电力系统调压措施分析报告

合集下载

浅谈电力系统的调压措施

浅谈电力系统的调压措施

浅谈电力系统的调压措施1 改变发电机的励磁调压改变发电机的励磁电流,可以改变发电机的电动势和端电压。

为了减少用户端电压变化的幅度,可以采用在最大负荷时,增加发电机的励磁电流,提高发电机的端电压,从而升高用户的端电压;最小负荷时,减少发电机的励磁电流,降低发电机的端电压,从而降低用户的端电压。

发电机端电压的调节范围是其额定值的±5%,在此变动范围内,它能够以额定功率运行。

在发电机不经升压直接用发电机电压向用户供电的简单系统中,如供电线路不很长、线路上的电压损耗不很大,一般就借调节发电机励磁改变其母线电压。

但是发电机通过较长线路、多电压等级输电,此时最大、最小负荷时电压损耗之差往往大于5%;而发电机的机端负荷允许发电机的电压调整范围为5%~0,所以满足不了远方负荷的要求。

另外,在多机系统中,调整个别发电机的母线电压,实际上是改变发电机间无功分配,与无功备用、无功的经济分配有矛盾。

因此,发电机的调压仅作辅助措施。

2 改变变压器的变比调压改变变压器的变比调压就是根据调压要求适当选择变压器的分接头电压。

变压器的低压绕组不设分接头,双绕组变压器分接头设在高压绕组,三绕组变压器的高、中压绕组都设有多个分接头。

改变变压器的变比可以升高或降低次级绕组的电压。

它分两种方式,即无载调压和有载调压。

2.1 无载调压所谓无载调压,即是不带负荷调压,这种调压必须在变压器断开电源之后停电操作,改变变压器分接头,达到调整二次电压的目的。

因为无载调压时需要停电,所以这种调压方式适用于季节性停电的变(配)电站。

2.2 有载调压有载调压变压器可以在带负荷运行的条件下切换其分接头,而且调压范围也较无载调压变压器大,调压级数多,调压范围可达额定电压的20%~30%。

所以在110kV及以上变压器得到广泛应用,并在农网中也得到了大力推广。

从整个系统来看,改变变压器变比调压必须无功电源充足。

变压器本身不是无功电源,当系统中无功电源不足时,达不到调压要求。

电力系统中的电压稳定分析与调整

电力系统中的电压稳定分析与调整

电力系统中的电压稳定分析与调整电力系统的电压稳定性是指系统中的电压在经历各种外界扰动或负载变化后,能够保持在合理的范围内,不发生剧烈波动或失控的能力。

这是电力系统运行中非常重要且必须保证的一项指标。

电压稳定与供电质量密切相关,对用户的用电设备和电网设备的正常运行至关重要。

因此,电力系统中的电压稳定分析与调整是保障电力系统稳定运行的重要环节。

首先要进行电力系统中的电压稳定性分析。

电压稳定性分析是通过建立电压稳定分析模型,对电力系统中的各种动态、静态因素进行综合评估和分析,以确定系统是否存在电压稳定问题,找出电压稳定问题的根源。

电压稳定性分析的核心内容是动态稳定和静态稳定。

动态稳定性分析主要研究系统发生大扰动后的动态响应过程,如故障发生时的系统频率衰减和转子振荡,以及系统在故障后的恢复过程。

动态稳定性分析需要进行瞬态稳定分析和暂态稳定分析,重点关注系统中的发电机、变压器、传动系统等关键设备。

静态稳定性分析主要是研究系统的静态稳定问题,如电压幅值的变化、功率平衡失调、电力负载变化等。

静态稳定性分析需要对系统中各个节点的功率平衡进行评估,并进行电压裕度计算,以确定系统中的潜在电压稳定问题。

在电压稳定性分析的基础上,根据分析结果,需要进行相应的电压调整操作,以保证系统的电压稳定。

电压调整方法主要分为静态电压补偿和动态电压调整两种。

静态电压补偿主要通过调整发电机励磁电流、变压器的调压器和无功补偿装置等来实现。

通过提高或降低励磁电流,可以改变发电机的输出电压,从而调整系统中的电压水平。

调压器和无功补偿装置可以根据系统需求,调整变压器与系统之间的电压比例关系,提供无功电力的支持,以保持系统的电压稳定。

动态电压调整主要通过自动电压控制装置(AVR)和功率调整装置(PTC)等来实现。

AVR主要负责调整发电机的励磁电流,通过检测系统中的电压变化,控制发电机的励磁状态,使输出电压保持在合理范围内。

PTC则通过调节发电机的有功输出功率,来调整系统中的电压水平。

电力系统调压措施分析报告

电力系统调压措施分析报告

电压是衡量电能质量的重要技术指标,对电力系统的平安经济运行,保证用户平安生产和产品质量以及电气设备的平安和寿命具有重要影响。

19 世纪 70、80 年代法国、美国、瑞典、巴西、日本等国家相继发生电压崩溃性事故,这些以电压崩溃特征的电网瓦解事故每次均带来巨大的经济损失,同时也引起了社会的极大混乱。

电压崩溃是由系统运行中的电压偏移未能良好的进展调整演变而成。

任何电压偏移都会带来经济和平安方面的不利影响。

当系统出现故障时,电压会降低,如果不及时地采用合理有效的措施对电压进展调整,就会引起电压崩溃进而电网瓦解等重大灾难性事故。

因此,电压调整是保证电网平安可靠运行的重要方面之一。

保证用户处的电压接近额定值是电力系统运行调整的根本任务之一。

电力系统的运行电压水平取决于无功功率的平衡,系统中各种无功电源的无功输出应该满足〔大于或至少等于〕系统负荷和网络损耗在额定电压下对无功功率的需求,否那么电压就会偏离额定值,产生电压偏移。

