业设计(论文)-基于PLC控制的多段调速系统实现
摘要随着工业控制要求的发展,对电机速度的控制越来越高。
传统的模拟信号控制方式存在抗干扰能力差、对设备要求复杂、控制精度不高等问题,难以适应日益复杂的工业环境。
本文主要介绍了多段调速系统的结构,并完成了以PLC为控制器,以增量式光电编码器为速度采集的闭环PID控制系统,通过RS-485对变频器的控制实现了三相异步电机的多段调速。
关键字:PLC;RS-485;多段调速;光电编码器AbstractWith the requirements of the development of industrial control, the speed of motor control is more and more strict. The traditional analog signal control mode has poor capacity of resisting disturbance, the requirement of complex equipment, the control precision low and some other problems, it is difficult to adapt to the increasingly complex industrial environment. In this article, mainly introduces the structure of various speed system, and completed the closed loop PID control system through the PLC as controller and incremental photoelectric encoder for speed acquisition, achieve the multistage speed control three-phase asynchronous motor through Frequency converter based on RS-485.Key words: PLC; RS-485; multistage speed; encoder目录第一章概述 (4)1.1 课题研究的背景及意义 (4)1.2 课题研究现状 (5)1.3 本课题研究的主要内容 (6)第二章系统分析 (7)2.1 PLC基本知识 (7)2.1.1 PLC的基本功能 (8)2.1.2 PLC的特点 (9)2.1.3 PLC的展望 (11)2.2 变频器基本知识 (12)2.2.1 变频器的应用 (12)2.2.2 变频器的分类 (13)2.2.3 变频器控制的展望 (14)2.3 光电编码器 (15)2.3.1 增量式编码器 (15)2.3.2 绝对式编码器 (16)第三章系统设计 (19)3.1 总体方案 (19)3.2 硬件设计 (19)3.2.1 变频器的连接 (20)3.2.2 光电编码器的配置 (20)3.2.3 PLC输入输出口分配 (21)3.3 软件设计 (21)3.3.1 变频器的参数设置 (22)3.3.2 PLC的设计 (23)第四章结论 (28)结束语 (29)致谢 (30)参考文献 (31)第一章概述1.1 课题研究的背景及意义随着计算机技术、电子技术的不断进步,PLC(可编程逻辑控制器)技术、变频(变频器)调速技术的发展极为迅速,已渗透到各个领域,以它们为主导的现代生产技术正以史无前例的速度迅猛发展。
基于PLC的变频调速控制系统设计毕业论文.doc
摘要现代科学是一个以自动化设备控制系统为核心的工业科学。
工业自动化技术对工业生产过程实现测量、控制、优化和决策,使企业实现“好、省、多、快”,提升企业的市场竞争力.因此“国家中长期科技发展规划”已明确规定,工业自动化技术是21世纪现代装备制造业中最重要的科学工业技术之一,而PLC占据主导地位。
PLC是一种专门在工业环境下应用而设计的数字运算操作的电子装置,它采用可以编制程序的存储器,用来在其内部存储执行逻辑运算、顺序运算、计时、计数和算术运算等操作的指令,并能通过数字式或模拟式的输入和输出,控制各种类型的机械或生产过程。
本次基于CompactLogix风动模型控制器的设计,主要内容是对PLC进行了研究,通过搭建DeviceNet网络,通过对CompactLogix 可编程逻辑控制器编程,控制PowerFlex变频器来驱动风机模型,风机转动改变模型箱的压强,从而使小球运动并悬浮于某一设定位置。
