电力系统暂态分析知识讲解
电力系统暂态分析:第一章 电力系统故障分析(2)讲解
为了进行拉氏反变换,将上式改写为:
id (
p
)
Ud( 0 x'd
)
1 p2 1
U q( 0 x'd
)
1 p
p p2
1
iq (
p)
U q( 0 ) xq
iq( p ) [( r pX d ( p ))Uq( 0 ) X d ( p )Ud( 0 ) ] pD( p ) 其中:
D( p ) X d ( p )xq p2 r[ X d ( p ) xq ] p r 2 X d ( p )xq
1.3.1 不计阻尼绕组时同步电机三相短路
0 p f ( p ) rf i f ( p )
可得: 0 pxad id ( p ) px f i f ( p ) rf i f ( p )
即励磁电流故障分量的拉氏变换为:
i f
(
p
)
xad p rf x f
p
id (
p)
1.3.1 不计阻尼绕组时同步电机三相短路
d( q(
p p
) )
xd id ( xqiq (
p) p)
xad
i
f
(
p
)
f ( p ) xad id ( p ) x f i f ( p )
Ud( 0 ) Ud( 0 )
p p
p d ( p q(
p ) q( p ) d (
d ( 0 ) q( 0 ) f ( 0 ) 0
1.3.1 不计阻尼绕组时同步电机三相短路
电力系统暂态分析考点总结
一、绪论1.电力系统的运行状态由运行参量来描述,运行参量包括:功率,电压,电流,频率以及电动势向量间的角位移等。
2.电力系统的运行状态有两种:稳态和暂态。
3.暂态过程分为机电过程和电磁过程。
其中机电过程是由于机械转矩和电磁转矩(或功率)之间的不平衡引起的。
4.电磁暂态过程主要分析短路故障后电网电流,电压的变化;机电过程(稳定问题)主要分析发电机组转子的运动规律。
第一章电力系统故障分析的基本知识1.短路,是指电力系统正常运行情况以外的相与相之间或相与地之间的连接。
2.三相系统中短路的基本类型:三相短路接地;两相短路接地;两相短路;单相短路接地。
3.三相短路时三相回路依旧是对称的,故称为对称短路;其他几种短路均使三相回路不对称,故称为不对称短路。
4.产生短路的主要原因:电气设备载流部分的相间绝缘或相对地绝缘被损坏。
5.短路对电力系统的危害(电源——线路——负荷)一、短路电流的热效应会引起导体和绝缘的损坏;有短路电流流过时导体会受到很大的冲击力的作用;短路点的电弧可能会烧坏电气设备。
二、短路会引起电网的电压降低,使异步电机(最主要的电力负荷)的电磁转矩降低,电机转速减慢甚至停转,从而造成产品的报废和设备的损坏。
三、系统中发生短路相当于改变了电网结构,会引起系统中功率分布的变化,使发电机的输入输出功率不平衡,引起发电机失去同步,破坏系统的稳定性。
四、对通信系统产生干扰。
6.如何降低短路电流发生的概率一、线路始端添加电抗器二、添加继电保护装置三、添加自动重合闸装置7.短路计算的目的一、电气设备的合理选择二、继电保护装置的计算与整定三、电力系统接线方式的合理选择8.电抗器在电力系统中用来限制短路电流,而不是变换能量。
9.平均额定电压(kV)10.无限大功率电源:电源电压幅值和功率均为恒定的电源。
一、电源功率无限大:外电路发生短路引起的功率改变对于电源来说可以忽略不计。
二、无限大功率电源可以看作是无数个有限大功率电源并联而成,内阻抗为零,电源电压保持恒定。
电力系统暂态稳定性分析方法讲解
对于一个实际动态系统,需要解决的两个关键问题是:
①如何合理地构造或定义一个准确能量型函数,并使其大小能正确 反映系统失稳的危害性;
②如何确定系统的临界能量,以便根据扰动结束时的李雅普诺夫函 数值和临界值的差来判断系统的稳定性。
应用到电力系统中,用系统的状态变量表示的暂态能量函数
(TEF)描述了系统在故障阶段及故障后阶段不同时刻系统的暂 态能量。这种暂态能量是由故障所激发,并在故障阶段形成。
x 电抗
, d
后的内电动势E ,为恒定值,并设机械功率Pm为恒定值,
则系统完整的标幺值数学模型为
M
d
dt
Pm
Pe
(1)
d
dt
其中:电磁功率
Pe
EU
X
w —转子角速度和同步速的偏差;
—发电机转子角;
M —发电机惯性时间常数;
E —发电机内电动势复数相量;
U0 —无穷大母线参考电压相量; X —两量间的等值电抗, 设两电动势间的等值电阻近似为零。
?构造暂态能量函数设系统动能为mepp?3221?mvk?2k将1式的加速方程的两边对积分求得出故障切除时的动能即?0002212ccckccmevmmddmdppdadt????????????????????的面积ddt???若定义系统的为以故障切除后系统稳定平衡点s为参考点的势能它反映系统吸收动能的性能则故障切除时的系统势能为pv3cpcemsvppdb???????的面积系统在故障切除时总暂态能量v为
个过渡过程中的发电机转子摇摆曲线 (t) ,而只需求出故障切除 (扰动结束)时的c 和c。据此计算系统总能量VC ,并设法确定
临界能量VCr ,再通过比较二者来判别稳定性,从而工作量可大大 减少,速度可大大加快。