此外为保证运行可靠性和适应无功功率的增长,系统还必须配置一定的无功备用容量。

系统的无功电源充足,即表现系统能运行在较高的电压水平;反之,系统无功缺乏就反映为运行电压水平偏低,需要装设无功补偿设备。

由于电力系统的供电区域幅员广阔,无功功率不适宜长距离传输,所以负荷所需的无功功率应尽量的分层分区就地平衡。

由无功功率平衡原理可知进展电压调整就是从补偿无功电源和减小网络无功损耗两个方面出发。

电力系统构造复杂且用电设备数量极大,电力系统的运行部门对网络中各母线电压及各种用电设备的端电压进展监视和调整是不现实的也是没有必要的。

因此,在电力系统中,运行人员常常选择一些有集中负荷的母线作为中枢点进展监视和控制,只需将中枢点电压控制在允许的电压偏移范围内,那么系统其它各处的电压质量也能根本满足要求。

一般可以选择作为电压中枢点的母线有: 1〕大型发电厂的高压母线。

2〕枢纽变电站的二次母线。

3〕带有大量地方负荷的发电厂母线。

电力系统调压措施分析报告

电力系统调压措施分析报告
根据电网的实际运行情况,合理安排运行方式,降低线路损耗和 变压器损耗。
优化调度策略
根据负荷预测和运行方式,优化调度策略,确保电力系统的稳定 性和可靠性。
06
CATALOGUE
结论与展望
研究结论
电力系统的电压调整对于保障电力系 统的稳定运行具有重要意义。
本研究通过理论分析和实验验证,证 明了调压措施的有效性和可行性。
综合调压方案
总结词
综合调压方案是结合多种调压措施来达到系统电压的全面优 化。
详细描述
综合调压方案通常包括改变发电机端电压、调整变压器分接 头和串联电容补偿等多种措施。通过综合运用这些措施,可 以更全面地优化系统电压,满足不同设备的需求。
04
CATALOGUE
电力系统调压效果评估
评估指标体系
电压合格率
常调压
在任何情况下都保持系统电压在额定值附近 ,以保持电力系统的稳定运行。
03
CATALOGUE
电力系统调压措施
改变发电机端电压调压
总结词
发电机端电压的改变直接影响电力系统的电压水平。
详细描述
通过调节发电机的励磁电流,可以改变发电机端电压,进而调整系统电压。但这 种方法仅适用于发电机的电压调整,对于其他设备的电压调整效果有限。
电力系统中电压的重要性
电压是电力系统中的重要参数,它的大小直接影响到电力 系统的稳定性和电能质量。
调压措施的意义
由于电力系统中的电压波动和变化会对设备和用户产生不 利影响,因此采取合理的调压措施对于保障电力系统的稳 定和电能质量具有重要意义。
研究目的和意义
研究目的
通过对电力系统调压措施的分析和研究,提出有效的调压方案,以保障电力系 统的稳定和电能质量。

电力系统的主要调压措施

电力系统的主要调压措施

电力系统的主要调压措施1、借改变发电机端电压调压特点:不用追加投资,调整方便。

应优先考虑。

由孤立发电厂直接供电的小系统或者机压负荷,调UG较易满足用户电压要求。

2、借改变变压器变比调压双绕组变压器的高压绕组和三绕组变压器的高、中压绕组都设有多个分接头。

分接头的调压方式为:停电调分接头一一无励磁调压(即普通)变压器。

带负荷调分接头一一有载调压变压器。

对应于变压器绕组额定电压UN的分接头常称为主接头或主抽头。

普通变压器的分接头数目:SN≤6300kVA,双绕组变压器的高压绕组有三个分接头:UN±5%,即1.05UN、UN、0.95UNSN>6300kVA,双绕组变压器的高压绕组有五个分接头:UN±2x2.5%三绕组变压器的高压绕组有多个分接头,中压绕组有三个分接头(UN±5%)有载调压变压器比普通变压器有更多的分接头,并且调节范围也大。

如:“软件园”变电所的变压器,SSZ-50000∕110±8x1.25%∕36.6±2x2.5%∕10.5kV双绕组降压变压器分接头的选择设高压侧实际电压为U1,变压器阻抗RT、XT已归算到高压侧,变压器低压绕组的额定电压为UT1,变压器高压绕组的分接头电压为UTH。

负荷变化时,^UT及U2都要变化,而分接头只能用一个,可以同时考虑最大、最小负荷情况:UTHmax-(U1maχ-∆UTmax)UT1∕U2maxUThmin=(U1min-AUTmin)UT1∕U2min然后取平均值:UTHav=(UTHmax+UTHmin)∕2根据计算的UTHav选择一个与它最接近的分接头,最后校验最大、最小负荷时低压母线的实际电压是否符合要求。

[例6-1]如下图,变压器阻抗RT+jXT=2.44+j40欧已归算到高压侧,最大、最小负荷时,通过变压器的功率分别为Smax=28+j14MVA和Smin=IO+j6MVA,高压侧的电压分别为UInIaX=IIOkV和U1nIin=I13kV,要求低压母线的电压变化不超过6.0〜6.6kV的范围,试选择分接头。

电力系统电压调整的方式与措施

电力系统电压调整的方式与措施

键词 】电压调整 电力系统 电能质量
力系统电压调整 的必要 性
电 压 是 电能 质 量 的重 要 指 标 。 电压 偏 移 过 就会直接影 响工 业、农业生产 的产量和质 会对 电力设备造成 损坏 ,严重会引起系统 电压崩 溃”,引发大范围停 电的严重后果 。 系统 电压 偏 高
种调压方法 ,取长补短,以使得调压效果最好。 选择 调压方 法 的原则 :首先 考虑 发 电机 调压。当无功充足时,优先考虑改变变压器变 比进行调压。当无功不足时,考虑采用无功补 低谷负荷时通过将 中枢点 电压 降低 的方式 去补 偿 设备。为能合理的选择 调压方法,要经过技 偿 电压损耗 的减少 。在系统采用逆 调压 时,高 术经济比较。所选方法不单在技术层面上有优 峰负荷时可将 中枢点 电压提高 5 % 倍的额 定电 势,能满足调整电压的要求,更要满足最佳经 压,低谷负荷时将其降至额定电压值。 济指标 。 经济上的最优方案就是折旧维修费用、 2 . 1 . 3恒 调 压 方 式 投资回收费用和电能损耗费用三个指标相加最 就 是 指 在 任 何 负 荷 下 都 保 持 不 变 的 电压 小 的 方 案 。
高,则按从高 电压到低 电压等级的顺序去切除 无 功 补 偿 设 备 3 . 2节假 日时的 系统 电压调 整