通过模型中小球的运动趋势来展现了抽象的运动控制,使得能够更直观的看到运动控制的功效.关键词:CompactLogix、变频控制、自动化、风机summaryModern science is a scientific industry as the core of automation equipment control system. Industrial automation technology achieves measurement, control,optimization and decision for industrial producing process. And makes enterprises realize ”good, province, much and fast",and improve enterprises' market competitiveness。
基于PLC的交流电机的变频调速
华东交通大学理工学院Institute of Technology.East China Jiaotong University毕业设计Graduation Design (Thesis)(2010 —2014 年)题目基于PLC的交流电机的变频调速系统设计分院:电气与信息工程分院专业:电子信息工程班级:学号:学生姓名:王斌指导教师:起讫日期:2013.12——2014.5华东交通大学理工学院毕业设计(论文)原创性申明本人郑重申明:所呈交的毕业设计(论文)是本人在导师指导下独立进行的研究工作所取得的研究成果。
设计(论文)中引用他人的文献、数据、图件、资料,均已在设计(论文)中特别加以标注引用,除此之外,本设计(论文)不含任何其他个人或集体已经发表或撰写的成果作品。
对本文的研究作出重要贡献的个人和集体,均已在文中以明确方式表明。
本人完全意识到本申明的法律后果由本人承担。
毕业设计(论文)作者签名:日期:年月日毕业设计(论文)版权使用授权书本毕业设计(论文)作者完全了解学院有关保留、使用毕业设计(论文)的规定,同意学校保留并向国家有关部门或机构送交设计(论文)的复印件和电子版,允许设计(论文)被查阅和借阅。
本人授权华东交通大学理工学院可以将本设计(论文)的全部或部分内容编入有关数据库进行检索,可以采用影印、缩印或扫描等复制手段保存和汇编毕业设计(论文)。
(保密的毕业设计(论文)在解密后适用本授权书)毕业设计(论文)作者签名:指导教师签名:签字日期:年月日签字日期:年月日摘要交流异步电动机是现代生产中最重要的拖动设备之一,因其价格低廉、经久耐用、维修容易等优点而得到了广泛应用。
而在现代工业生产中,有一些设备需要根据不同的工作环境,要调节到一个特定的转速,如电梯,起重机等。
从而对交流异步电动机的速度提出了更高的要求,希望一台电机在运行过程中,可以实现运行速度的大小,转动方向等调节,并能快速调整,波动小,稳定运行。
基于PLC的变频控制系统设计
基于PLC的变频控制系统设计PLC(可编程逻辑控制器)是一种集成了计算机、控制器和输入/输出接口的自动化控制系统。
在工业生产中,PLC广泛应用于各种控制系统中,包括变频控制系统。
变频控制系统是指利用变频器来调整电机的转速和扭矩,从而实现对生产设备的精确控制。
本文将介绍基于PLC的变频控制系统设计,包括系统结构、工作原理、硬件连接和程序设计等方面。
一、系统结构1.PLC控制器:负责接收输入信号、处理逻辑控制、生成输出信号,并与变频器进行通讯。
2.变频器:用于调节电机的转速和扭矩,实现对生产设备的精确控制。
3.传感器:用于采集各种物理量信号,如温度、压力、流量等。
4.执行元件:包括电机、阀门、泵等,用于执行PLC控制器生成的控制指令。
二、工作原理1.PLC接收传感器采集的信号,并根据预先设定的逻辑控制程序进行处理。
2.PLC生成控制指令,通过通讯接口发送给变频器,控制电机的转速和扭矩。
3.变频器接收控制指令,根据要求调节电机的频率和电压,实现对生产设备的精确控制。
4.执行元件执行PLC生成的控制指令,完成相应的生产操作。
三、硬件连接1.将传感器与PLC的输入模块连接,实现对物理量信号的采集。
2.将PLC的输出模块与变频器的输入接口连接,实现对电机的控制。
3.将变频器与电机连接,实现对电机的调速。
4.将执行元件与PLC的输出模块连接,实现对生产设备的控制。
四、程序设计1.确定控制逻辑:根据生产工艺要求确定控制逻辑,包括各种传感器的信号处理、控制流程设计等。
2.编写程序:根据控制逻辑编写PLC程序,包括输入输出的配置、控制指令的生成等。
3.调试程序:通过PLC的仿真功能进行程序调试,确保程序逻辑的正确性。
4.在现场进行实际测试,调整参数并优化程序,保证系统稳定可靠地运行。
综上所述,基于PLC的变频控制系统具有灵活可靠的控制能力,能够满足不同生产工艺的控制需求。
通过合理设计系统结构、编写适当的控制程序并进行调试,可以有效提高生产效率,保证生产质量,降低成本,是工业生产自动化的重要组成部分。
基于PLC控制的电机变频调速系统
P.、P.、P.来设置 “ 速设 r 4 r 5 r 6 3 定来控制 电机的高速 、中速 、低 速 ”,变频器的输出频 率工作过
加 速 时 间 减 速 时 间
Pr .7 P 8 r.