电力系统分析第九章 电力系统暂态分析1111
a( o )
N
TJ
P( o )
在一个时间段 t 内,近似的认为加速度为恒定值 a( o ) ,于是在第一个时间段末, 发电机的相对速度和相对角度的增量为 (1) (0) a( o ) t
第九章 电力系统的暂态稳定性
第九章 电力的暂态稳定性 本章要点:
1.简单电力系统暂态稳定的分析和计算 2.复杂电力系统暂态稳定的分析和计算 3.提高暂态稳定性的措施
Northeastern University
第九章 电力的暂态稳定性
电力系统的暂态稳定性:
电力系统正常运行的一个重要标志,乃是系统中的同步电机(主要是发电机) 都处于同步运行状态。所谓同步运行状态是指所有并联运行的同步电动机都有相同 的电角速度。在这种情况下,表征运行状态的参数具有接近于不变的数值,通常称 此情况为稳定运行状态。 电力系统同步运行的稳定性,是根据受扰后中并联运行的同步发电机转子之间 的相对位移角(或发电机电势之间的相角差)的变化规律来判断,因此,这种性质 的稳定性又称为功角稳定性。
当转子由 量为
max max max Wb c M a d c P a d c ( P T P 3 )d
由于 P a 0 ,上式积分为负值。也就是说, 动能增量为负值,这意味着转子储存的动 能减小了,即转速下降了,减速过程中动 能能量所对应的面积称为减速面积, Aedfg 就是减速面积。 显然,当满足
式中 K
N
TJ
Northeastern University
第九章 电力的暂态稳定性
知道了第一段时间段内的功角增量,即可求得第一时间段末,第二时间段开始瞬间 的功角值
电力系统暂态分析
电力系统暂态分析第一章1、电力系统运行状态的分类答:电力系统的运行状态分为稳态运行和暂态过程两种,其中暂态过程又分为波过程、电磁暂态过程和机电暂态过程。
波过程主要研究与大气过电压和操作过电压有关的电压波和电流波的传递过程;电磁过渡过程主要研究与各种短路故障和断线故障有关的电压、电流的变化,有时也涉及功率的变化;机电暂态过程主要研究电力系统受到干扰时,发电机转速、功角、功率的变化。
2、电力系统的干扰指什么?答:电力系统的干扰指任何可以引起系统参数变化的事件。
例如短路故障、电力元件的投入和退出等。
3、为什么说电力系统的稳定运行状态是一种相对稳定的运行状态?答:由于实际电力系统的参数时时刻刻都在变化,所以电力系统总是处在暂态过程之中,如果其运行参量变化持续在某一平均值附近做微小的变化,我们就认为其运行参量是常数(平均值),系统处于稳定工作状态。
由此可见系统的稳定运行状态实际是一种相对稳定的工作状态。
4、为简化计算在电力系统电磁暂态过程分析和机电暂态过程分析中都采用了那些基本假设?答:电磁暂态分析过程中假设系统频率不变,即认为系统机电暂态过程还没有开始;机电暂态过程中假设发电机内部的机电暂态过程已经结束。
第一章:1、电力系统的故障类型答:电力系统的故障主要包括短路故障和断线故障。
短路故障(又称横向故障)指相与相或相与地之间的不正常连接,短路故障又分为三相短路、两相短路、单相接地短路和两相短路接地,各种短路又有金属性短路和经过渡阻抗短路两种形式。
三相短路又称为对称短路,其他三种短路称为不对称短路;在继电保护中又把三相短路、两相短路称为相间短路,单相接地短路和两相短路接地称为接地短路。
断线故障(又称纵向故障)指三相一相断开(一相断线)或两相断开(两相断线)的运行状态。
2、短路的危害答:短路的主要危害主要体现在以下方面:1)短路电流大幅度增大引起的导体发热和电动力增大的危害;2)短路时电压大幅度下降引起的危害;3)不对称短路时出现的负序电流对旋转电机的影响和零序电流对通讯的干扰。
电力系统暂态分析-第1章 电力系统故障分析的基本知识ppt课件
电力系统暂态分析
第一章 电力系统故障分析的 基本知识
1.1 故障概述 1.2 标幺制 1.3 无限大功率电源供电的三相短路 电流分析
2
电力系统暂态分析
1.1 故障概述
一、电力系统运行状态分类
1、稳态
系统参数不变时,运行参量不变,系统的这种运行 状态称为稳态。
1.1 故障概述 三、断线故障
1、断线故障(纵向故障)的类型 1)一相断线 2)两相断线
2、断线原因
1)采用分相断路器的线路发生单相短路时单相跳闸; 2)线路一相导线断开。 3、断线的影响 造成三相不对称,产生负序和零序分量,而负序和零序 分量对电气设备和通讯有不良影响。
9
电力系统暂态分析
1.2 一、标幺制的概念
短路电流产生很大的电动力,可引起设备机械变形、扭 曲甚至损坏;
短路时系统电压大幅度下降,严重影响电气设备的正常 工作; 严重的短路可导致并列运行的发电厂失去同步而解列,
破坏系统的稳定性。
不对称短路产生的不平衡磁场,会对附近的通讯系统及 弱电设备产生电磁干扰,影响其正常工作 。
8
电力系统暂态分析
U UU / B *
S S / S P j Q / S P j Q * B B * *
11
I* I /IB
电力系统暂态分析
1.2 标幺制 二、电力系统中基准值的选取
对单相电路来说 如果基准选取满足: 电力系统基本公式:
SB U BIB U B Z B I B
值计算表达式?