在节假 日时候系统 的电压普遍 是偏高 的, 电压普遍升高 的原因是系统的用 电负荷减少 , 个别地区的系统 电压严重下降很有可能是发 电 机事故或 电网 的联络线跳 闸造成的 。调度人员 应做好有功功率和无功功率的分区平衡工作,
2 . 2 . 4适当增大导线半径 大部 分老城 网 的都是 因为 导线 半径 小 电 阻大而导致 电网 电压损耗太大。因此,增加供 电线路线的半径是 重要 的改造 内容 。

电力系统调压措施

电力系统调压措施

电力系统调压措施随着电力系统的不断发展,电力负荷的种类和数量不断增加,对电力系统的电压要求也越来越高。

因此,为了保证电力系统的稳定性和可靠性,必须采取适当的调压措施。

本文将对电力系统中的几种常见调压措施进行详细介绍和阐述。

一、变压器调压变压器是电力系统中最重要的调压设备,主要分为有载调压和无载调压两种方式。

有载调压是指变压器在运行状态下进行电压调整,可以通过改变变压器分接头位置来实现。

这种方式可以在短时间内完成电压调整,且不会对负荷造成影响。

无载调压是指变压器在停电状态下进行电压调整,通常需要将变压器退出运行,然后改变分接头位置,再进行重新投运。

这种方式操作简单,但需要停电进行,会对用户造成一定的影响。

二、串联电容补偿调压串联电容补偿调压是指在电力系统中串联电容器的调压方式。

通过在电网上串联电容器,改变电网的电气特性,从而达到调整电压的目的。

这种方式具有调压效果明显、技术成熟、维护方便等优点,但同时也存在一定的缺点,如容量较大、易受谐波影响等。

在应用中需要结合实际情况进行考虑,合理配置电容器和电压控制装置。

三、自动调压装置自动调压装置是一种基于现代控制技术的电压调整装置,可以根据电力系统的电压波动情况自动调整电压。

这种装置通常由传感器、控制器和执行机构等组成,能够快速响应电压波动,提高电压的稳定性。

但同时,自动调压装置也存在一定的缺点,如成本较高、需要专业维护等。

四、改变电力系统的运行方式改变电力系统的运行方式也是常见的调压措施之一。

通过改变电力系统的接线方式、运行参数等,可以调整系统的电压水平。

例如,在电力系统中增加无功补偿装置、调整发电机组的出力等,都可以达到调整电压的目的。

这种方式适用于电力系统整体电压水平的调整,但需要综合考虑电力系统的安全性和经济性等因素。

五、调整负载的运行特性调整负载的运行特性也是调压措施之一。

通过改变负载的功率因数、运行方式和控制方式等,可以调整电力系统的电压水平。

电力系统电压调整的措施

电力系统电压调整的措施

电力系统电压调整的措施
电力系统电压调整是确保电力供应稳定和保障设备正常运行的重要措施之一。

以下是常见的电力系统电压调整措施:
1.发电机调压器控制:发电机调压器是调整发电机输出电压的关键设备。

通过控制调压器的输出电压,可以调整发电机的电压,以满足电力系统的需求。

2.变压器控制:在输电过程中,变压器起到调整电压的作用。

通过调整变压器的变比,可以实现对电压的调整。

控制系统根据电网的负荷情况来调整变压器的变比,以保持正常的电压水平。

3.无功补偿设备:无功补偿设备,如无功补偿容器和STATCOM(静止同步补偿器),可以对电压进行补偿控制。

通过投入或退出无功补偿设备,可以调整系统的无功功率,并间接影响电压水平。

4.电力调度和功率平衡:电力系统的运营人员通过电力调度和功率平衡来控制电压。

根据负荷的变化和供需情况,调整发电机出力和负荷调度,以保持电力系统的稳定和电压水平的合理范围。

5.电压稳定控制器:电压稳定控制器是用于监测和自动调整电压的设备。

通过采集电网的电压信息,并根据预设的控制策略,自动调整发电机的励磁、变压器的变比以及无功
补偿设备的投入与退出,以维持电力系统的电压稳定。

调整电力系统电压的措施

调整电力系统电压的措施

调整电力系统电压的措施电力系统电压调整是电网运行过程中常见的问题,如果电压偏高或偏低都会对电网系统的稳定性和安全性产生影响。

因此,为保障电网的正常运行,需要采取一些措施来调整电力系统电压,下面就是一些常见的措施:1. 调整发电机的励磁电流在电力系统中,发电机的励磁电流会对电压产生影响。