图4 控 制 原 理 图
程如图4 所示。 加速时间是指从0 z H 开始 加速到 基准频 率P. 出厂 时为5 H , r O( 2 0z 也 可 以 自己设定 ,但是不要 超过5 H ) 0 z 时所需 的时间 ,减速时间时 是 指从 P. 出厂时为5 H ) H 所需 的时间。在电机 的运作过程 r 0( 2 0 z 到O z
8o的时候 ,运行时 ,电 可达 (o 】 机 到的最高频率是8H ),通过 0z
塑三 一 _
匣 盥 f
堡 堕 L
计 算考 通过适 配 器 (C 0 电缆 线 ) 『 L S -9 ,采用 R - 3 通 讯协 议 ,与 S 22 PC L 相连接 ,利用普通网线将P C L 与变频器 ( 一 4连接 ,通过P C F 5) R L 的 程序控制 ,来改变频器的频率 ,从而实现可编程控制器对 电机 频率改 变的控制 ,以实现 可编程控制器对可操作器件的远程控制。 () 1 变频器 通过 网线与P C ( X一2 4 5 D L F N) . B 通信板的连线 如 8 如图1 。
速 ,达到远程 自动控制进行了讨论。
1 控 制系统的硬件设计 本系统硬件连接框图如下 :
掉 电。把参数保存入 变频器 ,然 后上 电,再改n 0 1参数 ,然后再上 电 保存参数 。注意之二 :不要改 变频器 的其它参数 , 易出错 ,更不能 容 设 定变频器 内最小即下限频率 ,使变频率不容易受 电 控制。 脑
PLC控制交流变频调速电梯
PLC控制交流变频调速电梯电梯已成为现代建筑不可或缺的交通手段,而电梯的安全、舒适、高效与否则与其控制系统密切相关。
PLC控制交流变频调速电梯具有精确的控制、快速的响应以及良好的节能效果,因此在现代电梯中得到了广泛的应用。
什么是PLC?PLC是可编程逻辑控制器(Programmable Logic Controller)的缩写,是一种专门用于工业自动化控制的计算机,主要用于将控制逻辑编写成程序,以控制机械、电气、液压、气动等各种生产输送设备的运行,达到自动化的目的。
什么是交流变频调速控制?交流变频调速控制是指通过控制交流变频调速器,使电梯基于阶层运行,并拥有调速功能,实现对电梯性能的调节。
它将电机电源交流电转换成变频交流电,在驱动电机时,通过改变电源频率和电压来改变电机转速,进而实现对电梯的精准控制。
PLC控制交流变频调速电梯原理在PLC控制交流变频调速电梯中,使用了一台变频器和一台PLC控制器,变频器用于将交流定频电源变换成交流变频电源,PLC控制器则负责控制变频器输出的电压和频率,进而控制电梯的运行。
PLC控制器中的程序通过传感器等捕捉电梯状态,并通过执行器等输出模块控制电梯的运行。
在电梯进入运行状态时,PLC控制器会让变频器输出相应的电压和频率,使电机达到所需转速,从而开始运行。
在电梯到达指定楼层时,PLC控制器会让电梯逐层停靠。
PLC控制交流变频调速电梯的优势精确的控制通过PLC控制交流变频调速电梯,可以精确地控制电梯的运行速度和刹车距离,从而提高电梯运行的安全性和稳定性。
同时,PLC控制电梯的运行过程不仅可以降低设备的损耗,同时可以保证电梯的寿命。
快速的响应PLC控制交流变频调速电梯不仅可以实现快速的启动和刹车,还可以根据需求自动判断当前运行状态,从而实现更加灵活的运行。
这样的优势不仅可以提高电梯的效率,更重要的是可以降低旅客的等待时间。
良好的节能效果PLC控制交流变频调速电梯在节能方面也有着很大的优势。
《2024年PLC控制电机变频调速试验系统的设计与实现》范文
《PLC控制电机变频调速试验系统的设计与实现》篇一一、引言随着工业自动化程度的不断提高,PLC(可编程逻辑控制器)与电机变频调速技术已经成为了现代工业生产中的重要组成部分。
本文旨在设计并实现一套基于PLC控制的电机变频调速试验系统,以实现对电机运行状态的有效监控与精确控制,提高生产效率与产品质量。
二、系统设计1. 硬件设计本系统主要由PLC控制器、变频器、电机、传感器等部分组成。
其中,PLC控制器负责整个系统的控制与协调,变频器用于调节电机的运行速度,电机则作为执行机构实现具体的运动,传感器则用于实时监测电机的运行状态。
(1)PLC控制器:选用高性能的PLC控制器,具备强大的逻辑控制与数据处理能力。
(2)变频器:选用适合电机类型与功率的变频器,具备高精度、高效率的调速性能。
(3)电机:根据实际需求选择合适的电机类型与功率。