12
电力系统暂态分析
1.2
对三相电路来说 基准值选择应满足:
电力系统暂态分析
电力系统暂态分析概述电力系统暂态分析是电力系统工程中的重要环节,它主要研究电力系统在暂态过程中的运行状态和稳定性。
暂态过程是指系统发生突发故障后,从故障发生到系统恢复正常运行的过程。
电力系统暂态分析的目的是评估系统在故障情况下的电压、电流和功率等参数的变化,以便采取相应的措施来保障系统的安全运行。
暂态分析的方法暂态分析的方法主要有以下几种:1. 数值计算法数值计算法是一种较为常用的暂态分析方法。
它通过建立电力系统的数学模型,采用数值计算的技术来模拟系统在暂态过程中的行为。
数值计算法可以分为直接法和迭代法两种。
直接法是指直接求解系统方程组,得到系统在每个时刻的状态;迭代法是指通过多次迭代求解,逐步逼近真实解。
数值计算法的优点是适用范围广,可以模拟各种不同类型的暂态过程,但计算量大,耗时较长。
2. 等效方法等效方法是一种简化计算的暂态分析方法。
它通过将电力系统中的各个元件等效为简化的模型,来简化暂态分析的计算过程。
等效方法主要包括等值电路法和等值参数法。
等值电路法是指将电力系统中的元件用等效电路来代替,以简化计算;等值参数法是指将电力系统中的元件用等效参数来代替,以简化计算。
等效方法的优点是计算速度快,但往往精度较低。
3. 软件仿真法软件仿真法是一种基于计算机软件的暂态分析方法。
它利用计算机软件来构建电力系统的模型,并通过仿真计算得到系统在暂态过程中的行为。
常用的电力系统暂态分析软件有PSS/E、EMTP等。
软件仿真法的优点是模型灵活性高,能够模拟复杂的暂态过程,但需要具备一定的计算机编程和模拟仿真的技术。
暂态分析的应用暂态分析在电力系统工程中有广泛的应用。
以下是几个常见的应用场景:1. 故障分析暂态分析可以用于故障分析,即在系统发生故障后,分析故障对系统的影响。
通过暂态分析,可以评估故障引起的电压暂降、电压暂升和电流过载等情况,以及评估故障后的系统稳定性和可靠性。
2. 保护设备设计暂态分析可以用于保护设备的设计。
考研知识点 电力系统暂态分析
• 当f点发生三相短路时,这个电路即被分成两个 独立的电路,其中左边的一个仍与电源相连接, 而右边的一个则变为没有电源的短接电路。
• 在短接电路中,电流将从它发生短路瞬间的初始 值衰减到零,在这一衰减过程中,该电路磁场中 所储藏的能量将全部转化为电阻中所消耗的热能。
• 在与电源相连的左侧电路中,每相的阻抗已变为 R+jwL,其电流将要由短路前的数值逐渐变化到 由阻抗R+jwL所决定的新稳态值,短路电流计算 主要是对这一电路进行的。
•
arctg L为稳态短路电流和电源电压
间的相角
R
•
短路电流的自由分量电流为:
t
L
iaa ce
R
• 又称为直流分量或非周期分量,它是不断减小的 直流电流。
t
• 则短路的全电流i为a ia iap Im sin(t ) ce
• 则短路的全电流为
t
ia ia iap Im sin(t ) ce
• 二、电力系统三相短路电流的周期分量与非周期 分量
• 上图所示的三相短路,短路发生前,电路处于稳 态,其a 相的电流表达式为
ia Im 0 sin(t 0 )
I
Um
• 式中 m 0
(R R)2 2 (L L)2 为正常回路电
流的幅值
•
0
arctg (L L)
(R R)
正常回路阻抗角
电压,将其他电压级下的电抗有名值归算到基本电压级 下:
• 假设选定第一段作为基本段,其它各段的参数均向这一 段归算,然后选择功率基准值和电压基准值分别为SB , UB1。各元件的电抗标么值计算如下
• (1)发电机。发电机就在基本段,其电抗有名 值不需归算,故有
电力系统暂态分析要点与分析
电力系统电磁暂态分析Ch11.电力系统暂态指电力系统受突然的扰动后,运行参数发生较大的变化即引起电磁暂态、机电暂态过程。
电磁暂态是电压电流等电气运行参数的快速变化过程。
机电暂态是角速度等机械运行参数的慢速变化。
电力系统电磁暂态分析是研究交流电力系统发生短路(断线)后电压电流的变化。
2.元件参数指发电机、变压器、线路的属性参数,运行参数指反映电力系统运行状态的电气、机械参数。
3.故障类型:短路(三相短路、两相短路、两相短路接地、单相短路接地)、断线(一相断线、两相断线)。
对称故障(三相短路)、不对称故障(不对称短路、断线故障)。
短路故障(横向故障)、断线故障(纵向故障、非全相运行)。
简单故障:指电力系统中仅有一处发生短路或断线故障,复杂故障:指电力系统中有多处同时发生不对称故障。
4.短路危害:短路电流大使设备过热并产生一定的电动力、故障点附件电压下降、功率不平衡失去稳定、不对称故障产生不平衡磁通影响通信线路。
短路计算目的:电气设备选型、继电保护整定、确定限制短路电流措施、电气接线方式的选择。
短路解决措施:继电保护快速隔离、自动重合闸、串联电抗器。
5. 无限大功率电源指短路点距离电源的电气距离较远时,短路导致电源输出功率的变化量远小于电源所具有的功率的电源。
6.无限大功率电源的三相突然短路电流:1.短路电流含有二种分量:基频稳态分量、直流暂态分量。
2.基频稳态分量比短路前电流大,其大小受短路后回路的阻抗值决定。
3.直流暂态分量其大小由短路前电流和短路后电流的交流稳态值决定,并按短路后回路的时间常数Ta 衰减为0(出现原因:短路前后电感电流不能突变)。
7.最大短路电流条件:短路前线路空载、短路后回路阻抗角≈90°、电压初始角α为0°或180°。
出现时间:在短路后0.01秒时刻出现。
短路冲击电流:指在短路时可能达到的最大短路电流瞬时值。
三相电流中那相的直流分量起始值越大,则其短路电流越大。
电力系统暂态分析 电力系统故障分析的基本知识
绪论(Introduction) TransientAnalysis:暂态分析,瞬变、过渡、暂时物理特点:由一个状态(初始状态)变化到另一状态(终止状态)的过程分析,数学特点:用微分方程描述的过程分析。