当电压偏低时,要增加发电机的励磁电流,以提高发电机电压。

当电压偏高时,要减小发电机的励磁电流,以降低发电机电压。

因此,调整发电机的励磁电流是调整电力系统电压的重要手段之一。

2. 调节变压器的输出电压变压器是电力系统中常用的电压调整设备之一,通过调节变压器的输出电压,可以对电力系统的电压进行调整。

当电压偏低时,要增加变压器的输出电压;当电压偏高时,要减小变压器的输出电压。

调节变压器的输出电压可以通过调整变压器的控制电路或调整变压器的连接组数来实现。

3. 调整无功补偿装置在电力系统中,无功补偿装置可以用来调整电网系统的电压。

当电压偏低时,可以通过启动无功补偿装置来提高电网的电压。

当电压偏高时,可以通过关闭无功补偿装置来降低电网的电压。

因此,使用无功补偿装置可以有效地调整电力系统的电压。

4. 调整负荷负荷大小是影响电力系统电压的因素之一。

当负荷过大时,会导致电压下降;当负荷过小时,会导致电压升高。

因此,在调整电力系统电压时,需要根据实际负荷情况进行合理地调整。

对于负荷过大的情况,需要采取措施减小负荷;对于负荷过小的情况,需要采取措施增加负荷。

5. 定期进行检查和维护定期检查和维护电力设备是保障电力系统稳定运行的重要措施之一。

在检查和维护中,可以发现电力设备的故障和异常情况,及时采取措施进行修理和更换,以保证电力设备的正常运行。

定期维护还可以提高电力设备的使用寿命,降低故障率和维修成本,保障电力系统的安全可靠运行。

以上就是一些常见的调整电力系统电压的措施。

在电力系统的日常运行和维护中,需要根据实际情况合理地采取这些措施,保障电力系统的安全、稳定、可靠运行。

调整电力系统电压的措施

调整电力系统电压的措施

调整电力系统电压的措施
电力系统电压调整是电力系统运行中的重要环节,它不仅影响着电力
系统的安全运行,而且也影响着电力系统的经济运行。

因此,电力系
统电压调整措施的科学性和合理性对于电力系统的安全运行和经济运
行至关重要。

首先,电力系统电压调整措施应该以系统安全为前提,确保电力系统
的安全运行。

电力系统的电压调整措施应该符合电力系统的设计要求,确保电力系统的安全运行,避免发生电力系统的故障和事故。

其次,电力系统电压调整措施应该以系统经济运行为目标,确保电力
系统的经济运行。

电力系统的电压调整措施应该符合电力系统的经济
运行要求,确保电力系统的经济运行,有效地提高电力系统的运行效率,降低电力系统的运行成本。

此外,电力系统电压调整措施应该考虑电力系统的可靠性,确保电力
系统的可靠运行。

电力系统的电压调整措施应该符合电力系统的可靠
性要求,确保电力系统的可靠运行,有效地提高电力系统的可靠性,
确保电力系统的安全运行。

最后,电力系统电压调整措施应该考虑电力系统的环境保护,确保电
力系统的环境友好。

电力系统的电压调整措施应该符合电力系统的环
境保护要求,确保电力系统的环境友好,有效地减少电力系统的环境
污染,保护电力系统的环境质量。

总之,电力系统电压调整措施应该以系统安全、经济运行、可靠性和
环境保护为目标,确保电力系统的安全运行、经济运行、可靠运行和
环境友好。

只有采取合理的电力系统电压调整措施,才能保证电力系统的安全运行和经济运行,提高电力系统的可靠性和环境友好性。

电力系统电压调整的方式与措施

电力系统电压调整的方式与措施

电力系统电压调整的方式与措施系统电压是电能质量的首要指标,其过高或过低对电网及用户均有危害。

随着发展,电力用户对电能质量的要求越来越高。

本文从系统电压调整的必要性、措施及分时段的调整的方法几个方面进行论述,以便能更好地服务社会。

【关键词】电压调整电力系统电能质量1 电力系统电压调整的必要性电压是电能质量的重要指标。

电压偏移过大,就会直接影响工业、农业生产的产量和质量,会对电力设备造成损坏,严重会引起系统的"电压崩溃”,引发大范围停电的严重后果。

1.1 系统电压偏高1.1.1 系统电压偏高的原因伴随着电网的发展,超高压电网中大容量机组的直接并入,和超高压线路的投入,其充电功率大,致使超高旱缤内无功增大,导致主网系统电压升高。

1.1.2 电压过高构成的危害将促使接入电网的电气设备绝缘老化速度加快,减少使用寿命。

当电压过高时会造成变压器、电动机等铁芯过饱和,铁损增大,温度上升,降低寿命;也会影响产品质量,致使生产出不合格产品等。

1.2 系统电压偏低1.2.1 系统电压偏低的原因由于早期设计的供电及配电网络结构不尽合理,尤其是一部分线路送电距离较长,供电的半径较大,导线截面积较小,增大了线路电压损耗。

系统无功补偿设备投入不足是系统电压水平降低的根本原因。

变压器超负荷运行也会引起电压下降。

不合理地摆放变压器分接头位置、不合理的电网结线,负荷的功率因数低,运行方式改变及异常方式等,均能引起电网电压下降。

1.2.2 系统电压偏低的危害对发电机可能引起定子电流增大。

对异步电动机引起温升增加,降低效率,缩短寿命。

会导致照明亮度不足等。

会导致冶金等行业产品不合格。

系统的电压过低还可能造成系统振荡、解列以至于大范围停电,直接影响人们的生活和社会安全。

2 系统调整电压的方式与措施2.1 系统调整电压的方式2.1.1 顺调压方式所谓顺调压方式是指在高峰负荷时允许系统中枢点电压稍有降低,在低谷负荷时允许系统中枢点的电压稍有升高。

电力系统运行的电压质量及电压调整措施分析

电力系统运行的电压质量及电压调整措施分析

电力系统运行的电压质量及电压调整措施分析摘要:电压是电力资源中一项关键性变量,伴随社会经济水平的不断提高,城市化进程的脚步加快,对电压进行调整已经成为关系人们生产生活的重中之重。

电网的安全稳定运行方式包括电力系统内电源与承载力的电量均衡、核心电厂的主导线路的继电保护、电力系统中供电量高峰期调节等等。

文章针对电力系统运行的电压质量及电压调整措施分析进行了详细的阐述,内容仅供参考。

关键词:电力系统运行;电压质量;电压调整;措施分析引言一个高质量的电能可以确保出产的安全以及日子安稳,电压质量关于电能质量存在着决定性的一个效果,如果电压不安稳将会对机器设备的损耗比较大,简单导致机器呈现损害,产品质量也将会下降。

此外低质量的电压乃至是导致电路短路,引起严重的事端呈现,为出产的安全带来比较大的一个危险。

所以电力行业的作业人员特别是调度的员工必需要调整好电压的质量,然后确保电能质量合格。

1、为什么要确保电压质量高质量的电压能确保电气设备的安全安稳工作。

关于用电设备而言,额外电压是设备最理想的作业电压,也是最能确保电力体系工作质量的电压。

用电设备的额外电压等于体系的标称电压。

关于用户来说,如果设备的电压太高,超过了设备的额外电压,设备工作的功率过大,对机器的硬件耗费大,会缩短设备的工作寿数,并且会进步机器呈现故障的可能性,对用电安全确保有极大的潜在威胁;如果设备的工作电压过低,则存在电压不稳、电网工作功率低的状况,可能造成机器工作反常、设备失灵等状况,相同可能引发用电事端。