(4)传感器:选用能够实时监测电机运行状态的高精度传感器。
2. 软件设计软件设计主要包括PLC控制程序的编写与调试。
首先,根据系统需求,设计合理的控制逻辑;其次,利用编程软件编写控制程序;最后,通过调试与测试,确保程序能够正常运行并实现预期功能。
(1)控制逻辑设计:根据电机运行的需求,设计合理的控制逻辑,包括启动、停止、调速等功能。
(2)编程软件选择:选用适合PLC控制的编程软件,如梯形图、结构化控制语言等。
(3)程序调试与测试:对编写好的程序进行调试与测试,确保程序能够正常运行并实现预期功能。
三、系统实现1. 连接硬件设备根据硬件设计,将PLC控制器、变频器、电机、传感器等设备进行连接。
确保各部分之间的连接牢固、可靠。
2. 编写与调试程序根据软件设计,编写PLC控制程序。
在编写过程中,需要充分考虑系统的实时性、稳定性以及可扩展性。
编写完成后,通过调试与测试,确保程序能够正常运行并实现预期功能。
3. 系统测试与优化对系统进行全面的测试,包括启动、停止、调速等功能。
根据测试结果,对系统进行优化与调整,提高系统的性能与稳定性。
基于PLC与变频器的交流电机调速控制系统
基于PLC与变频器的交流电机调速控制系统摘要:变频调速系统中,变频控制与PLC的应用是十分关键的。
所以,要根据现场实际情况,对变频器和PLC 进行优化控制,以确保二者都能实现真正的自动控制,希望能在一定程度上减少交流电动机调速系统的能耗,本论文以PLC和变频调速为基础,对我国电动机行业的发展起到了积极作用。
关键词:PLC;变频器;交流电机采用变频调速器可以有效地提高工业的自动化程度和提高工作的工作效率。
为此,设计者必须加强对变频调速的研究,深入理解其工作机理,并利用其自身的制动、调速、启动特性,并运用组合程序Wincc进行控制,确保调速的稳定。
1、PLC概述PLC是一种常用的计算机控制软件,它所使用的内存都是可编程的,具有储存程式的功能,可执行顺序控制、计数及逻辑运算等有关运算,并以模拟量、数字等形式进行资料的输出与输入,对各类机器的运作进行高效控制。
PLC供电在电力供应中占有举足轻重的地位。
PLC的控制中心是微机,该软件受PLC软件编程的支配,具有从编程软件输入的程序和资料的接收和储存,并可以进行故障诊断。
此外,PLC的相关设备能够适应用户对变频调速器的要求,提高PLC的抗干扰性和稳定性。
另外,通过PLC配线与程序的设计可以达到某种程度上的同步,既可以大大减少研发周期,又可以大大地提升交流电动机的工作性能。
2、变频器概述本工程在进行交流电动机的控制时,十分注重变频器的应用,并将它应用于电工、电力、信息和控制等方面。
另外,采用变频技术可以有效地解决传统的DC电机自身的抽水問题,确保了交流电机的优越性。
由于其自身坚固耐用,结构简单,采用变频技术可有效地克服交流电机的速度问题。
2.1变频器在交流电机调速控制系统节能结合方面的运用通过对变频调速器的详细研究,可以看出它是一种典型的泵、风机,它可以在一定程度上减少电力的损耗,通常可以节省20%~60%的电力,再加上风机和泵的负荷,它的功耗与速度成正比,既可以达到节能的目的,又可以改善整个系统的性能。
毕业设计(论文)-基于S7-200PLC的变频调速电梯控制系统设计
┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊安徽工业大学毕业设计(论文)任务书课题名称基于S7-200PLC的变频调速电梯控制系统设计学院电气与信息工程学院专业班级自动化101班姓名学号毕业设计(论文)的主要内容及要求:根据电梯的设计要求和性能指标,确定PLC的控制任务,完成PLC的硬件设计、I/O地址分配、变频器的参数设置,绘制出PLC、曳引系统、显示系统、旋转编码器、门机电机等模块之间的硬件连接、系统框图。
在此基础上,分模块画出程序流程图,设计PLC的梯形图。
要求具备以下能力:(1)熟练使用STEP7编程软件(2)查阅相关文献了解电梯变频控制系统的组成及原理(3)基于 S7-200 PLC 和 FR-A540 通用变频器的实现六层电梯的控制,并运用与之相配的STEP7编程软件,通过STL和LAD两种编程语言编制控制程序。
指导教师签字:┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊摘要电梯是高层建筑不可缺少的垂直方向的交通运输工具。
由于传统的电梯运行逻辑控制系统采用的是继电器逻辑控制线路。