应用:电力系统设计、规划、控制等;第一章电力系统故障分析的基本知识第一节概述故障,事故,短路故障:正常运行情况以外的相与相之间或相与地之间的连接。
1.故障类型(电力系统故障分析中)形式上又可称为短路故障、断线故障(非全相运行)分析方法上:不对称故障、对称故障计算方法上:并联型故障、串联性故障 简单故障:在电力系统中只发生一个故障。
复杂故障:在电力系统中的不同地点(两处以上)同时发生不对称故障。
第二节 标幺值一、标幺值标幺值=基准值的选取有一定的随意性,工程中一般选择惯用值(S B =100MVA 、S B =1000MVA 、U B =U N ) 三、相电路中基准值的基本关系 稳态分析:B B B I U S 3=,B B B Z I U 3=其中:S B :三相功率 U B :线电压I B :星形等值电路中的相电流Z B :单相阻抗 短路分析中:Z B :单相阻抗---故障分析中的等值电路计算与稳态分析相同I B :星形等值电路中的相电流 U B :相电压四、基准值改变时标幺值的计算已知以设备本身额定值为基准值的标幺值)*(N x ,求以系统基准值S B 、U B 为基准时的标幺值)*(B x 例如:已知U S %,S TN ,求在系统基准容量S B 时的标幺值电抗?100%)*(s N U x =22)*(100%BB TN TN s B U SS U U x ⨯⨯= NB B N N B S SU U x x ⨯⨯=∴22)*()*(●额定容量S N 小,则电抗x *(B )大,小机组、小变压器的电抗大;●简单网络计算中,选取S B =S TN (S N ),可减少参数的计算量。
五.变压器联系的不同电压等级电网中元件参数标幺值的计算 (一)准确计算法①选定S B 、U B1②U B2=UB1*121/10.5③U B3=U B2*6.6/110 作等值电路:jx G jx T1 jx L jx T2 jx R22)*()*(BB Gn GN N G B G U SS U x x ⨯⨯=取基准电压=额定电压,可简化计算 222212*1121100%5.10100%B B TN s B B TN s T U S S U U S S U x ⨯⨯=⨯⨯=变压器电抗可由任一侧计算 22212*1215.10B B l B B l L U S l x U S l x x ⨯⨯=⨯⎪⎭⎫⎝⎛⨯⨯=线路电抗就地处理更方便 即,准确计算法有3种,⑴阻抗归算法;(阻抗按变压器实际变比归算,简单网络较方便) ⑵就地处理法;(基准电压按变压器实际变比归算,大网络计算较方便)⑶在就地处理中,取定各段的基准电压(不一定按变压器实际变比作基准电压归算),则可出现1:k*的理想变压器,然后再将1:k *变压器用π形等值电路表示。
电力系统暂态分析
电力系统暂态分析电力系统暂态分析是指对电力系统在暂态过程中的电压、电流、功率等参数进行研究和分析的过程。
暂态过程是指系统发生突变、故障等原因引起的瞬时变化过程,一般持续时间很短,但对电力系统的稳定运行和设备安全具有重要影响。
本文将介绍电力系统暂态分析的基本原理、方法和应用。
一、电力系统暂态分析的基本原理在电力系统中,暂态过程主要包括大电流暂态和大电压暂态。
大电流暂态一般是由于系统突发故障引起的,如短路故障;大电压暂态则是由于系统发生突变,如开关切换等。
暂态过程中,电力系统的电压、电流和功率等参数会发生瞬时的变化,因此需要进行暂态分析来研究这些变化对系统和设备的影响。
暂态分析的基本原理是根据电力系统的物理特性和传输线路的数学模型,通过求解微分方程组或差分方程组,获得系统在暂态过程中各个时刻的电压、电流和功率等参数。
在电力系统暂态分析中,常用的数学模型包括传输线模型、发电机模型、变压器模型等,这些模型可以描述不同设备在暂态过程中的响应特性。
二、电力系统暂态分析的方法电力系统暂态分析的方法主要包括数值计算方法和仿真计算方法。
数值计算方法是通过数学公式和数值计算技术,求解电力系统暂态过程的物理方程。
常用的数值计算方法包括龙格-库塔法和差分法等。
仿真计算方法是通过建立电力系统的数学模型,利用计算机软件进行模拟计算,得到系统在暂态过程中各个时刻的参数。
常用的仿真计算软件包括PSCAD、EMTP-RV等。
在进行电力系统暂态分析时,需要先确定系统的故障类型、故障位置和故障参数等。
然后,根据故障类型选择适当的暂态分析方法,并进行故障电流和故障电压等参数的计算。
最后,根据计算结果进行参数比较和评估,确定系统在暂态过程中的稳定性和设备的安全性。
三、电力系统暂态分析的应用电力系统暂态分析在电力系统的设计、运行和维护中起着重要的作用。
具体应用包括:1. 设备选择和配置:通过对电力系统暂态过程的分析,可以评估不同设备的暂态稳定性,选择合适的设备并进行合理配置,确保系统在暂态过程中能够正常运行。
电力系统暂态分析要点总结
第一章1.短路的概念和类型概念:指一切不正常的相与相与地(对于中性点接地的系统)之间发生通路或同一绕组之间的匝间非正常连通的情况。
类型:三相短路、两相短路、两相接地短路、单相接地短路。
2.电力系统发生短路故障会对系统本身造成什么危害?1)短路故障是短路点附近的支路中出现比正常值大许多倍的电流,由于短路电流的电动力效应,导体间将产生巨大的机械应力,可能破坏导体和它们的支架。
2)比设备额定电流大许多倍的短路电流通过设备,会使设备发热增加,可能烧毁设备。
3)短路电流在短路点可能产生电弧,引发火灾.4)短路时系统电压大幅度下降,对用户造成很大影响。
严重时会导致系统电压崩溃,造成电网大面积停电.5)短路故障可能造成并列运行的发电机失去同步,破坏系统稳定,造成大面积停电。
这是短路故障的最严重后果。
6)发生不对称短路时,不平衡电流可能产生较大的磁通在邻近的电路内感应出很大的电动势,干扰附近的通信线路和信号系统,危及设备和人身安全。
7)不对称短路产生的负序电流和电压会对发电机造成损坏,破坏发电机的安全,缩短发电机的使用寿命。
3.同步发电机三相短路时为什么进行派克变换?目的是将同步发电机的变系数微分方程式转化为常系数微分方程式,从而为研究同步发电机的运行问题提供了一种简捷、准确的方法。