跟着现代电子设备的广泛运用和开展,对电力体系工作的电压质量要求越来越高、要求设备工作电压到达额外电压的程度越来越准确。

在电力工作体系内,电源供给负载的电功率有两种:一种是有功功率;另一种是无功功率,通常状况下,用电设备经过电源获得的是无功功率。

如果电网中的无功功率求过于供,用电设备就无法树立正常的电场,电网电压大幅下降,用电设备工作不灵,乃至可能造成电网崩溃。

电力系统调压措施

电力系统调压措施

电力系统调压措施1. 引言电力系统是现代工业和生活中不可或缺的重要基础设施。

为了保持电力系统的稳定运行,调压措施起着至关重要的作用。

电力系统调压是指通过不同的控制手段和技术手段,使电网中的电压保持在稳定的工作范围内。

本文将介绍电力系统调压的一些常见措施和方法。

2. 调压措施a. 发电机励磁调压发电机励磁调压是最常见的调压措施之一。

通过调整励磁电流和励磁电压,可以控制发电机的输出电压。

一般来说,当电压过高时,增加励磁电流可以降低电压;当电压过低时,则可以减小励磁电流以提高电压。

发电机励磁调压有两种基本方法:手动调整和自动调整。

手动调整需要人工干预,而自动调整则是通过自动控制系统实现。

b. 变压器调压变压器调压是另一种常用的调压措施。

在电力系统中,变压器可以用来改变电压的大小。

通过调整变压器的开关状态和变压比,可以控制电网中的电压。

例如,当电压过高时,可以将变压器调整为较高的变压比,从而降低输出电压;当电压过低时,则可以选择较低的变压比来提高输出电压。

c. 调压装置为了满足不同地区和用户的电压需求,电力系统中通常会配置调压装置。

调压装置主要包括调压变压器和调压开关等组件。

调压变压器可以根据需要改变输出电压,而调压开关则用于控制调压装置的开关状态。

通过调整调压装置的参数,可以实现对电网中电压的精确控制。

3. 调压方法a. 母线调压母线调压是一种常见的调压方法,通过改变母线的电压来影响整个电力系统的电压。

母线调压通常通过调整发电机的励磁电流和变压器的变压比来实现。

通过控制母线的电压,可以达到对电网中所有电压的整体调节。

b. 分区调压分区调压是指将电力系统划分为不同的区域,每个区域均配备有独立的调压装置。

通过分区调压,可以实现对每个区域中电压的独立控制。

这种方法通常用于大型电力系统,可以提高整个系统的稳定性和可靠性。

c. 直接调压直接调压是指直接对发电机的励磁电流进行调节,以调节电网中的电压。

这种方法常用于小型电力系统或特定的电力设备,可以快速响应电压的变化,并保持输出电压的稳定。

电力系统的调压措施浅析

电力系统的调压措施浅析
压器 , 可采 用 带负 荷 调 压 方式 。
电压特性如 曲线4 所示。如果此 时系统的无功 源输出没有相应增加, 电源
的无 功 电压 特 性 曲线 仍 为 曲线 1 , 这 时 曲线 1 与 曲线 4 的 交 点b , 就 代 表 新 的 无
功平衡 点, 并 由此决定负荷节点的电压为Ub 。显然U b < Ua , 这说 明, 负荷增 加后 , 系统无功 电源发出的无功功率 已不能满足系统在额定电压水平Ue 下 无功平衡的需要, 因而只能降低电压运行, 以期在较低电压水平 以下满足系 统无功平衡 。如果系统 内有充足的无功备用, 则可 以通过增加无功输 出, 使 系统 的无功 电压特性 曲线上移至曲线3 所示位 置,使 曲线3 与曲线4 的交点c 所确 定 的负 荷 节 点 电压 达 到 或 接近 额 定 电压u。由此 可 知 , 如 果系 统 的无 功 电源 比较充足, 能满足较高电压水平下无功平衡 的需要, 则系统就有较高的 电 压运 行水 平 : 反之, 无 功 不 足 时就 有 较 低 的 电压 运 行 水平 。
1 , 2 电压 调整 的 方法
( 2 )除上款外, 其他2 2 0 k v 及 以上变压器, 一般不宜采用带负荷调压方式。 ( 3 )对1 1 0 k v及以下的变压器, 宜考虑至少有一级 电压的变压器采用带
负荷 调 压 方式 。
于系统极度缺少无功功率的场合 , 是防止系统电压崩溃的有效措施 之一 。 2性能分析及适用范 围 2 . 1 发 电机 调 压 以改变发电机励磁 电流的方法来调节其端 电压。 目前 同步发电机普遍 装有 自动励磁调节设备, 自动 调节发电机 的端 电压、 分配无功功率以及 提高 发电机 同步运行 的稳定性。利用这种方法调压可 以充分利用发 电机本身具 有 的发 出或吸收无功功率的能力, 不需要 附加设备 , 从而不 需要 附加投 资。 但在实际生产 中,通过改变发 电机端电压 的调压措施往往只能满足电厂附 近地区负荷的调压要求, 对于远端负荷, 还需要其他调压措施的配合才能满 足 电压质量要求 。 在省级及 以上大区域 电网的无功调度中, 发电机是提供无 功 电源的主要设备。 保证发 电厂合理 的无功 出力, 对于维持周边母线的 电压 水平起着重要作用。在电压过高时, 可以让发 电机保持在进相运行的状态 , 吸收多余的无功功率 。 2 . 2发 电机 改 调相 运 行 调 压 发 电机作调相运行时指发电机不 向电网输送有功, 只向电网输送无功。 般 电力系统都有专 门的调相机 , 以补偿 系统无功的需要 , 也可采用水轮发