采用这种控制线路,存在易出故障、维护不便、运行寿命较短、占用空间大等缺点。
从技术发展来看,这种系统将逐渐被淘汰。
随着电梯拖动技术、控制技术的快速发展,电梯已从直流电动机拖动到交流单速、交流双速电动机驱动,到交流调压调速控制,发展到交流调压调频技术控制,其逻辑控制也由PLC代替原来的继电器控制,使得电梯运行的可靠性、安全性、舒适感、平层精度、运行速度、节能降耗、降低噪音等方面得到了极大的发展。
新制造的电梯都采用了对电动机实现线性调速的调压调频技术,由于vwF电梯采用微机控制,有完善的自检测、自诊断、自保护功能,因而十分安全可靠。
在研究电梯基本结构的基础上,阐述了电梯的拖动原理和控制原理,重点分析了电梯改造中如何用变频器和PLc来完善电梯控制系统,研究并提出了基于PLc和变频器的电梯控制系统的实现方案,利用FR-A540型变频器可编制速度曲线的特点为电梯舒适度的提高,提供了技术支持。
基于PLC的电机控制系统设计
目录目录 (1)第一章绪论 (3)1.1研究背景及意义 (3)1.2相关技术简介 (3)1.2.1变频器的应用与发展概况 (3)1.2.2 PLC技术 (5)1.3本文设计的主要内容 (6)第二章变频调速原理 (6)2.1变频器基本结构 (6)2.2 变频调速的基本原理 (7)2.3 变频调速的优点 (10)第三章 PLC技术 (12)3.1 PLC概述 (12)3.2 PLC的组成及各部分作用 (12)3.3 PLC的工作原理 (15)第四章实验系统的设计 (17)4.1系统设计功能分析 (17)4.2 PLC和变频器的选择 (17)4.2.1SIMATIC S7-200介绍 (17)4.2.2 SIMATIC MICROMASTER420变频器性能介绍 (21)4.3 闭环系统设计 (22)4.3.1 系统硬件设计 (23)4.4 多段速控制设计 (28)4.4.1 硬件设计 (28)4.5软件设计 (30)4.5.1 编程软件介绍 (30)4.5.2闭环程序设计 (31)4.5.3 多段速程序设计 (34)第五章实验调试和数据分析 (36)5.1 闭环系统 PID参数整定 (36)5.2 多段速控制分析 (38)第六章总结与体会 (38)参考文献 (39)致谢 (39)第一章绪论1.1研究背景及意义调速系统快速性、稳定性、动态性能好是工业自动化生产中基本要求。
在科学研究和生产实践的诸多领域中调速系统占有着极为重要的地位特别是在国防、汽车、冶金、机械、石油等工业中,具有举足轻重的作用。
调速控制系统的工艺过程复杂多变,具有不确定性,因此对系统要求更为先进的控制技术和控制理论。
可编程控制器(PLC)可编程控制器是一种工业控制计算机,是继续计算机、自动控制技术和通信技术为一体的新型自动装置。
它具有抗干扰能力强,价格便宜,可靠性强,编程简朴,易学易用等特点,在工业领域中深受工程操作人员的喜欢,因此PLC已在工业控制的各个领域中被广泛地使用。
《2024年基于PLC的变频调速电梯系统设计》范文
《基于PLC的变频调速电梯系统设计》篇一一、引言随着科技的不断发展,电梯的智能化和自动化已经成为现代建筑的重要组成部分。
基于PLC(可编程逻辑控制器)的变频调速电梯系统,因其高效率、高稳定性以及优秀的调速性能,在电梯控制系统中得到了广泛应用。
本文将详细介绍基于PLC的变频调速电梯系统的设计,包括其原理、特点、设计思路及实施方法等。
二、系统概述基于PLC的变频调速电梯系统主要由PLC控制器、变频器、电机、编码器等部分组成。
其中,PLC控制器负责接收来自乘客的指令信号,经过逻辑运算后输出控制信号给变频器;变频器根据接收到的信号调整电机的电源频率,实现电机的调速;编码器则负责检测电机的实际运行状态,将信息反馈给PLC控制器,实现闭环控制。
三、系统设计原理及特点1. 设计原理:本系统采用PLC作为核心控制器,通过读取乘客的指令信号,如楼层选择、开关门等,进行逻辑运算后输出控制信号。
变频器根据PLC的控制信号调整电机的电源频率,实现电机的调速。
同时,编码器实时检测电机的运行状态,将信息反馈给PLC控制器,实现闭环控制。
2. 特点:(1)高效率:采用变频调速技术,能够根据实际需求调整电机转速,提高能源利用效率。
(2)高稳定性:PLC控制器的逻辑运算速度快,且具有较高的抗干扰能力,保证系统的稳定运行。
(3)调速性能好:通过改变电机电源频率实现无级调速,调速范围广,响应速度快。