4。
同步发电机磁链方程的电感系数矩阵中为什么会有变数、常数或零?变数:因为定子绕组的自感系数、互感系数以及定子绕组和转子绕组间的互感系数与定子绕组和转子绕组的相对位置θ角有关,变化周期前两者为π,后者为2π.根本原因是在静止的定子空间有旋转的转子。
常数:转子绕组随转子旋转,对于其电流产生的磁通,其此路的磁阻总不便,因此转子各绕组自感系数为常数,同理转子各绕组间的互感系数也为常数,两个直轴绕组互感系数也为常数。
零:因为无论转子的位置如何,转子的直轴绕组和交轴绕组永远互相垂直,因此它们之间的互感系数为零。
5。
同步发电机三相短路后,短路电流包含哪些分量?各按什么时间常数衰减?1)定子短路电流包含二倍频分量、直流分量和交流分量;励磁绕组的包含交流分量和直流分量;D轴阻尼绕组的包含交流分量和直流分量;Q轴阻尼包含交流分量.2)定子绕组基频交流分量、励磁绕组直流分量和阻尼绕组直流分量在次暂态时按Td’’和Tq’’衰减,在暂态情况下按Td’衰减;定子绕组的直流分量、二倍频分量和励磁绕组交流分量按Ta衰减。
电力系统暂态分析
t 0
i(0 ) Im sin( ) i(0 ) I pm sin( ) c
由于电感电流不能突变,因此有:
i(0 ) i(0 )
代入通解得到:
c iap.0 Im sin( ) I pm sin( )
第三节 无限大功率电源供电的三相短路分析
从而,短路全电流:
t
i I pm sin(t ) Im sin( ) I pm sin( ) e
绪论
4、本门课程的学习的难度和重要意义 1)与多门课程相关 高等数学 大学物理 电路原理 电机学
绪论
2)重要意义
电力系统运行中基本的概念、表现
稳态运行-
故障分析 设计(设计部门)
保护整定计算(调度,保护)
事故分析 (运行)
绪论
主要参考书目:
1:李光琦主编 社 2006年
《电力系统暂态分析》 中国电力出版
xL
SB
U
2 B
x0
SB
U
2 B
第二节 标幺值
四、由变压器联结的不同电压等级的各 元件参数、标幺值及短路电流的计算
k12 UN1 /UN2
k 23 UN 2 / UN 3
x1 , x2 , x3 ——电抗各值(含变压器电抗 在内)
第二节 标幺值
1、计算步骤(准确计算) 1)选待计算电流段为基本段。
E* X *
6)基本段电流有名值
I1 I1*
SB 3U B1
第二节 标幺值
7)其他段电流
I2 k12 I1 I1*
SB 3UB1 / k12
I1*
I3 I1*I B3
可记为: I1* I*
SB 3U B 2
I1* IB2
暂态分析知识点总结
暂态分析知识点总结一、暂态分析概述暂态分析是电路分析中的一种重要方法,用于分析电路在瞬态过程中的运行情况。
在电路中,当电源或负载发生瞬时变化时,电路中各个元件的电压和电流也会发生瞬时变化,这种瞬时变化的过程称为暂态过程。
暂态分析可以有效地帮助工程师分析电路在瞬时过程中的稳定性和性能。
二、暂态分析的基本方法1. 微分方程方法微分方程方法是一种基本的暂态分析方法,它利用电路中各个元件的电压和电流之间的关系,建立描述电路暂态过程的微分方程。
然后通过求解微分方程,得到电路在瞬时过程中的运行情况。
2. 状态方程方法状态方程方法是一种较为高级的暂态分析方法,它结合了电路中各个元件的动态特性,通过建立电路的状态方程,对电路进行深入的暂态分析。
状态方程方法可以较为精确地描述电路的暂态过程,适用于复杂的电路系统。
3. 时域分析方法时域分析方法是一种通用的暂态分析方法,它以时间为自变量,通过不同的计算方法对电路的暂态过程进行分析。
时域分析方法可以对电路进行直观的描绘,是工程师常用的暂态分析工具。
三、暂态分析的应用领域1. 电力系统中的暂态分析在电力系统中,暂态分析是一项非常重要的工作。
电力系统中存在着大量的负载变化,例如开关操作、电源故障等,这些都会引起电力系统的暂态过程。
通过对电力系统进行暂态分析,可以有效地评估系统的稳定性和安全性。
2. 电子电路中的暂态分析在电子电路中,暂态过程也是一个重要的问题。
例如,数字电路中的时序问题、模拟电路中的信号变化等都需要进行暂态分析。
通过对电子电路进行暂态分析,可以更好地理解电子元件的运行特性,为电路设计和优化提供参考。
3. 控制系统中的暂态分析在控制系统中,暂态分析是评估系统动态响应特性的重要方法。
对于控制系统中的各个元件,如传感器、执行器等,通过进行暂态分析,可以更好地评估系统在干扰或控制命令变化时的响应情况。
四、暂态分析的注意事项1. 选择合适的分析方法在进行暂态分析时,需要根据电路的特性和分析的要求选择合适的分析方法。
电力系统暂态分析期末知识点
暂态电抗(xd' )的物理意义?如果沿d轴方向把同步电机看做双绕组变压器,当励磁绕组短路时,从定子绕组测得电抗即为xd' 。
次暂态电抗(xd'')的物理意义?如果沿同步电机直轴方向,把电机看做三绕组变压器,次暂态电抗就是这个变压器的两个二次绕组(励磁绕组和直轴阻尼绕组)都短路时从一次侧(定子绕组侧)测得的电抗。
磁链守恒定律:任何闭合线圈,它所交链的磁链不能突变,当外来的磁场企图使闭合线圈所交链的磁链变化时,在该线圈中将感应出一个自由电流,使所产生的磁链恰好抵消这种变化,以保持总的合成磁链不突变。
冲击电流(最大有效值电流):主要用于检验电气设备和载流导体的动稳定性。
短路全电流:主要用于检验断路器的开断能力。
同步电机对称稳态运行相量图:ɑ-Φ的绝对值=90度时短路电流直流分量起始值的绝对值达到最大值(短路最恶劣条件)无限大功率电源:1:电源的频率和电压保持恒定2:电源的内阻抗为0 容量无穷大(实际上阻抗<10%)短路:电力系统正常运行之外相与相之间或相与地之间的连接自然因素和人为因素理想电机:对称性正弦性光滑性不饱和性Park变化:把观察者的观察点从静止定子转移到了转子上,定子静止三相绕组被两个同转子一起旋转的等效绕组所代替,并且三相对称交流变成了直流,id iq均为常数。