调整电力系统电压的措施

调整电力系统电压的措施

调整电力系统电压的措施电力系统电压的稳定性对于能源的输送以及电网的运营至关重要。

如果电压不稳定,可能会导致电网中出现大面积停电或者电器设备损坏等问题。

因此,电力系统运营中需要采取一些措施来调整和维护电压的稳定性。

以下是调整电力系统电压稳定性的措施:1. 误差补偿当电力系统中的设备出现偏差时,误差补偿可以帮助调整电压。

误差补偿是通过添加外部电源来补偿电压误差。

例如,当负载变化时,电压可能会产生变化。

这可能会导致电力系统中的电压过低或过高。

通过误差补偿,我们可以补偿这种电压偏差,从而维持电力系统的稳定性。

2. 电容器和感应器的使用电容器和感应器也可以用来调整电压。

这些组件可以通过向电力系统中添加或移除电容器和感应器来改变电压。

例如,电容器可以被用作电力系统中的电能储备器。

当负载变化时,电容器可以释放电能应对电压变化。

感应器也可以被用来调整电力系统中的电压。

感应器可以通过增加或减少电流来改变电压。

3. 变压器的使用变压器也是调整电力系统电压的重要工具。

变压器可以将电能从一处转移到另一处,并对电压进行调整。

例如,当电力系统中的电压过高时,变压器可以将电压降低到合适的水平。

同样的,当电压过低时,变压器也可以将电压升高到合适的水平。

4. 静态无功补偿静态无功补偿是一种调整电力系统电压的先进技术。

静态无功补偿可以通过控制电力系统中的无功功率来改变电压。

例如,当电力系统中的负载发生变化时,无功功率的需求也会随之变化。

通过静态无功补偿,我们可以控制无功功率的大小,并调整电力系统中的电压。

5. 电力系统的监控和控制监控和控制也是调整电力系统电压稳定性的重要手段。

通过对电力系统进行监控,我们可以及时发现电压问题,采取及时的措施进行调整。

例如,可以采用自动电压调节器(AVR)和电力控制系统(PCS)等技术来控制电力系统中的电压。

这些技术可以对电力系统进行实时监控,并自动采取措施调整电压。

总结一下,调整电力系统电压的措施有很多种,包括误差补偿、电容器和感应器的使用、变压器的使用、静态无功补偿以及电力系统的监控和控制等。

关于电力调度对电网无功及电压的调整方式分析

关于电力调度对电网无功及电压的调整方式分析

关于电力调度对电网无功及电压的调整方式分析摘要:电网无功补偿在电力系统中起到很重要的宏观调节作用,可以提高电网的功率因数,增加变电设备的效率,减少高压输电线路无用功,从而提高供电效率。

如果某个供电区域能合理地配备无功补偿装置并采取合理的补偿方案,就能最大限度地减少线损,提高供电可靠性;反之,如果设备选择不当,则会造成区域性电压波动,产生较大的谐波,导致事故的发生。

关键词:电力调度;电网;无功;电压一、无功调整基本原则1)电网无功功率在保证电压质量、降低电能损耗的前提下,实行分层、分区就地平衡的原则。

应尽可能使无功功率就地供应,避免通过长距离线路输送无功功率。

局部电网无功功率不足时,应先就地调整,无法调整时,再由电网调整。

2)发电机运行功率因数应按电网要求进行调整。

3)新投运发电机组应具备在有功功率额定时,功率因数进相0.95运行的能力。

对已投运的发电机组,有计划地进行进相运行的试验。

4)由市调直接调度的具有进相运行能力的发电机组,其运行方式的改变按值班调度员的命令执行。

5)无功补偿设备应按照电网无功功率优化计算结果优化配置,提高无功补偿设备的最优运行能力。

6)220 k V及以下电网的无功电源总容量应大于最大自然无功负荷,一般按1.15倍计算。

7)200 k V及以下电网在主变压器最大负荷时,其二次侧功率因数或由电网发出的无功功率与有功功率比值的正常范围。

8)直供变电站,当供电线路距离较近时,功率因数应该取自表中低值,其他情况应取高值。

9)无功补偿设备应视需要投入运行,以主变压器高压侧不向电网倒送无功功率为原则,只有当母线电压超出正常范围,且已无法调整时才能停运。

10)各级调度应根据电网的负荷、潮流变化及设备的技术状况及时调整运行方式,缩短供电半径,减少迂回供电,降低线损,实现电网经济运行。

二、电压调整基本原则电网电压调整实行逆调压:用电高峰时将区域各个母线电压调到电压越限范围的最大值,以保证供电线路末端的供电可靠性;用电低谷时将区域母线电压调到电压越限范围的最小值,以确保供电线路前端线路的供电可靠性。