(4)维护方便:系统采用模块化设计,便于维护和检修。
四、设计思路及实施方法1. 设计思路:首先,根据电梯的实际需求和运行环境,确定系统的总体架构和主要组成部分。
其次,选择合适的PLC控制器、变频器和电机等设备。
然后,进行电路设计、程序设计及调试等工作。
最后,进行系统联调,确保系统的稳定性和可靠性。
2. 实施方法:(1)硬件设计:根据系统需求选择合适的PLC控制器、变频器、电机、编码器等设备,并进行电路设计和布线。
(2)程序设计:编写PLC控制程序,实现电梯的逻辑控制、信号采集和反馈等功能。
基于PLC数字量方式的变频器的调速控制
基于PLC数字量方式的变频器的调速控制作者:张树焦健来源:《科技资讯》 2012年第14期张树焦健(河北港口集团有限公司教育培训中心职业高中河北秦皇岛 066000)摘要:随着自动控制技术的发展,交流调速系统基本取代了直流电动机调速系统,该领域迫切需要掌握变频器应用技能的电气技术工人。
本文以在电气传动系统中广泛采用的变频器控制的交流调速系统为例,分析设计了基于PLC数字量方式控制变频器调速的实训方案。
关键词:变频器调速数字量 PLC中图分类号:TN77 文献标识码:A 文章编号:1672-3791(2012)05(b)-0035-021 基于PLC数字量方式控制变频器调速的现实意义随着现代电子技术的飞速发展,变频调速节电器以其卓越的功能在各个领域得到越来越广泛的应用,在不到20年的时间里,已被国内外公认为是最理想、最有发展前途的一种调速方式了。
在电力拖动领域,解决好电动机的无级调速问题具有十分重要的意义。
随着职业教育的改革,以就业为目标,突出技能,强调与岗位衔接,注重增加相关实训内容,培养学生解决实际问题的能力,成为职业院校培养人才的目标。
现代工矿企业尤其是港口运动机械大多采用变频器驱动电机,并通过操作机构和各种终端保护实现多段速控制的应用较多。
熟悉变频器的基本操作和控制,为学生将来更好更快地适应工作岗位打下基础。
2 基于PLC数字量方式控制变频器调速控制的重点与难点对于想要实现基于PLC数字量方式控制变频器调速,首先需要学员掌握变频器外部控制端子的功能和控制方式,熟悉PLC的编程,在此基础上了解变频器在外部运行模式下的操作方式,最后结合港口装卸设备对电动机械的运行和控制要求,着重讲解多段速变频调速的使用及设置,并通过实训使学员掌握科学、正确的设计方法。
在讲解与操作过程中要注意强调该应用的实际意义,引入PLC开关量控制时要引导学员自行分析出开关量和变频器外部端子控制方式的相通之处,利用PLC程序实现将端子控制方式转换为数字量方式控制。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
目录1 绪论 (1)1.1课题的背景 (1)1.1.1 电机的起源和发展.............................. 错误!未定义书签。
1.1.2 变频调速技术的发展和应用...................... 错误!未定义书签。
1.2本文设计的主要内容................................ 错误!未定义书签。
2 变频调速系统的方案确定 (4)2.1变频调速系统 (4)2.1.1 三相交流异步电动机的结构和工作原理 (4)2.1.2 变频调速原理 (4)2.1.3 变频调速的基本控制方式 (5)2.2系统的控制要求 (6)2.3方案的确定 (6)2.3.1 电动机的选择 (6)2.3.2 开环控制的选择 (7)2.3.3 变频器的选择 (7)4 变频调速系统的硬件设计 (8)4.1S7-200PLC (8)4.2M ICRO M ASTER420变频器 (8)4.3外部电路设计 (9)4.3.1 变频开环调速 (9)4.3.2 数字量方式多段速控制 (11)4.3.3 PLC、触摸屏及变频器通信控制 (12)5 变频调速系统的软件设计 (14)5.1编程软件的介绍 (14)5.2变频调速系统程序设计 (15)6 触摸屏的设计 (23)6.1触摸屏的介绍 (23)6.2MT500系列触摸屏 (25)6.3触摸屏的设计过程 (26)6.3.1 计算机和触摸屏的通信 (26)6.3.2 窗口界面的设计 (27)6.3.3 触摸屏工程的下载 (31)7 PLC系统的抗干扰设计 (33)7.1 变频器的干扰源 (33)7.2干扰信号的传播方式 (33)7.3 主要抗干扰措施 (34)7.3.1 电源抗干扰措施 (34)7.3.2 硬件滤波及软件抗干扰措施 (34)7.3.3 接地抗干扰措施 (34)结论 (36)致谢 ................................................. 错误!未定义书签。