暂态过程:次暂态阶段暂态阶段短路稳态阶段短路计算假设:电势同相位负荷为恒定电抗不计磁路饱和对称三相系统金属短路忽略高压输电线的电阻和电容自耦变压器:不仅有磁联系还有电联系在暂态瞬间暂态电势Eq' 为什么不突变?因为ΦfΦd不突变在次暂态瞬间次暂态电势 Eq'' 为什么不突变?ΦQ不突变短路故障称为横向故障三相短路(对称短路),两相短路,两相短路接地,单相短路接地,不对称故障为纵向故障一相两相断线不平衡转矩)△Pa=PT- Pe>0加速转矩,发电机转子加速,功角开始增大反之亦然提高电力暂态稳定性措施:故障快速切除提高发电机输出的电磁功率(电气制动变压器经小电阻接地发电机强行励磁)减少原动机输出功率(切发电机快关汽门机械制动),中间设置开关站和采用强行串励补偿电力系统静态稳定性:一般指电力系统在运行中受到微小扰动后恢复它原来运行状态的能力电力系统正常运行标志:系统中的并联同步电机都有相同的电角速度暂态稳定性:电力系统受到一个大扰动后能从原来的平衡点,不失去同步过渡到新的运行状态并在新状态下稳定运行。
电力系统暂态分析讲义
电力系统暂态分析讲义第八章电力系统暂态稳定第一节暂态稳定概述暂态稳定分析:不宜作线性化的干扰分析,例如短路、断线、机组切除(负荷突增)、甩负荷(负荷突减)等。
能保持暂态稳定:扰动后,系统能达到稳态运行。
分析暂态稳定的时间段:起始:0~1,保护、自动装置动作,但调节系统作用不明显,发电机采用、PT恒定模型;中间:1~5,AVR、PT的变化明显,须计及励磁、调速系统各环节;后期:5~min,各种设备的影响显著,描述系统的方程多。
本书中重点讨论起始阶段。
基本假定:⑴网络中,ω=ω0(网络等值电路同稳态分析)⑵只计及正序基波分量,短路故障用正序增广网络表示一.物理过程分析~发电机采用E’模型。
故障前:电源电势节点到系统的直接电抗故障中,j某Δ故障切除后:PPIPⅢfeaPT=P0kdacbPⅡ功角特性曲线为:δhδmδ0δcδ●故障发生后的过程为:运行点变化原因结果a→b短路发生PT>PE,加速,ω上升,δ增大b→cω上升,δ增大ω>ω0,动能增加c→e故障切除PT<PE,开始减速,但ω>ω0,δ继续增大e→f动能释放减速,当ωf=ω0,动能释放完毕,δm角达最大f→kPT<PE,减速δ,减小经振荡后稳定于平衡点k结论:①若最大摇摆角,系统可经衰减的振荡后停止于稳定平衡点k,系统保持暂态稳定,反之,系统不能保持暂态稳定。
②暂态稳定分析与初始运行方式、故障点条件、故障切除时间、故障后状态有关。
③电力系统暂态稳定分析是计算电力系统故障及恢复期间内各发电机组的功率角的变化情况(即δ–t曲线),然后根据角有无趋向恒定(稳定)数值,来判断系统能否保持稳定,求解方法是非线性微分方程的数值求解。
P二.等面积定则daPT=P0PI●故障中,机组输入的机械功率>发电机输出的电磁功率,发电机加速,cbPⅡδδ0δcP积分得:左侧=转子在相对运动中动能的增量;右侧=过剩转矩对相对位移所做的功――线下方的阴影面积――称为加速面积;●故障切除后PⅢfdaPT=P0PⅡδcδcδm∵时,,∴右侧=制动转矩对相对角位移所做的功=线上方的阴影面积(称为减速面积)●因减速过程中,转速恢复同步转速(即加速过程中的动能释放完毕)时δ角达最大,所以加速面积=减速面积――等面积定则。
电力系统暂态分析考点总结
电⼒系统暂态分析考点总结⼀、绪论1.电⼒系统的运⾏状态由运⾏参量来描述,运⾏参量包括:功率,电压,电流,频率以及电动势向量间的⾓位移等。
2.电⼒系统的运⾏状态有两种:稳态和暂态。
3.暂态过程分为机电过程和电磁过程。
其中机电过程是由于机械转矩和电磁转矩(或功率)之间的不平衡引起的。
4.电磁暂态过程主要分析短路故障后电⽹电流,电压的变化;机电过程(稳定问题)主要分析发电机组转⼦的运动规律。
第⼀章电⼒系统故障分析的基本知识1.短路,是指电⼒系统正常运⾏情况以外的相与相之间或相与地之间的连接。
2.三相系统中短路的基本类型:三相短路接地;两相短路接地;两相短路;单相短路接地。
3.三相短路时三相回路依旧是对称的,故称为对称短路;其他⼏种短路均使三相回路不对称,故称为不对称短路。
4.产⽣短路的主要原因:电⽓设备载流部分的相间绝缘或相对地绝缘被损坏。
5.短路对电⼒系统的危害(电源——线路——负荷)⼀、短路电流的热效应会引起导体和绝缘的损坏;有短路电流流过时导体会受到很⼤的冲击⼒的作⽤;短路点的电弧可能会烧坏电⽓设备。
⼆、短路会引起电⽹的电压降低,使异步电机(最主要的电⼒负荷)的电磁转矩降低,电机转速减慢甚⾄停转,从⽽造成产品的报废和设备的损坏。
三、系统中发⽣短路相当于改变了电⽹结构,会引起系统中功率分布的变化,使发电机的输⼊输出功率不平衡,引起发电机失去同步,破坏系统的稳定性。
四、对通信系统产⽣⼲扰。
6.如何降低短路电流发⽣的概率⼀、线路始端添加电抗器⼆、添加继电保护装置三、添加⾃动重合闸装置7.短路计算的⽬的⼀、电⽓设备的合理选择⼆、继电保护装置的计算与整定三、电⼒系统接线⽅式的合理选择8.电抗器在电⼒系统中⽤来限制短路电流,⽽不是变换能量。
9.平均额定电压(kV)10.⽆限⼤功率电源:电源电压幅值和功率均为恒定的电源。
⼀、电源功率⽆限⼤:外电路发⽣短路引起的功率改变对于电源来说可以忽略不计。
⼆、⽆限⼤功率电源可以看作是⽆数个有限⼤功率电源并联⽽成,内阻抗为零,电源电压保持恒定。
电力系统暂态分析讲义
电⼒系统暂态分析讲义第⼀次课教学内容:绪论;电⼒系统故障分析概述教学⽬的:通过本节的教学使学⽣了解电⼒系统运⾏状态的分类和本课程研究的内容;了解电⼒系统故障的类型。
教学步骤:绪论⼀、复习电⼒系统的概念1、电⼒系统由发电机、变压器、线路和负荷组成的⽹络。
它包括通过电⽓的或机械的⽅式连接在⽹络中的设备。
2、电⼒系统的设备分类电⼒元件:⽤于电能的⽣产、变换、输送、分配和消费的设备;控制元件:⽤来改变系统的运⾏状态的设备和装置。
如以后要讲的ZTL、ZTS 和继电保护装置等。
⼆、电⼒系统运⾏状态的描述电⼒系统的运⾏状态⽤运⾏参量来描述。
运⾏参量指反映电⼒系统运⾏状态的物理量,具体有功率、电压、电流、频率、发电机电势相量之间的⾓位移等。