简述调压措施及适用情况

简述调压措施及适用情况

简述调压措施及适用情况以简述调压措施及适用情况为标题,写一篇文章。

调压措施是指在不同的工程领域中,为了满足设备和系统的工作要求,采取的一系列措施,以稳定和调节电压的大小。

调压措施广泛应用于电力系统、电子设备、自动控制系统等领域,以确保设备和系统的正常运行。

在电力系统中,调压措施是必不可少的。

电力系统中的电压波动和电压失调会给设备带来不良影响,甚至导致设备损坏。

为了解决这个问题,调压措施被广泛应用。

其中一种常见的调压措施是使用变压器。

变压器可以通过变换线圈的匝数比例来调整电压的大小。

通过合理选择变压器的参数,可以将输入电压调整到所需的输出电压范围内。

此外,还可以使用稳压器来稳定电压。

稳压器可以根据输入电压的变化自动调整输出电压的大小,以保持输出电压的稳定性。

在电子设备中,调压措施也是非常重要的。

电子设备对电压的稳定性要求比较高,因为电压的波动会对设备的正常工作产生影响。

为了保证设备的正常运行,常常会使用稳压芯片。

稳压芯片可以通过控制电流的大小来调节输出电压的大小,以达到稳压的目的。

此外,还可以使用滤波电路来滤除电压中的噪声和干扰,以保证电压的稳定性。

在自动控制系统中,调压措施是确保系统正常运行的关键之一。

自动控制系统中的各个部件对电压的要求不同,因此需要采取相应的调压措施。

常见的调压措施包括使用稳压电源和调节器。

稳压电源可以提供稳定的电压输出,以满足各个部件的工作要求。

调节器可以根据系统的需要,调整电压的大小和波动范围,以确保系统的稳定性和可靠性。

除了以上提到的领域,调压措施还广泛应用于许多其他工程中。

例如,电力变频器可以通过调整输入电压的频率和幅值来控制输出电压的大小和波动范围,以满足不同设备的工作要求。

此外,还可以使用稳压器、稳定器和滤波器等设备来实现调压的目的。

调压措施是各个工程领域中的重要环节,它可以确保设备和系统的正常运行。

根据不同的应用领域和要求,可以选择合适的调压措施。

无论是电力系统、电子设备还是自动控制系统,调压措施都是不可或缺的。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

电力系统调压措施分析报告电压是衡量电能质量的重要技术指标,对电力系统的安全经济运行,保证用户安全生产和产品质量以及电气设备的安全和寿命具有重要影响。

19世纪70、80年代法国、美国、瑞典、巴西、日本等国家相继发生电压崩溃性事故,这些以电压崩溃特征的电网瓦解事故每次均带来巨大的经济损失,同时也引起了社会的极大混乱。

电压崩溃是由系统运行中的电压偏移未能良好的进行调整演变而成。

任何电压偏移都会带来经济和安全方面的不利影响。

当系统出现故障时,电压会降低,如果不及时地采用合理有效的措施对电压进行调整,就会引起电压崩溃进而电网瓦解等重大灾难性事故。

因此,电压调整是保证电网安全可靠运行的重要方面之一。

保证用户处的电压接近额定值是电力系统运行调整的基本任务之一。

一、电压调整的基本原理电力系统的运行电压水平取决于无功功率的平衡,系统中各种无功电源的无功输出应该满足(大于或至少等于)系统负荷和网络损耗在额定电压下对无功功率的需求,否则电压就会偏离额定值,产生电压偏移。

此外为保证运行可靠性和适应无功功率的增长,系统还必须配置一定的无功备用容量。

系统的无功电源充足,即表现系统能运行在较高的电压水平;反之,系统无功不足就反映为运行电压水平偏低,需要装设无功补偿设备。

由于电力系统的供电区域幅员广阔,无功功率不适宜长距离传输,所以负荷所需的无功功率应尽量的分层分区就地平衡。

由无功功率平衡原理可知进行电压调整就是从补偿无功电源和减小网络无功损耗两个方面出发。

二、电压调整的三种基本方式电力系统结构复杂且用电设备数量极大,电力系统的运行部门对网络中各母线电压及各种用电设备的端电压进行监视和调整是不现实的也是没有必要的。

因此,在电力系统中,运行人员常常选择一些有集中负荷的母线作为中枢点进行监视和控制,只需将中枢点电压控制在允许的电压偏移范围内,则系统其它各处的电压质量也能基本满足要求。

一般可以选择作为电压中枢点的母线有:1)大型发电厂的高压母线。

2)枢纽变电站的二次母线。

3)带有大量地方负荷的发电厂母线。

以上电压中枢点的共同点是均能反映和控制整个系统网络的电压水平根据中枢点所管辖电力网中负荷的变化程度和负荷分布范围,对中枢点调压方式提出原则性要求,以确定一个大致的电压变化范围。

电压中枢点调压方式有逆调压、顺调压、常调压(也称恒调压)三种类型。

1)逆调压:主要适用于线路较长,负荷变化较大的大型电力网络。

在最大负荷时要提高中枢点的电压,相较于线路额定电压高5%,以抵偿线路上因负荷增大而增大的线路损耗;在最小负荷时要将中枢点的电压降低,使之与线路额定电压相等,防止因负荷低而引起电压过高。

逆调压方式要求最高,实现较难,需要在中枢点配备较贵重和先进的调压设备。

2)顺调压:主要适用于线路不长,负荷变化很小,线路上的电压损耗也较小的小型网络。

在最大负荷时,允许电压降低,但不得低于线路额定电压的102.5%;在最小负荷时,允许电压升高,但不高于线路额定电压的107.5%。

顺调压是一种较低的调压要求,最易实现,一般通过普通变压器分接头就可实现。

3)常调压:主要适用于一天24h内,负荷变化不大,线路电压损耗也较小的中型网络。

此时只要将中枢点电压保持在较线路额定电压高2%-5%的数值范围内即可,不必随负荷变化来调整中枢点电压。

常调压方式较逆调压方式要求较低,一般可不装设贵重的调压设备,利用普通变压器的分接头选择或装设静电电容器就可以达到要求。

以上三种调压方式均是在系统正常运行时的要求。

当系统发生故障时,因电压损耗比正常时大,所以电压质量要求允许降低一些,负荷点的电压偏移允许较正常时再增大5%。

三、现代电力系统中使用的调压措施分析在电力系统中,电源的无功功率输出在任何时刻都同负荷的无功功率和网络的无功损耗之和相等,充足的无功功率才能保证优质的电压水平。

调整负荷点的电压,可以有三类主要措施:1)调节发电机的励磁电流以改变发电机端电压;2)通过调节变压器分接头改变变比;3)改变电力网络参数和无功功率分布减小电压损耗。

1.调节发电机励磁电流改变机端电压发电机是电网中调整运行电压的重要设备。

发电机不仅是有功电源,也是无功电源。

通过调节发电机的励磁电流可以调节发电机端电压,当负荷大时,电网电压损耗较高,用户端电压较低,可以增加发电机励磁电流来增大发电机电势,从整体上提高网络的电压水平,提高电压稳定性;当负荷小时,电网电压损耗降低,用户端电压过高,可以减小发电机励磁电流来降低发电机电势,进行进相运行。