参考文献 .. (37)绪论课题的背景最先制成电动机的人是德国的雅可比,在两个u型电磁铁中间,装一六臂轮,每臂带两根棒型磁铁。
通电后,棒型磁铁与u型磁铁之间产生相互吸引和排斥作用,带动轮轴转动。
后来,雅可比做了一具大型的装置安在小艇上,用320个丹尼尔电池供电,1838年小艇在易北河上首次航行,时速只有2.2公里,与此同时,美国的达文波特也成功地制出了驱动印刷机的电动机,印刷过美国电学期刑《电磁和机械情报》,但这两种电动机都没有多大商业价值,用电池作电源,成本太大、不实用。
直到第一台实用直流发动机问世,电动机被广泛应用。
1870年比利时工程师格拉姆发明了直流发电机,在设计上,直流发电机和电动机很相似。
后来,格拉姆证明向直流发动机输入电流,其转子会象电动机一样旋转。
于是,这种格拉姆型电动机大量制造出来,效率也不断提高。
与此同时,西门子开始着手研究由电动机驱动的车辆,于是西门子公司制成了世界电车。
1879年,在柏林工业展览会上,西门子公司不冒烟的电车赢得观众的一片喝彩。
西门子电机车当时只有3马力,后来美国发明大王爱迪生试验的电机车已达12─15马力,但当时的电动机全是直流电机,只限于驱动电车。
1888年南斯拉夫出生的美国发明家特斯拉发明了交流电动机。
它是根据电磁感应原理制成,又称感应电动机,这种电动机结构简单,使用交流电,无需整流,无火花,因此被广泛应用于工业的家庭电器中,交流电动机通常用三相交流供电。
1902年瑞典工程师丹尼尔森首先提出同步电动机构想。
同步电动机工作原理同感应电动机一样,由定子产生旋转磁场,转速固定不变,不受负载影响。
因此同步电动机特别适用于钟表,电唱机和磁带录音机。
当今世界,电机的发展已成为衡量一个国家现代化程度的标志之一。
近二十年来,科学技术突飞猛进。
随着电力电子技术、计算机技术和控制理论发展,电机调速技术得到迅速发展,使得电机的应用不再局限于工业应用而且在商业及家用设备等各个领域获得更加广泛的应用;而随着新材料如稀土永磁材料Nd-Fe-B、磁性复合材料的出现,更给电机设计插上翅膀,各种新型、高效、特种电机层出不穷。
这些都极大地丰富了电机理论,拓宽了电机的应用领域,同时也给电机设计和制造工艺提出更高的要求。
变频技术是近年来国际家电领域全面开发和应用的一项高新技术,它采用新型变频器,将50Hz的固定供电频率转换为30-130Hz的变化频率,实现电动机运转频率的自动调节,达到节能和提高效率的目的。
上个世纪80年代初,变频器实现了商品化。
在近20年的时间内,经历了由模拟控制到全数字控制和由采用BJT到采用IGBT两个大发展过程。
80年代初采用的BJT的PWM变频器实现了通用化。
到了90年代初,BJT通用变频器的容量达到了600KV A,400KV A以下。
前几年主开关器件开始采用IGBT,仅三、四年的时间,IGBT变频器的单机容量己达800IV A,随着IGBT容量的扩大,通用变频器的容量也将随之扩大。
变频器主电路中功率电路的模块化,控制电路采用大规模集成电路和全数字控制技术,结构设计上采用“平面安装技术”等一系列措施,促进了变频电源装置的小型化。
另外,一种混合式功率集成器件,采用厚薄膜混合集成技术,把功率电桥、驱动电路、检测电路、保护电路等封装在一起,构成了一种“智能电力模块”这种器件属于绝缘金属基底结构,所以防电磁干扰能力强,保护电路和检测电路与功率开关间的距离尽可能的小,因而保护迅速且可靠,传感信号也十分迅速。
电力电子器件和控制技术的不断进步,使变频器向多功能化和高性能化方向发展。
特别是微机的应用,为变频器多功能化和高性能化提供了可靠的保证。
人们总结了交流调速电气传动控制的大量实践经验,并不断融入软件功能。
日益丰富的软件功能使通用变频器的多功能化和高性能化为用户提供了一种可能,即可以把原有生产机械的工艺水平“升级”,达到以往无法达到的境界,使其变成一种具有高度软件控制功能的新机种。
目前出现了一类“多控制方式”通用变频器。
例如安川公司的VS616—G5变频器就有:无PG(速度传感器)V/f控制:有PG V/f控制:无PG矢量控制:有PG矢量控制等四种控制方式。