运⾏参量直接由系统参数决定。
系统参数指代表系统元件特性的参数。
如电阻、电抗、电导、电纳、输⼊阻抗、变压器变⽐、时间常数、放⼤倍数等。
系统参数由系统元件的物理性质决定,例如输电线路的电抗取决于导线的截⾯、长度、⼏何均距等。
三、电⼒系统运⾏状态的分类电⼒系统的运⾏状态分为暂态和稳态两种。
1、稳态系统参数保持不变时,描述电⼒系统运⾏状态的运⾏参量亦为常数,电⼒系统的这种运⾏状态称为稳态。
事实上,系统参数是时刻变化的,例如负荷阻抗时刻都在改变,因⽽各运⾏参量亦不能保持常数。
但如果各运⾏参量只在某⼀平均值附近做微⼩的变化,我们就可以认为运⾏参量为常数,即系统的运⾏状态为稳态。
换句话说,电⼒系统的稳态实际上是⼀种相对稳定的运⾏状态。
2、暂态1)暂态的概念系统运⾏参量的⼤⼩由系统参数决定,当系统参数变化后,运⾏参量就会从原来的⼀组数值变为⼀组新的数值,也就是电⼒系统从⼀种稳定运⾏状态变为另⼀种稳定运⾏状态。
由于电⼒系统中惯性元件(电抗、电容、发电机的转⼦等)的作⽤,电⼒系统从⼀种运⾏状态变为另⼀种运⾏状态需要⼀定的过渡过程,这个过渡过程中的电⼒系统运⾏状态称为电⼒系统暂态运⾏。
事实上电⼒系统的参数时刻都在改变,因⽽电⼒系统总是处于暂态过程中。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
电力系统暂态一、判断题1、分析电力系统并列运行稳定性时,不必考虑负序电流分量的影响。
(√)2、短路电流在最恶劣短路情况下的最大瞬时值称为短路冲击电流。
(√)3、不对称短路时,短路点负序电压最高,发电机机端正序电压最高。
(√)4、由于电力系统中三序分量是相互独立的,所以可以分别计算,然后再将各序分量迭加得到各相的电流和电压。
“√”5、快速切除故障有利于改善简单电力系统的暂态稳定性。
“√”6、中性点不接地系统中发生两相短路接地时流过故障相的电流与同一地点发生两相短路时流过故障相的电流大小相等。
“√”7、电力系统横向故障指各种类型的短路故障“√”8、运算曲线的编制过程中已近似考虑了负荷对短路电流的影响,所以在应用运算曲线法计算短路电流时,可以不再考虑负荷的影响。
“√”9、从严格的意义上讲,电力系统总是处于暂态过程之中。
(√)10、不管同步发电机的类型如何,定子绕组与转子绕组之间互感系数都是变化的。
(√)11、对称分量法只能用于线性电力系统不对称故障的分析计算。
(√)12、派克变换前后,发电机气隙中的磁场保持不变。
(√)13、同步发电机转子的惯性时间常数J T反映了转子惯性的大小。
(√)14、短路计算时的计算电抗是以发电机的额定容量为基准的电抗标幺值。
(√)15、切除部分负荷是在电力系统静态稳定性有被破坏的危机情况下,采取的临时措施二、选择题1、近似计算法中,变压器的变比应采用(C )。
A、实际变比;B、额定变比;C、平均额定变比。
2、电力系统一相断线时的复合序网在形式上与(B )的复合序网相同。
A、单相接地短路;B、两相短路接地;C、两相短路。
3、电力系统的复杂故障是指(C )。
A、横向故障;B、纵向故障;C、电力系统中不同地点同时发生不对称故障。
4、如三相短路瞬间A相非周期电流起始值为最大值,则B、C两相非周期分量电流起始值(A )。
A、大小相等,均等于A相非周期分量的一半;B、大小相等,均等于零;C、大小不相等。
5、下图所示网络中,f点发生三相短路时,关于短路点右侧网络中的电流正确的说法是(B )。
A、不存在电流;B、过渡过程中存在电流;C、电流始终存在。
6、同步发电机直轴电抗三者之间的大小关系为(A )。
7、不同类型短路对电力系统并列运行暂态稳定性的影响也不一样,下述说法中正确的是( B )。
A 、三相短路影响最大,以下依次是两相短路、单相接地短路、两相短路接地;B 、三相短路影响最大,以下依次是两相短路接地,两相短路、单相接地短路;C 、单相接地短路影响最大,以下依次是两相短路、两相短路接地、三相短路。
8、对于三个单相变压器组成的三相变压器组,不对称短路分析时,对励磁电抗的处理方法是( B )。
A 、负序和正序励磁电抗可以视为无限大,零序励磁电抗一般不能视为无限大;B 、负序、正序和零序励磁电抗均可以视为无限大。
C 、负序、正序和零序励磁电抗都不可以视为无限大。
9、关于同杆双回架空输电线路,下面说法中正确的是( A )。
A 、一般情况下可以忽略双回路对正序和负序电抗的影响,但对零序电抗的影响却不能忽略;B 、一般情况下双回路对正序、负序和零序电抗的影响都可以忽略;C 、一般情况下双回路对正序、负序和零序电抗的影响都不可以忽略。
10、在下图所示电力系统中,当f 点(变压器三角形接线侧)发生A 、B 两相短路时,下述说法中正确的是( C )。
A 、变压器星形侧三相导线中都有短路电流流过,其中A 相电流最大,为其他两相电流的两倍;B 、变压器星形侧也只有A 、B 两相导线中有短路电流流过,且两相短路电流相等;C 、变压器星形侧三相导线中都有短路电流流过,其中B 相电流最大,为其他两相电流的两倍;11、短路电流最大有效值出现在( A )。
A 、短路发生后约半个周期时;B 、短路发生瞬间;C 、短路发生后约1/4周期时。
12、利用对称分量法分析计算电力系统不对称故障时,应选( B )相作为分析计算的基本相。
A 、故障相;B 、特殊相;C 、A 相。
13、关于不对称短路时短路电流中的各种电流分量,下述说法中正确的是( C )。
A 、短路电流中除正序分量外,其它分量都将逐渐衰减到零;B 、短路电流中除非周期分量将逐渐衰减到零外,其它电流分量都不会衰减;C 、短路电流中除非周期分量将逐渐衰减到零外,其它电流分量都将从短路瞬间的起始值衰减到其稳态值。
14、不管电力系统发生什么类型的不对称短路,短路电流中一定存在( B )。
A 、正序分量、负序分量和零序分量;B 、正序分量和负序分量;C 、零序分量。