适用环境:1)由孤立发电厂不经升压直接供电的小型电力网,因供电线路不长,线路上电压损耗不大,发电机调压是最方便且最经济的调压方式,不需要额外投资调压手段。

2)对于线路较长、供电范围较大、有多级变压的供电系统,发电机调压只能满足发电厂近处地方负荷的电压质量要求,发电机端电压在最高负荷时提高5%,最小负荷时保持与额定电压相等。

存在问题:在有若干发电厂并列运行的电力系统中,调节个别发电厂的母线电压,会引起系统中无功功率的重新分配,这可能同无功功率的经济分配产生矛盾。

所以在大型电力系统中,发电机调压只作为辅助调压措施。

2.调节变压器分接头通过调整变压器分接头档位可以调节变压器二次侧的电压,可以改善局部地区电压。

主要有无载调压和有载调压两种方式。

1)无载调压:即不带负荷调压。

这种调压方式一定要在变压器断开电源后进行操作,及时调整变压器的分接头来调整二次侧电压,不能改变电压损耗的数值和负荷变化是次级电压的变化幅度。

此种调压方式只能适用于季节性停电的变电站和配电所。

2)有载调压:利用有载调压变压器载负荷条件下切换分接头的调压方法,根据不同的负荷大小来选择合适分接头,可缩小电压变化幅度并改变电压变化趋势。

其调节范围比较大,一般在15%以上,能够在电力网电压变化和负荷变化时,不停电快速的调节分接头满足调压要求,保证了二次侧供电可靠性。

OLTC价格较高运行维护复杂,一般在枢纽变电站。

两电力网间联络变电站和负荷变化大或调压要求高的的变电所中配备。

存在问题:实际运行中,由于负荷峰谷差较大,需要频繁的调整分接头,这时不仅会引起电压的波动,也会影响设备的寿命。

变压器调压的前提条件是系统无功充足,当系统无功不足时,当某一地区电压由于变压器分接头改变而升高后,该地区所需的无功功率也增大了,这就可能扩大系统的无功缺额。

从而导致整个系统的电压水平更加下降,严重的还会导致电压崩溃,这是变压器的负调压作用。

这种情况下应该装设无功功率补偿设备。

3.改变电力网络参数和无功功率分布减小电压损耗3.1并联同步调相机同步调相机相当于空在运行的同步电动机。

在过励磁运行时,可向系统提供感性无功功率,提高系统电压,起无功电源的作用;在欠励磁运行时,可以吸收系统的感性无功,降低系统电压,起无功负荷的作用。

装有自动励磁调节装置的同步调相机能根据装设地点的电压数值平滑的改变运行状态,吸收或输出无功功率,进行电压调节。

同步调相机有很高的过载能力,在系统故障时,可以强行励磁调整系统电压,提高系统稳定性。

适用环境:在我国,常装设在枢纽变电站,以便平滑调节电压和提高系统稳定性。

在国外,很少采用同步调相机,而改用静止补偿器。

存在问题:维护比较复杂,有功功率损耗较大,载满负荷时约为额定容量的1.5%、5%,容量越小百分值越大,故小容量的调相机每kVA容量投资费用大。

同步调相机一般大容量集中使用,容量小于5。

kVA一般不装设。

3.2并联电抗器并联电抗器是接在高压输电线路上的大容量电感线圈,其作用是补偿高压输电线路的电容和吸收无功功率,防止由于线路轻载而引起线路过电压。

在超高压线路上一般均要装设并联电抗器。

3.3并联静电电容器静电电容器可以吸收系统的容性无功功率,换言之,就是可以向电力系统提供感性无功功率,充当无功电源。

供给的无功功率QC值与所在节点的电压平方成正比,即:QC=V2/XC(XC=1/。

C为静电电容器的容抗)适用环境:静电电容器的装设容量可大可小,既可集中使用,又可以分散装设来供应无功功率,降低损耗。

电容器每单位容量的投资费用较小且与总容量大小无关,维护比较方便,一般在变电所中均有装设,在运行中,将电容器连接成若干组,根据负荷变化,分组投入和切除。

存在问题:1)补偿容量受节点电压影响,当系统发生故障或由于其他原因引起电压下降时,电容器无功输出的减小将导致电压继续下降,无功调节性能较差;2)由于静电电容器在运行时是分组投切,补偿容量调节不连续;3)负荷增长是通过并联电容补偿的增加来满足电压约束,当增加到一定程度时,系统会出现病态。

3.4串联电容器线路串联补偿电容器的实质是以容性电抗补偿线路的感抗,改变线路参数X,使电压损耗中的QX/V分量减少。

线路串联电容器,既可以用于提高末端电压,改善电压质量;也用于加强线路两端电气联系,缩小两端的相角差,提高网络的功率传输能力进而提高静稳定极限,提高了系统运行的稳定性。

适用环境:串联电容器调节电压一般主要用于较低电压等级,如110kV及以下且仅一端有电源的分支线;在实际运行中,联电容器主要用于较高电压级,如220kV及以上,两端有电源的主干线来提高线路输送容量,提高系统稳定性。

早期用固定串联补偿器提高线路输送容量,现在晶闸管可控串联补偿器是主要的FACTS装置。

3.5切去部分负荷调压当系统发生了紧急事故电压急剧下降时,上述措施不能采取或者上述措施调节电压的速度不够快速时,应该考虑按照低频减载的原则,按照负荷裕度切去部分负荷,以保证整个系统的安全运行。

四、总结利用各种措施对电压调节是电力系统中保证电网安全和用户电能质量的重要任务之一,由于无功功率不能远距离传输,实现电压无功的分层分区控制与无功就地平衡是电力系统无功调节的基本原则,熟悉各种调压措施的性能,在不同场合下根据实际情况采用有效经济的调压措施,有利于有效地进行电压无功管理,保证电压质量,使系统无功分布均匀,降低有功损耗。

【本文档内容可以自由复制内容或自由编辑修改内容期待你的好评和关注,我们将会做得更好】感谢您的支持与配合,我们会努力把内容做得更好!。

相关文档
最新文档