通过控制面板,可以控制上述四种控制方式中的一种,以满足用户的需要。
通用变频器经历了模拟控制、数字控制、数模混合控制,直到全数字控制的演变,逐步地实现了多功能化和高性能化,进而使之对各类生产机械、各类生产工艺的适应性不断增强。
最初通用变频器仅用于风机、泵类负载的节能调速和化纤工业中高速缠绕的多机协调运行等,到目前为止,其应用领域得到了相当的扩展。
如搬运机械,从反抗性负载的搬运车辆、带式运输机到位能负载的起重机、提升机、立体仓库、立体停车厂等都已采用了通用变频器。
各类切削机床直到高速磨床乃至数控机床、加工中心超高速伺服机的精确位置控制都己应用通用变频器。
本系统是通过可编程控制器控制三相交流异步电动机的调速功能。
具体内容如下:⑴在理论研究的基础上,对变频调速系统进行总体方案的设计。
⑵对变频调速系统进行硬件设计,包括变频器参数的设置、变频开环调速、多段速控制以及触摸屏通信方式的设计。
⑶在硬件设计的基础上,对变频调速系统进行软件设计,包括程序的编写和分析。
⑷实现调速系统的触摸屏设计。
⑸采用良好的抗干措施使系统更具稳定性。
第一章变频调速系统的方案确定1.1 变频调速系统1.1.1 三相交流异步电动机的结构和工作原理三相交流异步电动机是把电能转换成机械能的设备。
一般电动机主要由两部分组成:固定部分称为定子,旋转部分称为转子。
三相交流异步电动机的工作原理是建立在电磁感应定律、全电流定律、电路定律和电磁力定律等基础上的。
当磁极沿顺时针方向旋转,磁极的磁力线切割转子导条,导条中就感应出电动势。
电动势的方向由右手定则来确定。
因为运动是相对的,假如磁极不动,转子导条沿逆时针方向旋转,则导条中同样也能感应出电动势来。
在电动势的作用下,闭合的导条中就产生电流。
该电流与旋转磁极的磁场相互作用,而使转子导条受到电磁力,电磁力的方向可用左手定则确定。
由电磁力进而产生电磁转矩,转子就转动起来。
1.1.2 变频调速原理变频器可以分为四个部分,如图1.1所示。
通用变频器由主电路和控制回路组成。
给异步电动机提供调压调频电源的电力变换部分,称为主电路。
主电路包括整流器、中间直流环节(又称平波回路)、逆变器。
图1.1变频器简化结构图⑴整流器。
它的作用是把工频电源变换成直流电源。
⑵平波回路(中间直流环节)。
由于逆变器的负载为异步电动机,属于感性负载。
无论电动机处于电动状态还是发电状态,起始功率因数总不会等于1。
因此,在中间直流环节和电动机之间总会有无功功率的交换,这种无功能量要靠中间直流环节的储能元件—电容器或电感器来缓冲,所以中间直流环节实际上是中间储能环节。
⑶逆变器。
与整流器的作用相反,逆变器是将直流功率变换为所要求频率的交流功率。
逆变器的结构形式是利用6个半导体开关器件组成的三相桥式逆变器电路。
通过有规律的控制逆变器中主开关的导通和断开,可以得到任意频率的三相交流输出波形。
⑷控制回路。
控制回路常由运算电路,检测电路,控制信号的输入、输出电路,驱动电路和制动电路等构成。
其主要任务是完成对逆变器的开关控制,对整流器的电压控制,以及完成各种保护功能。
控制方式有模拟控制或数字控制。
1.1.3 变频调速的基本控制方式⑴普通控制型V/f通用变频器①普通控制型V/f通用变频器是转速开环控制,无需速度传感器,控制电路比较简单;电动机选择通用标准异步电动机,因此其通用性比较强,性价比比较高,是目前通用变频器产品中使用较多的一种控制方式。
②具有恒定磁通功能的V/f通用变频器为了克服普通控制型的V/f通用变频器对V/f的值进行调整的困难,如果采用磁通反馈,让异步电动机所输入的三相正弦电流在空间产生圆形旋转磁场,那么就会产生恒定的电磁转矩。
这样的控制方法叫做磁链跟踪控制。
由于磁链的轨迹是靠电压相加矢量得到的,所以磁链跟踪控制也叫做电压空间矢量控制。
⑵矢量控制方式矢量控制方式的基本思想是:仿照直流电动机的调速特点,使异步交流电动机的转速也能通过控制两个互相独立的直流磁场进行调节。
矢量控制方式分为无速度传感器的矢量控制和有速度传感器的转速或转矩闭环矢量控制。
无速度传感器的矢量控制。
它是对异步电动机进行单电动机传动的典型模式。
主要性能是:在1:10的速度范围内。
速度精度小于0.5%,转速上升时间小于100ms;在额定功率10%的范围内,采用电流闭环控制的转速开环控制。
工作模式可采用软件功能选择。
当工作频率高于额定频率的10%时,进入矢量控制状态。
转速的实际值可以利用由微型机支持的对异步电动机进行模拟的仿真模型来计算。