15、在简单电力系统中,如某点的三序阻抗021∑∑∑==Z Z Z ,则在该地点发生不同类型短路故障时,按对发电机并列运行暂态稳定性影响从大到小排序,应为( B )。
A 、单相接地短路、两相短路、两相短路接地、三相短路;B 、三相短路、两相短路接地、两相短路、单相接地短路;C 、两相短路、两相短路接地、单相接地短路、三相短路。
16、发电机-变压器单元接线,变压器高压侧母线上短路时,短路电流冲击系数应取( B )。
A 、2;B 、1.8;C 、1.9。
17、电力系统在事故后运行方式下,对并列运行静态稳定储备系数(%)P K 的要求是( C )。
A 、(%)P K >30;B 、(%)P K ≧15~20;C 、(%)P K ≧10。
18、下述各组中,完全能够提高电力系统并列运行暂态稳定性的一组是( B )。
A 、装设有载调压变压器、线路装设重合闸装置、快速切除线路故障;B 、变压器中性点经小电阻接地、线路装设重合闸装置、快速切除线路故障;C 、线路两端并联电抗器、快速切除线路故障、线路装设重合闸装置。
19、对于三相三柱式变压器,其正序参数、负序参数和零序参数的关系是( B )。
A 、正序参数、负序参数和零序参数均相同;B 、正序参数与负序参数相同,与零序参数不同;C 、正序参数、负序参数、零序参数各不相同。
20、分析计算电力系统并列运行静态稳定性的小干扰法和分析计算电力系统并列运行暂态稳定性的分段计算法,就其实质而言都是为了求( A )。
A 、t -δ曲线;B 、t P -曲线;C 、故障切除极限时间。
21、无限大电源供电情况下突然发生三相短路时,各相短路电流中非周期分量的关系是( C )。
A 、三相相等;B 、三相可能相等,也可能不相等;C 、不相等。
22、分析简单电力系统并列运行的暂态稳定性采用的是( B )。
A 、小干扰法;B 、分段计算法;C 、对称分量法。
23、不计短路回路电阻时,短路冲击电流取得最大值的条件是( A )。
A 、短路前空载,短路发生在电压瞬时值过零时;B 、短路前带有负载,短路发生在电压瞬时值过零时;C 、短路前空载,短路发生在电压瞬时值最大时。
24、电力系统并列运行的暂态稳定性是指( B )。
A 、正常运行的电力系统受到小干扰作用后,恢复原运行状态的能力;B 、正常运行的电力系统受到大干扰作用后,保持同步运行的能力;C 、正常运行的电力系统受到大干扰作用后,恢复原运行状态的能力。
25、中性点直接接地系统中发生单相金属性接地短路时,流过故障相的短路电流大小与同一地点发生三相金属性短路时的短路电流大小相比较,其关系为( C )。
A 、三相短路电流大于单相短路电流;B 、三相短路电流小于单相短路电流;C 、不能简单地确定二者的大小关系,还需要考虑其它条件。
26、对于旋转电力元件(如发电机、电动机等),其正序参数、负序参数和零序参数的特点是( C )A 、正序参数、负序参数和零序参数均相同;B 、正序参数与负序参数相同,与零序参数不同;C 、正序参数、负序参数、零序参数各不相同。
27、绘制电力系统的三序单相等值电路时,对普通变压器中性点所接阻抗n Z 的处理方法是( B )。
A 、中性点阻抗仅以n Z 出现在零序等值电路中;B 、中性点阻抗以3n Z 出现在零序等值电路中;C 、中性点阻抗以n Z 出现三序等值电路中。
28、单相接地短路时,故障处故障相短路电流与正序分量电流的关系是( A )。
A 、故障相短路电流为正序分量电流的3倍;B 、故障相短路电流为正序分量电流的3倍;. C 、故障相电流等于正序分量电流。
29、对于11/-∆Y 接线变压器,两侧正序分量电压和负序分量电压的相位关系为( C )A 、正序分量三角形侧电压与星形侧相位相同,负序分量三角形侧电压与星形侧相位也相同;B 、正序分量三角形侧电压较星形侧落后030,负序分量三角形侧电压较星形侧超前030;C 、正序分量三角形侧电压较星形侧超前030,负序分量三角形侧电压较星形侧落后030。
30、在中性点不接地系统中,在不计电阻影响并认为)2()1(∑∑=x x 的情况下,发生两相短路金属性接地时,故障处非故障相对地电压的大小为( C )A 、0B 、|0|f UC 、|0|5.1f U31、计算12MW 以上机组机端短路冲击电流时,短路电流冲击系数应取( B )。
A 、2;B 、1.9;C 、1.8。
32、发电机三相电压为:)sin(αω+=t U u m a 、)120sin(0-+=αωt U u m b ,)120sin(0++=αωt U u m c ,如将短路发生时刻作为时间的起点(0=t ),当短路前空载、短路回路阻抗角为800(感性)时,B 相短路电流中非周期分量取得最大值的条件是( B )。
A 、00=α;B 、0110=α;C 、0110-=α。
33、具有阻尼绕组的凸极式同步发电机,机端发生三相短路时,电磁暂态过程中定子绕组中存在( A )。
A 、基频交流分量、倍频分量和非周期分量;B 、基频交流分量和非周期分量;C 、非周期分量和倍频分量。
34、中性点直接接地系统中发生不对称短路时,故障处短路电流中( C )。
A 、一定存在零序分量B 、一定不存在零序分量C 、可能存在,也可能不存在零序分量应根据不对称短路类型确定。
35、在中性点直接接地的电力系统中,如电力系统某点不对称短路时的正序电抗、负序电抗和零序电抗的关系为)2()1()0(22∑∑∑==Z Z Z ,则该点发生单相接地短路、两相短路、两相短路接地和三相短路时,按故障处正序电压从大到小的故障排列顺序是( C )。
A 、两相短路接地、单相接地短路、两相短路、三相短路B 、单相接地短路、两相短路接地、两相短路、三相短路;C 、单相接地短路、两相短路、两相短路接地、三相短路。
36、中性点不接地系统中,同一点发生两相短路和两相短路接地两种故障情况下,故障相电流的大小关系为( A )。
A 、相等;B 、两相短路时的电流大于两相短路接地时的电流;C 、两相短路接地时的电流大于两相短路时的电流。
37、电力系统中,f 点发生两相经过渡阻抗Z f 短路时,正序增广网络中附加阻抗∆Z 为( B )。